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Abstract 

Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure 
generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algo-
rithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function 
of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational 
methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs 
whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies 
developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addi-
tion to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing 
endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases 
for rich circRNA annotation.

Introduction
Circular RNAs were introduced to the lexicon of RNA 
biology as early as 1976, originally detected in pathogenic 
plant viroids [1], murine respirovirus (Sendai virus) [2], 
hepatitis δ virus [3] and RNA viruses recovered from the 
cytoplasmic fraction of eukaryotic HeLa cells [4]. Fol-
lowing these reports of single-stranded covalently closed 
viral RNA structures, evidence of alternative forms of 
circRNAs derived from precursor mRNA (pre-mRNA) 
splicing events began to emerge [5–7]. During the 1990s 
and early 2000s, several studies showed that circRNA-
producing genes are widespread in eukaryotic cells 
[8–18] however, due to their lack of translation poten-
tial, researchers believed circRNAs to be discarded by-
products of splicing events. During the initial adoption 

of next-generation sequencing (NGS) technologies, 
circRNAs remained largely unstudied – with the poly-
A selection protocols in RNA-Sequencing (RNA-Seq) 
technologies preferentially selecting messenger RNAs 
(mRNAs). Recent advancements in bioinformatics meth-
ods coupled with a widening range of protocols to inter-
rogate the transcriptome have enabled the detection of 
circRNAs, with interest in the field rejuvenated when a 
landmark study by Salzman et al. (2012) identified RNA 
transcripts containing ‘scrambled exons’ characteristic of 
circRNAs in hyperdiploid acute lymphoblastic leukaemia 
diagnostic bone marrow samples [19]. Subsequent stud-
ies by Jeck et  al. (2012) [20], Hansen et  al. (2013), [21] 
and Memczak et  al. (2013) [22] identified thousands of 
circRNAs in metazoans. Moreover, Hansen et al., (2013) 
[21] and Memczak et  al. (2013) [22] demonstrated that 
CDR1as and circSry competitively bind micro RNA 
(miRNA) sequences via complimentary sites within their 
mature spliced sequence, suggesting a regulatory role 
within the competing endogenous RNA (ceRNA) net-
work. These foundational works ushered in a plethora of 
novel research on circRNAs characterising their origin, 
biogenesis, structure and functions [23–26].
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circRNAs exhibit stage and tissue-specific expression 
[27–29] and are enriched in exosomes [30]. Coupled 
with their high level of stability in contrast to other RNA 
molecules, circRNAs represent a promising biomarker 
for disease; circ-ITCH for example, acts as a tumor sup-
pressor in lung cancer by inhibiting the Wnt/β-Catenin 
pathway [31], and circPVT1 acts as an oncogene in head 
and neck squamous cell carcinoma, displaying overex-
pression in tumor samples harbouring TP53 mutations 
[32]. In addition to applications as a biomarker, circRNAs 
can be constructed to target and sequester overexpressed 
oncogenic miRNAs. The synthetically generated circRNA 
CM21D was produced via t-RNA splicing and adminis-
tered in experimental glioblastoma models, inhibiting 
miR-21-5p thus restoring the expression of tumor sup-
pressor genes [33].

Given their diverse role within cells, it is imperative to 
accurately identify and annotate the functions of circR-
NAs using computational methods in conjunction with 
sequencing data. Multiple bioinformatics tools exist 
for identifying circRNAs in RNA-Seq datasets via the 
detection of chimeric reads representative of circRNA 
back-splice junctions (BSJ). Once a circRNA has been 
identified, researchers are often interested in quantifying 
its expression, predicting it’s interactions with other small 
RNAs and RNA binding proteins (RBPs), examining the 
ratio of circRNA expression compared to its cognate par-
ent gene, and performing differential circRNA expression 
analyses. In this review, we discuss the current landscape 
of bioinformatics tools for circRNA analysis encompass-
ing circRNA identification and annotation, circRNA 
quantification, circRNA functional prediction, and high-
light some of the computational challenges involved. 
Whilst this review focuses on the computational analysis 
of circRNAs, we briefly detail the origin, biogenesis and 
structure of circRNAs as this information is necessary 
for understanding the algorithms employed by circRNA 
identification tools. For additional details on circRNA 
biogenesis, degradation, translation, cellular transport, 
downstream interactions and evolutionary conservation, 
we direct readers to a selection of recent reviews [34–41].

Finally, we also provide an overview of the currently 
available circRNA databases containing rich annota-
tions for circRNAs derived from various tissue sources 
and cell lines using RNA-Seq datasets, predicted miRNA 
and RBP targets using cross-linking and immunoprecipi-
tation sequencing (CLIP-Seq) and circRNAs associated 
with diseases.

circRNA biogenesis and structure
Canonical linear mRNA splicing involves processing 
pre-mRNA to remove intronic sequences and the join-
ing together of exon sequences to form a mature mRNA 

transcript. This process is mediated via the spliceosomal 
machinery composed of small nuclear ribonucleopro-
teins which recognise conserved 5’ splice sites, 3’ splice 
sites and a branch site within the intronic sequence. Spli-
ceosomal machinery binds to the intron’s upstream 5’ 
splice donor site, pairing it with the downstream branch 
site forming a lariat loop structure. Following this, the 
downstream 3’ splice acceptor site of the intron splice site 
is brought in close proximity to the 3’ end of the exon, 
where, via a process of transesterification, the exons 3’ 
hydroxyl group attacks the phosphodiester bond of the 3’ 
intron splice acceptor site, covalently joining the exons, 
producing a mature mRNA and releasing the intron lariat 
structure [42].

circRNA formation relies on canonical splice site sig-
nals and spliceosome machinery [43] however, in con-
trast to linear RNAs, circRNAs are formed by a process 
known as back-splicing in which a downstream 5’ splice 
donor site is reversely joined to an upstream 3’ splice 
acceptor site forming a covalently closed loop structure 
[20, 24]. Similarly to linear RNAs, circRNA formation is 
regulated by cis/trans elements, and can be categorised 
as exonic circRNAs (EcircRNAs), exon-intron circRNAs 
(ElciRNAs) or circular intronic RNAs (ciRNAs) based 
on both the genomic position and the circularization 
process from which they were derived. Several RBPs act 
as trans factors inducing circRNA biogenesis including 
quaking (QKI) [44], muscleblind (MBL/MBNL1) [25], 
and fused-in-sarcoma (FUS) proteins [45]. By binding 
specific motifs in the intronic sequences flanking exons, 
dimerization of RBPs bring the downstream 5’ splice 
donor site in close proximity to an upstream 3’ splice 
acceptor site, facilitating back-splicing and the forma-
tion of exon-intron circRNAs (EIcircRNAs) or exonic 
circRNAs (EcircRNAs) (Fig. 1A). Reverse complimentary 
matches in flanking non-coding cis regulatory elements 
(e.g ALU repeats) can form a hairpin structure that bring 
the downstream 5’ splice acceptor site in close proximity 
to the upstream 3’ acceptor site facilitating back-splicing 
[20, 46, 47] (Fig. 1B). Circularization via intronic pairing 
is highly sensitive to both the composition and length of 
the hairpin structure — G-U wobbles and excessive sta-
bility hinders circRNA formation [48].

