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Abstract
Background  Ruptured atherosclerotic plaques often precipitate severe ischemic events, such as stroke and 
myocardial infarction. Unraveling the intricate molecular mechanisms governing vascular smooth muscle cell (VSMC) 
behavior in plaque stabilization remains a formidable challenge.

Methods  In this study, we leveraged single-cell and transcriptomic datasets from atherosclerotic plaques retrieved 
from the gene expression omnibus (GEO) database. Employing a combination of single-cell population differential 
analysis, weighted gene co-expression network analysis (WGCNA), and transcriptome differential analysis techniques, 
we identified specific genes steering the transformation of VSMCs in atherosclerotic plaques. Diagnostic models were 
developed and validated through gene intersection, utilizing the least absolute shrinkage and selection operator 
(LASSO) and random forest (RF) methods. Nomograms for plaque assessment were constructed. Tissue localization 
and expression validation were performed on specimens from animal models, utilizing immunofluorescence 
co-localization, western blot, and reverse-transcription quantitative-polymerase chain reaction (RT-qPCR). Various 
online databases were harnessed to predict transcription factors (TFs) and their interacting compounds, with 
determination of the cell-specific localization of TF expression using single-cell data.

Results  Following rigorous quality control procedures, we obtained a total of 40,953 cells, with 6,261 
representing VSMCs. The VSMC population was subsequently clustered into 5 distinct subpopulations. Analyzing 
inter-subpopulation cellular communication, we focused on the SMC2 and SMC5 subpopulations. Single-cell 
subpopulation and WGCNA analyses revealed significant module enrichments, notably in collagen-containing 
extracellular matrix and cell-substrate junctions. Insulin-like growth factor binding protein 4 (IGFBP4), apolipoprotein 
E (APOE), and cathepsin C (CTSC) were identified as potential diagnostic markers for early and advanced plaques. 
Notably, gene expression pattern analysis suggested that IGFBP4 might serve as a protective gene, a hypothesis 
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Introduction
Atherosclerosis (AS), a leading pathological factor culmi-
nating in severe cardiovascular events such as stroke and 
myocardial infarction (MI), remains the primary global 
cause of mortality [1, 2]. Despite its gradual progression, 
the rupture of atherosclerotic plaques can result in sub-
stantial disability and fatalities [3]. Therefore, the stabil-
ity of plaques is intricately linked to the occurrence of 
acute ischemic events [4]. Unstable plaques, character-
ized by their thin fibrous cap and larger necrotic cores 
[5], exhibit heightened susceptibility to cardiovascular 
events. Strategies aimed at preventing plaque progression 
toward instability or reversing instability to stability hold 
profound implications.

VSMCs, situated in the middle layer of the vascular 
wall, play a pivotal role in maintaining vascular tone and 
regulating blood pressure primarily through contraction 
[6]. In response to pathological factors, VSMCs undergo 
processes such as proliferation, dedifferentiation, and 
migration, which significantly influence the onset, devel-
opment, and stability of plaques [7]. Phenotypic con-
version towards fibroblast-like smooth muscle cells is 
particularly favorable for plaque stabilization [8] and has 
been observed in mouse plaque fibrous caps and human 
coronary plaques [9]. Additionally, studies have reported 
a correlation between the amount of VSMCs in the 
fibrous cap, as major producers of extracellular matrix 
(ECM) proteins, and plaque stability [10, 11]. Hence, 
alterations in the biological behavior of smooth muscle 
cells are crucial for plaque stability. While current thera-
peutic strategies for atherosclerosis predominantly focus 
on reducing low-density lipoprotein cholesterol [12]. Tar-
geted gene therapy specific to VSMCs may represent a 
groundbreaking treatment approach.

Constrained by the limitations of RNA-seq in detect-
ing and explaining interactions within cell populations, 
single-cell genomics has emerged as a valuable tool for 
dissecting cell population heterogeneity and tissue cell 
types within atherosclerotic plaques [9, 13]. Our study, 
based on single-cell and transcriptomic data from human 
atherosclerotic plaques, identified subpopulations of 

fibroblast-like smooth muscle cells and their closely inter-
acting smooth muscle cell subpopulations. We delved 
into their biological functions, identified hub genes that 
may drive phenotypic transitions, and established a diag-
nostic assessment model. Among these genes, IGFBP4, 
distinguished as a protective gene in contrast to APOE 
and CTSC, displayed high expression levels in both nor-
mal and advanced plaques. Tissue-specific interventions 
hold significant promise. Building upon this, we further 
predicted TFs that could potentially bind to IGFBP4 
within smooth muscle cells. KLF15, recognized as a TF 
with relative specificity in smooth muscle cells, may 
interact with IGFBP4, potentially facilitating the pheno-
typic transition of smooth muscle cells into fibroblast-
like smooth muscle cells. This offers novel perspectives 
for atherosclerosis prevention and the enhancement of 
plaque stability.

Materials and methods
Datasets used in this study
The datasets (GSE159677 [14], GSE28829 [15], GSE43292 
[16], GSE100927 [17], and GSE20129 [18]) employed in 
this study were retrieved from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/) and are summarized in 
Table 1.

Single-cell data pre-processing
For the single-cell samples from GSE159677, we created 
a Seurat object using the “CreateSeuratObject” function 
within the Seurat R package (version 4.3.0.1) [19]. We 
retained cells that had more than 300 features and shared 
more than 3 genes. To assess mitochondrial genes, we 
utilized the “PercentageFeatureSet” function. Cells with 
less than 25% mitochondrial genes were included in the 
analysis.

Batch effects removal, dimensionality reduction, and 
single-cell data clustering
The data underwent normalization through the “Normal-
izeData” function. Subsequently, we selected the top 2000 
highly variable genes using the “FindVariableFeatures” 

validated through tissue localization and expression analysis. Finally, we predicted TFs capable of binding to IGFBP4, 
with Krüppel-like family 15 (KLF15) emerging as a prominent candidate showing relative specificity within smooth 
muscle cells. Predictions about compounds associated with affecting KLF15 expression were also made.

