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Abstract 

Background  Current RNA-seq analysis software for RNA-seq data tends to use similar parameters across different 
species without considering species-specific differences. However, the suitability and accuracy of these tools may vary 
when analyzing data from different species, such as humans, animals, plants, fungi, and bacteria. For most labora‑
tory researchers lacking a background in information science, determining how to construct an analysis workflow 
that meets their specific needs from the array of complex analytical tools available poses a significant challenge.

Results  By utilizing RNA-seq data from plants, animals, and fungi, it was observed that different analytical tools dem‑
onstrate some variations in performance when applied to different species. A comprehensive experiment was con‑
ducted specifically for analyzing plant pathogenic fungal data, focusing on differential gene analysis as the ulti‑
mate goal. In this study, 288 pipelines using different tools were applied to analyze five fungal RNA-seq datasets, 
and the performance of their results was evaluated based on simulation. This led to the establishment of a relatively 
universal and superior fungal RNA-seq analysis pipeline that can serve as a reference, and certain standards for select‑
ing analysis tools were derived for reference. Additionally, we compared various tools for alternative splicing analysis. 
The results based on simulated data indicated that rMATS remained the optimal choice, although consideration could 
be given to supplementing with tools such as SpliceWiz.

Conclusion  The experimental results demonstrate that, in comparison to the default software parameter configu‑
rations, the analysis combination results after tuning can provide more accurate biological insights. It is beneficial 
to carefully select suitable analysis software based on the data, rather than indiscriminately choosing tools, in order 
to achieve high-quality analysis results more efficiently.
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Introduction
RNA sequencing (RNA-Seq) is a technique used to 
determine the presence and abundance of RNA tran-
scripts in specific biological samples at a particular 
time. It provides unprecedented detail about the RNA 
landscape [1], and comprehensive information about 
gene expression. This information also aids in under-
standing the regulatory networks, tissue specificity, and 
developmental patterns of genes involved in various 
biological processes. It enables the modeling and infer-
ence of signaling pathways to facilitate the biological 
applications [2]. Due to its wide applications in identi-
fying new genes or transcripts, mutations, gene editing, 
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and analyzing differential gene expression, RNA-Seq 
has gradually replaced microarrays as the primary 
method for transcriptome analysis [3–7].

Differential expression (DE) analysis is a primary 
objective of transcriptome analysis and involves several 
steps: trimming sequencing reads, alignment, quantifica-
tion, and DE analysis [8, 9]. The trimming step aims to 
remove adapter sequences and low-quality nucleotides to 
improve read mapping rates. During the alignment step, 
reads are considered aligned if they correspond to spe-
cific regions on the reference genome or transcriptome. 
Sometimes, reads cannot be uniquely mapped due to 
repetitive sequences shared by paralogous genes within 
domains [10]. Alignment tools for RNA-Seq typically 
include customizable thresholds to accommodate mis-
matches during alignment caused by sequencing errors 
or biological variations such as mutations [11]. Handling 
repetitively aligned or incompletely aligned reads is cru-
cial for enhancing the accuracy and reliability of analysis 
results.

The quantification step determines the number of 
reads mapped to each genomic region using annotation 
files that correspond to the reference genome. Depend-
ing on the biological sample and research objectives, 
suitable features from three levels—genes, transcripts, 
exons—can be selected for gaining count matrix. The DE 
analysis aims to provide more biological insights into the 
genetic mechanisms underlying phenotypic differences 
by identifying genes that exhibit differential expression 
patterns under different conditions, in conjunction with 
downstream analyses. Due to the differences in data dis-
tribution theories corresponding to analysis methods, the 
common theoretical distributions of RNA-seq reads are 
the Poisson distribution and the negative binomial distri-
bution. Modifying normalization parameters, hypothesis 
testing parameters, and fitting parameters in different DE 
methods are key considerations for users [12–15].

With the widespread application of RNA-seq, numer-
ous analysis tools have been developed [16]. However, 
they involve various programming languages and operat-
ing platforms, making it challenging for researchers with-
out relevant expertise [17]. Users also face the challenge 
of constructing a complete workflow in a specific analy-
sis order and selecting from a complex methodology [18, 
19]. The design of the analysis pipeline needs to consider 
the sequencing technology used in the project, sample 
types, focus of analysis, and availability of computational 
resources [20]. Different analysis methods have vary-
ing emphases and computational requirements, result-
ing in significant differences in accuracy, speed, and cost 
across various workflows [21]. Therefore, it is crucial to 
investigate how different steps affect the analysis results. 
Despite extensive research conducted by scholars so far 

on analyzing RNA-seq data for optimal methods, a con-
sensus has not yet been reached [16–18, 20–22].

Several studies have been performed to evaluate and 
compare the performance of different RNA-seq analysis 
tools [10, 20–24]. However, comprehensive and system-
atic analyses from different perspectives are still lacking 
because most workflow analyses only focus on several 
steps or primarily use human data [25–31]. The best-
performing workflow based on existing metrics may not 
ensure optimal performance across all datasets, this relies 
on extensive validation experiments using diverse data-
sets. However, although RNA-seq has generated a vast 
amount of experimental data due to its widespread use, a 
recent found that a mere 25% of articles outline all crucial 
computational procedures, with an even smaller fraction 
providing detailed parameter values necessary for achiev-
ing full reproducibility [19]. The lack of its complete 
announcement of analysis parameters of the whole work-
flow making their results unsuitable for validating perfor-
mance across different workflows [32]. Currently, there is 
still a lack of appropriate metrics to evaluate the perfor-
mance of various methods [33]. It’s is needed to compare 
these methods to achieve optimal accuracy within cost 
and performance constraints for RNA-seq processing.

Fungi play an important role in natural ecosystems by 
participating in ecological processes such as organic mat-
ter decomposition and cycling. However, fungi can also 
negatively affect the ecological and economic value of 
plants. Fungal diseases account for a significant propor-
tion of plant diseases, estimated at 70%-80%, adversely 
affecting agricultural and forestry crop yields and quality 
[34]. With the development of high-throughput sequenc-
ing technologies, RNA-seq has become a common 
method for researchers studying fungal diseases [35]. 
Transcriptome analysis identifies disease resistance genes 
[36] and related pathways [37], providing a foundation for 
resistant breeding [38–40]. Studying the mechanisms of 
interaction between fungi and plants enables the devel-
opment of more effective biological control strategies [41, 
42], while also reducing environmental pollution. Exist-
ing RNA-seq analysis software lacks species specificity 
because the statistical and analytical parameters used are 
typically consistent across different organisms, including 
humans, animals, plants, fungi, and bacteria. This may 
compromise the applicability and accuracy of analyses.