Lariat-driven circularization (exon skipping) is an 
event in which during canonical linear RNA splicing, 
the 3’ splice acceptor site of a distal exon is joined to the 
5’ splice donor site of an upstream exon, forming a lar-
iat loop structure containing skipped exon(s) (Fig. 1C). 
The lariat structure can then be processed to form an 
EcircRNA or EIcircRNA [13]. Notably, circulization of 
long exons (or a sequence of shorter exons) flanked by 
intronic regions of similar length hosting reverse com-
plementary matches is favoured over shorter exons 
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(average circRNA exon length 670nt [20] vs 120nt in 
mRNA [49]) [50, 51]. Finally, intron lariats that success-
fully circularize via the joining of a 11nt C-rich motif in 
the 5’ splice site donor sequence to the downstream 7nt 
GU-rich motif in the branch point site form a nascent 
ciRNA (Fig.  1D). The RNA structure formed by these 
specific motifs at the 5’ splice site and branch point site 
are resistant to debranching, releasing a stable ciRNA 
[52, 53].

circRNAs’ unique covalently closed loop structure 
lacking 5’ and 3’ tails confers resistance to RNase R deg-
radation, granting them a much higher half-life than their 
linear mRNA counterparts [54, 55]. This feature makes 
circRNAs an attractive biomarker in disease-based set-
tings, with reports of circRNAs exhibiting differen-
tial expression in gastric, colorectal, ovarian and lung 
cancers, and enzalutamide resistant LNCaP cell lines 
[56–58]. Furthermore, circRNAs can be packaged and 
exported from the cell to bodily fluid via exosomes [30, 
59] facilitating the use of non-invasive liquid biopsies to 
monitor disease progression [60–65]. The mechanism 
of circRNA degradation and clearance remains an active 
area of research. Studies have found that miRNAs can 
facilitate the degradation of circRNAs via Argonaute 2 
(Ago2)-mediated degradation supporting the hypothesis 
of circRNAs as active members in the ceRNA network 
[66]. Other works demonstrate RNase H1-mediated deg-
radation of ciRNAs with high GC content [67] and the 

degradation of circRNAs containing  m6A modifications 
via endoribonucleolytic cleavage [68].

Principles and challenges for circRNA identification
Library preparation
circRNAs represent approximately 1% of the transcrip-
tome pool when compared to poly(A) RNA molecules 
[69], dictating novel strategies to enrich circRNA libraries 
prior to sequencing (Fig.  2). A typical eukaryotic RNA-
Seq library preparation protocol involves the preferential 
selection of RNAs with poly(A) tails or the depletion of 
ribosomal RNAs (rRNAs). Due to circRNAs’ covalently 
closed loop structure, poly(A) selection in libraries will 
almost completely remove all circular transcripts in a 
sample. By contrast, circRNAs are retained in rRNA-
depleted samples and are enriched in samples treated 
with ribonuclease R (RNase R) to deplete linear RNAs. 
Random priming is preferred to oligo(dT) priming, as 
the former generates random oligonucleotide sequences 
for cDNA synthesis independent of poly(A) sequences, 
whilst the latter will generate libraries biased towards 
linear RNAs. One method, termed "RNase R treatment 
followed by polyadenylation and poly(A)+ RNA deple-
tion" (RPAD) has emerged as a leading candidate for 
circRNA library preparation yielding the highest num-
ber of circRNAs and the highest sensitivity in a bench-
mark study [70]. RPAD employs the sequential depletion 
of linear RNAs via RNase R treatment, polyadenylation 

Fig. 1 Biogenesis of circRNAs. A: RNA binding protein circularization, B: Reverse complementary matching sequence circularization e.g ALU 
repeats in humans, C: Lariat-driven circularization, D: Intron lariat circularization. Back-splicing processes A, B and C may undergo additional splicing 
to remove intronic or exonic sequences
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of remaining linear RNAs and a final round of poly(A)+ 
depletion using oligo(dT) beads followed by ribosomal 
RNA (rRNA) depletion to yield a high concentration 

circRNA library for sequencing [71, 72]. In the absence 
of the RPAD method, rRNA depletion or RNase  R+ are 
sufficient for generating RNA-Seq datasets for circRNA 
detection and have been used in benchmark studies 

Fig. 2 Advancements in biochemical and bioinformatics strategies for circRNA detection. Library preparation: Left to right, in order of increasing 
circRNA sensitivity; poly(A)(+): unsuitable for circRNA detection, preferentially selects mRNAs; rRNA(-): ribosomal RNA depletion yielding 
a library with circRNAs and mRNAs; rRNA(-) & poly(A)(-): ribosomal RNA depletion in conjunction with polyadenylation and depletion of poly(A) 
transcripts; rRNA(-) & RNase R(+): ribosomal RNA depletion in conjunction with RNase R ribonuclease treatment depleting mRNAs; RPAD: RNase 
R treatment followed by polyadenylation and poly(A)RNA depletion, yielding a highly pure circRNA library. Alignment strategies: Unmapped 
reads to the reference genome can be used to perform split alignment to identify reads aligning in opposite directions, or to map reads to a BSJ 
pseudo-reference. Validation strategies: Paired-end sequencing greatly reduces false-positives, mates that map across the BSJ whose mates reside 
within the same transcript are indictive of circRNAs
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analysing the performance of circRNA identification 
tools [73].

Sequencing artefacts
Technical artefacts introduced during sequencing can 
lead to the generation of false positives during circRNA 
identification. Reverse transcriptase, an enzyme used to 
synthesise complementary cDNA strands can undergo 
a template-switching event when brought in close prox-
imity to a different RNA template with a suitable region 
for priming [74]. The original, incomplete synthesized 
strand is carried to the newly ’switched‘ cDNA template 
where reverse transcriptase continues generating a chi-
meric molecule capable of mimicking alternative splicing 
and backsplicing. Alarmingly, these template switching 
events can account for up to 35-55% of the isoforms com-
putationally detected for a gene [75]. Sequencing librar-
ies that use adapter-ligation steps are at risk of generating 
chimeric sequences – albeit at a much lower level. Finally, 
incorrectly called bases at the beginning or end of exons 
in genes containing highly homologous sequences can 
generate false positive splice site signals (GU/AG, etc.) 
[76]. With respect to circRNAs, these sequencing errors 
can lead to sites that are mistakenly identified as back-
splice sites when identifying circRNAs in samples. Due to 
the low levels of circRNA expression in cells when com-
pared to other RNA transcripts, the presence of sequenc-
ing artefacts cannot be overcome by simply applying a 
read depth filter to quantification results. circRNA iden-
tification tools typically require paired-end data to over-
come this source of error by requiring read 1 to map to 
the back-splice junction (BSJ) and its corresponding read 
2 pair to map in the same transcript within a fixed dis-
tance [19].

BSJ‑based circRNA identification
The main step of any circRNA analysis is the identifica-
tion of circRNAs in RNA-Seq datasets. This analysis is 
predicated on the detection of the BSJ, i.e the scrambled 
exon junctions representing the joining of an upstream 
5’ donor site to the downstream 3’ acceptor site to form 
a circular structure. The majority of circRNA identifica-
tion tools can be classed as one of two sub-groups: seg-
mented-based-approach, whereby anchors (fixed-length 
segments taken from the end of reads) are extracted 
from unmapped sequencing reads and re-mapped to the 
genome; or pseudo-reference based in which a custom 
database of manually curated BSJ sites are generated and 
used to map the sequencing reads (Fig. 2). The first strat-
egy allows for de novo circRNA identification whilst the 
second is constrained to exons contained within the ref-
erence annotation file used for constructing the pseudo-
reference database. As circRNA identification tools 

evolved, developers began to blend the two approaches 
and incorporate BSJ sequence context to optimize the 
process of circRNA identification (Table 1).

The first circRNA identification analysis performed 
by Salzman et al. (2012) [19] used the pseudo-reference 
based approach to identify circRNAs in ALL samples. 
Reads that mapped contiguously to RefSeq annotated 
genes using Bowtie [139] were considered representa-
tive of linear transcripts and removed from the analysis. 
Subsequently, the RefSeq database was used to create a 
custom database of all intragenic exon-exon junctions 
against which reads that failed to align were mapped. An 
exon scrambling event was flagged if read 1 mapped to a 
non-canonical exon-exon junction as defined by the cus-
tom RefSeq database and read 2 mapped within the same 
transcript. The number of reads spanning the scrambled 
exon junction was used to estimate the relative abun-
dance of candidate circRNAs. In contrast to the pseudo-
reference based approach, the first tool created for the 
purpose of circRNA detection ‘find_circ’ [22] utilises the 
segmented-based approach. Firstly, paired-end reads are 
aligned to the genome to extract reads that do not contig-
uously align. A customised script then splits unmapped 
reads to obtain 20 nucleotide anchor sequences origi-
nating from the 5‘ and 3‘ ends of the reads. The anchors 
are re-aligned to the genome, with anchors mapping in 
reverse orientation extended to identify the breakpoint 
site in the anchor. The resulting BED file is filtered using 
the following criteria to arrive at a set of circRNAs: 1) 
splice sites must be flanked by GU/AG signals; 2) unam-
bivalant breakpoints; 3) less than 2 mismatches in the 
extension procedure; 4) breakpoint cannot reside more 
than 2 nucleotides inside the anchor; 5) more than 2 
reads must support the BSJ site and 6) splice sites must 
not be more than 100Kb apart.

