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Abstract 

Background Understanding growth regulatory pathways is important in aquaculture, fisheries, and vertebrate physi-
ology generally. Machine learning pattern recognition and sensitivity analysis were employed to examine metabo-
lomic small molecule profiles and transcriptomic gene expression data generated from liver and white skeletal muscle 
of hybrid striped bass (white bass Morone chrysops x striped bass M. saxatilis) representative of the top and bottom 
10 % by body size of a production cohort.

Results Larger fish (good-growth) had significantly greater weight, total length, hepatosomatic index, and specific 
growth rate compared to smaller fish (poor-growth) and also had significantly more muscle fibers of smaller diam-
eter (≤ 20 µm diameter), indicating active hyperplasia. Differences in metabolomic pathways included enhanced 
energetics (glycolysis, citric acid cycle) and amino acid metabolism in good-growth fish, and enhanced stress, muscle 
inflammation (cortisol, eicosanoids) and dysfunctional liver cholesterol metabolism in poor-growth fish. The major-
ity of gene transcripts identified as differentially expressed between groups were down-regulated in good-growth 
fish. Several molecules associated with important growth-regulatory pathways were up-regulated in muscle of fish 
that grew poorly: growth factors including agt and agtr2 (angiotensins), nicotinic acid (which stimulates growth 
hormone production), gadd45b, rgl1, zfp36, cebpb, and hmgb1; insulin-like growth factor signaling (igfbp1 and igf1); 
cytokine signaling (socs3, cxcr4); cell signaling (rgs13, rundc3a), and differentiation (rhou, mmp17, cd22, msi1); mito-
chondrial uncoupling proteins (ucp3, ucp2); and regulators of lipid metabolism (apoa1, ldlr). Growth factors pttg1, egfr, 
myc, notch1, and sirt1 were notably up-regulated in muscle of good-growing fish.

Conclusion A combinatorial pathway analysis using metabolomic and transcriptomic data collectively suggested 
promotion of cell signaling, proliferation, and differentiation in muscle of good-growth fish, whereas muscle inflam-
mation and apoptosis was observed in poor-growth fish, along with elevated cortisol (an anti-inflammatory hor-
mone), perhaps related to muscle wasting, hypertrophy, and inferior growth. These findings provide important 
biomarkers and mechanisms by which growth is regulated in fishes and other vertebrates as well.
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Background
The primary consumable product of a fish is the fillet, 
composed predominantly of fast-twitch, white skeletal 
muscle fibers [1]. White muscle accounts for half of the 
body mass of fishes [2, 3] and therefore understand-
ing the regulatory mechanisms underlying growth of 
this tissue is critical for improving seafood production 
yields. In general, growth in vertebrates is constructed 
around the theory that protein synthesis is the direct 
fuel for somatic growth (i.e., increase in size and mass) 
of the animal [4]. Muscle growth in fishes differs from 
that of most other vertebrates in that it is indetermi-
nate, and the majority of somatic growth is invested in 
the muscle tissue mass [2, 3, 5–8]. Several studies have 
suggested that variation in number and size distribu-
tion of muscle fibers is an important determinant of 
not only growth performance, but also of the textural 
characteristics and quality of the fillet [9, 10]. Relation-
ships between white muscle fiber growth and whole-
body growth capacity of various fish species have been 
reported with the intent of understanding the ability of 
various teleost fishes to grow rapidly and reach a com-
paratively large ultimate body size through the recruit-
ment of additional white muscle fibers [2, 5, 11, 12]. 
While the majority of fishes show rapid somatic growth 
rates synchronized with dynamic increase in number 
of white muscle fibers (i.e., hyperplasia), a few revealed 
less progressive somatic growth rate synchronized with 
an increase in white muscle fiber diameter (i.e., hyper-
trophy). This suggests that hyperplasia plays a major 
role in fish muscle growth at early ages, wherein the 
longer a species can recruit new white muscle fibers, 
the faster is its growth rate and the larger its ultimate 
body size [1, 11, 13].

At the cellular level, muscle fiber growth occurs by a 
process called mosaic hyperplasia, in which myogenic 
progenitor cells (i.e., satellite cells) fuse to form new 
myotubes on the surface of existing muscle fibers giving 
rise to a mosaic of fibers [14, 15]. Satellite cells maintain 
muscle growth by proliferating to produce new cells or by 
differentiating into muscle fibers as necessary for growth 
[16–19]. In most fishes, mosaic hyperplasia in muscle 
continues until the fish reaches around 40 % of its maxi-
mum body length and often this is coincident with sexual 
maturity [14, 15]. Muscle growth at this point onward 
typically involves hypertrophy, or volumetric enlarge-
ment of the existing mosaic of muscle fibers, and this 
typically occurs when the specific growth rate begins to 
decline. The regulation of this process in fishes is com-
plex and not well understood. It involves many different 
regulatory genes and enzymes involved in metabolic pro-
cesses such as energy production, and structural compo-
nents of the muscle itself [5].

Striped bass (Morone saxatilis) is an anadromous fish 
that typically lives most of its life in the Atlantic Ocean 
or estuarine tributaries and migrates into freshwater 
rivers to spawn. These fish have long been utilized for 
food and are a popular sportfish [20, 21]. The decline of 
the wild striped bass fishery in the mid-1980s created 
an opportunity to develop an aquaculture industry that 
primarily produced a hybrid cross of striped bass with 
the freshwater white bass, Morone chrysops [20, 22, 23]. 
Hybrid striped bass exhibit the benefits of hybrid vigor 
(heterosis) with improved survival, growth, and resist-
ance to stress and diseases [24, 25]. Thus, hybrid striped 
bass gained widespread acceptance both in aquaculture 
for food production and as a sportfish for stock enhance-
ment [23, 24, 26].

Presently, the molecular mechanisms of white mus-
cle growth in hybrid striped bass, including the impor-
tance of small molecules such as metabolites and gene 
transcripts involved in the muscling process, are entirely 
unknown. Therefore, a characterization of the pro-
cesses that underlie hybrid striped bass muscle growth is 
needed to expand understanding and potential applica-
tion of findings to fisheries and aquaculture production 
of these and other fishes.

Here, we utilize a powerful combinatorial approach 
incorporating metabolomic and transcriptomic analyses 
to characterize the molecular mechanisms that govern 
growths in hybrid striped bass displaying good and poor 
growth under aquaculture conditions. Metabolomics 
is a technology that provides a global characterization 
and quantification of all metabolites in a biological sam-
ple [27, 28]. Metabolites are small molecules (typically 
less than 1 kDa in size) representative of all the compo-
nents involved in the collective chemical reactions that 
occur within and outside of cells in an organism [29]. As 
metabolites underlie the entire metabolism or physiology 
of an organism, they represent the end point of all gene 
and protein activities. A series of tandem mass spectrom-
etry (MS/MS) approaches were conducted to resolve and 
quantify metabolites present in the muscle and liver, as 
these tissues are of primary interest to somatic growth 
and the coordination of metabolism, respectively, in 
fish [30, 31]. Also, massively parallel RNA transcript 
sequencing (RNA-Seq; [32]) was conducted to evaluate 
gene expression differences in muscle tissue between fish 
exhibiting good and poor growth traits. As gene expres-
sion is the process by which information encoded in a 
gene leads to the production of an RNA transcript that 
may or may not lead to eventual translation into a func-
tional protein, the metabolomics evaluation will be a 
strong compliment to this analysis.

The described approach also includes novel machine 
learning pattern recognition analyses of gene transcript 
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expression and metabolite levels in the tissues through 
orthogonal and inferential statistics. Finally, global Inge-
nuity Pathway Analysis (IPA) was conducted to identify 
Canonical Pathways, Upstream Regulators, and Diseases 
and Functions that are not only enriched in the gene 
expression and metabolite datasets, but that are also pre-
dictive of fish phenotype (i.e., growth performance).

Results
Evaluations of growth morphometrics
The weight frequency distribution of all fish in the rear-
ing cohort is provided in Additional file 1. Fish from the 
poor- and good-growth groups significantly differed in 
total length (p = 0.0001), wet weight (p = 0.0001), GSI (p 
= 0.0147), HSI (p = 0.0037), Fulton’s Condition Factor K 
(p = 0.0001), and SGR (p = 0.0001) (Fig. 1).

Muscle Histology Analysis
Larger fish had both smaller and more numerous mus-
cle fibers than smaller fish from both the poor- and 
good-growth groups. Fish in the good-growth group 
had more numerous muscle fibers that were ≤ 20 µm in 
diameter than those from the poor-growth group (Fig. 2, 
p=0.0274). There were no significant differences in aver-
age total muscle fiber number or in average muscle fiber 
diameter between growth groups. A linear regression 
between average total number of muscle fibers and fish 
wet weight of the good- and poor-growth group fish 
showed little correlation  (R2=0.0858 and 0.0185, respec-
tively) (Additional file  2) and the regression between 
average muscle fiber diameter and fish wet weight of the 
good- and poor-growth group fish showed a weak corre-
lation  (R2=0.1813 and 0.2165, respectively).