Conclusion  Our study established a plaque diagnostic and assessment model and analyzed the molecular 
interaction mechanisms of smooth muscle cells within plaques. Further analysis revealed that the transcription 
factor KLF15 may regulate the biological behaviors of smooth muscle cells through the KLF15/IGFBP4 axis, thereby 
influencing the stability of advanced plaques via modulation of the PI3K-AKT signaling pathway. This could potentially 
serve as a target for plaque stability assessment and therapy, thus driving advancements in the management and 
treatment of atherosclerotic plaques.
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function. Afterward, the data was scaled and subjected to 
principal component analysis (PCA). To eliminate batch 
effects, we employed the “harmony” package. Plaque cell 
clustering and VSMCs reclustering analysis were con-
ducted by utilizing the “FindNeighbors” and “FindClus-
ter” functions, with a resolution parameter set to 0.2. 
The t-Distributed Stochastic Neighborhood Embedding 
(t-SNE) was applied for data visualization following cell 
clustering. It’s worth noting that the “FindVariableFea-
tures,” “FindNeighbors,” and “FindCluster” functions are 
part of the Seurat package.

Cell type annotation and analysis of differentially 
expressed genes
To annotate cell types, we integrated known cell markers 
and referred to the “Cell Taxonomy” database (https://
ngdc.cncb.ac.cn/celltaxonomy/) [20]. We utilized the 
“FindAllMarkers” function with specified criteria (min.
pct = 0.25, logfc.threshold = 0.25, P < 0.05) to identify dif-
ferentially expressed genes (DEGs) for characterizing 
distinct cell subpopulations. Subsequently, we conducted 
a reclustering of smooth muscle cells and reannotated 
them into different subtypes based on smooth muscle cell 
markers and the “Cell Taxonomy” database.

Analysis of cell-to-cell interactions
To analyze cell-to-cell interactions, we utilized the “Cell-
Chat” R package (Version 1.6.1) [21]. We followed the 
official protocol for extracting subpopulations of smooth 
muscle cells, allowing us to successfully create and nor-
malize CellChat objects. The R package includes the 
“CellChatDB.human” databank, which we used to screen 
for receptor-ligand interactions. Subsequently, we quan-
tified and visually represented potential ligand-receptor 
interactions, including their numbers and strengths, 
between cells. This was achieved using functions such as 
“computeCommunProb,” “computeCommunProbPath-
way,” and “aggregatNet” from the CellChat R package.

Pseudotime trajectory analysis
For the analysis of pseudotime trajectories in a spe-
cific smooth muscle cell subpopulation, we employed 
the “Monocle2” R package (Version 2.26.0) [22, 23]. The 

construction of the pseudotime analysis object was car-
ried out using the “newCellDataSet” function. Default 
parameters of the “reduceDimension” function were used 
for dimension reduction. Subsequently, we conducted 
cell trajectory analysis, gene dynamic expression analysis, 
and visualization using functions such as “plot_cell_tra-
jectory” and “plot_genes_in_pseudotime.”

Identification of DEGs in GSE28829
To identify DEGs within the GSE28829 dataset, we 
employed the “limma” package in R software [24]. Our 
analysis focused on two distinct groups, namely, ‘Early 
Atherosclerotic Plaque’ and ‘Advanced Atherosclerotic 
Plaque’, based on the following criteria: |logFC| > 0.75 
and adjusted p-value < 0.05.

WGCNA of GSE28829
We applied WGCNA to explore co-expression mod-
ules and hub genes [25]. The parameters chosen were 
R2 = 0.85, and the soft-threshold β = 14. The adjacency 
matrix was subsequently transformed into a topologi-
cal overlap matrix (TOM). Modules were identified 
through hierarchical clustering with a minimum mod-
ule size of 30. The eigengene and module membership 
(MM) were utilized to discern critical modules linked to 
‘Early Atherosclerotic Plaque’ and ‘Advanced Atheroscle-
rotic Plaque.’ ME represented the first principal compo-
nent of the module and described its expression pattern, 
while MM indicated the relationship between genes and 
module eigengenes, reflecting the reliability of genes 
within modules. Functional enrichment analysis (Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways) was conducted for genes 
within key modules using the “clusterProfile” R package.

Enrichment-analysis
To better comprehend the molecular functionalities and 
pathway alterations within a specific subpopulation of 
smooth muscle cells, we conducted enrichment analysis 
based on DEGs (adjusted p-value < 0.05 and |logFC| > 
0.75). This analysis primarily utilized the “clusterProfiler” 
R package [26]. The enrichment analysis included GO, 

Table 1  Datasets information
GSE ID Platform Disease state1 Disease state2 Sample 

type
Purpose of 
dataset

Total

GSE159677 GPL18573 Calcified atherosclerotic core (AC) (n = 3) Proximal adjacent (PA) (n = 3) Plaque Training set 6
GSE28829 GPL570 Early atherosclerotic plaque (n = 13) Advanced atherosclerotic plaque (n = 16) Plaque Training set 29
GSE43292 GPL6244 Macroscopically intact tissue (stages I and 

II) (n = 32)
Atheroma plaque (stage IV and over of the 
Stary classfication) containing core and 
shoulders of the plaque (n = 32)

Plaque Testing set 64

GSE100927 GPL17077 Healthy control (n = 69) Atherosclerotic (n = 35) Plaque Testing set 104
GSE20129 GPL6104

GPL10558
Healthy control (n = 86) Atherosclerotic (n = 49) Blood Testing set 135
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KEGG (www.kegg.jp/kegg/kegg1.html), as well as gene 
set enrichment analysis (GSEA) [26–29].

Hub gene selection and diagnostic model construction
To identify potential hub genes for diagnostic purposes, 
we focused on the genes that overlapped between the 
sets of differentially expressed genes from single-cell 
and transcriptome analyses, along with those identified 
as core module genes using WGCNA. We employed 
the LASSO and RF algorithms for feature selection and 
model construction.

The LASSO and RF methods were applied to screen 
and prioritize candidate diagnostic genes from this inter-
section. LASSO is a powerful method for feature selec-
tion in high-dimensional data, while RF is well-suited for 
handling complex, non-linear relationships within the 
data.

Moreover, to assess the diagnostic efficacy of the devel-
oped model, we computed the Area Under the Curve 
(AUC) using the ‘rROC’ R package. The AUC is a robust 
metric for assessing the model’s ability to discriminate 
between different groups and is commonly used to mea-
sure diagnostic accuracy.