UROBORUS [138] adopts a similar approach to ‘find_
circ’, collecting and extracting 20bp anchors from reads 
that failed to map contiguously to the reference genome 
using TopHat. Anchor segments representative of a cir-
cRNA BSJ site mapped in reverse orientation within the 
same transcript with an overhang of >20bp at either end 
of both segments are termed ‘balanced mapped junc-
tions’ (BMJ) whilst segments with an overhang <20bp 
in one read are termed ‘unbalanced mapped junctions’ 
(UMJ) and subject to different extension strategies. Both 
BMJ reads are separately extended outwards to the near-
est splice-site to form paired-end segments, whilst for 
UMJ reads, the shorter mate is discarded and the sin-
gle mapped seed is outwardly extended to the nearest 
splice-site (an extension distance must not exceed the 
length of the read minus 3bp). Bowtie is then used to 
remap the paired-end and single extended segments; seg-
ments aligning to the reference genome in the opposite 
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Table 1 Bioinformatic tools for circRNA identification, quantification, isoform detection, full circle reconstruction, target prediction and 
differential expression analysis

Tool name Descriptiona Installationb Alignerc Language Ref

ACFS Identification & quantification 
of circRNAs

Manual BWA, BLAT Perl [77]

ACVal idator Assembly based circRNA detection Manual, pip BWA, Bowtie2 Python2 [78]

ANNOg esic Archael/bacterial circRNA identifica-
tion

Manual, pip3, Docker Segemehl Python3 [79]

AutoC irc Fast identification of circRNAs Manual Bowtie2 C++,Perl [80]

BIQ Identify circRNAs using k-mers span-
ning BSJ

Manual k-mer C++,Perl, JavaScript [81]

CircA ST Full circle reconstruction, assemble & 
quantify circular isoforms

Manual TopHat Python2 [82]

CircD BG De Bruijn graph detection of circR-
NAs

Manual k-mer C++ [83]

circD eep circRNA ifdentification using deep 
learning

Manual k-mer Python3 [84]

CIRCe xplor er Identify, quantify & annotate 
circRNAs

Conda, pip, BioContainers STAR, TopHat Python2 [47]

CIRCe xplor er2 Identify, quantify & annotate circR-
NAs with updated De novo module

Conda, pip, BioContainers BWA, MapSplice, Segemehl, STAR, 
TopHat

Python2 [85]

CIRCe xplor er3 Compare circRNA & linear expression Manual Hisat2, StringTie, CIRCexplorer2 Python3 [86]

circFL- seq Detect circRNA isoforms from nano-
pore reads

Manual, pip minimap2 Python3 [87]

circL GB- circM RT Predicting circRNA regulatory inter-
actions by machine learning

Manual NA Python2 [88]

circM eta Downstream functional analysis 
of circRNAs

devtools NA R [89]

CircM arker Fast identification of circRNAs Manual k-mer C++, JavaScript [90]

CirCo mPara Automated detection of circRNAs 
usign integrated approach

Manual, Docker Multiple Python2, R [91]

CirCo mPara2 Automated detection of circRNAs 
using integrated approach

Manual, Docker Multiple Python2, R [92]

CircP ro circRNA coding potential using RNA-
Seq & Ribo-Seq reads

Manual BWA Perl [93]

circR NA_ finder Identification of circRNAs Conda, BioContainers STAR Perl [27]

circR NAFis her Identification of circRNAs using 
statistical framework

Manual Bowtie2 Perl [94]

circR NApro filer Downstream functional analysis 
of circRNAs

BiocManager NA R [95]

circR NAwrap Automated detection, abundance, 
isoform & DE analysis

Manual Multiple UNIX [96]

circt ools Suite of tools to identify, quantify, 
visualise & perform DEA

Docker, pip3 STAR Python3,R [97]

circs eq_ cup Full-length characterisation of cir-
cRNAs

Manual TopHat, STAR, Segemehl Python2 [98]

CircS plice Detect alternative splicing events Manual STAR Perl [99]

CIRI Identification & quantification 
of circRNAs

Manual BWA Perl [100]

CIRI2 Identification & quantification 
of circRNAs

Manual BWA Perl [101]

CIRI- AS Alternative circRNA splicing Manual BWA Perl [102]

CIRI- deep Predict differentially spliced circRNAs Conda NA Python3 [103]

CIRI- full Full circle reconstruction Manual BWA JavaScript [104]

CIRI- long Identify circRNAs in Nanopore reads Manual, pip BWA, minimap2 C++, Python3 [105]

CIRIq uant Identification, quantification, RNAase 
R correction, DEA of circRNAs

Manual, pip BWA, HISAT2 Python2 [106]

https://github.com/arthuryxt/acfs
https://github.com/tgen/ACValidator
https://annogesic.readthedocs.io/en/latest/
https://github.com/chanzhou/AutoCirc
https://github.com/pmenzel/biq
https://github.com/xiaofengsong/CircAST
https://github.com/lxwgcool/CircDBG
https://github.com/UofLBioinformatics/circDeep
https://github.com/YangLab/CIRCexplorer
https://github.com/YangLab/CIRCexplorer2
https://github.com/YangLab/CLEAR
https://github.com/yangence/circfull
https://github.com/Peppags/circLGB-circMRT
https://github.com/lichen-lab/circMeta
https://github.com/lxwgcool/CircMarker
https://github.com/egaffo/CirComPara
https://github.com/egaffo/CirComPara
https://bis.zju.edu.cn/CircPro/
https://github.com/orzechoj/circRNA_finder
https://github.com/duolinwang/CircRNAFisher
https://bioconductor.org/packages/release/bioc/html/circRNAprofiler.html
https://github.com/liaoscience/circRNAwrap
https://jakobilab.org/research/circtools/
https://github.com/bioinplant/circseq-cup
http://gb.whu.edu.cn/CircSplice/userguide.html
https://sourceforge.net/projects/ciri/files/
https://sourceforge.net/projects/ciri2/files/
https://sourceforge.net/projects/ciri/files/CIRI-AS/
https://github.com/gyjames/CIRI-deep
https://sourceforge.net/projects/ciri/files/CIRI-full/
https://sourceforge.net/projects/ciri/files/CIRI-long/
https://sourceforge.net/projects/ciri/files/CIRIquant/
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Table 1 (continued)

Tool name Descriptiona Installationb Alignerc Language Ref

CIRI- vis Visualising circRNA alignments & 
isoforms

Manual NA JavaScript NA

CirRBP Stacked generalization ensemble 
deep learning model to identify RBP 
binding sites

Web server NA NA [107]

CirRN APL circRNA identification using machine 
learning

Web server NA NA [108]

CRIP Predict circRNA-RBP interactions 
using neural networks & stacked 
codon-encoding

Manual NA Python3 [109]

CYCLeR Reconstruct & quantify circRNAs Docker BWA, STAR, kallisto R [110]

DCC Identify & quantify circRNAs Conda, BioContainers STAR Python2 [73]

DEBKS Downstream differential circRNA 
analysis

Conda, pip NA Python3 [111]

DeepC irCode circRNA ifdentification using deep 
learning

Manual NA Pyton2, R [112]

exceR pt extracellular circRNA profiling Manual, Docker Bowtie2, STAR JavaScript, UNIX [113]

