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Abstract 

Background Recent advancements in high-throughput genomics and targeted therapies have provided tremen-
dous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date 
the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless 
of affected codon or phenotype.

Results In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel 
bearing two distinct hotspot PIK3CA mutations, E545K and H1047R, to accurately identify targetable differences 
between mutations within the same gene. We performed RNA-seq and ATAC-seq and identified distinct transcrip-
tomic and epigenomic differences associated with each PIK3CA hotspot mutation. We used this data to curate 
a select CRISPR knock out screen to identify mutation-specific gene pathway vulnerabilities. These data revealed 
AREG as a E545K-preferential target that was further validated through in vitro analysis and publicly available patient 
databases.

Conclusions Using our multi-modal genomics framework, we discover distinct differences in genomic regulation 
between PIK3CA hotspot mutations, suggesting the PIK3CA mutations have different regulatory effects on the func-
tion and downstream signaling of the PI3K complex. Our results demonstrate the potential to rapidly uncover muta-
tion specific molecular targets, specifically AREG and a proximal gene regulatory region, that may provide clinically 
relevant therapeutic targets. The methods outlined provide investigators with an integrative strategy to identify 
mutation-specific targets for the treatment of other oncogenic mutations in an isogenic system.
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Background
In the past few decades, significant strides in precision 
medicine and the advancement of targeted therapies have 
led to personalized treatment options and improved out-
comes for patients with cancer, while limiting off-target 
toxicities. However, response to treatment still var-
ies widely and the ability to better identify patients that 
would benefit from targeted therapies remains complex 
[1]. For the most part, current clinical practices regard 
mutations within the same gene as clinically equivalent 
despite distinct molecular differences, creating a signifi-
cant obstacle in the implementation of targeted thera-
pies [2, 3]. PIK3CA, which encodes the p110α subunit of 
phosphoinositide 3-kinase (PI3K), is the most commonly 
mutated gene in breast cancer and is responsible for 
regulating a diverse range of cellular functions including 
cell proliferation and survival [4–6]. PIK3CA has two dis-
tinct and highly prevalent hotspot mutations, E545K and 
H1047R, which occur in the helical and kinase domains, 
respectively. Mutations in PIK3CA are more common 
in the luminal A subtype of breast cancer and occur at 
a lower frequency in the triple negative subtype. Yet, 
the hotspot mutations of PIK3CA consistently occur at 
roughly a 2:1 (H1047R:E545K) ratio regardless of breast 
cancer subtype (Fig. S1 and Table S1)[7]. These two hot-
spot mutations have been shown to have distinct molecu-
lar changes and sensitivity to targeted therapeutics [5, 6, 
8–10]. Despite these differences, current clinical applica-
tion of PI3Kinase inhibitors in breast cancer do not dis-
tinguish between different mutations or between normal 
and mutated PI3K. This results in significant issues of 
toxicity, often times leading to dose reduction or discon-
tinuation of the drug [2, 11–14]. To date, there is a dis-
tinct unmet need in the treatment of cancer, to accurately 
identify and understand molecular differences between 
mutations to effectively target cancer cells, improve 
selectivity, and decrease off-target effects.

Recent advancements in genomics technology and the 
affordability of generating high throughput genomics 
data have allowed researchers to begin to better under-
stand the nuanced differences between mutations within 
the same gene. Furthermore, bioinformatic efforts have 
begun integrating transcriptomic and epigenomic data to 
better understand distinct molecular differences among 
unique mutational profiles from cancer patients. How-
ever, due to the significant mutational variability among 
individual cancers, as well as tumor heterogeneity and 
clonality, attributing observed differences to a single 
mutation has proven difficult. To better understand the 
molecular differences of PIK3CA hotspot mutations, 
our group has developed an integrative discovery plat-
form to better identify key differences induced by dif-
ferent PIK3CA hotspot mutations in an isogenic human 

breast epithelial cell line panel [15]. The utilization of an 
isogenic mutation panel allows comparisons of the indi-
vidual PIK3CA mutations under the expression of the 
endogenous promoter in near isolation, allowing for the 
identification of potential mutation-specific and muta-
tion-preferential therapeutic targets.

The discovery platform presented here integrates RNA-
seq, an assay for transposase-accessible chromatin with 
sequencing (ATAC-seq), and a select CRISPR knockout 
(KO) screen to uniquely identify distinct molecular tar-
gets attributed to either the PIK3CA E545K or H1047R 
mutations within a well-controlled model. RNA-seq 
allows for the identification and quantification of genes 
and pathways with altered expression due to the presence 
of either mutation [16]. ATAC-seq measures chromatin 
accessibility and can identify putative gene regulatory 
elements to provide additional insight into how regula-
tion of genes and binding activities of transcription fac-
tors differ between two mutations within the same gene 
[17–19]. In our framework, data from these two assays 
are used to tailor a CRISPR screen that can accurately 
confirm genes with high essentiality in either mutant 
cell line; in doing so, we identify potential mutation-
specific targets for treatment [20–22]. Combined appli-
cation of these assays provides improved understanding 
of differences in cell function induced by distinct hotspot 
mutants as well as providing potential means of muta-
tion-preferential inhibition.