Construction of the rat carotid artery balloon injury model
Male Sprague-Dawley (SD) rats, with a weight range of 
400–500  g, were sourced from Guangdong Laidi Bio-
medical Research Institute Co., Ltd. (Guangzhou, China) 
and were housed in appropriate animal facilities. All ani-
mal maintenance and handling procedures adhered to 
ARRIVE guidelines (https://arriveguidelines.org) and the 
protocols and guidelines established by the Institutional 
Animal Care and Use Committee of the First Affiliated 
Hospital of Sun Yat-sen University.

To establish the carotid balloon injury models, the 
rats were anesthetized through intraperitoneal injection 
of ketamine(100 mg/kg) and xylazine (10 mg/kg) mixed 
dilution. Subsequently, a midline neck incision was made 
to expose the left external carotid artery. Using a 2-F Fog-
arty arterial balloon catheter, the catheter was introduced 
into the left common carotid artery through the external 
carotid artery. The balloon was inflated and withdrawn 
three times to induce vascular injury. Following the 
removal of the catheter from the external carotid artery, 
the incision was sutured and closed.

After 14 days post-carotid artery injury, specimens 
were collected to represent the early-stage injury model. 
Specimens collected at 28 days post-injury were desig-
nated as the advanced-stage injury model. Samples from 
uninjured subjects were included as the healthy control 
group. The precise categorization of samples required 
microscopic observation of endothelial proliferation. 
This rat carotid artery balloon injury model serves as a 

valuable tool for studying vascular injuries and repair 
processes.

Hematoxylin–eosin (H&E) staining
Frozen sections of rat carotid artery tissue were taken 
out from − 20℃ refrigerator and restored to room tem-
perature, fixed with tissue fixative and then stained with 
hematoxylin stain for 5 min, differentiated with differen-
tiation solution, returned to blue and then stained with 
eosin stain for 5 min, and sealed with neutral gum. The 
slices were examined microscopically and the images 
were collected and analyzed.

Immunofluorescence staining
Immunofluorescence staining was employed to visual-
ize the expression of Igfbp4 and Tagln in frozen sections 
of rat carotid artery tissue. Primary antibodies used 
included a rabbit polyclonal antibody against Igfbp4 (1:20 
Cat No: 18500-1-AP, Proteintech) and a mouse mono-
clonal antibody against Tagln (1:500 Cat No: 60213-1-Ig, 
Proteintech). The staining procedure involved the fol-
lowing steps: Sections were permeabilized using Triton 
X-100 (0.1%) for 30 min. Subsequent to permeabilization, 
sections were washed with 1X PBST and blocked with 5% 
Fetal Bovine Serum for 1 h. Primary antibodies were then 
added to the blocking solution, and sections were incu-
bated overnight at 4 °C on an orbital shaker. The following 
day, after three washes with PBS, sections were incubated 
in a blocking solution containing the secondary antibod-
ies [CoraLite488-conjugated Goat Anti-Rabbit IgG(H + L) 
(1:200 Cat No: SA00013-2; Proteintech) and CoraLite594 
– conjugated Goat Anti-Mouse IgG(H + L) (1:200 Cat No: 
SA00013-3; Proteintech)] for 1  h at room temperature. 
After three final washes with PBS, DAPI was used to stain 
the nuclei for 10 min. Finally, an anti-fluorescence atten-
uation sealant (MIKX, DB255, Shenzhen, China) was 
applied to a glass slide, and a cover glass slip was placed 
over the specimen. The stained sections were examined 
using an Olympus BX63 microscope.

RT-qPCR
In this study, we conducted RT-qPCR to measure the 
expression levels of target genes in carotid arterial speci-
mens. Total RNA was extracted from the carotid arterial 
specimens using the AG RNAex Pro Reagent (Cat No: 
AG21102; Accurate Biology). The RNA concentration 
was determined utilizing a Nanodrop 2000 spectropho-
tometer. RNA was reverse transcribed into cDNA using 
the Evo M-MLV Mix Kit (Cat No: AG11728; Accurate 
Biology), following the manufacturer’s instructions. 
qPCR was performed on a LightCycler 480 (Roche, Basel, 
Switzerland) instrument, utilizing the SYBR Green Pre-
mix Pro Taq HS qPCR Kit (Cat No: AG11701; Accurate 
Biology). The relative expression of target genes was 

http://www.kegg.jp/kegg/kegg1.html
https://arriveguidelines.org
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estimated using the 2^(-ΔΔCt) method, with Gapdh as 
the reference control. The specific primer sequences used 
were as follows: Igfbp4 (F: ​C​T​C​C​G​C​T​C​T​G​T​G​C​T​C​T​G​T​
A​G; R: ​C​T​A​A​T​C​C​C​C​C​A​G​C​A​C​G​A​G​T​C) Gapdh (F: ​C​A​
A​T​C​C​T​G​G​G​C​G​G​T​A​C​A​A​C​T; R: ​G​A​T​G​G​T​G​A​T​G​G​G​T​
T​T​C​C​C​G​T).

Western blotting (WB)
In this study, we employed Western blotting to ana-
lyze protein expression in the tissue samples. Proteins 
were extracted from the tissue samples using a standard 
protein extraction protocol. SDS-PAGE: The extracted 
proteins were separated by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE), allowing 
for the separation of proteins based on their molecular 
weight. After separation, the proteins were transferred 
from the gel to a polyvinylidene fluoride (PVDF) mem-
brane. The PVDF membrane was blocked for 1 h at room 
temperature. It was incubated in Tris-buffered saline 
and Tween-20 (TBST) containing 5% nonfat milk pow-
der. The PVDF membrane was then incubated with pri-
mary antibodies against the target proteins. In this case, 
the primary antibodies used were Igfbp4 (1:1000 Cat No: 
18500-1-AP, Proteintech) and Alpha Tubulin (1:3000 Cat 
No. 11224-1-AP, Proteintech). After primary antibody 
incubation, the membrane was washed three times with 
TBST to remove any unbound antibodies and other resi-
dues. The membrane was subsequently incubated for 1 h 
at room temperature with a secondary antibody. In this 
case, a horseradish peroxidase (HRP)-conjugated goat 
anti-rabbit secondary antibody (1:5000 Cat No: SA00001-
2, Proteintech) was used. Immunoreactivity was detected 
employing an enhanced chemiluminescence (ECL) meth-
odology, which allows the visualization of specific pro-
teins based on the binding of HRP to its substrate. The 
Western blot images were captured using an automated 
digital gel image analysis system.