Fcirc SEC Full sequence reconstruction CRAN, devtools NA R [114]

find_ circ Identification & quantification 
of circRNAs

Conda, BioContainers Bowtie2 Python2 [22]

FUCHS Alternative circRNA splicing Manual NA Python2, R [115]

hppRNA Workflow for mRNA, lncRNA, circRNA 
identification & quantification

Manual STAR Perl [116]

isoCi rc Full length circRNA isoform recon-
struction

Manual, pip Minimap2 [117]

JEDI circular RNA prediction based 
on junction encoders and deep 
interaction among splice sites

Manual NA Python3 [118]

KNIFE Statistical based circRNA identifica-
tion

Manual Bowtie, Bowtie2 Python, R [119]

MapSp lice2 Splice-aware aligner Conda, BioContainers Bowtie C++ [120]

miARma circRNA quantification, miRNA 
targets & DEA

Manual BWA Perl [121]

NCLco mpara tor Screening of NCLscan results Manual NA Python2, R, UNIX [122]

NCLsc an Identification of non-co-linear 
transcripts

Manual BWA, BLAT Perl Python2 [123]

nf- core circr na Autmated circRNA quantification, 
miRNA target prediction & DEA

Conda, Docker Multiple nextflow [124]

Pcirc Random forest plant circRNA identifi-
cation

Manual Bowtie2, TopHat2 Python3, R [125]

Pcirc RNA_ finder Plant circRNA identification Manual NA Perl, Python2 [126]

PRAPI circRNA identification from PacBio 
Iso-Seq

Manual GMAP Python2 [127]

Predc ircRNA Classification of circRNAs using 
hybrid features

Manual NA Python2 [128]

Predc ircRN ATool circRNA detection based on ther-
modynamic properties of flanking 
introns

Manual NA Python2 [129]

PTESfi nder Identify post-transcriptional exon 
shuffling events

Manual Bowtie JavaScript, UNIX [130]

PFv2 Annotation free circRNA detection Manual STAR, Bowtie2 Python3, Java [131]

RAISE Identification, quantification & inter-
nal structure

Manual Bowtie2, BWA, HISAT2, STAR, 
StringTie

UNIX [132]

ROP Identify RNAs in unmapped reads Manual NA Python2 [133]

Segem ehl Short read mapper capable 
of detecting circRNAs

Conda, BioContainers Segemehl C++ [134]

https://sourceforge.net/projects/ciri/files/CIRI-vis/
http://www.bioinformatics.team
http://server.malab.cn/CirRNAPL/
https://github.com/kavin525zhang/CRIP
https://github.com/stiv1n/CYCLeR
https://github.com/dieterich-lab/DCC
https://github.com/yangence/DEBKS
https://github.com/BioDataLearning/DeepCirCode
https://github.gersteinlab.org/exceRpt/
https://github.com/tofazzal4720/FcircSEC
https://github.com/marvin-jens/find_circ
https://github.com/dieterich-lab/FUCHS
https://github.com/NextGenBioinformatics/hppRNA
https://github.com/Xinglab/isoCirc
https://github.com/hallogameboy/JEDI
https://github.com/lindaszabo/KNIFE
https://github.com/davidroberson/MapSplice2
https://github.com/eandresleon/miARma-seq
https://github.com/TreesLab/NCLcomparator
https://github.com/TreesLab/NCLscan
https://github.com/nf-core/circrna
https://github.com/Lilab-SNNU/Pcirc
https://github.com/bioinplant/PcircRNA_finder
http://www.bioinfor.org/tool/PRAPI
https://github.com/xypan1232/PredcircRNA
https://sourceforge.net/projects/predicircrnatool/files/
https://sourceforge.net/projects/ptesfinder-v1/
https://github.com/osagiei/pfv2/tree/master
https://github.com/liaoscience/RAISE
https://github.com/smangul1/rop
http://legacy.bioinf.uni-leipzig.de/Software/segemehl/
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orientation with read support >2 as detected by the 
UROBORUS algorithm are representative of circular 
candidates.

Post-transcriptional exon shuffling finder (PTESfinder) 
[130] combines the segment-based approach with the 
pseudo-reference based approach to identify circular 
candidates using Bowtie. Briefly, 20bp segment anchors 
are extracted from the ends of input sequencing reads 
and mapped to the reference transcriptome. Anchors 
that map to the same gene but in an inverted orientation 
are identified and used to construct a pseudo-reference 
(termed ‘PTES constructs’) by concatenating the last 
65bp of the underlying 5’ exon and the first 65bp of the 
3’ exon. Reads are then aligned to the PTES construct, as 
well as genomic and transcriptomic references in order to 
generate mapping scores for circular candidate filtering. 
Candidates are marked as circRNAs when they exhibit 
high mapping scores to the PTES construct and low 
scores to the genomic and transcriptome reference.

The concept of mapping reads to genomic, transcrip-
tomic and BSJ databases to filter circRNA candidates 
was further improved upon by KNIFE [119]. KNIFE 
maps reads to rRNA sequences, genomic, transcrip-
tomic and a customised BSJ reference database using 
Bowtie2, discarding candidates that map with high 
scores to databases other than the custom BSJ refer-
ence. Where paired-end RNA-Seq data is available, the 
candidate reads spanning the BSJ site are subsetted into 
circRNA and decoy reads based on mapping informa-
tion available in order to mitigate against false-positive 
BSJ reads generated by sequencing errors. For reads that 
fail to map to any of the databases, a de novo analysis is 
performed using Bowtie coupled with a segment-based 
approach whereby segments are used to construct a de 
novo index. The unmapped reads are then re-aligned to 
the de novo index using Bowtie2 with the same criteria 
for pseudo-reference based alignment. KNIFE is one of 

the first circRNA identification tools to employ a statis-
tical framework by obtaining a posterior probability for 
each circRNA candidate to predict if it is a true posi-
tive by using a logistic generalized linear model (GLM) 
based on the alignment features of read 1. In contrast to 
the circRNA identification tools discussed thus far which 
require extracting anchor sequences to identify putative 
BSJ sites using Bowtie or Bowtie2, both BWA and STAR 
are capable of directly detecting breakpoint events and 
chimeric fusions during read alignment. circRNA iden-
tification tools utilizing BWA or STAR therefore cir-
cumvent the need to manually extract anchors for BSJ 
identification using customized scripts, streamlining the 
process of circRNA identification and reducing computa-
tional overheads.

CircRNA Identifier (CIRI) [100] is one such tool that 
utilises BWA-MEM sequence alignment mapping (SAM) 
information to identify reads in which two segments of 
the read align in chiastic order termed ‘paired chiastic 
clipping’ (PCC) signals. Subsequent filtering leveraging 
paired-end mapping (PEM) information, GU/AG splice 
signals and mapping rates to homologous sequences 
removes false positives to arrive at a set of high-confi-
dence circRNAs. One shortcoming of CIRI is its han-
dling of unbalanced junction reads. Unbalanced junction 
reads are segments of length <19bp which are ignored 
by BWA-MEM to prevent multi-mapping and errone-
ous mapping, therefore lacking the necessary alignment 
information in the SAM file for CIRI to detect PCC sig-
nals. CIRI uses a dynamic programming algorithm to 
re-map unbalanced junction reads to balanced junc-
tion reads originating from the same junctions detected 
in the first alignment step. This step is computationally 
expensive and leads to the generation of false positives, 
an area specifically addressed by its successor, CIRI2 
[101]. CIRI2 is more cautious when addressing unbal-
anced junction reads and balanced junction reads with 

Table 1 (continued)

Tool name Descriptiona Installationb Alignerc Language Ref

Stack CirRN APred Classification of circRNAs using Ran-
dom Forest, LightGBM & XGBoost

Manual NA NA [135]

STARC hip Identify circRNAs from STAR junction 
files

Manual NA Perl, UNIX [136]