Herein we describe a systematic approach (Fig.  1) to 
identify potential mutation-preferential therapeutic tar-
gets. The utilization of an isogenic mammary epithelial 
cell model allows for the direct attribution of differences 
to specific mutations. This in return should improve 
selectivity of targeted therapies and decrease off-target 
effects. Our goal is to create a framework with “plug 
and play” accessibility for the evaluation of other hot-
spot mutants across cancer types using isogenic cell line 
models and to provide a foundation for future studies 
to identify a candidate list to maximize the potential for 
therapeutic benefit.

Results
RNA sequencing uncovers distinct transcriptional profiles 
and differential regulation of key cancer pathways 
in E545K and H1047R PIK3CA mutant cells
To evaluate differences in the transcriptomes of cells 
harboring the PIK3CA hotspot mutations E545K and 
H1047R, we performed RNA-seq on a panel of iso-
genically modified nontumorigenic breast epithelial 
MCF-10A cell lines harboring the respective mutations. 
RNA-seq identified 1271 genes with differential expres-
sion between the two mutant cell lines (Fig.  2A and B) 
[23]. A complete summary of the differentially expressed 
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genes (DEGs) can be found in Table S2 and are displayed 
in Fig.  2B. Interestingly, hierarchical clustering revealed 
the gene expression patterns of the E545K cell line shared 
greater similarity with the WT parental cell line than 
the H1047R mutant cell line (Fig. 2A). It is important to 
note that there is no differential expression of PIK3CA 
(Fig. S2). Thus, differential gene expression can be attrib-
uted to the effects of the mutations and not altered total 
expression of the mutant transcripts.

Gene set enrichment analysis using the MSigDB Hall-
mark pathway collection was performed to identify pat-
terns of shared function across DEGs [24]. Multiple 
uniquely enriched pathways were associated with each 
mutant (Fig.  2C). Genes within pathways related to cell 
cycle and proliferation, as well as epithelial-mesenchymal 
transition genes, exhibited greater increased expres-
sion in the E545K cells, while genes in estrogen response 
pathways and K-ras associated genes had greater 
increased expression in the H1047R cells. It is impor-
tant to note that while the MCF-10A lineage is consid-
ered an ER- cell line, these cells do still express ESR1 
mRNA (Fig.  S2) and may therefore still exhibit changes 
in estrogen regulated genes. A more detailed look at the 

altered expression of genes within the estrogen response 
early and estrogen response late pathways can be found 
in Fig. S3. These differences in gene expression patterns 
suggest distinct modes of tumorigenic activity between 
the different mutants, despite being treated as clinically 
equivalent. Using patient data from The Cancer Genome 
Atlas (TCGA) Breast Cancer (BRCA) data set, RNA-seq 
samples from tumors bearing each PIK3CA mutation 
confirmed observations made within our isogenic MCF-
10A panel (Fig. 2D). Of the 14 pathways found to be sig-
nificantly enriched in our panel, all were confirmed to be 
significantly enriched in differentially expressed gene sets 
from corresponding TCGA mutant samples. These find-
ings demonstrate single amino acid substitutions in the 
same gene can have wide-ranging and distinct disruption 
of gene expression, which translates directly to expres-
sion differences observed in clinical samples.

PIK3CA mutants demonstrate unique differences 
in chromatin accessibility and gene regulation
Considering the gene expression changes observed with 
RNA-seq, we performed ATAC-seq to identify genomic 
regions with altered regulatory landscapes, which may 

Fig. 1 Discovery platform identifies mutation-preferential gene targets from isogenic cell line models. Flowchart breaking down the process 
of identifying selective gene targets from an isogenic cell line model
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contribute to changes in gene expression. In addition to 
the identification of dynamic regions of chromatin acces-
sibility (ChrAcc), differences in transcription factor (TF) 
binding activities were also estimated from Tn5 cut-site 

profiles. Comparing accessibility profiles between E545K 
and H1047R mutants identified 8672 differentially acces-
sible regions. We performed unsupervised clustering to 
define 4 distinct groups of accessibility patterns (Fig. 3A). 

Fig. 2 RNA-seq captures distinct gene expression differences induced by PIK3CA hotspot mutations in isogenic cell line models which are reflected 
in TCGA patient samples. (A) Heatmap of normalized counts for 1271 differentially expressed genes. Hierarchical clustering of these genes reveals 
that E545K cells bear more similarity to WT than H1047R. (B) Volcano plot of differential expression between mutant isogenic cell lines. Differentially 
expressed genes (DEGs) were defined by the criteria: fold change >|1.5|, Padj < 0.05. (C, D) Dot plot showing results from GSEA pathway enrichment 
analyses using the hallmark gene sets for (C) MCF-10A DEGs and (D) expression data from TCGA-BRCA samples. Pathways shown in panel D are 
those that are significantly enriched, shared and concordant with those identified as significant in the MCF-10A cell line