In consideration of this deficiencies for RNA-seq data 
analysis, our study addresses these limitations by investi-
gating the impacts of different parameters at each step of 
the analysis. According to the classification in the former 
reports [43, 44], it is understood that plant-pathogenic 
fungi mainly distribute across the phyla Ascomycota, 
Basidiomycota, Blastocladiomycota, Chytridiomycota, 
and Mucoromycota in the fungal evolutionary tree. The 
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three datasets we chosed (Magnaporthe oryzae, Colle-
totrichum gloeosporioides and Verticillium dahliae), all 
belong to the Pezizomycotina subphylum under the Asco-
mycota phylum (Supplementary Figs.  1 and 2). Another 
significant branch under the Ascomycota phylum in the 
fungal evolutionary tree, the Saccharomycotina sub-
phylum, lacks plant-pathogenic fungi and thus is not 
considered. In order to enhance the representativeness 
of plant-pathogenic fungi data in this study, we also 
used transcriptome data of Ustilago maydis and Rhizo-
pus stolonifer. They belong to the Ustilaginomycotina 
and Agaricomycotina + Wallemiomycotina branches, 
respectively, which constitute the second-largest group 
in the fungal evolutionary tree, Basidiomycota phylum 

(Supplementary Figs.  1 and 2). This ensures that this 
study encompasses the major species of plant-pathogenic 
fungi.

In this study, software selection was guided by two 
main principles: choosing tools widely used in transcrip-
tome analysis and considering researchers’ preferences 
for operational simplicity or feature richness during the 
analysis process. We compiled the citation counts of 
publications associated with tools across various stages, 
as documented in Google Scholar (due to May 4, 2024), 
to assess their prevalence and adoption in the field (Sup-
plementary Table 1). The analytical tools utilized in this 
study and the workflow derived from their combination 
are depicted in Fig.  1. The detailed description of the 

Fig. 1  RNA-seq analysis workflow. The different colored boxes represent distinct stages of analysis, with white boxes representing the software 
used in each stage. The arrows depict the combination relationships between different software
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criteria and reason used for tool selection can be found in 
the “Results” section. Moreover, we conducted additional 
validation using datasets from animal species (mice, Mus 
musculus) and plant species (poplar, Populus tomentosa) 
to validate our findings. Our study optimizes the analy-
sis process based on the results obtained for the analysis 
of differential gene expression in RNA-seq data. Through 
this investigation, we present a relatively user-friendly 
workflow for RNA-seq analysis, which can help individu-
als gain valuable insights into RNA-seq data analysis.

Results
Filtering and trimming
Commonly utilized tools for filtering and trimming 
stages include fastp [45], Trimmomatic [46], Cutadapt 
[47], and Trim_Galore [48]. Considering researchers’ ten-
dencies to favor either straightforward operation or fea-
ture-rich integrated tools during analysis,we utilized two 
commonly used tools for filtering and trimming, namely 
fastp [45] and Trim_Galore [48]. The former is advanta-
geous due to its rapid analysis and simplicity of opera-
tion, while the latter has become a preferred analysis tool 
for many researchers because it can generate quality con-
trol reports concurrently with filter and trimming pro-
cess. Trim_Galore integrates Cutadapt [47] and FastQC 
[49] for comprehensive quality control(QC) analysis in 
a single step, so we did not duplicate the comparison 
with Cutadapt. Despite Trimmomatic being the most 
cited QC software, its parameter setup is complex and it 
does not offer a speed advantage. Considering the foun-
dational nature of QC software usage in this study, we 
therefore did not select Trimmomatic [46]as a research 
tool.

To investigate the impact of trimming parameters on 
data quality, we compared the effects of these param-
eters on the proportions of Q20 and Q30 bases, as well 
as their influence on the alignment rate in subsequent 
alignment process. When setting the parameter for the 
number of bases to be trimmed, instead of directly speci-
fying numerical values as done previously, we chose two 
base positions, FOC and TES, for trimming based on the 
quality control report of the original data (refer to the 
Method section for details). The trimming parameters 
of each dataset are shown in Supplementary Table  2. 
Although Trim_Galore enhanced the quality of bases, it 
led to an unbalanced base distribution in the tail (Sup-
plementary Fig. 3). Despite making several attempts with 
different datasets and adjusting adapter parameters based 
on recommendations from the community, the problem 
persisted when using Trim_Galore.

In terms of filtering and trimming effects, fastp sig-
nificantly enhanced the quality of the processed data 
(Fig.  2A, Supplementary Table  3). Compared with the 

FOC treatment, the proportion of Q20 and Q30 bases 
after TES treatment was almost zero, while the base qual-
ity improvement after FOC treatment ranged from 1 to 
6%. In this study, the parameter values of FOC and TES 
differ by 1–5, but there is almost no difference in process-
ing results, indicating that excessive trimming did not 
substantially enhance the quality of sequencing data.

Thus, when dealing with these data, choosing FOC as 
the trimming parameter during the filtering and trim-
ming stage is a more advantageous optimal choice. In 
terms of processing speed (Fig.  3A, Supplementary 
Fig.  4), fastp demonstrated superior performance com-
pared to Trim_Galore. The computational efficiency 
of fastp is approximately 1.5 to 4 times faster than 
Trim_Galore, despite consuming 2–4 times more RAM 
(around 2G). This resource utilization remains within 
acceptable bounds for individual analytical users in aca-
demic research settings. In summary, fastp demonstrates 
greater efficiency and stability compared to Trim_Galore, 
establishing it as the recommended choice for this pro-
cessing step.

Alignment
Bowtie [50], Bowtie2 [51], TopHat [52], TopHat2 [53], 
HISAT [54], HISAT2 [55], STAR [56] are commonly 
used tools for alignment. Although Bowtie and Bowtie2 
have similar names, they are two different types of align-
ment tools. Bowtie2 is more suitable for aligning longer 
reads, aligning better with current sequencing technol-
ogy trends. Tophat and Tophat2 use Bowtie and Bowtie2 
as their alignment foundation, respectively. The HISAT 
series and Tophat series were developed by the same lab-
oratory. The authors recommend using the latest HISAT2 
to replace HISAT and Tophat2, and the Tophat series is 
no longer maintained. STAR is renowned for its efficient 
analysis capabilities and is widely used in transcriptome 
analysis. Based on these considerations, we selected 
HISAT2, STAR, and Bowtie2 as the alignment phase 
analysis tools in our study.