Ularc irc Rshiny visualisation of circRNAs devtools NA R [137]

UROBO RUS circRNA identification Manual Bowtie Perl [138]
a DEA = Differential expression analysis

 bManual, requires one of source installation from GitHub, compilation using make, prerequisite software to be previosuly installed or a combination of all three. 
BioContainers, all Conda packages are automatically converted to container images hosted on BioCo ntain ers. Available via container clients such as singularity, docker 
etc

 cNA refers to downstream tools that consume previously generated circRNA identififcation tool outputs as input, or classification tools that leverage experimentally 
validated interactions for prediction tasks

https://github.com/xwang1427/StackCirRNAPred
https://github.com/LosicLab/starchip
https://github.com/VCCRI/Ularcirc
https://github.com/WGLab/UROBORUS
https://biocontainers.pro/
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low mapping quality by utilising a maximum likelihood 
estimation (MLE) based on multiple seed matching. The 
undetermined segment of a putative BSJ read is divided 
into n seeds of length m (for example, a 50bp segment 
divided into five seeds of length 10bp) to determine 
if the segment belongs to a forward splice region or a 
back-splice region. The matched-seed numbers derived 
from the back-splice region (k1) and the forward-splice 
region (k2) are compared to produce two possible results 
k1 k2= back-splice region; k1≤ k2= forward-splice region. 
Since its publication in 2018, CIRI2 has become one of 
the most popular circRNA identification tools and has 
since been subsumed by CIRIquant [106] which extends 
its functionality by creating a pseudo-reference based on 
circular candidates detected by CIRI2, against which can-
didate reads are re-aligned using HISAT2. In addition to 
improved alignment, CIRIquant performs RNase R cor-
rection, linear RNA quantification and automated differ-
ential expression analysis of circRNAs. The suite of CIRI, 
CIRI2 and CIRIquant tools are all capable of calculating 
the ratio of circRNA BSJ reads and linear mRNA reads 
at a junction (CIRI2 and CIRIquant output this directly) 
to delineate the splicing preference in precursor mRNAs. 
When compared between conditions of interest, users 
can delineate differential splicing patterns.

Sailfish-cir [140] utilises the outputs of CIRI, KNIFE, 
circRNA_finder, or circRNA coordinates in BED format 
to transform candidate circular transcripts to pseudo-
linear transcripts. Using the Sailfish model [141], Sailfish-
cir estimates the expression of both linear and circular 
transcripts spanning the pseudo-reference. Users should 
be aware that Salifish-cir does not report BSJ counts, 
but rather outputs transcripts per million (TPM). Given 
both linear and circular TPM estimates are given for 
a junction, the junction ratio can be calculated manu-
ally for parent gene - circRNA ratio tests. ACFS [77] is 
another identification tool that uses BWA, however, its 
approach to circRNA identification is somewhat unor-
thodox. ACFS converts paired-end data to single-end 
data and collapses the reads prior to alignment, borrow-
ing a strategy commonly used for miRNA alignment and 
quantification. After identifying candidate reads contain-
ing segments mapping in inverse orientation, ACFS uses 
maximum entropy models to predict the underlying BSJ 
sequence most likely to be generated by splicing. The 
advantage of this approach is that non-canonical dinucle-
otide splice sites are considered. The authors also point to 
the tool’s ability to detect fusion circRNAs generated by 
chromosomal translocation events. This raises the ques-
tion as to how ACFS controls for sequencing artefacts 
which can mimic fusion events - particularly when the 
tool discards paired-end read information.

circRNA_finder [27] and CIRCexplorer [47] were the 
first tools to use the outputs from the STAR aligner to 
identify circRNAs. STAR is capable of directly detecting 
and writing chimeric reads to the output binary align-
ment map (BAM) file or separately to a junctions.out 
tab-separated text file when ‘–chimSegmentMin’ is set 
to a positive integer. Both circRNA_finder and CIRCex-
plorer take advantage of the lightweight junctions.out 
file which contains within each line the genomic coor-
dinates and CIGAR flags corresponding to each read 
segment that comprise the chimeric RNA molecule. cir-
cRNA_finder imposes filtering on the putative circRNAs, 
allowing at most 3 mismatches, uniquely mapped reads, 
a maximum distance between splice-donor sites of 100kb 
and the condition that if one read spans the BSJ site, its 
mate should reside within the interval between the splice 
donor and acceptor site. Interestingly, CIRCexplorer does 
not impose such filtering strategies. It instead benefits 
from using an input reference gene annotation file to 
annotate putative circRNAs, thereby constraining results 
to exon-exon boundaries contained within the reference 
file, reducing the rate of false-positives. CIRCexplorer 
was superseded by CIRCexplorer2 [85], adding a suite of 
new modules for circRNA identification including align-
ment using TopHat-Fusion [142], annotation of circR-
NAs, de novo assembly of novel circRNAs, characterising 
alternative-splicing events within circRNAs and support 
for parsing BWA [143], MapSplice [120], STAR [144] and 
Segemehl [134] outputs. The deprecation of TopHat and 
TopHat-Fusion has resulted in CIRCexplorer2 largely 
becoming a tool for the downstream parsing and anno-
tation of outputs from BWA, MapSplice, Segemehl and 
STAR. DCC [73] is yet another circRNA identification 
tool that harnesses the power of the STAR aligner. In its 
recommended workflow, paired-end mates are mapped 
using STAR and each individual mate is processed in the 
same manner, generating three output files per sample – 
joint mapping, mate1 and mate2 junctions.tab files. DCC 
also offers a junction ratio test using CircTest to formally 
test variation in expression between circRNAs and their 
parent gene. We have noted that the sensitivity of cir-
cRNA identification tools using STAR can be drastically 
increased by implementing STAR 2-Pass mode, in which 
the chimeric junctions detected in all samples during the 
first mapping stage can be collected and incorporated 
into the reference genome on the fly during the second 
pass mapping stage for a sample. This method comes at 
the cost of increased false positives [145] and as such we 
recommend users adopt an ensemble approach or set 
suitably strict filtering parameters on detected circR-
NAs when employing STAR 2-Pass mode with circRNA_
finder, CIRCexplorer2 or DCC.
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Finally, there exist splice-aware aligners that are capa-
ble of directly handling unmapped reads for detecting 
circRNAs during the alignment step. Non-co-linear scan 
(NCLscan) [123] and Segemehl [134] are two popular 
tools for this task, however, as NCLscan uses the propri-
etary aligner Novoalign, it’s use is dependent on an active 
Novocraft membership. For this reason Segemehl is con-
sidered the more popular tool in academic circles and has 
been incorporated into CIRCexplorer2 and intergration-
based tools.

Integration‑based identification methods
A study by Hansen et al. (2016) [146] highlighted the dis-
crepancies in results generated by the most popular cir-
cRNA identification tools at the time (circRNA_finder, 
CIRCexplorer, CIRI, find_circ and MapSplice). Strikingly, 
only 854 circRNAs were identified by all tools out of 
the 5071 unique circRNAs detected, indicating that the 
choice of circRNA identification tool drastically impacts 
analyses. Furthermore, the use of RNase  R+ and RNase 
 R- libraries from the same samples permitted the calcula-
tion of false positives returned by each tool. By analys-
ing each paired combination of circRNA identification 
tools, the authors show that circRNA_finder + CIRI 
had the highest rate of false positives (12.9%), whilst 
circRNA_finder + MapSplice achieved the lowest false-
positive rate amongst analysed pairs (8.3%). Perhaps the 
biggest takeaway from the study was that the combina-
tion of all tools yielded a false positive rate of 6.56%, trad-
ing increased precision at the cost of reduced sensitivity. 
In 2018 Hansen [147] performed the same analysis again, 
this time using 11 circRNA identification tools (ACFS, 
CIRCexplorer, CIRCexplorer2, CIRI, CIRI2, DCC, 
find_circ, KNIFE, MapSplice and UROBORUS). Results 
echoed those from 2016, with Hansen providing the fol-
lowing key recommendation when adopting an ensemble 
approach: users should combine results from circRNA 
identification tools that utilise different aligners to avoid 
biases. One such example is circRNA_finder and DCC, 
which both use the STAR aligner. These two algorithms 
are thus less suited for pairing as the false positives gen-
erated are likely to be inherent to the aligner used. The 
analyses performed by Hansen et  al. set new standards 
for best practices surrounding circRNA detection, ush-
ering in a new class of circRNA identification pipelines 
termed ‘integrated tools’ in which the user can select 
one or multiple tools for circRNA identification analysis 
with an automated intersection of results based on user-
defined parameters.