Prediction of TFs and compounds
In this study, we aimed to predict TFs associated with 
IGFBP4 and compounds interacting with KLF15. We 
employed the UCSC Genome Browser, accessible at 
https://genome.ucsc.edu/, in conjunction with the JAS-
PAR database [30, 31]. This approach allowed us to pre-
dict potential TFs that may interact with IGFBP4. By 
analyzing the genomic data and binding sites available in 
the JASPAR database, we identified candidate TFs that 
may regulate IGFBP4 expression.

For the prediction of compounds interacting with 
KLF15, we employed NetworkAnalyst 3.0 [32]. Networ-
kAnalyst 3.0 is a powerful visual analytics tool designed 
for network-based analysis. It enabled us to construct 
and explore networks representing interactions between 
KLF15 and various compounds.

Statistical analysis
R software (version 4.2.2) and RStudio (version 
2022.07.1 + 554) were used for data analysis and visualiza-
tion. For comparing two groups, statistical comparisons 
were made using two-tailed Student’s t-test. The multiple 
comparisons were assessed by one-way analysis of vari-
ance (ANOVA) with Tukey’s test using GraphPad Prism 
9.0 (California, USA). The p value < 0.05 was considered 
statistically.

Results
Quality control of single-cell data, dimensionality 
reduction, clustering, and cell type identification
Figure  1 provides an overview of the workflow for 
this study (Fig.  1). In the case of the single-cell dataset 
GSE159677, the first step involved quality control mea-
sures. We excluded specific cells and managed the pro-
portion of mitochondrial genes to ensure the quality 
of the cell samples used in this study (Fig.  2A). Follow-
ing quality control, a total of 40,953 cells were retained. 
Through cell clustering and annotation, we identified ten 
distinct cellular subgroups, including T cells, smooth 
muscle cells, endothelial cells, macrophages, monocytes, 
fibroblasts, B cells, plasma cells, plasmacytoid dendritic 
cells, and mast cells (Fig. 2B-C). Figure 2D illustrates the 
important marker genes associated with each cell type 
(Fig. 2D). Figure 2E demonstrates the proportional distri-
bution of each cell type in two different samples (Fig. 2E).

Identification of smooth muscle cell subgroups, analysis 
of cell-to-cell interactions within these subgroups and 
enrichment analysis
The biological behavior of smooth muscle cells within 
atherosclerotic plaques is closely associated with the sta-
bility of the plaques. Therefore, we extracted 6261 smooth 
muscle cells from the dataset and performed a re-cluster-
ing to categorize them. Additionally, we conducted cellu-
lar communication analysis among subgroups of smooth 
muscle cells. SMC2 cluster displays significant heteroge-
neity among smooth muscle cells, characterized by high 
expression of fibroblast typical markers LUM and DCN, 
we refer to this as fibroblast-like smooth muscle cells 
(Fig. 3A and B). To identify the initiating genetic factors in 
the transition toward fibroblast-like smooth muscle cells, 
we conducted an analysis of cell-cell interactions within 
the subgroups. We discovered that SMC2 and SMC5 may 
interact in the COLLAGEN and FN1 pathways (pro > 0.2, 
p-value < 0.05). Figure 3C shows the number and interac-
tion weight of COLLAGEN signaling pathway (Fig. 3C). 
Figure  3D shows the number and interaction weight of 
FN1 signaling pathway (Fig. 3D). Figure 3E and F shows 
the role of SMC2 and SMC5 in the COLLAGEN and FN1 
signaling pathway (Fig.  3E and F). In the COLLAGEN 
signaling pathway, the most significant receptor-ligand 

https://genome.ucsc.edu/
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pair is COL6A2-(ITGA1 + ITGB1) (Fig.  3G); while in 
the FN1 signaling pathway, the most prominent contri-
bution comes from FN1-(ITGA8 + ITGB1) (Fig.  3H). To 
gain a better understanding of the potential mechanisms 
and pathways where interactions may occur between 
SMC2 and SMC5, we conducted enrichment analysis 
(GO, KEGG, and GSEA) on differentially expressed genes 
in both groups of SMCs. The GO enrichment analysis 
results indicate that biological processes (BP) are mainly 
associated with positive regulation of cell adhesion, 
muscle contraction and muscle system process. Cellular 
components (CC) are primarily related to cell-substrate 

junction, focal adhesion and collagen-containing extra-
cellular matrix. Molecular functions (MF) are mainly 
associated with extracellular matrix structural constitu-
ent, actin binding and integrin binding. KEGG pathway 
enrichment reveals significant associations with vascular 
smooth muscle contraction, focal adhesion, and regu-
lation of actin cytoskeleton pathways (Fig.  3I). GSEA 
enrichment analysis reveals significant associations with 
cell junction organization, matrisome, cell-cell commu-
nication, vascular smooth muscle contraction, cytokine 
signaling in immune system. This comprehensive analy-
sis offers valuable insights into the potential mechanisms 

Fig. 1  - Flowchart for the present research
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Fig. 2  Data quality control and cell type identification. A Adjusting the mitochondrial ratio to ensure data quality. B Identifying 10 cell subpopulations, 
including T cell, smooth muscle cell, endothelial cell, macrophage, monocyte, fibroblast, B cell, plasma cell, plasmacytoid dendritic cell, mast cell. C Cell 
distribution within the samples. D Violin plot displaying the marker genes for each cell subgroup. E Displaying the proportions of each cell subgroup in 
two sample types
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Fig. 3 (See legend on next page.)
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underpinning the interactions between SMC2 and 
SMC5, shedding light on their roles in the context of ath-
erosclerotic plaques.

The comprehensive analysis of GSE28829
To comprehensively elucidate the mechanisms under-
lying plaque stability from multiple perspectives, we 
conducted both WGCNA and differential expression 
analysis at the transcriptome level using the GSE28829 
dataset. This approach, in conjunction with our single-
cell analysis, allowed us to pinpoint the key driver genes 
more accurately.