Given the variations in the efficacy of quality enhance-
ment during the trimming and filtering stage of sequenc-
ing data, a more in-depth investigation of the alignment 
rates associated with these processes is required. In the 
fungal dataset, when focusing solely on alignment rates, 
we found that three datasets (V. dahliae, M. oryzae and 
U. maydis) exhibited the highest performance under 
the FOC trimming treatment corresponding to HISAT2 
among the three states (Fig. 2B, Table 1, Supplementary 
Fig.  5A, 6A), while Bowtie2 and STAR method did not 
consistent with this pattern under the FOC treatment 
state (Fig.  2B, Supplementary Fig.  5B-C, Supplementary 
Fig. 6). When using Bowtie2, it was consistently observed 
that the TES treatment results in the highest alignment 
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rates across datasets, indicating that a greater degree of 
base trimming corresponds to an elevated alignment 
rate. Conversely, in the case of STAR, reduced base trim-
ming was associated with higher alignment rates, except 
for the C. gloeosporioides data set. However, from the 
perspective of the improvement in the read mapping rate, 
the conclusion of the mapping step was consistent with 
that of the previous trimming and filtering step, indicat-
ing that appropriate trimming is preferable.

To further validate our findings, experiments were 
carried out utilizing data from mice (M. musculus) and 
poplar (P. tomentosa) data. The results revealed that, 
in contrast to the fungal datasets, the transcriptome 
data of poplar exhibited a higher alignment rate with 
HISAT2 and Bowtie2 as the number of trimmed bases 

rose (Supplementary Fig. 7A-B). Additionally, when using 
STAR, the sequencing files under FOC treatment dem-
onstrated the highest alignment rate (Supplementary 
Fig. 7C), which differed from the fungal data. The analysis 
of the mice (M. musculus) data yielded outcomes akin to 
poplar when using Bowtie2, whereas the results obtained 
with HISAT2  and STAR were found to be analogous 
to certain fungal datasets (Supplementary Fig.  7D-F). 
This indicated that different alignment software indeed 
exhibits certain variations when handling data from dif-
ferent species. A detailed comparison of the read pairs 
and read alignment is presented in Supplementary Fig. 8 
and Supplementary Fig. 9. Remarkably, Bowtie2 consist-
ently exhibited the highest proportion of read pairs that 
were uniquely mapped, encompassing both those that 

Fig. 2  Comparison of analysis results of different software. A The histogram of Q20 and Q30 base content percentage of filter results obtained 
by using fastp software under three clipping parameters (raw, FOC, TES) using three fungal data, respectively. B The bar chart illustrates changes 
in alignment rates (V. dahliae data set). Bar length corresponds to the magnitude of change, with positive values indicating an increase and negative 
values indicating a decrease in alignment rates. The pink bars (TES-FOC) depict alignment rate changes between TES processing and the FOC 
processing states, while the blue bars (FOC-raw) depict changes between the FOC processing and raw processing states
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Fig. 3  Runtime, CPU and RAM occupancy of different tools. A Comparison between Trim_Galore and fastp. B Comparison between different 
aligners under the same running threads

Table 1  Summary of the alignment rate

HISAT2 Bowtie2 STAR​

M. oryzae raw FOC TES raw FOC TES raw FOC TES

MUC-1 87.54 89.44 88.65 83.98 86.71 87.09 94.04 92.45 91.41

MUC-2 88.95 91.04 90.38 84.7 87.91 87.55 94.5 93.59 92.74

MUC-3 88.41 90.32 89.72 84.59 87.14 87.5 94.36 93.13 92.34

MUT-1 87.8 92.24 91.94 84.61 86.97 87.3 93.88 94.85 94.4

MUT-2 85.98 89.55 88.92 83.57 86.34 86.71 93.09 92.72 91.86

MUT-3 86.31 89.91 89.33 83.75 86.51 86.86 93.18 92.95 92.15

C. gloeosporioides raw FOC TES raw FOC TES raw FOC TES

FZ-1 86.7 89.49 89.76 83.34 85.1 85.45 92.39 92.78 92.27

FZ-2 85.92 89.21 89.49 83.17 85.11 85.48 91.97 92.85 92.5

FZ-3 85.21 88.32 88.59 82.79 84.76 85.1 90.65 91.49 91.08

STJ16-1 85.66 87.87 88.16 79.37 80.92 81.35 90.7 91.33 91.2

STJ16-2 85.99 88.07 88.35 79.91 81.38 81.81 91.17 91.72 91.55

STJ16-3 85.47 87.76 88.06 79.38 81 81.44 90.65 91.27 91.11

V. dahliae raw FOC TES raw FOC TES raw FOC TES

CK_4d_1 93.3 94.14 94.07 89.07 89.97 90.17 95.48 92.8 92.28

CK_4d_2 93.53 94.38 94.31 89.19 90.11 90.31 95.53 92.94 92.43

CK_4d_3 93.53 94.39 94.33 89.18 90.1 90.3 95.48 92.79 92.27

ZT_4d_1 93.36 94.23 94.14 88.13 89.13 89.36 95.59 92.81 92.28

ZT_4d_2 93.3 94.13 94.04 87.93 88.94 89.17 95.45 93.06 92.6

ZT_4d_3 93.41 94.21 94.12 87.98 88.96 89.18 95.5 92.95 92.45

XS11_4day_1 80.85 89.87 89.88 78.38 85.92 86.03 85.42 85.83 85.57

XS11_4day_2 80.13 88.6 88.6 79.7 86.89 86.98 85.91 85.46 85.22

XS11_4day_3 76.28 83.84 83.89 79.87 86.48 86.58 86.65 87.34 87.08
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were uniquely mapped and unmapped. The other two 
software showed higher occupation of one pair unique 
mapped and corresponding pair unmapped. STAR exhib-
ited the highest proportion of unique mapping reads 
without errors, with the proportion of other categories 
being almost negligible. HISAT2 showed a lower propor-
tion of unique mapping without errors, whereas Bowtie2 
exhibited the lowest result. This detailed comparison has 

provided us with a clearer understanding of the analytical 
distinction among different alignment software.

Instances have arisen where the processing time of 
the same software, with an identical thread count of 32, 
varied by a factor of six, surpassing even the time taken 
even when the thread count was set to 8 or 16(Table 2). 
According to Table  2, HISAT2 demonstrated the 
quickest processing time in analyzing the raw fastq 
of V. dahliae dataset, completing the task in just 0.5 h. 