CirComPara, developed by Gaffo et  al. (2017) [91] 
represents the first integration-based identification 
tool offering users the choice of CIRI, CIRCexplorer 
(STAR, BWA or Segemehl) and find_circ. Results are 

configurable by requiring detected circRNAs to have n 
reads spanning their BSJ site or circRNAs to be called by 
at least n tools. Requiring only input sequencing reads, a 
reference FASTA file and a reference annotation file, the 
workflow streamlines the process of circRNA identifica-
tion for users by automatically generating the required 
genome indices, reformatting reference annotation files 
and executing scripts for the analysis. The authors have 
also made the considerable effort to create a docker con-
tainer with all of the necessary software for the analysis 
included, circumventing the need to install any tools 
from source. Gaffo et  al. made substantial upgrades to 
CirComPara in 2022 by releasing CirComPara2 [92]. In 
addition to offering updated circRNA identification tools 
to the user (CIRI2, CIRCexplorer2 (BWA, Segemehl, 
STAR, TopHat), DCC and find_circ), the workflow 
includes an improved expression estimate step when con-
solidating results from multiple tools. In CirComPara, 
circRNA abundances from multiple methods were calcu-
lated using the median of library-normalized BSJ counts 
across tools. In CirComPara2, the authors identify, for 
each method, the number of unique reads spanning the 
BSJ site of a circRNA thereby preserving the information 
returned by each tool used. Similar to CirComPara, Cir-
ComPara2 is packaged in a docker container facilitating 
rapid execution for users.

Several other integration tools exist for circRNA iden-
tification [89, 95, 96, 111, 114], however they operate by 
using as input previously generated results from circRNA 
identification tools, unlike CirComPara and CirCom-
Para2 which produce results directly from raw sequenc-
ing reads. Another novel integration tool that works with 
raw sequencing data is nf-core circrna, a workflow for 
the quantification, miRNA target prediction and differ-
ential expression analysis of circRNAs [124]. The work-
flow takes as input raw sequencing reads, a reference 
FASTA, reference gene annotation file and performs all 
of the preprocessing steps and execution scripts required 
for a circRNA analysis using circRNA_finder, CIRIquant, 
CIRCexplorer2 (STAR), DCC, find_circ, MapSplice 
and Segemehl. Similarly to CirComPara, the user can 
specify custom filtering parameters dictating the inter-
section strategies used on results. With support for 18 
species, the workflow additionally performs automatic 
miRNA target prediction using miRanda and TargetS-
can, and automated differential expression analysis of 
circRNAs between phenotypes of interest provided in an 
optional metadata file. Developed using nextflow DSL2, 
the workflow requires Java version >8, the latest version 
of nextflow and a container client which will automati-
cally download software packages for each analysis step 
(Docker, Apptainer, Conda) facilitating rapid ‘out-of-the-
box’ deployment using a single command.
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Full circle reconstruction
The first iteration of circRNA detection tools discussed 
above are predicated on identifying circRNAs via the 
presence of BSJ reads in sequencing data. Whilst this is 
an effective method to detect and quantify circRNAs in 
RNA-Seq data, the underlying mature spliced sequence 
(i.e the internal structure) of circRNAs remained opaque. 
circRNAs are subject to internal splicing events and 
intron retention (EIcircRNAs), therefore assuming that 
all of the underlying exons are retained within a circRNA 
will lead to false positives when predicting their targets 
based on sequence alignment against miRNA and RBP 
databases. To overcome this limitation and elucidate cir-
cRNA isoforms, coverage of paired-end RNA-Seq reads 
through the circRNA are utilised to characterise read 
densities amongst exons within the circular transcript.

The first tool developed capable of delineating circu-
lar isoforms via de novo construction of circRNA exons, 
CIRI-AS [102], was developed by the same group that 
produced CIRI2. Using the outputs from CIRI2 and a 
BAM file generated by BWA-MEM, the algorithm works 
by analysing local alignment positions of segments within 
candidate BSJ reads and its paired mate to identify for-
ward spliced junctions representative of joined circular 
exons. For each circexon candidate, sequencing depth 
variation, BSJ read pair coverage and splice junctions 
from non-BSJ reads are taken into account. CIRI-AS can 
be performed without a reference GTF file, permitting 
flexible usage with non-reference organisms. In addi-
tion to detecting circexons, CIRI-AS can detect intronic 
or intergenic circRNA fragments (ICFs) when adequate 
sequencing depth is provided. CIRI-full [104] builds on 
CIRI2 and CIRI-AS for full resolution of circRNAs inter-
nal structure. The main premise of CIRI-full revolves 
around the detection of reverse overlap (RO) reads. Dur-
ing reverse transcription, the circular structure of circR-
NAs can cause continuous circumnavigation of reverse 
transcriptase within the circRNA, producing read pairs 
that overlap in reverse orientation. Moreover, the pres-
ence of a 3’-RO overlap in both RO reads indicates the 
full circle has been transcribed facilitating full circRNA 
reconstruction. For RO reads that do not overlap due to 
insert size length, CIRI-full borrows information from 
CIRI2 (BSJ sites) and CIRI-AS (circexons) to produce a 
reconstructed circRNA. Next, a forward-splice graph 
(FSG) is constructed by assembling BSJ and RO reads 
within a detected circRNA BSJ site to model the read 
coverage of each path using Monte Carlo simulations, 
providing resolution of circRNA isoforms.

Full characterization of circRNAs (FUCHs) [115] is 
yet another tool capable of detecting circular isoforms, 
accepting as input results from circRNA_finder, CIRI2, 
CIRCexplorer2, and DCC in conjunction with a BAM file 

containing chimeric reads, linear reads and unmapped 
reads. The first step is to isolate circular reads from the 
BAM file, then identify splicing events within the circu-
lar transcript by detecting exon-skipping events in reads. 
The coordinates of the skipped exons are used to generate 
coverage statistics, assigning reads to one of two circular 
isoforms. The output files generated detail the circular 
candidate’s genomic location coupled with read depth for 
each underlying exon. In this way, researchers can deline-
ate the spliced transcript by removing exons with a read 
count of 0.

circRNA identification using long‑read sequencing
Long-read sequencing technologies developed by Oxford 
Nanopore Technologies (ONT) or Pacific Biosciences 
(PacBio) are capable of producing sequencing reads sev-
eral thousand nt in length, providing full resolution of 
internal exon structure of linear transcripts [148–151]. 
This technology represents a promising avenue for full 
circle reconstruction of circRNAs over short-read based 
algorithms which struggle to identify circRNA FSJ sites 
located at distance from the BSJ reads [102, 104, 115]. 
However, in most cases cDNA sequencing is performed 
using oligo(dT) primers which are unsuitable for circR-
NAs lacking poly(A) tails, therefore requiring an adapta-
tion of the amplification step prior to sequencing.