After a rigorous data preprocessing step, we identified 
and removed an outlier sample. We then calculated the 
mean expression levels of the top 5000 genes. The power 
parameter was carefully optimized using the “pickSoft-
Threshold” function from the “WGCNA” package. A 
power value of β = 14 (corresponding to a scale-free R^2 
of 0.9) was chosen as the soft threshold, facilitating the 
construction of a scale-free network (Fig. 4A).

By employing a combination of average hierarchi-
cal clustering and dynamic tree clipping, we identified 
a total of 10 modules (Fig. 4B). To uncover the modules 
with clinical significance, we examined their associa-
tions with disease states. Among these 10 modules, the 
turquoise module exhibited the strongest correlation 
with advanced plaque (correlation coefficient = 0.81 and 
p-value = 3e-07) (Fig.  4C). As a result, we focused our 
further analysis on the turquoise module, which includes 
633 key genes (Fig. 4D).

In-depth analysis of the genes within the turquoise 
module involved GO and KEGG enrichment analysis. 
The findings revealed that in terms of BP, this module 
is primarily associated with the regulation of peptidase 
activity, the cytokine-mediated signaling pathway, and 
the regulation of cell-cell adhesion. Regarding CC, the 
key associations are with cell-substrate junctions, focal 
adhesions, and collagen-containing extracellular matri-
ces. MF are predominantly linked to extracellular matrix 
structural constituents and actin binding. KEGG enrich-
ment analysis uncovered significant links with the lyso-
some, phagosome, and cell adhesion molecules pathways 
(Fig. 4E).

Furthermore, we conducted differential analysis once 
more on GSE28829, identifying 512 significantly dif-
ferentially expressed genes (|logFC| > 0.75, adjusted 
p-value < 0.05). These genes were then intersected with 

those identified in the single-cell analysis and the hub 
genes from the WGCNA, ultimately yielding 11 hub 
genes (Fig. 4F). The heatmap displays these 11 intersect-
ing genes (Fig.  5A), and the volcano plot illustrates the 
significantly differentially expressed genes resulting from 
the differential analysis (Fig. 5B).

Further screening of hub genes using RF and LASSO 
algorithms
To identify potential biomarkers for distinguishing 
advanced plaques, we employed two distinct machine 
learning algorithms. First, utilizing the LASSO regres-
sion algorithm, we refined the list of hub genes from 11 
to 3 (Fig. 5C and D). Subsequently, we implemented the 
RF algorithm, which demonstrated the lowest error rate 
when the gene set was further narrowed down to 5, based 
on their importance (Fig. 5E and G).

The hub genes that intersected in both the LASSO and 
RF algorithms, namely IGFBP4, CTSC, and APOE, were 
selected for further in-depth investigation. These genes 
hold the potential to serve as critical markers for the 
identification of advanced plaques.

Construction and validation of a diagnostic model for 
advanced plaque based on hub genes
Firstly, we utilized hub genes (IGFBP4, CTSC, APOE) 
to construct a diagnostic model, specifically a Nomo-
gram model, for advanced plaque (Fig.  6A). The cali-
bration curve was employed to evaluate the predictive 
performance of the Nomogram model in both the train-
ing (GSE28829) and testing (GSE43292) datasets. These 
two calibration curves revealed a small discrepancy 
between the actual risk and predicted risk for advanced 
plaque, indicating that the Nomogram model possesses 
high accuracy (Fig. 6B and C). Upon conducting Decision 
curve analysis (DCA), it became evident that the curve 
for the combination “IGFBP4 + APOE + CTSC” surpassed 
the curves representing “No intervention for all”, “Inter-
vention for all”, and all individual genes. This observation 
indicates that patients may derive significant benefits 
from the nomogram model within a high-risk threshold 
ranging from 0 to 1. Additionally, the clinical advantage 
offered by the nomogram model was notably superior 
when compared to the curve generated by individual 
genes (Fig. 6D and E). Subsequently, we employed ROC 
curves to evaluate the diagnostic performance of indi-
vidual genes and the model. In the training set, the AUC 

(See figure on previous page.)
Fig. 3  Cell communication and enrichment analysis among smooth muscle cell subtypes. A Identifying 5 smooth muscle cell subpopulations, including 
SMC1, SMC2, SMC3, SMC4, SMC5. B Violin plot showing the five smooth muscle cell marker genes. C-D The network diagram illustrating the interaction 
network between smooth muscle cell subtypes in the COLLAGEN and FN1 signaling pathway. E-F The cell communication heatmap displaying the role 
of SMC2 and SMC5 in the COLLAGEN and FN1 signaling pathway. G-H Relative contribution of each ligand–receptor pair as it affects the overall com-
munication network of the COLLAGEN and FN1 signaling pathway. I Bar chart displaying the results of GO and KEGG enrichment analysis for differentially 
expressed genes between SMC2 and SMC5. J Mountain plots presenting the results of GSEA analysis for differentially expressed genes between SMC2 
and SMC5
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values for IGFBP4, APOE, and CTSC were 0.909, 0.928, 
and 0.933, respectively, while for the model, it was 0.976. 
In the testing set, the AUC values for IGFBP4, APOE, and 
CTSC were 0.706, 0.735, and 0.835, respectively, and for 
the model, it was 0.831 (Fig. 6F - I). These results dem-
onstrate that both individual genes and the diagnostic 
model play a significant role in advanced plaques.

Validation of model genes and In-depth exploration of 
IGFBP4
Following the comprehensive analysis conducted earlier, 
three genes—IGFBP4, CTSC, and APOE—were identi-
fied. To validate these genes, we examined their expres-
sion in both the training dataset (GSE28829) and an 
external testing dataset (GSE43292). The results indi-
cated significant statistical differences in gene expression 

Fig. 4  WGCNA analysis of GSE28829 and functional enrichment analysis of key module. A Selection of Soft Threshold 14. B Genes with strong correla-
tions grouping into the same module, forming modules of different colors. The turquoise module representing a relatively large proportion. C Correlation 
analysis between modules and advanced atherosclerotic plaques. The turquoise module showing the highest correlation (cor = 0.81, p = 0.000003). D 
Scatter plot analysis of the turquoise module. E Presentation of the GO and KEGG enrichment results for the turquoise module. F UpSet plot showing 
the intersection of differentially expressed genes identified in single-cell analysis, genes in the turquoise module, and differentially expressed genes in 
transcriptome analysis. The intersection of these analyses including 11 genes
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Fig. 5 (See legend on next page.)
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between early and advanced plaques in both the training 
and testing sets (Fig. 7A-B).