Table 3  Summary of the results of rMATS

M. oryzae SE RI A3SS A5SS MXE

raw FOC TES raw FOC TES raw FOC TES raw FOC TES raw FOC TES

Bowtie2 6 6 6 37 37 37 10 10 10 17 17 17 0 0 0

HISAT2 1582 1507 1483 38 39 39 23 21 21 30 30 30 213 190 187

STAR​ 1805 1643 1593 40 39 39 25 23 23 30 30 30 273 223 210

C. gloeosporioides SE RI A3SS A5SS MXE

raw FOC TES raw FOC TES raw FOC TES raw FOC TES raw FOC TES

Bowtie2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HISAT2 528 500 491 0 0 0 0 0 0 0 0 0 27 24 23

STAR​ 569 518 506 0 0 0 0 0 0 0 0 0 32 26 25

V. dahliae SE RI A3SS A5SS MXE

raw FOC TES raw FOC TES raw FOC TES raw FOC TES raw FOC TES

Bowtie2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HISAT2 1441 1396 1387 0 0 0 0 0 0 0 0 0 227 220 216

STAR​ 1455 1404 1394 0 0 0 0 0 0 0 0 0 235 225 221

Table 4  Summary of the results of splicewiz

M. oryzae SE RI A3SS A5SS MXE

raw FOC TES raw FOC TES raw FOC TES raw FOC TES raw FOC TES

HISAT2 1 1 1 717 616 591 2 2 2 4 3 3 0 0 0

STAR​ 1 1 1 744 643 615 2 2 2 3 3 2 0 0 0

C. gloeosporioides SE RI A3SS A5SS MXE

raw FOC TES raw FOC TES raw FOC TES raw FOC TES raw FOC TES

HISAT2 0 0 0 1530 1382 1346 5 10 10 7 9 9 0 0 0

STAR​ 0 0 0 771 657 623 3 3 3 2 2 2 0 0 0

V. dahliae SE RI A3SS A5SS MXE

raw FOC TES raw FOC TES raw FOC TES raw FOC TES raw FOC TES

HISAT2 2 2 3 1115 1030 1019 14 12 12 11 13 13 0 0 0

STAR​ 2 2 2 1141 1031 1017 14 10 9 16 13 14 0 0 0

Table 5  Summary of the results of whippet

M. oryzae C. gloeosporioides V. dahliae

SE RI A3SS A5SS SE RI A3SS A5SS SE RI A3SS A5SS

raw 47 19 1 4 raw 244 0 0 0 raw 7 0 0 0

FOC 49 17 2 6 FOC 253 0 0 0 FOC 7 0 0 0

TES 46 17 2 5 TES 251 0 0 0 TES 7 0 0 0
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Subsequently, STAR required 1.7 h for the analysis, 
while Bowtie2 exhibited the slowest performance, taking 
2.5 h to complete the process. The analysis of CPU uti-
lization rates from common batch running codes (with 
consistent parameters) revealed significant time differ-
ence despite setting identical thread counts for our pro-
grams. To enhance the assessment of the performance 
of each software in terms of running speed, we adjusted 
the experimental code to guarantee an equal number of 
threads for each software. In our investigation, HISAT2 
consistently demonstrated superior performance com-
pared to the other two software options, achieving an 
average runtime of 0.15 h. While Bowtie2 and STAR 
exhibited similar processing speeds (Fig.  3B, Supple-
mentary Fig. 10), their runtimes were typically 2–3 times 
longer than that of HISAT2. However, it is noteworthy 
that STAR consumed the highest RAM usage among the 
three software, approximately three times more than the 
other two tools.

Alternative splicing
The top four alternative splicing (AS) analysis tools, 
rMATS [57], MISO [58],VAST Tools [59] and DEXseq 
[60] (exon-based), were determined by the frequency of 
citations on Google Scholar. Whippet [61] and VAST 
Tools are research outcomes originating from the same 
laboratory but released at different times. Previous 
research has demonstrated the strong performance of 
Whippet in the field of AS analysis, hence it was chosen 
for experiments in this study. For choosing alternative 
splicing (AS) analysis tools, we excluded tools with lim-
ited analytical capabilities, MISO, and focused mainly on 
event-based tools, excluding DEXeq. Furthermore, con-
temporary tools for AS analysis were integrated, incorpo-
rating recent advancements like SpliceWiz [62], thereby 
enriching the comprehensiveness of this research.

In terms of computational efficiency, the execution 
time of an AS workflow using rMATS was approximately 
1–2 times longer than that of a Whippet workflow. Con-
versely, the computational time required for running 
SpliceWiz was roughly double that of rMATS. When 
evaluating the total count of alternative splicing (AS) 
events, it is evident that rMATS and SpliceWiz possessed 
an undeniable competitive edge (Tables 3, 4 and 5). While 
thousands of AS events were identified, Whippet pro-
duced only a limited number of results. The results of AS 
analysis using rMATS combined with Bowtie2 are sig-
nificantly different compared to those obtained using the 
other two alignment software in our fungal datasets. To 
verify whether the performance of the pipeline combin-
ing Bowtie2 and rMATS was poor only on fungal data-
sets, experiments were conducted on plant (P. tomentosa) 
and animal (M. musculus) datasets. The results showed 

that the AS analysis pipeline combining Bowtie2 did not 
entirely perform poorly on animal and plant datasets, as 
shown in Supplementary Table  4. Although SpliceWiz 
can import BAM files after the alignment process, the 
resulting BAM files from Bowtie2 are not compatible. In 
addition, while SpliceWiz can handle input FASTQ files, 
it is restricted to alignment processing using STAR. It is 
worth noting that the alignment mode of SpliceWiz was 
not used in this study. Instead, all analyses were per-
formed based on the outputs of the three software tools 
used in the alignment process.

For rMATS and SpliceWiz, a higher level of sequence 
retention led to an increased number of AS events being 
identified. Specifically, the original sequences without any 
trimming had the highest count of events. In contrast, 
Whippet demonstrated optimal performance when the 
data underwent appropriate trimming. A comparative 
analysis revealed no concurrence in the outcomes pro-
duced by rMATS and Whippet. Notably, Whippet is not 
align-based, relying on the fastq files of sequenced sam-
ples and reference genome annotation files. The unsat-
isfactory results obtained by Whippet in this study may 
be attributed to the lack of high-quality GTF annotation 
files in fungal data. Previous research has indicated that 
there is a limited yet existing overlap in the results pro-
duced by various software [63]. The anomaly observed in 
this study could be associated with the abnormal results 
of the Whippet analysis.

SpliceWiz and rMATS had similar change tendency. 
However, there was a notable discrepancy in the distri-
bution of alternative splicing event categories between 
these two software. SpliceWiz excelled in detecting 
intron retention (IR) events, while rMATS demonstrated 
proficiency in identifying skipped exon (SE) and mutu-
ally exclusive exons (MXE) events. To know ground 
truth, we used AsimulatoR tool to simulate the whole 
genome of V.dahliae. Moreover, we compared the alter-
native splicing event conducted by STAR (Additional 
file  6, Supplementary Fig.  11). The overall results and 
results categorized by DAS (differential alternative splic-
ing) event type for each tool were examined, as shown in 
Supplementary Fig. 12.

We found that both simulated data and real data had 
similar tendency. In simulation results, rMATS exhib-
ited the highest precision in detecting MXE events, while 
rMATS showed the highest overall recall. Whippet also 
demonstrated relatively high precision, albeit analyzing 
fewer events, and only identified SE events in V.dahliae 
data. Similarly, SpliceWiz only detected IR events. Con-
sistent with the real data scenario, the results obtained 
from validation with simulated data also revealed biases 
in event types detected by different tools. rMATS showed 
strong discriminatory ability for MXE and SE events, 
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while Whippet and SpliceWiz performed well in detect-
ing SE and IR events, respectively.