Fig. 1 Average (a) total length (mm), (b) wet weight (g), (c) gonadosomatic index (GSI), (d) hepatosomatic index (HSI), (e) Fulton’s condition factor 
(K), and (f) specific growth rate (SGR) of hybrid striped bass of poor- and good-growth. Fish in each group were representative of the bottom 
and top 10 % in growth phenotype, respectively, among the entire production cohort. \ (Mean +/- SEM; N = 10) Asterisks denote significant 
differences between groups (*** p = 0.0001 ** p = 0.0037; * p = 0.0147)



Page 4 of 23Rajab et al. BMC Genomics          (2024) 25:580 

Liver and muscle metabolomics analysis
A total of 469 and 464 metabolites were identified in 
hybrid striped bass muscle and liver tissue samples, 
respectively. Additional files 3 and 4 contain all data 
associated with these metabolites as well as the out-
comes of the Welch’s Two-sample t-tests. In muscle 
tissue, lipids made up the greatest percentage of those 
identified metabolites (46.67 %). Other represented 
super-pathways were amino acids (20.0 %), carbohy-
drates, energy, nucleotides, and xenobiotics (6.67 %), 
and cofactors and vitamins, and peptides (3.33 %). 
In liver tissue, lipids made up the greatest percentage 
of those metabolites identified (30.0 %), followed by 
amino acids (20.0 %), carbohydrates and energy (13.3 
%), cofactors and vitamins, nucleotides, and peptides 
(13.3 %), and finally, xenobiotics (3.3 %). The Principal 

Component Analysis (PCA) for liver tissue metabo-
lites showed that the data tended to separate fish by 
growth group (Additional file 5), however separation by 
growth group was not as clear when examining muscle 
metabolites (Additional file 6); overall, PCA1 and PCA2 
explained 46 % of the variance in growth.

The random forest machine learning analysis was 
effective at classifying metabolomic profiles generated 
from liver and muscle samples to the correct growth 
groups with a predictive accuracy of 89.0 % and 72.0 %, 
respectively. The random forest MDA sensitivity analy-
sis identified the top thirty most important metabo-
lites in both liver (Fig.  3) and muscle (Fig.  4) used for 
the classification of fish between growth groups and 
these metabolites were designated as meriting further 

Fig. 2 Average muscle (a) fiber number, (b) muscle fiber number ≤ 20 µm, and (c) muscle fiber number of hybrid striped bass in each growth 
group (poor-growth or good-growth, (mean +/- SEM; N = 5) . Asterisks denote significant differences between groups (* p = 0.0274)
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Fig. 3 Random forest sensitivity analysis identifying the top thirty most important metabolites when comparing liver tissue of hybrid striped bass 
from the poor- and good-growth groups. Metabolites were ranked by increasing importance and Mean Decrease Accuracy (MDA) during random 
forest decision tree analysis. The legend describes the metabolic super-pathway to which each listed metabolite belongs

Fig. 4 Random forest sensitivity analysis identifying the top thirty most important metabolites when comparing muscle tissue of hybrid 
striped bass from the poor- and good-growth groups. Metabolites were ranked by increasing importance and Mean Decrease Accuracy (MDA) 
during random forest decision tree analysis. The legend describes the metabolic super-pathway to which each listed metabolite belongs
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investigation (i.e., akin to “statistically” significant). 
The super-pathways to which each of these metabolites 
belong are provided in Figs. 3 and 4.

Muscle gene expression analysis
A total of 223.5 million raw RNA-Seq reads were gener-
ated and less than 0.1 % of raw reads were omitted from 
analysis after quality trimming (99.1 % of base pairs 
remained). These sequence data are deposited in the 
NCBI (Accession: PRJNA950439). Approximately 83.8 
% of the quality trimmed reads were uniquely aligned 
to the striped bass genome assembly (NCBI Accession: 
GCA_001663605.1) and 88.9 % of these were mapped to 
the predicted gene space. In total, 97191 genes were iden-
tified and measured for expression. Of these, 72893 genes 
were informative and had annotations. The results of the 
PCA test conducted using the top 500 genes with high-
est variance among all samples showed that fish from the 
poor- and good-growth groups generally had similar gene 
expression profiles within the groups, and PCA1 and 
PCA2 explained 91 % of the variance in growth (Addi-
tional file 7). The numbers of expressed genes, informa-
tive genes, and the resulting differentially expressed 
genes identified in the comparison between the good- 
and poor-growth group fish are presented in Additional 
file  8. There were 143 muscle genes that significantly 
differed in expression between fish from the poor- and 
good- growth groups (DESeq2, q ≤ 0.05, FDR = 0.05); 
several transcript variants also were noted among these 
genes and likely represent the different striped bass and 
white bass gene copies inherited by the hybrids (Addi-
tional file  9). Among differentially expressed genes, 134 
(94 %) were up-regulated in fish from the poor-growth 
group with an average FPKM of 21.54 and a range of 
0.25 to 190.57 and only 9 (6 %) were up-regulated in fish 
from the good-growth group with an average FPKM of 
2.63 and a range of 1.39 to 4.26 (myog, cd300ld3, ranbp2, 
bicd2, and five transcript variants of pttg1).

Machine learning evaluation of muscle gene expression
All informative gene transcripts (72893) were ranked by 
importance via SVMAttributeEval and used to evaluate 
differences in expressed genes between good- and poor-
growth groups of hybrid striped bass in a series of SMO 
machine learning models. The SMO overfitting models 
with a cross-validation of 66 % split had a percent accu-
racy of correctly classified instances that ranged from 
66.67 % to 100 %, Kappa statistic from 0.40 to 1.00, and 
AUROC from 0.75 to 1.00. SMO models with cross-val-
idation of 8-fold had an accuracy of correctly classified 
instances that ranged from 62.50 % to 100 %, Kappa sta-
tistic from 0.25 to 1.00, and AUROC from 0.63 to 1.00 
(Additional file 10). The number of genes plotted against 

percentage of correctly classified instances using these 
approaches suggested approximately 10000 genes or 
less were optimal for predicting growth group of the fish 
(to avoid overfitting). To further reduce the number of 
genes to only the top, most important predictors of fish 
growth (to avoid underfitting), an orthogonal approach 
was applied, whereby the top 10000 genes ranked by 
SVMAttributeEval were used as baseline for another 
series of SMO models. The result verified that the top 
1000 to 10000 genes were all important for classification 
(correctly classified instances 100 %, Kappa statistic 1.00, 
and AUROC 1.00) and that model underfitting began 
to occur at around 500 or fewer gene inputs (correctly 
classified instances < 100 %, Kappa statistic < 1.00, and 
AUROC < 1.00; Additional file  11). The top 150 ranked 
genes were chosen for pathway analysis (i.e., akin to 
“statistically” significant) based on underfitting decom-
position of model performance when 150 or fewer gene 
input values were included. Negative control models for 
machine learning performed at approximately 50 % cor-
rect classification as predicted based on the Law of Prob-
ability, indicating that learning during training was true.

Of the 150 top important genes, 36 (24 %) were up-reg-
ulated in muscle of fish from the poor-growth group with 
an average FPKM of 4.00 that ranged from 0.11 to 42.89, 
whereas 114 genes (76 %) were up-regulated in muscle of 
fish from the good-growth group, with an average FPKM 
of 2.67 that ranged from 0.20 to 16.90 (Additional file 12).

Combinatorial muscle pathway analysis
The two gene lists (143 genes with an inferential statis-
tics q-value cutoff of differential expression at ≤ 0.05 
FDR = 0.05 and 150 genes ranked by SVMAttributeEval 
machine learning) were compared and the shared genes 
identified from both ranking procedures are reported in 
Additional files 9 and 12. Eleven genes, including their 
transcript variants, were shared between the two rank-
ing approaches and they were all up-regulated in muscle 
of fish from the poor-growth group (agtr2, cd22, cebpb, 
cxcr4, gadd45b, mmp17, msi1, rgl1, rgs13, rhou, and 
rundc3a).