Additionally, we validated these genes in samples from 
both healthy and atherosclerotic individuals. Intriguingly, 
only IGFBP4 displayed significant differences in expres-
sion, both in blood and surgically excised tissue samples, 
with high expression in healthy tissues (Fig. 7C-D). These 
findings suggest that IGFBP4 may have a protective role. 
It implies that IGFBP4 could not only protect blood ves-
sels from atherosclerosis but also potentially promote 
plaque stability, especially in the advanced stages of 
atherosclerosis.

Based on the training and testing datasets, the GSEA 
of IGFBP4 gene expression levels indicated its potential 
involvement in signaling pathways such as PI3K-AKT 
and Matrisome-associated pathways, among others 
(Fig. 7E-F).

Furthermore, we conducted a correlation analysis 
between IGFBP4 and marker genes for smooth mus-
cle cells (ACTA2, TAGLN) and fibroblasts (LUM). The 
analysis revealed a negative correlation between IGFBP4 
expression and smooth muscle cell marker genes, while 
demonstrating a positive correlation with fibroblast 
marker genes (Fig. 7G-I). In summary, IGFBP4 is of para-
mount importance and may play a role in driving smooth 
muscle cells toward a transition to fibroblast-like smooth 
muscle cells.

Analysis of gene dynamics in pseudotime
To gain deeper insights into the dynamic changes of 
IGFBP4 and cell marker genes in the SMC2 and SMC5 
subgroups, we performed pseudotime analysis. Our 
analysis revealed that, as time progressed, the SMC5 sub-
group showed a differentiation trend towards the SMC2 
subgroup (Fig. 8A-C).

During this differentiation process, the expression 
of IGFBP4 exhibited a gradual increase over time. This 
increase in IGFBP4 expression was accompanied by an 
elevation in the expression of fibroblast marker genes 
such as LUM and DCN, while there was a concurrent 
decrease in the expression of smooth muscle cell marker 
genes including ACTA2 and MYH11 (Fig. 8D).

These findings from the dynamic gene analysis within 
the SMC subgroups are consistent with our previous 
correlation analysis in the transcriptomic data. They fur-
ther emphasize the pivotal role of IGFBP4 in driving the 

transition of smooth muscle cells towards a fibroblast-
like phenotype.

Validation of IGFBP4 in animal models
Our integrated analysis of single-cell and transcrip-
tomic data in human carotid artery samples indicated a 
significant role for IGFBP4 in smooth muscle cells. To 
strengthen the credibility of these findings, we conducted 
in animal experiments using a rat carotid artery balloon 
injury model. We classified the model into three groups: 
normal, early mild hyperplasia, and advanced severe 
hyperplasia based on post-injury time and microscopic 
intimal hyperplasia thickness.

First, we performed immunofluorescence co-localiza-
tion of Igfbp4 and observed its presence in the hyper-
plastic intima, co-localizing with the smooth muscle 
cell-specific marker, Tagln (Fig. 9A-B).

Additionally, we extracted tissue RNA and protein 
from these three groups (Fig. 9C-E) and assessed Igfbp4 
expression. The results demonstrated that Igfbp4 expres-
sion was lower in the early mild intimal hyperplasia 
group compared to the normal group and higher in the 
advanced severe hyperplasia group compared to the 
normal group (Fig. 9F-H). These differences were statis-
tically significant. These experimental results align with 
our bioinformatics analysis and provide further support 
for the role of IGFBP4 in both normal and atherosclerotic 
populations.

Prediction of TFs and TF-binding compounds
Given the tissue and cell-specific expression patterns 
of TFs, we conducted predictions of potential TFs 
that might bind to IGFBP4. This analysis revealed sev-
eral candidates, including BNC2, EGR3, EGR4, KLF11, 
KLF15, KLF16, KLF9, MAFB, MAFF, MAZ, MEF2A, 
NRL, PATZ1, PLAGL2, PPARG, PRDM9, RARG, SP5, 
SPI1, SREBF1, STAT2, TFAP2A, TFAP2B, TFAP2C, 
THRA, WT1, ZFX, ZNF135, ZNF148, ZNF257, ZNF281, 
ZNF320, ZNF384, ZNF454, ZNF460, ZNF93 (Fig. 10A).

To identify TFs with differential expression and cell 
subtype specificity within vascular smooth muscle cells, 
we compared datasets containing samples from early 
and advanced plaques (GSE43292). Our analysis pin-
pointed KLF15 as the sole candidate meeting the criteria 
(Fig. 10B, C and E) and exhibiting a negative correlation 
with IGFBP4 (Fig. 10D).

(See figure on previous page.)
Fig. 5  Transcriptome differential expression analysis of GSE28829 and gene selection using machine learning algorithms. A Heatmap plot showing the 
11 intersecting genes in the transcriptome differential expression data. B The volcano plot displaying the differentially expressed genes from the tran-
scriptome differential expression analysis, with the 11 intersecting genes labeled. C-D Feature selecting through LASSO algorithm. E The influence of the 
number of decision trees on the error rate. The X-axis represents the number of decision trees, while the Y-axis represents the error rate. F Selecting an 
appropriate number of gene variables based on error rate. The x-axis represents the number of gene variables, and the y-axis represents the error rate. G 
The results of the Gini coefficient method in the RF classifier. The top 5 genes marking in red. H Venn diagram showing the shared genes between the 
LASSO and RF algorithms
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Fig. 6  Building and validating nomograms. A Construction of the nomogram model. The calibration curve of the nomogram in B training and C testing 
sets. DCA curve for assessing individual genes and diagnostic model in D training and E testing sets. ROC curve for individual genes in F training and G 
testing sets. ROC curve for model in H training and I testing sets
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Furthermore, we utilized the NetworkAnalyst data-
base to predict compounds that could potentially modu-
late KLF15. The results unveiled that several compounds 
had the capacity to influence KLF15 mRNA expres-
sion significantly. These compounds include 4-(5-benzo 
(1,3) dioxol-5-yl-4-pyridin-2-yl-1  H-imidazol-2-yl) 
benzamide, (6-(4-(2-piperidin-1-ylethoxy) phenyl))-
3-pyridin-4-ylpyrazolo(1,5-a) pyrimidine, Amiodarone, 

butyraldehyde, Carbamazepine, Cyclosporine, Diazinon, 
entinostat, (+)-JQ1 compound, Nickel, panobinostat, 
propionaldehyde, Tetrachlorodibenzodioxin, Thimerosal, 
and trichostatin A (Fig. 10F).