Quantification
In quantitative analysis, software can be broadly cat-
egorized into two main groups: alignment-based tran-
script quantification tools, such as featureCounts [64], 
HTseq [65], and RSEM [66], and alignment-free tran-
script quantification tools, including Salmon [67] and 
Kallisto [68]. We did not choose HTSeq due to its 
longer analysis time and lack of clear advantages com-
pared to other tools. The software featureCounts is 
widely used for quantitative analysis due to its rapid 
processing speed, while RSEM can simultaneously per-
form both alignment and quantification tasks. Previous 
studies have demonstrated that alignment-based quan-
tification tools yield higher accuracy in results [29]. In 
order to gain a deeper understanding of alignment-
based quantification tools, our study selected RSEM 
and featureCounts for comparative analysis within 
this category. Among non-alignment quantification 
tools, Kallisto and Salmon are the most widely used. 
We chose Salmon, which has higher citation rates and 
was released later, to compare with other quantification 
tools.

In this step, we changed all the quantification results 
into gene level, so that comparison can be carried out 
from the consistent level. For quantitative results, data 

generated through the utilization of the identical align-
ment software exhibited a strong correlation (Fig. 4A-C, 
Supplementary Fig.  13), consistently exceeding 0.98. It 
was found that there was little variance in the quantita-
tive results obtained by different workflow. The simplicity 
of the fungal data structure in comparison to the RNA-
seq data of other species like humans, animals, and plants 
may account for this phenomenon.

In Fig.  4 D and E, additional investigations demon-
strated that the observed low correlations in both differ-
ent upstream processing methods and results obtained 
from different quantitative software were primarily 
attributed to genes with low expression levels (genes fall-
ing within the 95th percentile). Interestingly, when exam-
ining various workflows, genes located within the 50th 
percentile always exhibited the most stable gene expres-
sion patterns (Supplementary Fig. 14).

Simulation of read count
Several data simulation tools were evaluated, and based 
on its favorable performance [69], the decision was made 
to utilize seqgendiff [70]. In the construction of the simu-
lated datasets, 1,000, 2,000, and 5,000 repeated simula-
tions were conducted, employing the same authentic 
dataset but adjusting the parameters of the resampling 
method. Interestingly, regardless of the variations in 
parameters, the percentage of differentially expressed 

Fig. 4  Calculations of different quantification results. Heatmap of different schemes using feature counts as quantification tool 
based on the Spearman rank correlation of their log expressions in AM. oryzae, BC. gloeosporioides, CV. dahliae datasets. D Correlation 
between the quantification results of different trimming and filtering treatment, both using raw data as benchmark data. E Correlation 
between the quantification results of different quantification tools
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genes in the simulated data consistently displayed a 
three-tiered distribution (Fig. 5A). Furthermore, only one 
exhibited a proportion of differentially expressed genes 
comparable to that of the real data set (Fig. 5B). Intrigu-
ingly, the association between the proportion in each 
level and the experimental order appeared stochastic.

Subsequently, we explored two datasets where the 
proportion of differentially expressed genes identified 
through data simulations significantly deviated from the 
real data. Notably, the distribution patterns in these data-
sets were markedly disparate from those observed in the 
real data (Fig. 5C-D). To ensure that the simulated data 
accurately reflects the authentic distribution, we refined 
the workflow of the data simulation process (Fig. 6A).

Differential gene expression analysis
Among the commonly used software for analyzing dif-
ferential gene expression, edgeR [71], DESeq2 [72], 
limma [73], Cuffdiff2 [74], baySeq [75] belong to para-
metric methods, while NOISeq [76] and SAMSeq [77] 
are categorized as non-parametric methods. This clas-
sification can also be further refined based on other 
attributes, such as whether it is count-based, the pro-
gramming language utilized, and additional classifica-
tion criteria. For differential gene analysis software, 
DESeq2, edgeR, and limma are widely cited and have 
clear advantages. DESeq2 and edgeR both employ a 
negative binomial distribution model for differential 
expression analysis, which takes into account the over-
dispersion inherent in the data, thus enhancing the 
reliability and robustness of the results. On the other 
hand, limma utilizes linear models and empirical Bayes 

Fig. 5  The analysis of count data simulation. A the Scatter plot of the multiple data simulations. B the Q-Q plots between the real data 
and the simulated data nearly corresponding to the true DE proportions. C,D the Q-Q plots between the real data and the simulated data 
with wrong DE proportions
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methods, improving the accuracy and stability of the 
analysis through model scaling. These three tools boast 
extensive user communities and abundant documenta-
tion, facilitating accessibility to tutorials for beginners 
and swift resolution of usage-related issues. Thus, we 
chose these three software packages for differential 
gene analysis. In addition to using the default settings, 
users are also given the option to modify the relevant 
parameters themselves. The software allows for the 
adjustment of parameters categorized into normaliza-
tion method, fitting method, and hypothesis testing 
method. Sixteen differential expression analysis meth-
ods were obtained based on the variations in these 
three types of parameters (Fig.  1 and Supplementary 
Table 5).

We employed the Kruskal–Wallis rank sum test to 
evaluate the variations in data resulting from seven 
standardization methods. Our goal was to analyze the 
extent of inter-group variations following different nor-
malization techniques. A higher p-value indicates a lesser 
disparity among the groups. It can be seen that the meth-
ods employed by DESeq2(ratio, poscounts) exhibited 
the highest level of stability (Fig.  6 B-D, Supplementary 
Fig.  15, Table  6, Supplementary Table  6). The minimal 
variation among the seven standardization methods was 
attributed to the high quality of the data (Fig.  6B, Sup-
plementary Fig.  15). However, in the case of poor data 
quality, the two standardization methods of DESeq2 still 
ensure high-quality standardized output results (Fig. 6C).

Seven dispersion fitting methods were assessed, reveal-
ing that the mean method of the DESeq2 package was 

Fig. 6  The analysis of count data simulation. A Workflow of data simulation. The violin-plot of different normalization methods in BV. dahliae, CC. 
gloeosporioides, and DM. oryzae datasets
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completely unsuitable for fungal data (Fig.  7D, Sup-
plementary Fig.  16). Furthermore, the edgeR pack-
age (default, GLM) and limma-voom (voom) exhibited 
ordinary performance when utilized with the V. dahliae 
dataset, which was distinguished by its high data quality 
(Fig. 7A-C, Supplementary Fig. 16). Consequently, these 

four methods were excluded from subsequent compara-
tive analyses.