Hybrid striped bass gene transcripts and metabolites 
were mapped to the Qiagen Ingenuity Knowledge Base 
and the following validated (informative) entries were 
retrieved and used for pathway analysis: 142 out of 143 
genes that were ranked by q-value of differential expres-
sion at ≤ 0.05 (inferential statistics); 145 out of 150 genes 
ranked by SVMAttributeEval (machine learning); and 
358 out of 469 metabolites. The Fisher’s Exact Test iden-
tified the following genes and metabolites significantly 
enriched in the pathway analysis (p-value ≤ 0.05): 57 
genes ranked by inferential statistics of which 53 were 
down-regulated and 4 up-regulated in fish from the 
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good-growth group relative to the poor-growth group; 
96 genes ranked by machine learning of which 30 were 
down-regulated and 66 up-regulated in fish from the 
good-growth group; and 39 metabolites of which 19 
were down-regulated and 20 up-regulated in fish from 
the good-growth group. Each of the combined gene and 
metabolite lists included the following numbers of mol-
ecules that were significantly enriched for pathways: 70 
molecules of which 56 were down-regulated and 14 up-
regulated in fish from the good-growth group (genes 
ranked by inferential statistics and all metabolites) and 
117 molecules of which 41 were down-regulated and 76 
up-regulated in fish from the good-growth group (genes 
ranked by machine learning and all metabolites). All sig-
nificantly enriched canonical pathways identified by IPA 

for white muscle ranked by q-value and SVMAttribu-
teEval are shown in Additional files 13 and 14; pathway 
networks are provided in Figs. 4, 5, and 7 and Additional 
files 15, 16, 17, 18.

Discussion
Hybrid striped bass in the good- and poor-growth per-
formance groups differed significantly in average weight, 
total length, GSI, HSI, Fulton’s condition factor K, and 
SGR (Fig. 1), indicating that the fish were representative 
of different extremes of the size distribution and expe-
rienced different growth states observed amongst the 
rearing cohort at the time of sampling. Fish from the 
good-growth group had a significantly greater number of 
smaller diameter (≤ 20 µm) muscle fibers and fish from 

Fig. 5 Upstream Regulator analysis based on muscle metabolites and genes identified by inferential statistics (FDR, q ≤ 0.05) in hybrid striped 
bass. Measured gene expression and metabolite values were predicted to inhibit 4 major regulatory factors (il6, il1b, stat3, pparg) in muscle of fish 
from the good-growth group. The network indicates direct relationships of inhibited factors (blue) leading to inhibition of inflammatory response 
and apoptosis in muscle of fish from the good-growth group. Down-regulation (green) refers to lower gene expression or metabolite levels 
measured in muscle of fish from the good-growth group relative to the poor-growth group, while up-regulation (red) refers to increased levels 
measured in muscle of fish from the good-growth group relative to the poor-growth group. Connections are drawn between molecules that have 
been found to have relationships in the literature. Arrows indicate activation and perpendicular lines indicate inhibition. Image was created using 
Ingenuity Pathway Analysis Upstream Regulator Analysis (Qiagen IPA, Germantown, MD, USA)
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the poor-growth group had a greater proportion of larger, 
hypertrophic muscle fibers, however the relationship 
between average muscle fiber diameter and fish weight 
was weak (Fig. 2). Collectively, these findings suggest that 
fish from the good-growth group have a greater degree of 
muscle hyperplasia compared to the poor-growth group, 
which may have precociously switched to hypertrophic 
growth. This shift in muscle growth pattern may under-
lie the overall difference in fish growth performance 
observed in this study.

The statistical and machine learning approaches of 
examining data at the gene and metabolite levels that led 
to the combinatorial pathway analyses performed identi-
fied important biomarkers and regulators of growth per-
formance, and provided enriched pathways and functions 
that are predictive of fish growth phenotype based on the 
observed data.

Inflammation, cholesterol metabolism, and cortisol
The most significant pathways identified from the list of 
muscle metabolites and genes identified by inferential 
statistics were acute phase response signaling and LXR/
RXR activation (Additional file  13). Inhibition of these 
two pathways in muscle was predicted for fish from the 
good-growth group. The acute phase response signal-
ing pathway provides a rapid, non-specific inflamma-
tory defense in the organism [33–35], while LXR/RXR 
is involved in regulation of lipid metabolism, inflam-
mation, and cholesterol to bile acid catabolism [36–38]. 
Cholesterol levels in liver were not different between fish, 

however cholate and taurocholate showed elevations in 
both the liver (Additional file 19) and muscle (Additional 
file  20) of fish from the poor-growth group, albeit this 
response was statistically insignificant. The anti-inflam-
matory hormone cortisol was significantly elevated in 
muscle of fish from the poor-growth group, and it also 
was the most important muscle metabolite predictor of 
growth performance identified by random forest MDA 
(Fig.  4). The hormone is also a well-established “stress” 
factor that induces catabolism of carbohydrate, protein 
and lipid stores in vertebrates, including fishes.

A common set of upstream regulators predicted to be 
inhibited in muscle of fish from the good-growth group 
were cytokines and other regulators related to inflamma-
tion including stat3, pparg, il1b, and il6 [39–46] (Fig. 5). 
Significantly lower levels of the pro-inflammatory eicosa-
noid 12-HETE (along with a non-significant decreases 
in 15-HETE and 12-HEPE) in muscle of fish from the 
good-growth group may suggest reduced inflammation, 
which would positively affect growth (Additional file 20) 
[47–49]. This indicates overall that elevated cortisol lev-
els in poor-growth group fish may be associated with 
dysfunctional inflammation or cholesterol or steroid 
metabolism that led to the observed growth differences 
(Fig. 6). For example, an inability to effectively clear cor-
tisol from the blood following a stress event, which is 
why it may remain elevated in fish from the poor-growth 
group. Conversely, cortisol may be produced in fish from 
the poor-growth group in response to localized muscle 
inflammation. In either case, cortisol is typically cleared 

Fig. 6 Diagram of the cholesterol metabolic pathway that includes cortisol and bile acid by-products. The pathway shown corresponds to several 
liver metabolites and muscle gene regulatory pathways identified as important for growth in hybrid striped bass; metabolites were typically 
elevated in fish from the poor-growth group
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from the blood by the liver and persistent inflammation 
and elevated cortisol levels lead to muscle wasting, poor 
muscle growth, and decreased feeding behavior [50–53]. 
Inflammation of liver was identified as activated in fish 
from the good-growth group, however, the importance 
of this observation is presently unclear. Further studies 
assessing plasma cholesterol levels may identify whether 
these poor-growth group fish might have been exposed 
to greater rearing stress, experience low cholesterol 
demand, or suffer from some form of liver dysfunction 
that may underlie poor muscle growth in addition to 
the evaluations presented here. Additionally, nutritional 
status also may be a factor that influences inflamma-
tion [54]. Omega-3 and omega-6 polyunsaturated fatty 
acids (PUFAs) may be utilized to produce anti-inflam-
matory metabolites [55]. These compounds may possibly 
improve growth and reduce inflammation if included in 
the diet of hybrid striped bass raised in aquaculture.

Cell senescence, proliferation, and apoptosis
The cellular senescence pathway also was predicted to be 
significantly inhibited in muscle of fish from the good-
growth group based on the list of metabolites and genes 
identified by inferential statistics (Additional file  13). 
In particular, expression of cebpbeta, cxcl8, gadd45a, 
gadd45b, and gadd45g were all down-regulated. This 
is further predicted to lead to increased proliferation 
of cells [56, 57] and reduced cellular senescence [58], 
which may underlie, in part, the greater hyperplas-
tic growth of muscle cells in fish from the good-growth 
group (Additional file  15). By comparison, activation of 
the senescence pathways in fish from the poor-growth 
group may have led to the precocious switch from hyper-
plasia to hypertrophy as observed by muscle histology 
(Fig.  2). Furthermore, apoptosis and necrosis were pre-
dicted to be inhibited in muscle of fish from the good-
growth group, indicating possibly lower cell death rate 
and hence superior muscle growth phenotype (Fig.  5). 
The network represented in Additional file  16 indicates 
that proliferation of myofibroblasts was predicted to be 
activated in muscle of fish from the good-growth group, 
but many other functions related to growth or prolifera-
tion of muscle cells were generally inhibited. Therefore, 
some of these identified pathways may support or con-
trast the phenotype observed in fish from the good-
growth group. Significantly elevated choline phosphate 
and glycerophosphoethanolamine (GPE) levels and non-
significantly elevated levels of glycerophosphorylcholine 
(GPC) in muscle of fish from the good-growth group 
further support active cell growth and suggest increased 
phospholipid turnover or plasma membrane remodeling 
(Additional file  21), which would be expected during 
active cell hyperplasia as observed.

Cell receptor signaling and nucleotide and amino acid 
synthesis
The most clearly defined pathway identified from the 
list of muscle metabolites and genes ranked by machine 
learning was B cell receptor signaling (Additional file 14). 
When IPA Molecule Activity Predictor was used for the 
pathway, it was shown that up-regulation of bcl-x and 
creb and down-regulation of cd22 predictively leads to 
activation of gene transcription and inhibition of apop-
tosis (Additional file  17). B cell activation is crucial for 
cellular development and is involved in the activation of 
many downstream pathways, from inhibition of apoptosis 
to accumulation of muscle protein [59, 60]. These results 
show an increase in activation of B cell receptor signal-
ing in muscle of fish from the good-growth group, cor-
relating positively with the observed phenotype of better 
muscle growth and reduced cell death. Expression of four 
upstream regulators were found to be significantly differ-
ent (egfr, myc, notch1, and sirt1) (Fig. 7) and all have pre-
viously characterized crucial roles in development and 
growth [61–67]. Indeed, these genes are all up-regulated 
in muscle of fish from the good-growth group, thus lead-
ing to the conclusion that all of these four regulators are 
involved in pathway activation and the functional profile 
observed in fish from the good-growth group (Additional 
file 18). Activation of egfr, myc, notch1 and sirt1 are posi-
tively related to body size, cell cycle control, proliferation 
of fibroblasts, growth of connective tissue, and hyperpla-
sia of cell lines [68–75]. Metabolites in the analysis show 
enrichment of mainly nucleotide and amino acid synthe-
sis pathways. Overall, the data suggest activation of gene 
transcription in the B cell receptor signaling pathway that 
leads to amino acid and nucleic acid synthesis in muscle 
of fish from the good-growth group, supporting active 
anabolism and growth (Additional file 17).