Page 5 of 16Miranda et al. BMC Genomics          (2024) 25:519  

Fig. 3 ATAC-Seq identifies mutation-specific gene regulatory mechanisms near genes of key pathways. (A) Heatmap of accessibility at 8672 peaks 
exhibiting differential accessibility between the mutant isogenic cell lines. Peaks are divided based on k-means clustering. The second cluster 
highlighted in pink has been designated as E545K-preferred. The third cluster highlighted in green has been designated as H1047R-preferred 
(B) Distribution of genomic feature annotations of regions within the E545K-preferred and H1047R-preferred clusters. (C) Scatter plots of TOBIAS 
transcription factor footprinting of accessibility in the E545K-preferred regions. (D) Scatter plots of TOBIAS transcription factor footprinting 
of accessibility in the H1047R-preferred regions. (E) Bar plot of pathway enrichment from the PANTHER pathway database analysis performed 
on genes uniquely annotated to the E545K-preferred cluster. (F) Bar plot of pathway enrichment from the PANTHER pathway database analysis 
performed on genes uniquely annotated to the H1047R-preferred cluster regions
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Two distinct groups, designated as E545K-preferred and 
H1047R-preferred, represented putative regulatory loci 
with increased accessibility in either E545K or H1047R 
mutant cells, respectively. In addition to providing insight 
into gene regulatory mechanisms, ChrAcc provides 
insight into cis-regulatory elements including enhanc-
ers. Within both the E545K-preferred and H1047R-pre-
ferred region clusters, over 50% of the regions fall within 
intronic and distal intergenic sequences (Fig. 3B). These 
results suggest that a significant amount of chromatin 
remodeling that is driven by the different PIK3CA muta-
tions occurs at noncoding enhancer elements that can 
bind TFs and influence gene expression [25].

Indeed, TF motif analysis revealed that each accessi-
bility cluster is enriched for distinct families of TF bind-
ing sites identified from the JASPAR database [26, 27] 
(Fig.  S4). In the E545K-preferred cluster, strong enrich-
ment for the hormone receptor transcription factors 
ARE and PGR were observed as well as the TEAD tran-
scription factor family. The TEAD TF family has been 
shown to have a strong association with canonical PI3K/
AKT signaling and can promote epithelial to mesenchy-
mal transition [28, 29]. In the H1047R-preferred cluster, 
there was increased enrichment of AP-1 family TFs. AP-1 
family TFs have been shown to interact with chromatin 
remodelers and promote a proliferative gene expression 
program [30, 31], and have also been associated with 
signaling through the MAPK cascade [32].

While TF motif analysis informs which sequences are 
enriched within ChrAcc regions, it does not predict TF 
occupancy. To better understand differential TF binding 
activities, we performed TF footprinting using TOBIAS, 
which uses Tn5 cut-site profiles to identify differences 
in proteins bound at TF binding motifs [18]. Our results 
show high levels of TEAD TF binding in E545K-preferred 
regions (Fig. 3C) and high levels of AP-1 binding (FOS, 
FOSL1, FOSL2, JUND) in H1047R-preferred regions 
(Fig.  3D). These results are consistent with the motif 
enrichment results and point to activity of the TEAD and 
AP-1 TF families as key regulators of differential gene 
expression between the PIK3CA hotspot mutants. The 
differential binding activity of TFs from these TF families 
are influenced by the PIK3CA mutation status of the cells 
and cofactors of these TFs likely alter the ChrAcc at these 
mutation-preferred regions. See discussion for more 
detailed description.

Nearest neighbor gene annotation using GREAT was 
used for gene ontology analysis to identify genes uniquely 
associated with either mutation-preferred accessibility 
cluster and analyzed for pathway enrichment using Enri-
chr [33–36]. Using the PANTHER database, we identi-
fied enrichment of distinct pathways promoted by either 
PIK3CA mutants [37, 38]. Within the E545K-preferred 

cluster regions, unique enrichment of multiple growth 
factor receptor signaling pathways was observed and is 
likely due to changes in PI3Kα signaling induced by the 
E545K mutant cells (Fig.  3E) [4]. Interestingly, enrich-
ment from the H1047R-preferred cluster regions showed 
enrichment for both the Notch and Wnt signaling path-
ways. Both of these pathways are associated with the 
promotion of tumor growth in breast cancers, but nei-
ther are canonically associated with increased activity of 
PI3Kα (Fig.  3F) [39, 40]. This suggests H1047R mutant 
cells may drive alternative proliferative cell signaling out-
side of canonical PI3K signaling. These gene ontology 
results are consistent with the observed TF enrichment 
and footprinting between clusters, and provide additional 
context to the differential gene expression observed from 
RNA-seq. The differences in ChrAcc demonstrate dis-
tinct differences in genomic regulation between PIK3CA 
mutations and suggest the PIK3CA mutations have dif-
ferent effects on the function and downstream signaling 
of the PI3K complex.