Compared with the other three fitting methods, it was 
found that DESeq2 parametric fitting method demon-
strated superior stability, with a high fitting degree in all 
data (Fig. 7E-J, Supplementary Fig. 16). The glmGamPoi 
fitting method in DESeq2 often had better performance 

Table 6  The results of Kruskal-Wallis rank sum test

M.oryzae V.dahliae C.gloeosporioides

chi_squared p_value chi_squared p_value chi_squared p_value

poscounts 16.77 4.96E-3 poscounts 8.50 0.13 poscounts 27.50 4.56E-05

  ratio 18.74 2.15E-3   RLE 8.56 0.13   ratio 63.04 2.86E-12

  RLE 42.03 5.80E-08   ratio 8.70 0.12   RLE 675.60 9.24E-144

  TMM 45.57 1.11E-08 TMMwsp 18.71 2.18E-3 TMMwsp 678.88 1.81E-144

  UQ 47.11 5.40E-09   TMM 19.34 1.66E-3   TMM 694.46 7.74E-148

TMMwsp 49.00 2.22E-09   UQ 58.40 2.61E-11   UQ 1144.20 3.58E-245

  none 608.53 2.90E-129   none 374.1 9.70E-79   none 2535.26 0

Fig. 7  Visualization of the results of each fitting methods. A-D the performance of four methods using V. dahliae dataset. E-J a comparison 
was conducted on the three remaining fitting methods using datasets of varying data quality: one dataset with good data quality (Vdahliae, V. 
dahliae) and another with poor data quality (Cglo, C. gloeosporioides). If the model is well-fitted, the distribution of “Tagwise”(black) points will 
conform to the “Trend” (blue)curve in the edgeR package using the default or GLM method. In the limma-voom method, the “gene-est”(black) 
point will be fitted to the “fitted” (red)curve. When utilizing the DESeq2 package with the correlation (mean, glmGamPoi, local, parametric) method, 
the “final” (blue)points will exhibit a close distribution around the “fitted” (red)curve
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when applied to high-quality data. However, it exhib-
ited the longest running time compared to all other fit-
ting methods, taking approximately 1 min and 30 s to 
complete, whereas alternative fitting methods required 
less than a second to run. Therefore, the most suitable 
method is parametric due to its stable performance. 
Furthermore, we compared the performance of vari-
ous normalization and fitting methods across plant (P. 
tomentosa) and animal (M. musculus) datasets, reveal-
ing robustness across species for each method. Meth-
ods exhibiting superior performance on fungal data also 
demonstrate effective implementation in other species 
datasets (Supplementary Figs. 17, 18). The distinctions of 
various parameter combinations will be described in the 
Global analysis section.

Global analysis
After comparing a single software, the results of the 
entire process are further compared and analyzed. Here, 
we choose to calculate true positive rate (TPR), true 
nagative rate (TNR) and accuracy (ACC) under each 
method as the criteria for assessing the advantages and 
disadvantages of the method (Fig. 8). First, we performed 
an overall comparison of the 16 differential gene analysis 
combinations. Based on the Robust RankAggreg package 
[78], the comprehensive ranking of the five fungal data-
sets indicated that the combination involving the edgeR 
package consistently exhibited a higher TPR (Fig.  8A), 
limma-voom package-related combination usually had 
a higher TNR(Fig.  8B), while the limma-voom-related 
method generally showed a higher ACC(Fig. 8C).

During the experimental procedure, it was observed 
that in addition to the differences in the results of dif-
ferential expression of genes, there was also a certain 

proportion of misjudgment in the results of differential 
expression, such as the identification of up-regulated 
genes in the validation data set as down-regulated genes. 
Through visualization, it is found that this phenomenon 
mainly exists in data with slightly poor sequencing qual-
ity, which once again proves the necessity of ensuring 
sequencing quality.

Among the upstream analysis methods, Bowtie2 dem-
onstrated superior performance in the three fungal data-
sets, as indicated by higher values of true positive rate 
(TPR), true negative rate (TNR), and overall accuracy 
(ACC) (Additional file 1). This demonstrates that utiliz-
ing Bowtie2 can yield more precise outcomes. Based on 
the above comparison results, we propose a reference 
analysis process and divide it according to different needs 
(Fig. 9).

Discussion
Through a comprehensive analysis of RNA-seq, consid-
ering different steps, we observed a significant impact of 
tool and computational method selection on the preci-
sion and runtime of the analysis. First, we compared each 
step separately.

During the quality control filtering process, if user want to 
quickly get the quality control report at the same time, they 
can consider using quality control filtering software com-
bined with tools such as FastQC. However, Trim_Galore is 
not advisable due to suboptimal filtering results. The fastp 
is a good choice for researchers to start their analysis due to 
its rapid speed, consistent filtering outcomes, and moderate 
utilization of computational resources.

The experimental results affirm that judicious trim-
ming leads to the most optimal enhancement in data 
quality and has the highest comparison rate improvement 

Fig. 8  The TPR, TNR, ACC of each analysis workflow under featureCounts
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degree. This conclusion aligns with findings from previ-
ous research [26]. Additionally, we proposed two selec-
tion criteria for trimming parameters, referred to as 
FOC and TES respectively, which can help users decide 
the parameters according to the characteristics of the 
data itself. Upon comparing the results with subsequent 
analysis steps, it was observed that for RNA-seq data of 
satisfactory quality, the trimming and filtering step had 
minimal impact on the results of subsequent quantifi-
cation and differential expression analysis. This finding 
aligned well with the conclusion drawn by Liao et al. [79]. 
Therefore, for fungal trimming and filtering step, we rec-
ommend considering the quality of the obtained data and 
the research objectives. If the data itself is of good quality 
and the analysis goal is focused on differential gene selec-
tion, it may be feasible to only perform adapter trimming 
without other treatment.

During the alignment step, as the ENCODE-recom-
mended RNA-seq alignment tool, STAR is widely used 
in comprehensive workflows [31, 80, 81]. In this study, 
despite STAR’s excellent mapping rate, considering the 
runtime and resource consumption, HISAT2 emerged as 
the superior choice. Bowtie2 exhibited the lowest map-
ping rate across all datasets, possibly due to its design 
for DNA alignment and its relatively lower accuracy 

in handling intron sizes. However, when assessing the 
accuracy of DE results obtained by different alignment 
methods, Bowtie2 showed superior performance. Since 
this study focused on differential gene selection results, 
default parameters were employed for the alignment 
step. However, previous studies have shown that align-
ment software often yields suboptimal results when 
using default parameters, and parameter optimization 
can lead to improved outcomes. MIN_MAP_LENGTH, 
SPLICE_MISMATCHES, and APPEND_MISMATCHES 
were identified as the three parameters with the great-
est impact on the performance of HISAT2. For STAR, 
increasing NUM_FILTER_MISMATCHES while retain-
ing the default value of END_ALIGNMENT_TYPE can 
enhance the results [28].