Signs of significantly increased amino acid demand in 
liver were observed in fish from the good-growth group. 
Measured levels of several amino acids (e.g., aspartate, 
glutamine, histidine, isoleucine, leucine, methionine, 
proline, serine, threonine, tryptophan, tyrosine, and 
valine) were lower in liver, although not all were sig-
nificantly so (Additional file  22). This may be expected 
given the high metabolic demand of hyperplastic mus-
cle growth in fish from the good-growth group. Deple-
tion of these amino acids in liver might be related to 
their secretion and incorporation into protein by grow-
ing muscle tissue and/or their direct use for production 
of energy to support active metabolism [76]. Significantly 
lower levels of urea, ornithine, and citrulline in liver of 
fish from the good-growth group (Additional file  23) 
support secretion and incorporation of these amino 
acids into muscle proteins in context of the observed 
depressed liver amino acid levels. Interestingly, creatine 
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and creatinine were both significantly elevated in liver 
of fish from the good-growth group (Additional file 23), 
which could suggest a redirection of arginine toward cre-
atine production to supplement high energetic demand. 
By contrast, the higher levels of amino acids in liver of 
poor-growth fish may suggest enhanced proteolysis or 
reduced protein synthesis which could be mediated by 

the catabolic actions of cortisol ultimately resulting in 
growth suppression.

Metabolites derived from catabolism of branched-chain 
amino acid (BCAA; isoleucine, leucine and valine) can 
enter gluconeogenesis or the citric acid cycle for energy 
production. Leucine and isoleucine levels were signifi-
cantly lower in liver of fish from the good-growth group 

Fig. 7 Upstream Regulator analysis based on metabolites and genes identified by machine learning (SVMAttributeEval). Measured gene 
expression and metabolite values were predicted to activate 4 major regulatory factors (myc, sirt1, egfr, notch1, in blue text top-left) in muscle 
of fish from the good-growth group. The network indicates direct relationships of activated factors (orange) leading to activation of hyperplasia 
of cell lines, proliferation of fibroblasts, size of body, and G1 phase (cell growth) in muscle of fish from the good-growth group; blue lines indicate 
inhibition effects. Down-regulation (green) refers to lower gene expression or metabolite levels measured in muscle of fish from the good-growth 
group relative to the poor-growth group, while up-regulation (red) refers to increased levels measured in muscle of fish from the good-growth 
group relative to the poor-growth group. Connections are drawn between molecules that have been found to have relationships in the literature. 
Arrows indicate activation and perpendicular lines indicate inhibition. Image was created using Ingenuity Pathway Analysis Upstream Regulator 
Analysis (Qiagen IPA, Germantown, MD, USA)
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and, although not statistically significant, valine was also 
depleted (Additional file  22), suggestive of changes in 
amino acid availability or catabolic use. Consistent with 
catabolic use, the keto-acids 4-methyl-2-oxopentanoate, 
3-methyl-2-oxovalerate, and 3-methyl-2-oxobutyrate 
were also significantly elevated in liver of fish from the 
good-growth group (Additional file  24). While signs of 
liver BCAA catabolism were observed, succinate and 
succinylcarnitine (a surrogate for succinyl-CoA) were 
not different between fish from the growth groups (Addi-
tional file 24), perhaps suggestive of declining BCAA cat-
abolic rate in fish of the good-growth group at the time 
of sampling. The data, however, suggest overall that fish 
from the good-growth group catabolize BCAA for energy 
production in liver (Additional file 25) and may also use 
other free amino acids for protein polymerization in liver 
and presumably muscle as well (i.e., protein accretion). 
This observation would be consistent with a shift towards 
anabolism in the muscle, which is observed as hyperpla-
sia in fish from the good-growth group. Interestingly, die-
tary supplementation with leucine promotes weight gain 
in rainbow trout [77], which may suggest dietary BCAA 
supplementation could positively affect growth in hybrid 
striped bass as well.

Significantly elevated levels of sedoheptulose-7-phos-
phate and AICA ribonucleotide (AICAR) in liver of 
fish from the good-growth group suggest active glucose 
use for purine nucleotide synthesis (Additional file  26). 
This is further supported by significantly lower levels of 
hypoxanthine and xanthine in liver from good-growth 
group fish, with a trend toward lower levels of allantoin as 
well (Additional file 26); hypoxanthine also was the most 
important liver metabolite predictor of growth status 
by random forest MDA (Fig. 3). This contention is con-
sistent with trends toward decreases in liver adenosine 
3’-monophosphate (3’-AMP) and adenosine 3’,5’-diphos-
phate (ADP) levels, although guanosine 5’- monophos-
phate (5’-GMP) was significantly elevated (Additional 
file  26). In muscle of fish from the good-growth group, 
levels of xanthine, adenosine 2’-monophosphate (2’-
AMP), and guanine levels were significantly lower com-
pared to fish from the poor-growth group; there also was 
a trend for muscle inosine and allantoin levels to be lower 
in fish from the good-growth group (Additional file 27). 
Collectively these findings support purine nucleotide 
synthesis demand in muscle of fish from the good-growth 
group. These nucleotides could be used as substrate for 
RNA or DNA synthesis in rapidly dividing cells such as 
those observed in the hyperplastic muscle (Fig.  2) and 
RNA and DNA content of tissues has been used as a ref-
erence of cell growth or proliferation in previous studies 
[78]. Interestingly, the nucleotide sugars UDP-N-acetyl-
glucosamine and UDP-N-acetylgalactosamine showed 

a trend, although non-significant, toward elevation in 
muscle of fish from the poor-growth group (Additional 
file 28). This could suggest a shift in glucose use for hex-
osamine synthesis, which has been shown to function 
during nutrient sensing that might lead to insulin resist-
ance in mammals [79]. Such a response might indicate 
some form of metabolic dysfunction or dietary insuffi-
ciency in fish from the poor-growth group.

Liver bioenergetics
Carbon can flow into the citric acid cycle from a num-
ber of sources, including carbohydrates (entering as 
pyruvate through glycolysis), glutamine (entering as 
alpha-ketoglutarate), BCAA (entering as acetyl-CoA 
and succinyl-CoA), and lipids (entering as keto acids 
through beta-oxidation) via conversion of acetyl-CoA 
to citrate (Fig. 8). Glucose levels in liver of fish from the 
good-growth group were non-significantly depressed 
compared to those in the poor-growth group (Additional 
file  29). Significant increases in glucose-6-phosphate, 
fructose-6-phosphate, and dihydroxyacetone phosphate 
(DHAP) levels in liver of fish from the good-growth 
group (Additional file  29) suggests increased glycolytic 
use in the liver. In contrast, non-significant increases 
in phosphoenolpyruvate (PEP) and 3-phosphoglycer-
ate levels (Additional file 29) in liver are consistent with 
decreased glycolytic use in fish from the poor-growth 
group. The glycolytic end-product pyruvate showed 
a trend toward increased levels in liver of fish from the 
good-growth group (Additional file 26), while lactate was 
not different, suggestive of increasing glycolytic input 
into the citric acid cycle. Glucose level, however, was also 
significantly elevated in muscle of fish from the good-
growth group and pyruvate level in muscle did not differ 
between fish (Additional file 28). This could reflect secre-
tion of some glucose by the liver and uptake by muscle of 
fish from the good-growth group to support active mus-
cle metabolism.