Select CRISPR‑Cas9 knockout screen identifies genes 
with mutation‑specific essentiality
A key advantage of our isogenic cell line model is the 
ability to compare both mutants to the unmodified 
parental cell line. Therefore, a CRISPR KO screen could 
accurately identify essential genes specific to PIK3CA 
mutations, but not PIK3CA WT cells, and may provide 
a list of promising therapeutic targets with limited off-
target effects in normal cells. Performing a whole genome 
CRISPR screen can be both time and resource intensive. 
To circumvent these limitations, we used the data gener-
ated from both the previously performed RNA-seq and 
ATAC-seq assays to curate a select list of genes to investi-
gate within our CRISPR KO screen. Analysis of RNA-seq 
data identified 616 unique DEGs, 160 for E545K mutants 
and 456 for H1047R mutants, with significantly upregu-
lated expression in a mutant cell line relative to the 
parental (Fig.  4A and B). An additional 410 genes were 
identified to have increased expression in both mutant 
cell lines compared to WT; however, gene selection was 
limited to those with uniquely increased expression in 
either the E545K or H1047R cells (Fig.  4B). Among the 
9677 combined mutant-specific genes that annotate to 
regions of differential chromatin accessibility, 312 were 
identified as DEGs (Fig. 4C).

Among the 312 selected genes, 280 genes with target-
ing single guide RNAs (sgRNAs) were available from 
the Brunello full genome library for a select CRISPR 
KO screen [41] (Table  S3). Using the MAGeCK soft-
ware package, Z-score differences between each of the 
mutant cell lines were compared to the parental cell 
line for each gene [42] (Fig.  4D). From this analysis, we 
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identified 36 genes with a Z-score difference greater than 
a significance threshold of 1.65, which corresponds to a 
confidence interval of 95% (Table  S4). When knocked 
out, these genes specifically disrupt the survival of 
either mutant cell line with minimal disruption to the 
parental line (Table  S4 and Fig.  4D). The top five genes 
(NAT1, PPM1H, AREG, ACSS1, CXCL1) with the great-
est differences in Z-scores were evaluated in the PIK3CA 
mutant breast cancer samples from TCGA (Fig. 4E). Of 
the top 5 genes, AREG was the only gene with signifi-
cant differential expression between the PIK3CA muta-
tions. Samples with E545K mutations demonstrated a 
significant increase in expression when compared to 
the H1047R, recapitulating the differential expression 
of AREG observed in our isogenic panel (Fig.  4F). This 
association was independently confirmed using data 
from two other databases. The first of these databases 
was the Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC) database, which shows 
increased expression of AREG in E545K mutant samples 
with an increased difference within the luminal B subtype 
(Fig.  S5) [43]. We also show that E545K mutant breast 
cancer cell lines show unique sensitivity to loss of AREG 
in data from project Achilles and DepMap (Fig. S6) [44]. 
This project contains a collection of CRISPR KO screen 
results from 1100 cancer cell lines, and this result is con-
sistent with the findings from our CRISPR KO screen 
in the MCF-10A model, which shows a loss of AREG is 
much more deleterious to cells with the E545K muta-
tion compared to other PIK3CA genotypes. Clinical con-
firmation of a unique molecular target identified from 
this select CRISPR screen emphasizes the translational 
potential of hits identified from isogenic mutant cell lines 
analyzed with our strategy.

Disruption of differentially accessible locus identified 
by ATAC‑seq exhibits regulatory function over AREG 
expression
Selection criteria for inclusion of the ATAC-seq data in 
the CRISPR screen required identification of differen-
tially accessible peaks between the two mutants. The 

accessible peak annotated to AREG (chr4:74,435,384–
74,435,596 locus) was identified as significantly more 
accessible in the E545K mutant cells and exhibits many 
qualities of a gene regulatory region (Fig.  5A). A previ-
ous study using CTCF ChIA-PET in MCF-10A cells pub-
lished by ENCODE (ENCSR403ZYJ) showed that this 
locus interacts with the promoter of the AREG gene and 
could influence expression [45, 46]. Furthermore, the 
Genotype-Tissue Expression project (GTEx) identifies 5 
different AREG expression quantitative trait loci (eQTLs) 
single nucleotide polymorphisms (SNPs) within 1  kb of 
this region (Table S5) and these SNPs have been shown 
to influence the expression of AREG in multiple tissue 
types (Fig.  5A). Specifically, the rs28570600 SNP (gold 
square, Fig. 5A) has previously been shown to be signifi-
cantly associated with breast cancer susceptibility [47].

To investigate the function of this peak, the region was 
deleted using CRISPR-Cas9 and a pair of sgRNAs target-
ing the discussed locus upstream of the AREG TSS (oligo 
sequences in Table S6). Loss of this enhancer region sig-
nificantly reduced AREG expression in all cell lines in 
the isogenic model (Fig. 5B). There was also an observed 
decline in the proliferation/survivability of the mutant 
cell lines, however only significant within the E545K 
cells. (Fig.  5C). This experiment was also performed in 
a previously developed isogenic model for the E545K 
mutation in the MCF7 breast cancer cell line background 
[48]. Results from this experiment also show a specific 
decrease in proliferation/survivability of E545K mutant 
cells (Figure S7). These assays demonstrate the capability 
of our approach to identify regulatory regions that may 
themselves provide targets for mutation-specific treat-
ment of PIK3CA mutant disease.