During the quantification step, by examining the top 
30% of processing pipelines based on evaluation metrics in 
each fungal data, it was found that over 50% of the pro-
cesses utilized featureCounts as the quantification tool, 
followed by RSEM. This indicates that the differential gene 
analysis results derived from featureCounts exhibited opti-
mal performance among the three quantification tools. 
Although Salmon provided the fastest running speed, its 
overall performance was significantly weaker compared 
to the other two alignment-based tools. This suggests that 

Fig. 9  The optional workflow of RNA-seq data analysis
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alignment-based tools are recommended for quantifica-
tion in fungal data analysis. Additionally, it was observed 
that under the same thread number, the analysis time for 
combining featureCounts with STAR/Bowtie2 was com-
parable to the analysis time for using RSEM with STAR/
Bowtie2. Therefore, if ease of use is a consideration, RSEM 
is recommended for analysis as it only requires learning 
one software for both alignment and quantification steps.

During the DE analysis step, a comparison was made 
both normalization methods and fitting methods. It was 
observed that different methods exhibited significant 
differences in robustness. DESeq2’s two normalization 
methods showed strong robustness, yielding good nor-
malization effects regardless of data quality. In contrast to 
previous studies, in terms of the performance of normali-
zation, TMM did not always have the most stable effect 
in fungal data [82, 83]. Overall, the results were consistent 
with previous research [23, 84, 85], edgeR using the TMM 
method demonstrated a higher true positive rate (TPR).

When it comes to the 16 differential gene analysis 
methods after parameter combination, there are great 
differences among these methods. To comprehensively 
and intuitively evaluate the performance of different 
approaches in analyzing differential expression, we uti-
lized the Robust RankAggreg package to rank the assess-
ment metrics, considering the incorporation of multiple 
combinatorial procedures (Fig. 8, Supplementary Fig. 19). 
After comparing different workflows based on evalu-
ation metrics, we observed that the choice of alignment 
software significantly influenced the results of differential 
expression (DE) analysis. When employing the identical 
differential analysis method on the same data, different 
alignment methods can lead to differences of approxi-
mately 0.04–0.2 in the evaluation metrics (Additional 
file 2). Similar situations were noted during the quantifica-
tion step, where alignment-based methods outperformed 
alignment-free methods overall, but the distinctions 
among different alignment-based methods were relatively 
minor. Furthermore, substantial variations were observed 
in the evaluation metrics when different combinations of 
differential gene analysis methods were applied under the 
identical upstream processing workflow.

Considering the diverse needs among different popu-
lations in conducting fungal RNA-seq data analysis, we 
have outlined a reference workflow (Fig. 9) that takes into 
account both accuracy and efficiency. This workflow is 
divided into two major categories: alignment-based and 
alignment-free. We made this division because, although 
alignment-based methods generally outperform alignment-
free methods, our results also revealed cases where the lat-
ter outperformed the former. Furthermore, considering its 
rapid analysis speed, the alignment-free method can serve 
as a preliminary exploration tool for the data. As indicated 

by previous studies [16, 22, 86], combination of DE results 
from multiple workflows can yield more accurate DEGs. 
We also suggest that for the purpose of data analysis, sev-
eral processes be selected for multiple tests based on the 
evaluation of each step and the global process in this study.

In addition to analyzing workflows tailored for differ-
ential gene selection, our research also conducted a sim-
ple comparison of tools for alternative splicing analysis. 
For AS analysis in the fungal RNA-seq data, the results 
indicates that the pipeline combining Bowtie2 is not 
incapable of performing AS analysis. Instead, it exhibits 
abnormal performance on fungal datasets. Therefore, for 
fungal datasets, we recommend combining the other two 
alignment software for AS analysis pipelines. The results 
using the combination of rMATS and SpliceWiz yielded 
superior results, demonstrating a more comprehensive 
types and numbers of events.

Conclusions
In conclusion, a thorough evaluation was conducted on 
the software utilized at each step of the analysis. A com-
parative analysis was conducted to assess the strengths 
and weaknesses of the software. Additionally, we evalu-
ated the quality of the analysis results generated by vari-
ous software when utilized with plant pathogenic fungal 
data. Instead of providing a best practice for RNA-Seq 
analysis, we presented a definitive reference workflow 
and identified potential differences that may arise due 
to the methods selected. This is because a process that is 
optimal for certain data may not exhibit the same level 
of performance when applied to different data sets. Based 
on our study, researchers can enhance the efficiency and 
accuracy of selecting appropriate analytical tools for the 
analysis of RNA-seq data.

Materials and methods
Data sets and code
Supplementary Table  7 summarizes the data sets used 
in this study [5, 41, 87–91]. All the analysis scripts are 
offered in the Additional file  3, Additional file  4 and 
Additional file 5.

Environment
The RNA-seq tools utilized in this study, along with their 
corresponding versions, are specified in Supplementary 
Table 8. The computational analyses were performed on a 
CentOS server with a 48-core CPU, 96 threads, and 32GB 
memory.

Filtering and trimming evaluation
Quality control (QC) reports were used to identify 
important base positions in the ATCG base proportion 
curves within the sequences, guiding the base trimming 
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parameters. The curve represents the proportions of four 
different bases present at various sites, allowing detec-
tion of AT and GC separation phenomena. According to 
the author’s description on the official website of FastQC, 
ideally, the distribution of the A, T, C, and G bases should 
be close to and parallel with each other. However, due to 
inevitable errors during library construction, such as the 
sequencing instrument not stabilizing in the initial bases 
or inherent biases in primers, fluctuations in base distribu-
tion can occur at the 5’ end of sequencing data. We define 
this fluctuating and imbalanced state of base distribution 
as chaos. Specifically, our focus was on two significant 
positions (Supplementary Fig.  20, 21): the point at which 
the ATCG base proportion curves out of chaos for the 
first time (FOC), indicating where the fluctuations in the 
curve disappear (Supplementary Fig.  21A), and the point 
at which they reach an equilibrium state (TES), represent-
ing the position where the curve fluctuations diminish and 
approach parallelism (Supplementary Fig.  21B).These two 
key thresholds were determined with the help of the Mul-
tiQC tool, which provides html reports that allow users to 
automatically browse the corresponding base positions and 
their balance ratio distribution data when they move the 
mouse.

Throughout the subsequent discussions in this paper, 
the terms "raw," "FOC," and "TES" are utilized as descrip-
tors for datasets under distinct processing conditions. The 
filtering parameter was consistently set at 25. Notably, 
Trim_Galore integrates Cutadapt and FastQC, enabling 
the direct generation of QC reports. When evaluating the 
computational efficiency of the two tools, the running time 
of fastp is a combination of its own execution time and the 
time required to utilize FastQC to generate the QC report.