Significantly elevated levels of citrate and along with a 
trend toward depressed levels of acetyl-CoA in liver of 
fish from the good-growth group may suggest increased 
input of acetyl-CoA into the citric acid cycle, which would 
be consistent with higher glycolytic use of glucose (Addi-
tional file  30). By contrast, fish from the poor-growth 
group had non-significantly elevated levels of liver acetyl-
CoA and very low levels of citrate, indicating decreased 
input into the citric acid cycle (Additional file  30). The 
trend toward increased acetylphosphate, which is pro-
duced from the conversion of pyruvate to acetyl-CoA, 
in fish from the good-growth group further suggests 
increased glycolytic input into the citric acid cycle (Addi-
tional file  30). Similarly, significantly elevated levels of 
alpha-ketoglutarate in fish of the good-growth group 
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could indicate increased glutaminolysis, as glutamine 
was also significantly lower in liver of fish from the good-
growth group (Additional file 30), along with several other 
amino acids discussed above (Additional file 22). Overall, 
the findings support active energy production via glyco-
lysis and the citric acid cycle among fish from the good-
growth group, which indicates an active metabolic growth 
state. A non-significant trend toward elevated maltohexa-
ose, maltopentaose, maltotetraose in liver of fish from the 
good-growth group (Additional file 31) could suggest gly-
cogen breakdown with the resulting glucose available for 
use in glycolysis/citric acid cycle or for purine nucleotide 
synthesis as discussed above. Muscle metabolite levels 
collectively suggest that fish from the good-growth group 
primarily metabolize glucose into pyruvate for citric acid 
cycle or lactate for gluconeogenesis.

Energetics pathways appeared to be impaired in fish 
from the poor-growth group, particularly in regard to 
lipid metabolism. Fatty acid omega-oxidation may serve 
as a rescue pathway when beta-oxidation is impaired 
and it may also supplement beta-oxidation at times of 

extreme oxidative demand [80, 81]. While dicarboxylate 
fatty acids (DFAs) themselves were below the thresh-
old of detection in both liver and muscle tissues, dif-
ferences in DFA-carnitine conjugate levels suggest a 
subtle shift in fatty acid oxidative efficiency of fish from 
the poor-growth group compared to the good-growth 
group. Significant decreases in adipoylcarnitine and 
pimeloylcarnitine/3-methyladipoylcarnitine levels with 
a non-significant trend for decreased carnitine-dicarbo-
xylate fatty acid conjugate levels in liver of good-growth 
group fish suggests a reduced fatty acid omega-oxidation 
rate (Additional file  32). Adipoylcarnitine also showed 
a non-significant decrease in muscle of fish from good-
growth group (Additional file 33). Collectively, low levels 
of omega- or beta-oxidation compounds in the tissues of 
good-growth group fish suggest that they are not stressed 
and are growing well. Conversely, elevated levels of these 
compounds in fish from the poor-growth group suggest 
metabolic dysfunction, exposure to some form of stress 
as indicated by increased cortisol, or dietary insufficiency 
leading to fatty acid beta-oxidation.

Fig. 8 Diagram of the citric acid cycle where the grey sub-pathways shown correspond to related metabolites and genes identified as important 
for growth in hybrid striped bass
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Thiamin (Vitamin B) deficiency
While thiamin (Vitamin B1) was below threshold of 
detection in muscle and liver, thiamin diphosphate (also 
known as thiamin pyrophosphate), showed non-signif-
icant elevation in muscle of fish from the good-growth 
compared to the poor-growth group. The biological func-
tion of thiamin pyrophosphate, which is the active form 
of thiamin, is to serve as a cofactor for several enzymes 
important for biosynthesis of many cell constituents, 
neurotransmitters, pentoses as nucleic acid precursors, 
and for production of reducing equivalents used in oxi-
dant stress defense. It also functions as a coenzyme in 
carbohydrate metabolism, making keto analogues from 
amino and fatty acid metabolism available for production 
of energy [82]. Thiamin pyrophosphate on the pyruvate 
dehydrogenase enzyme binds to pyruvate and thus plays 
an important role in glucose homeostasis in muscle tis-
sues. Activation of the complex promotes catabolism of 
glucose, whereas inactivation conserves substrates for 
hepatic gluconeogenesis [83]. Decreased levels of pyru-
vate and elevated levels of thiamin pyrophosphate in 
muscle of fish from the good-growth group, with con-
current lower levels of liver glucose and significantly 
elevated levels of muscle glucose in fish from the good-
growth group suggest activation of pyruvate dehydroge-
nase enzyme, which promotes disposal of glucose from 
the liver to the blood (i.e., muscle). In contrast, decreased 
levels of thiamin pyrophosphate in muscle of fish from 
the poor-growth group with elevated levels of pyruvate 
and increased levels of liver glucose, parallel with a sig-
nificant decrease in muscle glucose suggests some sort of 
metabolic deficiency, where pyruvate is not being cata-
lyzed. Overall, this suggests thiamin deficiency or dys-
function of the pyruvate dehydrogenase complex in fish 
of the poor-growth group.

The cause of potential thiamin deficiency in fish from 
the poor-growth group remains unclear, however, it 
could be that thiamin is heat denatured during the feed 
extrusion process or that poor-growth fish perhaps do 
not get access to enough feed, and hence have marginal 
thiamin intake. To make up for food deprivation, these 
fish may have foraged on crustaceans, small prey fish, or 
other live food sources during the pond stage of rearing, 
all of which may contain thiaminases that degrade die-
tary thiamin included in the prepared feed. Studies have 
shown that thiaminases are present in the viscera of fish 
species, including white bass [84]. From a genetic point 
of view, it could be that poor-growth hybrid striped bass 
lack the gene(s) responsible for mitigating thiaminase 
metabolism, which might also lead to poor-growth per-
formance. Animals suffering from thiamin deficiency due 
to thiaminases generally respond if administered thiamin 
and/or by removing the source of thiaminase from the 

diet. However, since thiaminase metabolism could have 
been inherited, future studies should target genes that 
are responsible for activating or inhibiting metabolomic 
activity of thiaminases (e.g., thi20, hydroxymethylpyrimi-
dine kinase).

Nicotinic acid (also known as niacin or vitamin B3) 
was considered one of the most important predictors of 
growth in this study (Fig.  9). Nicotinic acid is stable to 
thermal extrusion, however carnivorous fishes such as 
hybrid striped bass have a relatively high dietary require-
ment as they are inefficient converters of tryptophan to 
niacin and serotonin, the neurotransmitter antagonist 
to cortisol. Niacin deficiency places a higher demand on 
NAD(H) and NADP(H), which are required for a large 
number of enzymes in essentially all metabolic path-
ways, especially of carbohydrates, branch-chain amino 
acids, cholesterol, and fatty acids. The liver produces 
niacin from the essential amino acid tryptophan; how-
ever this synthesis is slow in carnivorous fishes. Defi-
ciency in nicotinic acid is generally due to restricted diet 
and/or gastrointestinal disease. In our data, tryptophan 
was significantly elevated in liver of fish from the poor-
growth group, and it was undetected in muscle of fish 
from either growth groups (Additional file 22). Although 
cholesterol was below threshold of detection in muscle, it 
was elevated in liver of fish from the poor-growth group 
along with related products including the bile acids cho-
late and taurocholate (Fig. 6). This suggests that fish from 
the poor-growth group were unable to convert trypto-
phan to niacin and/or may suffer from dietary niacin 
deficiency. As above with thiamin, inclusion of supple-
mentary niacin in the prepared diet may improve growth 
performance of the fish.

Pathway overview and comparison of inferential statistics 
and machine learning
Overall, 12 genes and one metabolite identified from 
muscle tissue were shown to be most influential to 
growth performance of hybrid striped bass (Fig. 9). This 
summary figure was generated based on gene expression 
and metabolite data and other studies of muscle growth 
[85–95]. These genes and metabolites are represented on 
the network map in Fig. 5 and together with those genes 
presented in Table 1 and those discussed below, provide 
good potential biomarkers of muscle growth in hybrid 
striped bass and perhaps other fishes and vertebrates as 
well.

When the muscle gene list based on statistical infer-
ence testing (FDR q ≤ 0.05, 143 genes) was compared to 
the gene list ranked by SVMAttributeEval machine learn-
ing (WEKA SMO, 150 genes), overlap of shared genes 
was minimal (Table  1). While there were no canonical 
pathways that were commonly enriched based on these 
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11 shared genes, there were a number of upstream regu-
lators that showed predicted inhibition, including tgfb1, 
p38, mapk, and akt in muscle of fish from the good-
growth group; one regulator, sirt1, was predicted to be 
activated in these fish and up-regulation of this gene 
was actually demonstrated in muscle of fish from the 
good-growth group as discussed above. The common 
functional themes of these genes echoed those aforemen-
tioned using the larger datasets: apoptosis and necrosis 
were predicted to influence muscle growth and were 
down-regulated in muscle of fish from the good-growth 
group and inflammation, nephritis, and insulin sensitivity 
were up-regulated in fish from the poor-growth group. 
This indicates that although individual genes detected by 
statistical inference-based and machine learning-based 
methods may differ, the overall pathways represented 
may still be similar. The approach used here, where both 

methods provided orthogonal evaluation, yielded more 
insight than using just a single method alone.