IsoCirc [117] is a strategy for characterising full-length 
circRNA isoforms using rolling circle amplification 
(RCA) followed by ONT sequencing. Here, samples are 
first treated with rRNA depletion and RNase R to deplete 
linear RNAs. Next, cDNA/circRNA double-stranded 
hybrids are generated using random hexamer priming 
in conjunction with reverse transcriptase, after which 
overhangs present in the cDNA circle are removed 
using Mung Bean endonuclease. The cDNA circle is 
then ligated using SplintR ligase to form a circular tem-
plate for the generation of long concatemeric ssDNAs 
for sequencing via RCA. The strategy to generate con-
catemeric ssDNAs is a key step in the isoCirc proto-
col, as it allows for the generation of a final ‘consensus’ 
circRNA sequence thereby minimising the error rates 
associated with ONT sequencing [152]. Computation-
ally, the consensus circRNA sequence is generated using 
Tandem Repeats Finder [153]. Two copies of all consen-
sus sequences that pass filtering are concatenated and 
used for downstream mapping to the reference genome 
via minimap2 [154]. Subsequent filtering strategies are 
used to identify both the optimal alignment record per 
consensus sequence and the optimal consensus sequence 
per long read. Only candidate circRNAs with high qual-
ity BSJ and FSJ sites are reported as full-length circRNA 
isoforms, whilst single-exon circRNAs require only high 
confidence BSJ sites.
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In contrast to the RCA amplification method employed 
by isoCirc, CIRI-long [105] utilises rolling circle reverse 
transcription (RCRT) to synthesise circRNA cDNA. First, 
circRNAs are enriched using a customised approach for 
RNA-seq library preparation. rRNA depletion is per-
formed using a RiboZero kit followed by poly(A)-tailing 
prior to RNase R digestion to increase linear RNA degra-
dation [155]. The remaining circRNAs in the library are 
amplified using random primers and SMARTer reverse 
transcriptase to initiate RCRT and cDNA synthesis. 
This step generates long cDNA fragments, within which 
exists multiple copies of full-length circRNA sequences. 
SMARTer sequencing adapters are added to each cDNA 
fragment to enable effective amplification in the absence 
of poly(A) tails. Once cleaned circRNA reads have been 
obtained, CIRI-long has two main steps: 1) candidate 
circRNA identification and 2) isoform colapsing. Step 1 
involves using k-mers to search for repetitive sequences 
and the boundaries of circRNA fragments within the 
long reads. Next, a cyclic consensus sequence (CSS) for 
each read is generated using the SPOA library [156], with 
an 80% similarity score as defined by the Levenshtein dis-
tance used to filter high-confidence circRNA candidates. 
CSSs of length >150bp are then mapped to the refer-
ence genome using minimap2, whilst shorter reads are 
mapped using BWA MEM. An iterative alignment strat-
egy is used during CSS alignment, whereby unmapped 
segments residing in the head or tail region of the CSS 
are appended to the opposite end of the CSS. Subsequent 
realignment determines if the re-ordered CSS obtains 
better scores than the previous alignment. This itera-
tive process converges once the transformed CSS is fully 
aligned to the reference genome with high scores. In step 
2, candidate circRNA isoforms are detected by cluster-
ing reads based on their location within the reference 
genome. All sequences within a cluster are subject to 
hierarchical clustering based on pairwise sequence simi-
larity, producing consensus sequences for each cluster 
representative of a circRNA isoform.

circFL-seq [87] is another tool for detecting circRNAs 
using long reads, sharing similarities with CIRI-long in 
terms of library preparation and the generation of cir-
cRNA cDNA templates using RCRT. The bioinformatics 
component is divergent, relying on a pseudo-reference 
based approach after identifying consensus sequences. 
Reads are initially aligned to the reference genome using 
minimap2 to identify chiastic overlapping segments 
indicative of candidate circRNA reads (CCR). During 
this step, CCRs are classified as normal, fusion on same 
chromosome or fusion on different chromosome. The 
boundary of the chiastic segment of the CCR are used as 
a proxy for BSJs, and subsequently used to concatenate 
two sequences 150bp upstream to 150bp downstream of 

the BSJ to generate a pseudo reference sequence for each 
read. CCRs are then aligned against the pseudo refer-
ence, corrected using multiple aligned BSJ sites, reference 
annotations and canonical splicing motifs. Full length cir-
cRNAs are produced leveraging the BSJ and FSJ informa-
tion for a given circRNA. circFL-seq offers two optional 
modules for low quality reads; De novo self-correction 
(DNSC): consensus sequences of reads are detected 
using TideHunter [157]. Following removal of consen-
sus sequences containing long repetitive elements using 
Tandem Repeats Finder [153], a set of filtered consensus 
sequences are available for downstream processing. cRG 
mode: using the self-corrected CSs, RG mode is re-run 
using a query sequence of three copies of the corrected 
CS. The authors of circFL-seq found that cRG correction 
reduced the error rate of both indels and mismatches in 
the consensus sequence, and thus should be run for all 
deployments of circFL-seq.

In comparisons between the tools [87, 158], the RCA 
method was shown to produce longer reads than the 
RCRT method (up to 50kb vs. 1kb). Whilst more expen-
sive, the longer reads produced by the RCA method allow 
for error correction during the consensus sequence iden-
tification step. Of note, the ligation step by isoCirc may 
introduce false positives via the ligation of residual linear 
RNA or truncated circRNA cDNA fragments that are 
difficult to resolve computationally. The RCRT method 
coupled with anchor priming or template switching 
employed by circFL-Seq and CIRI-long, respectively, are 
more resistant to this issue. In a direct comparison using 
HEK293 cells and mouse brain tissue, circFL-Seq was 
shown to be more sensitive than CIRI-long (HEK293: 
27869 vs. 15242; mouse: 18396 vs. 9258 known BSJ 
sites), with similar rates of precision [87]. Conversely, in 
comparison with isoCirc with deep sequencing librar-
ies, circFL-Seq was less sensitive than isoCirc (34046 
vs. 79312 known BSJ sites). IsoCirc recovered far more 
circRNAs expressed at low levels (38846 vs. 2511, read 
count=1) indicating that whilst more expensive, isoCirc 
is the most sensitive method for detecting circRNAs 
from long-read sequencing.

Machine learning circRNA identification
circRNA biogenesis can be attributed to hallmarks within 
the flanking intronic regions: reverse complimentary 
matching (RCM) sequences [159] (also referred to as 
inverted repeats [160]), and more specifically, ALU and 
tandem repeat motifs in humans [20] facilitating the gen-
eration of RNA hairpin structures that bring distal splice 
sites within close spatial proximity. These hallmarks cou-
pled with evolutionary conservation scores, secondary 
structure information and the density of single nucleo-
tide polymorphisms (SNP) within conserved miRNA 
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binding sites [161] have been identified as predictive fea-
tures for discriminating circRNAs from other classes of 
long non-coding RNAs (lncRNAs) using statistical and 
machine learning (ML) based approaches [84, 108, 128, 
135]. Released in 2015, PredcircRNA [128] represents the 
earliest attempt at leveraging multiple layers of contex-
tual sequence information to discriminate circRNAs vs. 
lncRNAs. The 188 features extracted from transcripts for 
training and testing the PredcircRNA model fall under 
one of four categories: 1) Graph features from RNA struc-
tures: nodes represent nucleotides and edges provide 
higher level information such as sequence backbone con-
nection or bonds between base pairs [162]. To reduce the 
dimensions of the graph Random Forest (RF) was applied 
to extract the top 101 features. 2) Sequence conserva-
tion scores were computed using PhyloP conservation 
tracks [163], wherein the mean, variance, and maximum 
conservation scores within each transcript were deter-
mined. Additionally, the authors calculated the cumula-
tive successive conservation score and the frequencies 
of nucleotides surpassing binned score thresholds. 3) 
Component composition scores: tri-nucleotide composi-
tion, GC content, sequence length, the presence of GT, 
AG, GTAG and AGGT motifs were extracted. 4) ALU, 
tandem repeats, ORFS and SNP: genome tracks for ALU 
sites, ORF sequences and SNP sites were downloaded 
and qunatified at the transcript level. The 188 extracted 
features were ranked in terms of importance using RF, 
with conservation features, GT/AG motifs and compo-
nent composition scores identified as the most influential 
features for circRNA classification. The authors next uti-
lised three machine learning classifiers, RF, support vec-
tor machines (SVM) and multiple kernel learning (MKL) 
to predict circRNAs, with the MKL method providing 
the best results in both the training and the independ-
ent test sets. Similarly to PredcircRNA, circDeep [84] 
leverages sequence features to classify circRNAs. The 
authors developed three novel descriptors to classify cir-
cRNAs; 1) RCM descriptor: a H-score which represents 
the presence of RCMs, 2) Conservation descriptor: utilis-
ing phastCons [164], the maximum, mean and median 
value of averaged conservation scores per exon are cal-
culated (intronic transcripts are treated as a single exon) 
in addition to analysing the number of successive bases 
whose scores are above a given threshold, and 3) Asym-
metric convolutional neural network - bidirectional long 
short-term memory network (ACNN-BLSTM) descrip-
tor: a deep learning model that learns the local sequence 
context of transcripts as well as long-range dependen-
cies between sequence features learned by ACNN layers. 
Using each of these three descriptors, the authors devel-
oped a fusion model to combine the three heterogene-
ous modalities termed ‘feature fusion fine-tuned’ which 

boasts greatly improved run times over PredcircRNA 
(largely due to the absence of GraphProt in the pipeline) 
and an impressive 12% increase in accuracy.