PIK3CA mutant cells exhibit specific dependency on AREG
To confirm the role of AREG expression on cell sur-
vival, short interfering RNA (siRNAs) were used to 
inhibit AREG in the isogenic panel (Fig.  S8). With an 
siRNA knockdown, our goal was to assess the effect of a 
reduction of AREG expression without complete loss of 
expression in the system. Consistent with observations 

Fig. 4 Genes with altered expression and nearby chromatin accessibility were selected for a CRISPR KO screen to identify gene targets 
with mutation-specific essentiality. (A) Scatter plots of gene expression in mutant cells relative to parental cells. Unique genes meeting the fold 
change and significance threshold (fold change >|1.5|, Padj < 0.05) shown in color. (B) Euler plot showing the overlap of genes with increased 
expression in cells with either mutation compared to the parental cell line. (C) Euler plot showing the overlap between genes annotated to regions 
of differential accessibility with those exhibiting increased expression in a mutant cell line compared to the parental cell line. (D) Scatter plot 
showing the results of the CRISPR KO screen. Significant hits with a Z-score difference >|1.65| are shown in red. (E) Box plots showing expression 
of the top 5 hits from the CRISPR screen in TCGA-BRCA samples. AREG shows significant difference in expression between samples bearing 
either of the hotspot mutations. Significance was calculated using an ANOVA with a post-hoc Fisher’s LSD test. Significance threshold is 0.05. (F) 
Bar plots showing the expression of the top 5 hits from the CRISPR screen in the MCF-10A RNA-seq samples. Significance was calculated using 
an ANOVA with a post-hoc Fisher’s LSD test; * = p-value 0.05–0.0332, ** = p-value .0332–0.0021, *** = p-value 0.0021–0.0002, **** = p-value < 0.0002

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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from the CRISPR KO screen, reduction of AREG expres-
sion significantly disrupted the survival and proliferation 
of E545K mutant cells, while exhibiting no significant 
changes in WT or H1047R mutant cells (Fig. 5D). To vali-
date this observation, cells were treated with a neutral-
izing antibody that disrupts the extracellular signaling 
of AREG. Both mutant cell lines exhibited sensitivity to 
AREG perturbation, while WT cells showed no signifi-
cant change (Fig.  5E). This effect is not exclusive to the 
E545K mutant cells but is consistent with the effect of 
AREG loss shown in Fig. 4D. Knockout of the AREG gene 
had a small deleterious effect on H1047R cells compared 
to a larger effect observed in E545K cells. The extracel-
lular nature of AREG makes it a particularly attractive 
target as inhibitors of AREG would not necessarily need 
to penetrate the cell membrane to be effective. This could 
simplify drug design and reduce potential off target tox-
icity [49, 50]. Taken together, these results demonstrate 
the utility of our research strategy to identify potential 
molecular targets as an option for mutation-preferential 
therapeutic strategy. The in  vitro and translational con-
firmation of our findings demonstrate the power of our 
model to accurately identify actionable gene targets and 
gene regulatory regions with high selectivity for mutant 
cells and minimal impact to WT cells.

Discussion
Increased availability and advancements in multi-omics 
technology have begun to revolutionize translational 
research to better understand the interplay of molecu-
lar changes and provide new opportunities for targeted 
therapies. However, integration and implementation of 
multi-omics data for identifying new molecular targets 
for therapeutic development remains underutilized in the 
cancer setting. This study presents an analytical frame-
work for employing an isogenic mutant panel to better 
understand and uniquely identify the molecular differ-
ences between mutations within the same gene. Tradi-
tionally, most cancer-associated mutations have been 
clinically evaluated and treated as a monolithic group 
with variable success. More contemporary targeted ther-
apies such as inhibitors specific to mutant KRAS G12C, 

for example, highlight the success and feasibility of devel-
oping mutation specific inhibitors [51]. To improve upon 
this current paradigm, our workflow takes advantage 
of a model of isogenically incorporated mutations in a 
genetically stable background, integrating both RNA-
seq and ATAC-seq data to design a uniquely tailored 
CRISPR KO screen enabling the detection of mutation-
selective targets. The utilization of a mutant model that 
incorporates an isogenic background provides a system 
to identify a candidate list that demonstrates mutation-
preferential gene regulatory dependencies. Previous 
studies have made use of this model to demonstrate 
how the mutant cells differ from the parental line, but 
our approach differs in focus in that the unique differ-
ences within the mutant cell lines are the priority [9, 15, 
52]. Furthermore, the accessibility of CRISPR-Cas9 gene 
editing systems makes the development of isogenic mod-
els for cancer-associated mutations a relatively fast and 
straightforward process and can be scaled for a variety of 
mutations across tumor types. In addition to identifying 
mutation-preferential molecular targets, our comprehen-
sive process paired with the isogenic panel can identify 
and characterize potential enhancer regions with muta-
tion-specific activity that may offer alternative targets for 
treatment. These putative enhancers have affinity for dis-
tinct TF families that result in unique expression profiles 
and may be exploited as therapeutic vulnerabilities. The 
true utility of our process is in the identification of poten-
tial targets. Hits from our analyses still require additional 
validation to determine their effects beyond the CRISPR 
KO screen and ultimately their translation for potential 
clinical impact.