Conclusions
The biological findings between expressed white mus-
cle genes ranked using inferential statistics and machine 
learning identified important candidate biomarkers and 
pathways that influence growth performance in hybrid 
striped bass and perhaps other fishes and vertebrates as 
well. The machine learning ranked genes, when included 
with hundreds of measured metabolites, collectively sug-
gested promotion of cell proliferation, cell differentia-
tion, and bioenergetics pathways generally in muscle of 
fish from the good-growth group, which is in agreement 
with observed superior growth and muscle hyperplasia. 
The metabolites and genes ranked by inferential statis-
tics provided a slightly different pathway analysis; cell 

Fig. 9 Network map showing direct relationship of one metabolite and twelve genes that were most influential to growth performance of hybrid 
striped bass (mass of organism). Genes and metabolites are colored by fold change: (red) up-regulated and (green) down-regulated in muscle 
of fish from the good-growth group. Functions based on measured gene expression and metabolite levels were predicted to be inhibited (blue) 
or activated (orange) in muscle of fish from the good-growth group relative to the poor-growth group. Connections between molecules and mass 
of organism have previously published relationships in the literature. Arrows indicate activation and perpendicular lines indicate inhibition of effect; 
(orange) and (blue) lines indicate agreement and (yellow) lines indicate disagreement with previously published literature; (grey) lines indicate 
relationships that could not be accurately concluded due to lack of current information. Image was created using Ingenuity Pathway Analysis 
Upstream Regulators Analysis (Qiagen IPA, Germantown, MD, USA)
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proliferation and differentiation were similarly identi-
fied as activated in muscle of fish from the good-growth 
group, however, inflammation was also identified as an 
important pathway that was predominantly activated in 
muscle of fish from the poor-growth group. There was 
compelling evidence that cell death was increased in 
muscle of fish from the poor-growth group relative to 
the good-growth group, possibly related to sup-optimal 
growth performance or elevated cortisol levels. These 
pathways may reflect a precocious switch from hyper-
plastic to hypertrophic muscle growth as observed in 
fish from the poor-growth group. Overall, inferential 
statistics and machine learning together provided pow-
erful orthogonal contrasts of the gene expression data, 
and genes provided more meaningful pathway informa-
tion regarding muscle growth compared to metabolites. 
However, the metabolite data that more directly reflect 
functional aspects of the organism, did complement the 
gene expression findings and strengthened confirmation 
of energetics and inflammation pathways. Further stud-
ies assessing biomarkers known to contribute to mus-
cle growth could provide additional criteria by which to 
assess changes in this and similar datasets as they become 

available. Several candidate biomarkers of growth are 
reported here, some novel and requiring further valida-
tion or testing in future research. The presented findings 
provide a foundation for such future studies.

Methods
All research was performed and approved by the Institu-
tional Animal Care and Use Committee of North Caro-
lina State University and conducted in accordance with 
recommendations in the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health 
[96].

Experimental animals and tissue samples
Multiple adult fifth generation domestic striped bass 
males and eighth generation domestic white bass females 
from the National Program for Genetic Improvement 
and Selective Breeding for the Hybrid Striped Bass Indus-
try housed at the North Carolina State University Pam-
lico Aquaculture Field Laboratory (NCSU, Aurora, NC, 
USA, 35.3054° N, 76.7885° W) were crossed en masse 
(over 100 families) to produce diverse reciprocal crossed 
hybrid striped bass (female white bass and male striped 
bass, also referred to as “sunshine” cross). These fish 
were reared common garden in an earthen pond (0.1 ha) 
and then in three outdoor flowthrough tanks (5814 L) in 
ambient conditions (water temperature, photoperiod) at 
the NCSU facility according to standard two-phase com-
mercial-scale hybrid striped bass rearing methods [20, 
21, 97]. An average cohort weight was measured at week 
51.6 (conclusion of Phase 1, approximately 12 months) of 
culture to collect the baseline for subsequent measure-
ment of specific growth rate (SGR). Once the majority 
of the cohort had reached market size (> 680 g, approx-
imately 22 months in Phase 2) individuals from the top 
and bottom 10 % of the cohort by weight and total length 
were randomly selected as representatives of fish that 
grow well (N = 10, good-growth) and that grow poorly 
(N = 10, poor-growth), respectively. Sex of the fish was 
noted such that both males and females were represented 
in the sampled individuals, and we attempted to get close 
to 50% of each if possible.

Selected fish were euthanized by immersion in a solution 
of eugenol (AQUI-S®, Melling, Lower Hutt New Zealand) 
and tricaine methane sulfonate (Finquel MS-222, Argent 
Chemical Laboratories, Redmond, WA, USA), according to 
standard hatchery procedures [20, 21]. Wet weight (g) and 
total length (mm) data were collected for each fish. Fish 
were dissected and whole gonads and liver from individuals 
were weighed (N = 10 fish per group) for analysis of growth 
morphometrics. White muscle tissue samples were excised 
from the left side of each fish just ventral to the anterior 

Table 1 List of eleven alphabetically arranged hybrid striped 
bass muscle genes that were shared between the top 143 and 
150 genes that significantly differed in expression between 
fish from the good- and poor- growth groups by p-value (q 
≤ 0.05, FDR = 0.05) and that were chosen based on machine 
learning rankings, respectively. The table shows the ranking 
of each gene by the different approaches and the number of 
alternate transcript variants identified for each of the genes; 
more than one ranking number corresponds to the different 
transcript variant designations. Expression levels of all genes 
were up-regulated in fish from the poor-growth group based on 
average Fragments per Kilobase of transcript per Million mapped 
reads (FPKM) values

Gene Symbol SVM Ranking p-value 
Ranking

SVM 
Ranked 
Variants

p-value 
Ranked 
Variants

agtr2 21, 132 13, 79 2 2

cd22 60 33, 67 1 2

cebpb 117, 120 4, 5, 6, 8, 14, 
101

2 6

cxcr4 45, 64 7, 9 2 2

gadd45b 70, 104 59, 107, 108 2 3

mmp17 4, 136 95 2 1

msi1 86, 102 54 2 1

rgl1 80, 88 12, 16, 31, 
32, 99

2 5

rgs13 25 3 1 1

rhou 77 123, 124 1 2

rundc3a 1 56 1 1
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margin of the first dorsal fin and posterior to the head. 
One muscle sample (approximately 3.5  mm3) from each 
individual (N = 5 fish per group) was fixed in Bouin’s fluid 
for three days [11] and dehydrated in 50 % alcohol for one 
day for muscle histology. Another muscle sub-sample (N 
= 9 fish per group) was flash frozen in liquid nitrogen and 
stored at -80 °C until being sent to Metabolon Inc. (Mor-
risville, NC, USA) for metabolomics analysis. A third mus-
cle sub-sample (N = 4 fish per group) was collected and 
held in RNALater (Life Technologies, Carlsbad, CA, USA) 
overnight at 4 °C. Excess RNALater was removed the fol-
lowing day and samples were frozen at -80 °C until extrac-
tion of RNA and subsequent gene expression analyses. A 
sample of liver tissue was collected (N = 9 fish per group) 
for metabolomics analysis. Analyses were predominantly 
focused on muscle tissue as they can be excised in a non-
lethal fashion and therefore have high potential for use in 
biomarker screening.

Evaluations of growth morphometrics
Gonadosomatic index (GSI, gonad weight as a percent of 
total body weight in grams) and hepatosomatic index (HIS, 
liver weight expressed as a percent of total body weight in 
grams) , was calculated for each of the two growth groups 
[98].

Fulton’s condition factor (K) was calculated by dividing 
the wet weight (W) of the fish in grams by the cube length 
 (L3) of the fish in centimeters, then multiplied by the factor 
100 to bring K close to unity (N = 10 fish per group) [99].

The size of the entire hybrid striped bass cohort was 
measured at week 51.6 (approximately 12 months;  Timei) 
by measuring a group wet weight for approximately 
50 fish from each of the three rearing tanks. This value 
was used as  Weighti. The specific growth rate (SGR) was 
calculated for fish from each growth group (N = 10 fish 
per group) based on the average group weights of fish 
 (Weightf) at the end of the culturing period  (Timef) using 
the following formula [100]:

Statistical differences in total length, wet weight, GSI, 
and HSI, Fulton’s condition factor K, and SGR between 
the two growth groups of fish were evaluated using a 
One way Student’s t-test with an alpha level of 0.05 (SAS 
JMP®, 11.0.0; SAS Institute Inc., Cary, NC, USA).