Read mapping evaluation
The datasets generated under three distinct processing 
conditions (raw, FOC, TES) were aligned to the reference 
genome utilizing the most widely employed tools, namely 
HISAT2, STAR, and Bowtie2. The quantification of map-
ping instances for each sequencing read when employing 
STAR and HISAT2 was ascertained by referencing the 
NH tag within the alignment file. In the case of Bowtie2, 
a sequencing read is deemed uniquely mapped when the 
AS tag and its corresponding value are both non-empty, 
and there is an absence of the XS tag in the alignment file. 
Should the value associated with the AS tag be null, the 
read is classified as unaligned. Conversely, if the value is 
populated, the read is categorized as multiply aligned. 
The count of soft-clipped bases was derived from the 
alignment CIGAR string, whereas the detection of mis-
matches relied on the NM tag. Building upon previous 
research [21], we added the analysis of Bowtie2 into the 
code.

Quantification evaluation
To evaluate the quantitative results, we selected several 
prominent software packages (featureCounts, RSEM, and 
Salmon) for a thorough comparison. Certain quantitative 
software is capable of accepting the output generated by 
specific alignment software, while others have the ability 
to directly process the raw fastq file. The distinctive com-
binations are illustrated in Fig. 1.

To explore the impact of upstream processes on quan-
titative outcomes, we computed the correlation between 
results obtained from identical samples but processed 
through distinct upstream processing workflows. Moreo-
ver, in order to investigate the sources of quantitative var-
iances across different analytical scenarios, we ranked the 
quantitative results in a descending order and segmented 
them according to percentiles (1, 10, 25, 50, 75, 90, 95). 
Across different percentile divisions, we compared the 
correlation between quantitative outcomes obtained 
through distinct trimming and filtering measures in the 
processing workflow, as well as the correlation between 
quantitative results derived from diverse alignment soft-
ware utilized in the processing workflow.

Differential gene expression analysis evaluation
After estimating gene and transcript expression levels, 
researchers utilize statistical methods to identify varia-
tions in expression levels among different experimental 
groups [10]. Various approaches are available to accu-
rately detect differentially expressed genes, which can 
be divided into two types: parametric and non-para-
metric. The classification of analytical methods adopts 
or describes the use of some statistical distribution of 
parameters to infer DEGs, as well as tools that either par-
tially or entirely rely on this category of statistical distri-
bution are categorized as parametric [33].

In this study, a comprehensive comparative analysis 
was performed using three widely adopted count-based 
tools for the analysis of differential gene expression (DE) 
in RNA-seq data: DESeq2, edgeR, and limma, which are 
extensively utilized in the field of RNA-seq analysis. Ini-
tially, we evaluated a single normalization method and a 
fitting method independently. The Kruskal–Wallis rank 
sum test was used to assess the magnitude of differences in 
data between samples based on standardized results. Sub-
sequently, a total of 16 unique analysis combinations were 
created through the modification of normalization param-
eters, hypothesis testing parameters, and fitting parame-
ters. These combinations were systematically employed to 
conduct comparative experiments during the stage of ana-
lyzing differential gene expression, as illustrated in Fig. 1.

Real experimental data were utilized to perform analy-
ses involving 16 different methodological combinations. 
The outcomes of these analyses were then overlapped to 
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establish a validation data, which was employed for evalu-
ating the performance of the simulated data. To simulate 
data, we employed the data simulation tools, followed by 
the application of differential gene analysis techniques on 
the generated simulated data. Subsequently, the results 
obtained from the simulated data were compared with 
the validation data derived from real experimental data. 
The target set of DE genes was defined as those exhib-
iting a known absolute log2-fold change exceeding 1, 
accompanied by a corresponding p-value below 0.001. 
Various evaluation metrics, such as True Positive Rate 
(TPR), True Negative Rate (TNR), and overall Accuracy 
(ACC), were computed for each method, providing a 
comprehensive assessment of the differential gene analy-
sis approaches employed in this study. Robust RankAg-
greg package was applied to rank the assessment metrics.

TP: The count of genes that have been correctly identi-
fied as DE genes in the simulated dataset.

TN: The count of genes correctly identified as non-DE 
genes in the simulated dataset.

FP: The count of genes erroneously labeled as DE genes 
in the simulated dataset.

FN: The count of genes erroneously labeled as non-DE 
genes in the simulated dataset.

Alternative splicing evaluation
Considering that the aim of this research is to offer a 
user-friendly analysis process for laboratory researchers 
with limited computer skills, the ease of use and prac-
ticability should also be considered when selecting the 
software. While the majority of contemporary meth-
odologies can assess differential splicing across various 
sample groups, some of the earlier tools are limited to 
comparing differences between only two individual 
samples. MISO is a software that exhibits limitations in 
its utility for many studies. Consequently, three event-
based AS tools, rMATS, SpliceWiz, and Whippet, were 
ultimately chosen as the comparative entities in this 
section.

Due to the absence of laboratory-verified alterna-
tive splicing data, this section focuses on comparing 
the disparities in AS analysis among various software 
tools based on several factors: the absolute number of 
AS events identified through analysis, the overlap of 
different AS events, and the running time of the soft-
ware. To provide a more comprehensive comparison 

TruePositiveRate(TPR) = TP/(TP + FN )

TrueNegativeRate(TNR) = TN/(TN + FP)

Accuracy(ACC) = (TP + TN )/(TP + TN + FP + FN )

of software efficiency, it is essential to consider the 
time expended in the alignment phase when calculat-
ing the overall runtime of the rMATS and SpliceWiz 
software.

When using simulation tools [92], since the probabili-
ties of different AS events vary among species, we used 
rMATS- detected AS event proportions from real V. 
dahliae RNA-Seq data aligned by STAR as input param-
eters to match AS event distribution in simulated data 
with real data. The simulated data obtained from this 
tool comprised multiple sequence files and a valida-
tion dataset representing the AS events generated dur-
ing data simulation. After analyzing the simulated data 
using different software, we compared their results with 
the validation dataset to obtain performance metrics for 
different tools. Precision and recall were calculated using 
the following formulas:

TP_event counts AS events consistent with the valida-
tion dataset, find_by_tool_event tallies events identified 
by each software tool, and validation_event denotes the 
total events in the validation dataset. It is noteworthy 
that when calculating metrics for different event types, 
find_by_tool_event and validation_event represents the 
total number of corresponding event types identified by 
each tool and corresponding event types in the validation 
dataset, respectively.

In addition, we compared the splice junction output 
of STAR and rMATS results in the alternative splicing 
events between control group and treatment group. Tak-
ing RI events in the simulated Verticillium dahliae data-
set as an example, we extracted IR events from the SJ.out.
tab file, in conjunction with the GTF annotation file.
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