Evidence for the applicability of our workflow in breast 
cancer was used to analyze the two most common 
PIK3CA mutations in breast cancer to identify distinct 
molecular differences that impact downstream signal-
ing, chromatin accessibility, and gene expression. RNA-
seq and ATAC-seq analysis identified the disruption of 
epithelial-mesenchymal transition associated genes in 
E545K mutant cells and the MAPK cascade in H1047R 
mutant cells. These results suggest a model in which the 
hotspot mutations promote the activation of different 

(See figure on next page.)
Fig. 5 E545K mutant cells exhibit specific dependence on AREG, which is regulated by nearby accessibility peak/putative enhancer. (A) Genomic 
tracks showing the ATAC-seq data across the isogenic cell lines alongside key SNPs at the AREG gene locus. The red box highlights the differentially 
accessible region annotated to the AREG gene. The green bars designate GTEx AREG eQTLs. The gold bar designates a GWAS SNP associated 
with breast cancer. (B) Bar plot of AREG expression following CRISPR-mediated deletion of the putative AREG enhancer. (C) Bar plot of cell counts 
following CRISPR-mediated deletion of the putative AREG enhancer. Significance of B and C was calculated using an ANOVA with a post-hoc Šidák’s 
test. (D) Bar plot showing differences in survival/proliferation following inhibition of AREG expression using siRNA (Oligos on Table S6, expression 
of AREG shown in Fig. S6). Significance was calculated using an ANOVA with a post-hoc Tukey’s test. (E) Bar plots showing differences in survival/
proliferation following inhibition of AREG using a neutralizing antibody (R&D Systems, MAB262-SP). Significance was calculated using an ANOVA 
with a post-hoc Šidák’s test; * = p-value 0.05–0.0332, ** = p-value .0332–0.0021, *** = p-value 0.0021–0.0002, **** = p-value < 0.0002
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Fig. 5 (See legend on previous page.)
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biochemical pathways that in turn signal through dif-
ferent TF families. These TFs activate mutation-specific 
chromatin remodeling and expression of target genes 
(Fig.  6). Integration of these assays to create a uniquely 
tailored, focused CRISPR screen allowed us to iden-
tify AREG as an E545K-specific exploitable molecular 
difference in a highly efficient manner. This mutation-
preferential dependence on AREG suggests a positive 
feedback loop in which increased AREG expression fur-
ther promotes signaling through the E545K-mutant PI3K 
complex (Fig.  6). AREG has been previously and inde-
pendently established as a signaling molecule required 
for the growth of PIK3CA-mutant breast cancer cells 
[53]. Independent identification of this molecular target 
utilizing our approach demonstrates its immediate bio-
logical application. Furthermore, we were able to confirm 
translational applicability through retrospective analyses 
of publicly available patient data. While our experiments 
were performed in a single isogenic cell line model, these 
clinical findings suggest the applicability of our results to 
actual breast cancer patients. Taken together, this study 
provides a framework for the independent evaluation of 
oncogenic hotspot mutations from a functional genom-
ics perspective. This implies that in the era of patient-
specific treatment and pharmacogenomics, our process 

may allow for the discovery of new targets and improved 
personalized medicine with the potential for increased 
specificity and decreased toxicity.

Conclusions
This work highlights the utility of integrating multiomics 
data collected from an isogenic mutant model to better 
identify molecular targets for therapy. With the increased 
accessibility to genome editing technology and ser-
vices, our strategy can provide investigators with a clear 
method for studying specific mutants in other cancer cell 
line models. Our workflow was able to identify AREG as 
an E545K-preferential molecular target, which was con-
firmed through in vitro assays and retrospective analyses 
of patient data, highlighting the potential clinical utility 
of our work.

Materials and methods
Cell Culture
MCF-10A parental cell lines were purchased from Amer-
ican Type Culture Collection (ATCC). MCF-10A cell line 
knock-ins were generated as previously described [15]. 
All cell lines were grown in 5%  CO2 at 37  °C with 1% 
Penicillin/Streptomycin in respective media conditions. 
Parental MCF-10A cell lines were cultured in DMEM/

Fig. 6 Model of Mutation-specific cell signaling. Pathway diagram depicting the effects of PIK3CA hotspot mutations on the signaling of breast cells 
in the MCF-10A model
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F12 (1:1) supplemented with 5% horse serum, 20  ng/ml 
epidermal growth factor (EGF), 10 µg/ml insulin (Roche), 
0.5 µg/mL hydrocortisone (Sigma), and 100 ng/ml chol-
era toxin (Sigma). Knock-in cell lines were maintained in 
MCF-10A media in the absence of EGF. For all sequenc-
ing assays, cells were transferred to assay media 24  h 
prior to sample collection. Assay media contains phe-
nol red-free DMEM/F12 (1:1) supplemented with 1% 
charcoal–dextran stripped FBS (Fisher), 0.2  ng/ml EGF, 
10 µg/ml insulin, 0.5 µg/mL hydrocortisone, and 100 ng/ml 
cholera toxin.