These findings provide valuable insights into potential 
TFs associated with IGFBP4 and compounds that may 
significantly impact KLF15 mRNA expression.

Fig. 7  Model genes expression validation; GSEA enrichment analysis, and correlation analysis based on IGFBP4. The relative expression levels of IGFBP4, 
CTSC and APOE in A training and B testing sets. The relative expression levels of IGFBP4, CTSC and APOE in C GSE100927 and D GSE20129. E UpSet plot 
showing shared pathways in the GSEA enrichment analysis of early and advanced plaques from GES28829 and GSE43292, which based on the expression 
of IGFBP4. F The shared GSEA enrichment pathways based on the expression of IGFBP4. The scatterplot displaying the correlation between IGFBP4 and 
GACTA2, HLUM, ITAGLN. (*p < 0.05; **p < 0.01; ***p < 0.001****; p < 0.0001; ns, no statistical significance)
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Discussion
The destabilization and rupture of atherosclerotic 
plaques stand out as primary contributors to cardio-
vascular ischemic events. Addressing these challenges 
by identifying, intervening, and reversing early-stage 
plaques, alongside stabilizing advanced unstable plaques, 
has become pivotal in contemporary atherosclerosis 
treatment. A significant portion of atherosclerotic plaque 
lesions comprises heterogeneous cells originating from 
smooth muscle [33]. The progression and stability of ath-
erosclerotic plaques are profoundly shaped by smooth 
muscle cells, which undergo phenotype transformations 

in response to relevant pathological pressures [34, 35]. 
Consequently, modifications in smooth muscle cell biol-
ogy play a pivotal role in the initiation and progression 
of atherosclerosis. Notably, fibroblast-like smooth muscle 
cells, characterized by their synthetic phenotype and pro-
duction of extracellular matrix, emerge as key contribu-
tors to the formation of fibrous caps, thereby promoting 
plaque stability [7]. Consequently, fostering the transfor-
mation of smooth muscle cells into fibroblast-like cells 
proves instrumental in fortifying plaque stability. This 
strategic shift in cell phenotype offers a promising avenue 

Fig. 8  Pseudotime analysis between SMC2 and SMC5 clusters. A Nine stages of SMC differentiation. B The SMC2 and SMC5 cells using for pseudo-time 
analysis. C The temporal changing in cell differentiation. D The dynamic expression of IGFBP4 and marker genes along pseudotime
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for therapeutic interventions aimed at enhancing the 
resilience and stability of atherosclerotic plaques.

The emergence of single-cell analysis techniques has 
empowered us with the capability to gain a nuanced 
understanding of the intricacies within plaques [36]. 
Our study embarked on a direct analysis of single-cell 
data sourced from human carotid artery samples, dis-
tinguishing itself from previous endeavors conducted at 

the animal level [37]. In the course of re-clustering the 
smooth muscle cell cluster, our scrutiny unearthed a 
remarkably heterogeneous subset of smooth muscle cells, 
coined SMC2. This subset displayed heightened expres-
sion levels of LUM and DCN, recognized markers for 
fibroblasts, indicative of a fibroblast-like smooth muscle 
cell subgroup, warranting our attention.

Fig. 9  Experimental validation of Igfbp4 expression. A Hematoxylin & eosin (HE) staining showing the macroscopic morphology and local magnification 
of vascular anatomical layers in rat carotid artery after balloon injury. (scale bar = 50 μm) B Localization of Igfbp4 expression in injury artery. HE Staining 
displaying the macroscopic and localized vascular landscapes of C normal artery, D early injured artery, and E advanced injured artery. (scale bar = 50 μm) 
F-G WB validating the protein expression levels of Igfbp4 in normal arteries, early injured arteries, and advanced injured arteries, using α-Tubulin as the 
housekeeping protein for normalization. H RT-qPCR experiment validating the mRNA expression levels of Igfbp4 in normal arteries, early injured arteries, 
and advanced injured arteries, using Gapdh as the housekeeping gene for normalization. (*p < 0.05; **p < 0.01; ***p < 0.001)
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Fig. 10  The prediction of TFs and targeted compound. A Network diagram of TFs binding with IGFBP4. B Box plot depicting the differences in TFs ex-
pression between early and advanced plaques. C The t-SNE plot displaying the expression level and localization of TFs in cell clusters. D The scatter plot 
showing the correlation between KLF15 and IGFBP4. E The enlarged t-SNE plot for KLF15. F The network diagram of compounds acting on KLF15. (*p < 0.05; 
**p < 0.01; ***p < 0.001)
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To unravel the determinants steering the transition of 
smooth muscle cells towards the SMC2 subgroup, we 
executed intercellular communication analysis among the 
smooth muscle cell subgroups. Our findings spotlighted 
that, among pathways with a probability of intercellular 
communication surpassing 0.2, only the COLLAGEN 
and FN1 signaling pathways exhibited significant inter-
actions between the SMC2 and SMC5 subgroups. Sub-
sequent differential expression analysis and functional 
enrichment analysis between these subgroups brought 
to light substantial associations with processes related 
to the extracellular matrix, cell adhesion, and vascular 
smooth muscle contraction, among other factors.

To bolster the credibility of our single-cell level enrich-
ment analysis, a parallel WGCNA at the transcrip-
tome level was executed using the GSE28829 dataset. 
This analytical effort aimed to pinpoint the turquoise 
module, most pertinent to advanced plaques. The 
enrichment analysis of this module underscored close 
associations with the extracellular matrix, cell adhesion, 
and additional factors. In tandem, a secondary analysis 
of GSE28829 utilizing differential expression analysis was 
performed. By intersecting the differentially expressed 
genes garnered from these three analytical approaches, 
we identified 11 candidate genes poised to potentially 
play a pivotal role in fortifying plaque stability.