Muscle histology analysis
Fixed muscle tissues (N = 5 fish per group) were sent 
to the NCSU College of Veterinary Medicine Histology 
Laboratory (Raleigh, NC, USA) where they were fur-
ther dehydrated through an ethanol series, embedded 

SGR =

100× (lnWeightf − lnWeighti)

(Timef − Timei)

in paraffin, and cross-sectioned at 5 µm perpendicular 
to the muscle fibers. The sections were stained in hae-
matoxylin and eosin and mounted on microscope slides 
for muscle morphometry analysis. Muscle fiber mor-
phometric data were enumerated using similar method-
ology to Weatherley and Gill (1987) [101] and Gill et al. 
(1989) [102] to evaluate growth by hypertrophy (i.e., fiber 
area) and hyperplasia (i.e., fiber number). Representa-
tive images of muscle fibers were collected in triplicate 
from randomly selected areas of each tissue section (i.e., 
slide) for enumeration using an Olympus (Shinjuku City, 
Tokyo, Japan) CH light microscope (4x magnification) 
connected to a Celestron (Torrance, CA, USA) digital 
microscope camera (10x magnification). The identity of 
the fish corresponding to each slide was concealed from 
the scorer to perform blind analysis. ImageJ software (Fiji 
and NIH, Bethesda, MD, USA) was used to enumerate 
all fibers, and only those fibers that were entirely visible 
within the field of view were counted (i.e., those marginal 
fibers or those that were partially transected by the mar-
gin of view were excluded to avoid any measuring bias). 
The cross-sectional area of individual fibers was also cal-
culated and, assuming the two-dimensional cross-section 
of muscle fibers to be circular, the diameter of each was 
calculated as a geometric derivative of its area.

The mean number of fibers, the mean fiber diameters 
(µm), were compared between the two growth groups 
with One-way Student’s  t-test at an alpha level of 0.05 
(SAS JMP®, 11.0.0; SAS Institute Inc., Cary, NC, USA). 
The presence of muscle fibers ≤ 20 µm was evaluated 
as an indicator of growth by hyperplasia [2] and were 
similarly compared between groups. In addition, a linear 
regression analysis was used to assess the relationship 
between average fiber number and average fiber diameter 
(µm) between the two growth groups through their cor-
responding average fish wet weights (g) using the linear 
equation: y = mx + b.

Liver and muscle metabolomics analysis
Metabolon Inc. (Morrisville, NC, USA) performed raw 
data extraction, peak identification (i.e., the area-under-
the-curve), and QC processing of metabolites from mus-
cle (N = 9 samples per group) and liver (N = 9 samples 
per group) tissues. Briefly, the automated MicroLab 
STAR® system (Hamilton Company, Reno, NV, USA) was 
used to prepare samples. Several recovery standards were 
added prior to the first step in the extraction process for 
Quality Control (QC) purposes. To remove protein, dis-
sociate small molecules bound to protein or trapped in 
the precipitated protein matrix, and to recover chemi-
cally diverse metabolites, proteins were precipitated with 
methanol under vigorous shaking for two minutes (Geno 
Grinder 2000, Glen Mills, Clifton, NJ, USA) followed by 
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centrifugation. The resulting extract was divided into 
four fractions: two for analysis by two separate reverse 
phase (RP)/Ultrahigh Performance Liquid Chromatogra-
phy-Tandem Mass Spectroscopy (UPLC-MS/MS) meth-
ods with positive ion mode electrospray ionization (ESI), 
one for analysis by RP/UPLC-MS/MS with negative ion 
mode ESI, and one for analysis by hydrophilic interac-
tion liquid chromatography (HILIC)/UPLC-MS/MS with 
negative ion mode ESI. Samples were placed briefly on a 
TurboVap® (Zymark Corporation, Hopkinton, MA, USA) 
to remove the organic solvent and extracted muscle and 
liver tissues were stored overnight in nitrogen prior to 
analysis.

Identified compounds were compared to the Metabo-
lon library of recorded purified standards or recurrent 
unknown entities. All identified metabolites met the 
retention time/index, mass to charge ratio, and chro-
matographic and mass spectrometry data standards of 
the library. Normalized values of raw area counts were 
recorded for each metabolite identified. Any missing val-
ues within the dataset that fell below the level of detec-
tion were scaled to the natural logarithm, such that the 
median was equal to one, which reigned the effects of any 
potential outliers. Missing values were imputed with the 
minimum value for a given metabolite across all muscle 
and liver tissue samples.

Three types of analyses were performed to identify 
differences in concentration of metabolites between 
fish from the good and poor growth groups: (1) signifi-
cance tests by statistical inference (Welch’s Two Sample 
t-test), (2) descriptive statistics (Principal Component 
Analysis, PCA), and (3) random forest machine learning 
classification (Mean Decrease Accuracy, MDA). Stand-
ard statistical analyses were performed in ArrayStudio 
(Qiagen, Germantown, MD, USA) on log transformed 
data. For those analyses not standard in ArrayStudio, the 
programs R 3.5.0 or SAS JMP 11.0.0 were used. Welch’s 
Two-sample t-test was used on liver and muscle tissue 
samples to determine significant differences in metabo-
lite concentrations between the two growth groups. A 
PCA was conducted to identify if the fish samples from 
the poor-growth and good-growth groups could be sepa-
rated based solely on the metabolic signatures. To deter-
mine which of the identified metabolites made the largest 
contribution to the classification, MDA was computed 
as a sensitivity measure; the MDA was determined by a 
random forest machine learning analysis that provided 
an ordered list of the top thirty metabolites ranked by 
importance in classification.

Muscle gene expression sequencing
The NCSU Genomic Sciences Laboratory (Raleigh, NC, 
USA) performed RNA extraction and library preparation 

for RNA-Seq via the NexSeq 500 platform (Illumina, 
San Diego, CA, USA).  Total RNA was extracted using 
an RNeasy Fibrous Tissue mini total RNA isolation kit 
and manufacturer’s protocol (Qiagen). The libraries 
were sequenced using 75 bp single read chemistry and 
samples were pooled into one-half of a lane for approxi-
mately 23 to 30 million reads per sample. Prior to library 
construction, RNA integrity, purity, and concentration 
were  assessed using a 2100 Bioanalyzer with an RNA 
6000 Nano Chip (Agilent Technologies, Santa Clara, CA, 
USA). Purification of messenger RNA (mRNA) was per-
formed using the oligo-dT beads provided in the NEB-
Next Poly(A) mRNA Magnetic Isolation Module (New 
England Biolabs, Ipswich, MA, USA). Complementary 
DNA (cDNA) libraries for Illumina sequencing were 
constructed using the NEBNext Ultra Directional RNA 
Library Prep Kit and NEBNext Mulitplex Oligos for Illu-
mina using the manufacturer-specified protocol. Briefly, 
the mRNA was chemically fragmented and primed with 
random oligos for first strand cDNA synthesis. Sec-
ond strand cDNA synthesis was then carried out with 
dUTPs to preserve strand orientation information. The 
double-stranded cDNA was then purified, end repaired 
and A-tailed for adaptor ligation. Following ligation, 
the samples were selected for final library size (adapt-
ers included) of 400-550 bp using sequential AMPure 
XP bead isolation (Beckman Coulter, Brea, CA, USA). 
Library enrichment was performed and specific indexes 
for each sample were added during the protocol-specified 
PCR amplification. The amplified library fragments were 
purified and checked for quality and final concentration 
using an Agilent 2100 Bioanalyzer with a High Sensitivity 
DNA chip. The final quantified libraries were pooled in 
equimolar amounts for sequencing and flow cell cluster 
generation on the llumina NextSeq 500 DNA sequencer 
utilizing 75 bp single read sequencing with NextSeq Rea-
gent Kit v2.

Inferential statistics evaluation of muscle gene expression
RNA-Seq data analysis was performed by Data2Bio 
(Ames, IA, USA). Prior to alignment, the nucleotides 
of each single end raw read Illumina NexSeq read were 
scanned for low quality. Bases with PHRED quality 
value < 20 out of 40 [103, 104] were removed and only 
those with error rates of ≤ 1 % were included. Each read 
was examined in two phases. In the first phase, reads 
were scanned starting at each end and nucleotides with 
quality values lower than the PHRED threshold were 
removed. The remaining nucleotides were then scanned 
using overlapping windows of 10 bp and sequences with 
an average PHRED quality value less than the speci-
fied threshold beyond the last window were truncated. 
Trimming parameters were in reference to the software 
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LUCY2 [105, 106] and trimmed reads were aligned to 
the annotated reference striped bass genome (NCBI 
GenBank: GCA_001663605.1) using GSNAP [107]. Con-
fidently mapped, single end reads were filtered if they 
were mapped uniquely (≤ 2 mismatches every 36 bp and 
less than 5 bp for every 75 bp as tails) and used for sub-
sequent analyses. The coordinates of uniquely aligned 
reads to the reference genome were used for positional 
reference and read count tallies were computed for each 
annotated gene. Singleton reads were assigned a count 
of one when their aligned coordinates overlapped with 
an annotated gene. Normalization was conducted by 
Bioconductor DESeq2 1.28.1 [108], which corrects for 
biases introduced by differences in the total numbers of 
uniquely mapped reads in each sample and that also par-
tially corrects for SNP variation between genotypes (i.e., 
biological variation among fish). Normalized read counts 
were used to calculate fold-changes and statistical signifi-
cance. The R package DESeq2 was used to test the null 
hypothesis that expression of a given gene is not different 
between the two growth performance groups of poor and 
good [108]. A model using the negative binomial distri-
bution of read counts was used to test this null hypoth-
esis by statistical inference. The read counts per gene 
obtained from all the samples were used for the differ-
ential expression analysis. Before conducting the test for 
differentially expressed genes, a PCA was conducted with 
the DESeq2 package using the top 500 genes with highest 
variance among all samples to assay the quality of these 
samples. The p-values of all DESeq2 statistical tests were 
converted to adjusted p-values (q-values) based on false 
discovery rate (FDR) [109] and an FDR of 5 % (q-value) 
was used to account for multiple testing; 143 genes met 
this criterion of q ≤ 0.05 and were used in pathway analy-
sis (see “Combinatorial Muscle Pathway Analysis” section 
below).