RNA‑Seq
RNA was isolated and prepared using the Qiagen RNeasy 
kit. Libraries were prepared by the Vanderbilt Technolo-
gies for Advanced Genomics (VANTAGE) Core using 
the Illumina Ribo-Zero Plus rRNA Depletion Kit. Each 
library was sequenced on an Illumina NovaSeq, PE150, 
at a requested depth of 50 million reads. All code and 
the specific parameters used in all data analyses can be 
found at: (https:// github. com/ adamx miran da/ PIK3CA). All 
sequencing library reads were trimmed of adapters and 
assessed for quality using the Trim Galore! (version 0.4.0) 
Wrapper of Cutadapt and FastQC[54, 55]. Trimmed 
reads were mapped to the human genome assembly hg38 
using the Spliced Transcripts Alignment to a Reference 
(STAR) aligner (version 2.5.4b) [56]. Mapped reads were 
sorted and filtered for a mapping quality score over 30 
using the SAMtools package (version 1.5) [57]. Reads 
were counted to gene transcripts using featureCounts 
(version 2.0.0) to version 32 of the GENCODE transcripts 
[58, 59]. A summary of the sequencing preprocessing can 
be found in Table S7. The degree to which gene expres-
sion could be affected by the genetic modification pro-
cess was also evaluated by comparing the correlation of 
gene expression in each of our cell lines to RNA-seq data 
of the TWT MCF-10A cell line from Dalton et al. 2019 
[60]. This cell line underwent the same genetic modifi-
cation process, but a WT clone was selected. Clustering 
of these samples showed the targeted WT (TWT) sam-
ples cluster between the WT and E545K cells. This sug-
gests that although there are some differences in gene 
expression introduced by the modification process, that 
these do not completely explain the observed differences 
between the lines in our model (Fig. S9). This aligns with 
previous work from our lab that showed limited pheno-
typic changes in targeted WT controls using this method 
of genomic modification[61]. Batch correction for this 
analysis was performed using the limma package (ver-
sion 3.50.3). Differential gene expression was identified 
between conditions using the DESeq2 package [23]. Path-
way analysis was performed using the fgsea package on 
the Hallmark gene set from MsigDB [24, 62].

ATAC‑seq
Nuclei were isolated and ATAC-seq libraries were pre-
pared using previously published methods [17, 63]. 
Libraries were sequenced by the VANTAGE Core on 
an Illumina NovaSeq PE150, at a requested depth of 50 
million reads. Reads from the ATAC-seq libraries were 
trimmed using the same process described in the RNA-
seq section. All code and specific parameters used in all 
data analyses can be found at: (https:// github. com/ adamx 
miran da/ PIK3CA). Trimmed reads were mapped to the 
human genome assembly hg38 using the BBTools (ver-
sion 38.69) package and Burrows-Wheeler Aligner (ver-
sion 0.7.17) [20, 64]. Quality filtering was performed on 
the mapped reads using SAMtools [57]. A summary of 
the sequencing preprocessing can be found in Table S7. 
Peaks of accessibility were called using Genrich (version 
0.6.1) and differential accessibility was determined using 
DESeq2 (version 1.34.0) [23]. Accessible regions were 
clustered using k-means clustering. Gene annotation and 
pathway enrichment was performed using GREAT (ver-
sion 4.0.4) [33, 34]. The gene annotation parameters used 
for GREAT were the default parameters of 5 kb upstream 
of the transcriptional start site (TSS), 1  kb downstream 
of the TSS, or up to 1000 kb in either direction for distal 
regions. Pathway enrichment was performed on uniquely 
annotated genes using the Enrichr web browser tool and 
the PANTHER database [35–38]. Motif enrichment and 
transcription factor (TF) footprinting were performed 
using HOMER (version 4.10) and TOBIAS (version 
0.13.3), respectively, to identify TF potentially binding to 
identified accessible peak clusters [18, 27].

CRISPR KO Screen
A modified CRISPR screen was performed with a select 
cohort of gene targets selected based on two criteria: 1. 
genes exhibited significantly increased RNA expression 
(log2 fold change greater than 1.5 and p-adjusted value 
less than 0.05) specifically in one of the PIK3CA-mutant 
cell lines compared to wild type, and 2. genes were anno-
tated to regions that demonstrated significantly increased 
accessibility in either mutant cell line. Differential acces-
sibility was assessed using DESeq2 and nearest neigh-
bor annotation for these regions was performed using 
ChIPseeker (version 1.30.3) with the default annotation 
conditions of ± 3 kb from the TSS [23, 65]. Based on this 
selection criteria, 312 genes were selected, for which 280 
had guides available in the Brunello whole genome single 
guide RNA (sgRNA) library. The Brunello whole genome 
sgRNA library was modified for these 280 genes and pre-
pared by the Vanderbilt Functional Genomics core in the 
lentiCRISPRv2 plasmid background (Full list of guides 
Table S3) [20, 66].

https://github.com/adamxmiranda/PIK3CA
https://github.com/adamxmiranda/PIK3CA
https://github.com/adamxmiranda/PIK3CA
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MCF-10A cells were cultured in the maintenance 
media conditions at a density of 500,000 cells/well in a 
6-well plate. 24 h after seeding, cells were infected with 
viral supernatant in maintenance media containing 5 μg/mL 
polybrene. 24 h post-infection cells were placed in selec-
tion media containing 1 μg/mL of puromycin and main-
tained for two weeks. Following two weeks of selection, 
libraries were prepared and sequenced following the 
protocol described in Sanjana et  al. [66]. Libraries were 
sequenced by the VANTAGE core and analysis was per-
formed using the maximum likelihood estimation (MLE) 
algorithm within the MAGeCK software package(version 
0.5.9.5) [42, 67].