In the current landscape, the widespread adoption 
of machine learning algorithms has become pivotal in 
selecting genes for the development of disease diagnosis 
and prognosis models [38]. Taking this into account, we 
advanced our investigation by subjecting the 11 identified 
candidate genes to screening using both the LASSO and 
RF algorithms. This comprehensive approach culminated 
in the construction of a diagnostic model meticulously 
designed to assess plaque conditions. External valida-
tion procedures substantiated the superior diagnostic 
performance of both individual genes and the composite 
model, prominently featuring IGFBP4/APOE/CTSC. This 
outcome profoundly underscores the indispensable role 
played by these three genes in the intricate landscape of 
atherosclerosis.

To further corroborate our findings, we meticulously 
validated the expression levels of the model genes within 
our dataset. Intriguingly, we noted higher expressions 
of these genes in advanced plaques compared to early 
plaques, irrespective of their stability. Notably, in both 
the normal and atherosclerosis groups (comprising both 
plaque tissue and blood samples), a distinctive pattern 
emerged. Specifically, IGFBP4 exhibited elevated expres-
sion levels in the normal group, in stark contrast to APOE 
and CTSC. This observation indicates a unique role for 
IGFBP4 in plaque dynamics.

Moreover, our correlation and pseudotemporal gene 
dynamics analyses yielded compelling insights. Changes 

in IGFBP4 expression were negatively correlated with 
smooth muscle cell-associated marker genes while 
positively correlated with fibroblast-associated marker 
genes. This intricate interplay suggests that the height-
ened expression of IGFBP4 in advanced lesions may act 
as a driving force in the conversion of smooth muscle 
cells into fibroblast-like smooth muscle cells, underscor-
ing its crucial role in the complex trajectory of plaque 
progression.

Consequently, we focused our study on IGFBP4. Given 
the high conservation of the human IGFBP4 gene with 
splice sites in the rat Igfbp4 gene [39], we conducted an 
investigation of Igfbp4 in a rat carotid artery balloon 
injury model. The results demonstrated its co-localiza-
tion with smooth muscle cells within proliferative inti-
mal tissue. Furthermore, the expression trend of IGFBP4 
in rat arterial tissue, ranging from normal to early and 
advanced intimal proliferation, was consistent with the 
results of our bioinformatics analysis.

IGFBP4, belonging to the insulin-like growth factor-
binding protein family, primarily functions by inhibiting 
the action of IGF through the prevention of IGF bind-
ing to its receptor [40, 41]. Although studies focusing on 
IGFBP4 in the field of atherosclerosis research have been 
relatively scarce, there have been reports of IGFBP4 lev-
els affecting various biological behaviors, particularly in 
cancer-related diseases. For instance, changes in IGFBP4 
levels have been linked to tumor cell proliferation in 
lung cancer and have shown associations with prognosis 
[42–45]. Notably, IGFBP4 exhibits widespread expression 
in both blood and tissues, and interventions targeting 
IGFBP4 may lead to unforeseen side effects.

TFs play a pivotal role in finely regulating transcrip-
tional processes within specific cell types, orchestrating 
them spatially and temporally to induce or maintain spe-
cific cellular fates. This process profoundly influences the 
phenotypic characteristics of organisms [46]. Our pre-
dictions regarding TFs for IGFBP4 revealed that KLF15 
has specificity for subtypes of smooth muscle cells and 
possesses the potential to bind to IGFBP4. Among the 
Krüppel-like family of TFs, which are central to the regu-
lation of the cardiovascular system [47], KLF15 has been 
identified as a key regulator of vascular smooth muscle 
cells [48, 49]. Consequently, the regulation of VSMCs by 
KLF15/IGFBP4 may hold significant importance in pro-
moting plaque stability. Furthermore, we have identified 
compounds predicted to interact with KLF15, which may 
serve as candidates for drugs aimed at enhancing plaque 
stability.

In summary, we propose the following hypotheti-
cal scenario: In the vascular system of healthy individu-
als, relatively high levels of IGFBP4 help maintain the 
normal physiological state of vascular smooth muscle 
cells. However, in the early stages of vascular pathology, 
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KLF15, acting as a regulator of smooth muscle cells, 
begins to upregulate in response to pathological stress 
and negatively regulates IGFBP4. As vascular pathology 
progresses, with increasing stress and the establishment 
of a complex microenvironment within the plaque, the 
finely-tuned system dominated by KLF15 begins to break 
down, diminishing its negative regulatory effect. This 
leads to an increase in IGFBP4 expression, promoting the 
transformation of these cells into fibroblast-like smooth 
muscle cells. These cells secrete higher levels of collagen 
and extracellular matrix components to maintain plaque 
stability.

Nevertheless, we acknowledge several limitations in 
our study. First, our research is primarily based on the 
analysis of publicly available data. Due to the limited 
number of samples and the absence of survival informa-
tion, our study cannot be directly associated with clinical 
prognosis. Second, the absence of experimental animals 
with specific vascular smooth muscle cell knockout 
capabilities to validate the results of our bioinformatics 
analysis and elucidate specific molecular mechanisms 
represents a limitation.

Conclusion
Our study not only utilized multi-omics analysis and 
machine learning algorithms to establish a plaque diag-
nostic and assessment model based on smooth muscle 
cell subpopulations but also delved into the molecular 
interaction mechanisms of smooth muscle cells within 
atherosclerotic plaques. This provides a fundamental 
understanding for innovative diagnostic and therapeu-
tic approaches. Further prediction analysis of smooth 
muscle cell-specific transcription factors revealed that 
the transcription factor KLF15 may regulate the PI3K-
AKT signaling pathway through the KLF15/IGFBP4 axis, 
modulating smooth muscle cells and ultimately affect-
ing the biological behaviors of smooth muscle cells, thus 
influencing the stability of advanced plaques. This emerg-
ing focus highlights its potential as a therapeutic target, 
driving advancements in the field and bringing us closer 
to more effective strategies for managing and treating 
atherosclerosis.
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