Machine learning evaluation of muscle gene expression
Machine learning models were used to evaluate mus-
cle gene expression in hybrid striped bass related to the 
good- and poor-growth groups. All analyses were per-
formed using WEKA version 3.8 (University of Waikato, 
Hillcrest, New Zealand) [110] and generally follow our 
previously published approach [111–117]. The Sequen-
tial Minimal Optimization Support Vector Machines 
(SMO) was used to predict hybrid striped bass growth 
performance (classified as either good- or poor-growth) 
based on expression of muscle gene transcripts (Frag-
ments per Kilobase of Transcript per Million Mapped 
Reads; FPKM values). Briefly, data from a subset of the 
fish were used to train each machine learning model and 
then the remaining data were used to cross-validate the 
learned patterns. During this cross-validation, the model 

predicts the growth performance of each individual fish 
(good- or poor-growth group assignment) based on 
gene expression patterns that it has learned during the 
training step. Two cross-validation strategies were used 
to evaluate the learning of each model: (1) a percentage 
split whereby 66 % of the data were randomly selected 
and used to train the models and the remaining 34 % of 
the data were input as a cross-validation and (2) a 8-fold 
stratified hold out with n = 8 folds where one fold was 
used for cross-validation and n – 1 folds of the randomly 
reordered data set were used for training. Both classes 
(good- and poor-growth groups) were equally repre-
sented in the model training and cross-validation data to 
avoid bias. The percentages of correct class assignments 
during cross-validation (i.e., predictive accuracy) were 
used to evaluate model robustness [118] along with the 
Kappa statistic and area under the receiver operating 
characteristic curve (AUROC) [111].

The 72893 expressed muscle gene transcripts deemed 
informative through DESeq2 were included in ini-
tial SMO machine learning modeling to predict hybrid 
striped bass growth group based on FPKM values, which 
were then subsequently ranked by importance of infor-
mation during the model-training step using SVMAt-
tributeEval [111, 119]. The SVMAttributeEval ranking 
procedure is a sensitivity analysis that allows for reduc-
tion of data dimensionality, a process to omit genes that 
are not assigned an information rank and to identify only 
those genes that are most important for differentiating 
between fish of the good- and poor-growth groups.

Further reduction of data dimensionality occurred in 
two orthogonal steps: an evaluation of model overfitting, 
defined as too many input gene attributes, and an evalua-
tion of model underfitting, defined as too few. To evaluate 
model overfitting, the ranked gene list was used to evalu-
ate the performance of a series of different SMO models 
using subsets of the top highly ranked genes as inputs 
(i.e., the top 10, 25, 50, 75, 100, 150, 250, 300, 400, 500, 
600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 
7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 
60000, and 70000 genes). The percentage of correctly 
classified instances for each of these models were plotted 
against the number of top highly ranked input gene val-
ues and each plot was fitted with a polynomial trendline 
of an order two or three (i.e., the maximum number of 
input gene values that still provided optimal model per-
formance was plotted to visualize and determine overfit-
ting of training models). Analyzing the best fit of a model 
allowed for the identification of the maximum number of 
input genes and the most important ones in relation to 
the classification question.

To evaluate model underfitting (i.e., to identify the 
minimum number of input gene values that still provided 
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optimal model performance), the top 10000 ranked genes 
were used as baseline for SMO model performance and 
then the top 10, 25, 50, 75, 100, 150, 250, 500, 1000, 2000, 
3000, 4000, 5000, 6000, 7000, 8000, 9500, 9600, 9700, 
9800, 9900, 9990, 9995, 9996, 9997, 9998, and 9999 gene 
values were subsequently eliminated from the gene input 
lists for another series of SMO models performed other-
wise as described above. These reduced gene lists con-
firmed the importance of including at least the top 150 
ranked genes as inputs to optimally predict fish growth 
and were chosen for pathway analysis (see “Combinato-
rial Muscle Pathway Analysis” section below).

The performance of all machine learning models was 
interpreted in comparison to appropriate negative con-
trols for learning. One negative control was based on the 
Law of Probability, an assumption that randomly clas-
sifying fish into one of two groups (i.e., good- or poor-
growth) would be achieved with a success rate of 50 % 
based on random chance alone. The second negative 
control was conducted by randomizing the data labels 
according to each independent variable used for the 
SMO machine learning models and entering them into 
new models as described above. A total of eight such 
iterations of training and cross-validation using different, 
randomly ordered datasets was conducted for each nega-
tive control and the average performance was recorded 
[111, 112].

Combinatorial muscle pathway analysis
To ascertain biological processes that may underlie fish 
growth performance differences, a combinatorial Qia-
gen Ingenuity Pathway Analysis (IPA) was conducted 
using both the metabolites and differentially expressed 
genes measured in hybrid striped bass muscle [120]. 
The 469 muscle metabolites identified from the global 
quantitative metabolomics panel analysis were mapped 
against the IPA KnowledgeBase using three identifiers 
(KEGG, HMDB, and PUBCHEM ID). Two gene lists 1) 
genes with a q-value of differential expression at ≤ 0.05 
cutoff (DEseq2 statistical inference) (143 genes) and 2) 
genes top-ranked by SVMAttributeEval (WEKA machine 
learning) (150 genes) were mapped to known human 
ortholog gene identities for use in IPA. Two pathway 
Core Analyses were conducted, each using one of the two 
mapped gene lists paired with the list of 469 metabolites. 
Comparison results were marked for expression by log2 
fold-change values and p-value to be used as a cutoff in 
the analysis. A p-value of 0.05 was used as a filter cutoff 
for metabolites; no filter was applied to the gene lists, 
as the one ranked by inferential statistics already met 
the q-value cutoff of 0.05 and a p-value cutoff is mean-
ingless for the machine learning ranked gene list as it is 
a non-statistical evaluation. All molecules detected on 

each platform, regardless of inclusion in pathway annota-
tion or passage of applied cutoffs (e.g., by p-value) were 
included in analyses as a reference set (i.e., 469 metabo-
lites and 72893 expressed genes).

The Qiagen Ingenuity Knowledge Base, a data reposi-
tory of interactions, annotations, and other queries 
regarding the relationships between genes and other 
molecules was used to categorize pathways and func-
tions of these data. In IPA Core Analyses, the enrichment 
of a pathway or function is identified by the number of 
observed significant differentially expressed molecules 
assigned to that pathway or function. Canonical Path-
way Analysis was used to detect enrichment of path-
ways based on observed differences in gene expression 
and metabolite levels within each pathway and Molecule 
Activity Predictor (MAP) was overlain to predict activity 
patterns of the pathways; Upstream Regulators Analysis 
was used to predict causal effects of upstream regulator 
proteins and their downstream genes derived from exist-
ing scientific literature and based on observed differences 
in gene expression and metabolite levels; and Diseases 
and Functions Analysis was used to predict causal effects 
including cellular processes and biological functions 
derived from existing literature and that are expected to 
change based on observed differences in expressed gene 
and metabolites levels. The Analytical Analysis tool Bio-
Profiler was conducted independently and filtered to the 
phenotypes of interest, including growth of muscle and 
response of liver. BioProfiler was used to make novel 
discoveries by providing the ability to filter fine-grained 
relationships between molecules (genes and metabolites) 
and diseases or functions.

The Fisher’s Exact Test at an alpha level of 0.05 was 
used to calculate statistical significance of pathway 
effects. The test evaluates the number of molecules 
that are in the reference set and those that 1) match 
between a pathway annotation and those that passed 
any applied cutoffs (metabolites only, p ≤ 0.05); 2) are 
associated with the pathway annotation, but did not 
pass applied cutoffs, and 3) that passed applied cutoffs, 
but did not match the pathway annotation molecules. 
The reference set included all molecules that were pos-
sible to assay in the experiment (i.e., that were detect-
able on each platform used), but were not included in 
the pathway annotation or did not pass applied cutoffs 
(i.e., of the 469 metabolites and 72893 expressed genes). 
In the right-tailed Fisher’s Exact Test, only over-repre-
sented pathway annotations (i.e., those that were repre-
sented by more molecules than expected by chance) are 
considered significant. Under-represented annotations 
(“left-tailed” p-values), which have significantly fewer 
molecules than expected by chance, are not considered 
enriched or over-represented and were not reported.
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