Deletion of putative AREG Enhancer
Two sgRNAs were designed targeting the locus, 
chr4:74,435,384–74,435,596, which is annotated to the 
AREG gene as well as nearby AREG eQTLs identified 
from the GTEx Portal [68–70] (Table  S5). The guide 
RNAs were purchased as sgRNAs from IDT with custom 
targeting sequences (full guide sequences in Table  S6). 
Cells were plated in respective maintenance media con-
ditions at a density of 50,000 cells/well in a 12-well plate. 
Transfection mixtures were prepared and added to each 
of the cell lines according to the guidelines described in 
the Lipofectamine CRISPRMAX Transfection Reagent 
kit (Invitrogen, CMAX00001) using the provided rea-
gents and the Alt-R S.p. HiFi Cas9 Nuclease V3 (IDT, 
1081060) in Opti-MEM Reduced Serum Media (Ther-
moFisher, 31985062). Separate mixtures were prepared 
containing either a 1:1 mixture of the designed AREG 
enhancer flanking guides or a control mixture of 
Alt-R® CRISPR-Cas9 Negative Control crRNA #1 (IDT, 
1072544) duplexed to Alt-R® CRISPR-Cas9 tracrRNA 
(IDT, 1072532). DNA and RNA were collected from 
separate experimental replicates 24  h after transfection 
(at least 4 technical replicates were prepared for each cell 
line in each treatment condition). Cell counts and viabil-
ity were measured 72  h following transfection using a 
Vi-CELL BLU cell viability analyzer (Beckman Coulter).

DNA was collected using the Wizard SV 96 Genomic 
DNA Purification System (Promega, A2370). PCR was per-
formed using Phusion High-Fidelity PCR Master Mix (NEB, 
M0531) and the enhancer deletion validation primer set 
(Table S6). PCR mix and thermocycler conditions were set 
according to the Phusion Master Mix protocol provided by 
NEB. PCR products were measured and visualized using a 
D5000 ScreenTape System (Agilent, 5067) (Fig. S10).

RNA was isolated from cells using the RNeasy Plus 
Mini Kit (Qiagen, 74,134). RNA was converted to cDNA 
using the iScript cDNA Synthesis Kit (Bio-rad, 1708890). 
qPCR was performed using the AREG and ACTB qPCR 
primer sets (Table  S6) for each sample with the SYBR 

Green PCR Master Mix (Applied Biosystems, 4309155). 
Expression of AREG was calculated relative to the 
expression of housekeeping gene ACTB.

Anti‑AREG antibody assay
Cells were plated in their respective maintenance media 
conditions at a density of 50,000 cells/well in 12-well plates. 
24 h following seeding, cells were treated with 1, 3, or 5 µg 
of AREG neutralizing antibody (R&D Systems, MAB262-
SP) or an equivalent volume of PBS. This experiment was 
performed with three replicates for each cell line and each 
treatment condition. Cells were counted and viability was 
measured 72 h following treatment using a Vi-CELL BLU 
cell viability analyzer (Beckman Coulter).

siRNA assay
Cells were plated in their respective maintenance media at 
a density of 50,000 cells/well in a 12-well plate. 24 h follow-
ing seeding, cells were treated with three different commer-
cially validated AREG targeting siRNA (Ambion, see oligo 
sequences on Table  S6), a negative control siRNA (Invit-
rogen, 4390843), or a null transfection condition using the 
Lipofectamine RNAiMAX Transfection Reagent (Invitro-
gen, 13778100) at a concentration of 10  pmol siRNA per 
well. 24 h post-transfection, RNA was prepared from cells 
using the Qiagen RNeasy kit. Four replicates were prepared 
from each cell line and each treatment condition. RNA was 
converted to cDNA using the iScript cDNA Synthesis Kit 
(Bio-rad, 1708890). qPCR was performed using the AREG 
and ACTB qPCR primer sets (Table  S6) for each sample 
with the SYBR Green PCR Master Mix (Applied Biosys-
tems, 4309155). Expression of AREG was calculated rela-
tive to the expression of housekeeping gene ACTB.

To assess the impact on survival and proliferation, cells 
were plated in their respective maintenance media at a 
density of 30,000 cells/well in a 24-well plate. Cells were 
treated with one of three different commercially validated 
AREG targeting siRNA (Ambion, see oligo sequences 
on Table  S6) or a negative control siRNA (Invitrogen, 
4390843) using the Lipofectamine RNAiMAX Transfec-
tion Reagent (Invitrogen, 13778100) at a concentration 
of 5 pmol siRNA per well. Cell counts and viability were 
measured 24 h following treatment using a Vi-CELL BLU 
cell viability analyzer (Beckman Coulter). This experi-
ment was performed with four replicates in each cell line 
and each treatment condition.

Visualization and figure creation
Images and figures were generated using ggplot2 (ver-
sion 3.4.1), plotgardener (1.4.1), deeptools (3.5.1), pheat-
map (1.0.12), and graphpad Prism (Version 10) [71–74]. 
Schematic images and flow chart were created using 
Biorender.com.
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