A limitation of these methods is that splice site and 
back-splice junctions are ignored, focusing instead on 
surrounding sequence context and classification tasks 
delineating mRNAs vs. lncRNAs vs. circRNAs. Given 
the unique BSJ of circRNAs, it is key to understand the 
properties and relationships between splice sites that 
constitute canonical linear splicing and a circular back-
splicing event. DeepCirCode [112] analyzes the nucleo-
tide sequences of two splice sites and predicts whether 
the two splice sites produce a back-splicing event charac-
teristic of circRNAs. Briefly, the DeepCirCode model was 
trained using 50nt sequences surrounding each back-
splicing instance in a custom dataset (back-splice sites 
detected by at least two computational methods present 
in circRNADb [165] or circBase [166]) and fed to a con-
volutional neural network (CNN). By leveraging the posi-
tion weight matrices (PWMs) learned by DeepCirCode, 
users can predict the likelihood of a given sequence to 
produce a back-splicing event. Junction encoders and 
deep interation (JEDI) among splice sites [118] is a tool 
that optimizes a deep learning model for circRNA predic-
tion in the absence of annotated back-splice sites as train-
ing data (zero-shot learning). Unlike its predecessors, 
JEDI is not limited to interrogating only two splice sites. 
In this way, it can model the sequence context and flank-
ing regions of all splice sites within an transcript, mak-
ing it an effective tool for classifying circRNAs that are 
derived from genes which also produce linear transcripts.

The latest addition to the suite of circRNA machine 
learning tools, CIRI-deep [103], infers differentially 
spliced circRNA (DSC) events between tissues/samples 
of interest in various types of datasets by leveraging the 
previously published Deep-learning Augmented RNA-
seq analysis of Transcript Splicing (DARTS) framework 
[167]. Briefly, the CIRI-deep neural network model was 
constructed by running CIRIquant [106] on 397 filtered 
samples from RNA Atlas [168] and CircAtlas [169] to 
obtain back-splice junction (BSJ) counts and forward-
splice junction (FSJ) counts representative of cirRNA 
and linear mRNA reads spanning junction sites. Dataset 
labels were generated in a pairwise fashion using DARTS 
Bayesian Hypothesis Testing with an uninformative prior 
(DARTS BHT-flat) wherein the junction ratios were used 
to assign high-confidence differential or unchanged splic-
ing events between samples. Next, 3527 relevant cir-
cRNA cis sequence features were extracted in addition 
to the expression levels of 1499 trans RBPs associated 
with circRNA biogenesis-related genes, splicing factors 
and RNA degradation enzymes. The design and under-
lying model employed by CIRI-deep offers a two-fold 
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advantage for users: 1) By developing a model trained on 
approximately 25 million DSC events and both cis and 
trans factors, CIRI-deep can predict DSC events inde-
pendent of BSJ reads by incorporating a Bayesian prior 
(DARTS BHT-info). This permits the usage of CIRI-deep 
on datasets with low replicates, low sequencing depth 
and 10X single cell or spatial transcriptomics datasets in 
which circRNA BSJ reads are sparsely detected. 2) CIRI-
deepA, a variant of CIRI-deep, was trained on trans RBP 
gene expression data from poly(A) selected datasets in 
RNA Atlas, permitting the detection of DSC events in 
large cohort datasets such as GTEx [170] and TCGA 
[171]. The authors of CIRI-deep conceed that the model 
is not without limitations, particularly in the context of 
cancer samples in which mutations to cis elements and 
dysregulation of trans factors are not suitable for use by a 
model trained on reference genomes.

Overview of computational challenges
Hypotheses generated about the genome-wide role of cir-
cRNAs must be based on accurate quantification of cir-
cRNAs to mitigate the propagation of false positives in 
published literature. In this section, we discuss current 
computational methods used by researchers to arrive at a 
set of high confidence circRNAs.

circRNA detection strategies
Researchers should be aware that tools will generally fall 
under one of two categories: 1) segmented based cir-
cRNA detection or 2) pseudo-reference based circRNA 
detection. In the segmented based approach, unmapped 
reads (i.e reads that do not contiguously align to the ref-
erence) are collected and split into segments in order 
to identify reads that map to the back-splice junction. 
Whilst this method permits the discovery of de novo cir-
cRNAs and is more suited for organisms with incomplete 
or poorly annotated reference genomes, the method is 
less sensitive [24]. Researchers should therefore investi-
gate the methods used by the quantification tool to miti-
gate these erroneous circRNA calls and if absent, apply 
filters manually. Possible methods for reducing false 
positives in segmented-based circRNA detection are: 1) 
Requiring the mate of a candidate BSJ read to be within a 
suitable distance and mapped within the same transcript. 
This method removes decoy reads generated by genomic 
rearrangements or sequencing artefacts that mimick 
the BSJ of circRNAs [27]. 2) Filter BSJ sites to keep can-
didates that are flanked by canonical splice site motifs 
(e.g GU/AG) [22]. Alternatively, users can inlcude non-
canonical splice sites in their search and apply a ranking 
system e.g GC/AG U2-type, AT/AC U12-type [105] in 
order to score de novo circRNAs. 3) Enforce high quality 
mapping around the BSJ site, e.g requiring no more than 

n mismatches, insertions or deletions in n-bp each side of 
the BSJ junction. By combining metrics 2 and 3, research-
ers can produce a ranked list of circRNAs instead of 
applying hard filters.

For the pseudo-reference based approach, there are 
two methods by which a pseudo-reference database can 
be designed which will greatly influence the circRNAs 
detected by such a tool. The first method is to generate 
a database of all intragenic exon-exon junctions using 
the reference GTF/GFF file, thereby creating every pos-
sible combonation of back-splicing events. This method 
is restricted to species that provide an annotated refer-
ence genome file and can only detect circRNAs that 
share splice sites with linear RNAs. The second method 
is more favourable to unannotated organisms, whereby 
circular candidates collected in the first alignment step 
are tandemly duplicated to construct a pseudo-reference 
circRNA transcriptome against which the circular candi-
date reads are mapped against. This method reduces the 
rate of false positives by requiring the circular candidate 
reads to be linearly and fully aligned to the BSJ region of 
the pseudo-reference [106, 130, 140].

Due to the discrepancies in the two approaches, high 
variance between sets of circRNAs called by individual 
tools inevitably develops due to computational ‘blind 
spots’ inherent in each approach [172]. Users will there-
fore be tempted to apply multiple circRNA quantification 
tools to their chosen dataset, particularly with the advent 
of integrated based tools [91, 92, 96, 124, 132]. Whilst 
combinatorial approaches to circRNA identification will 
greatly increase the precision of the results, users should 
be aware that the sensitivity of different tool combina-
tions will vary greatly [146, 147, 172–174].

circRNA identification tools exhibit high variance
Perhaps the most striking statistic that researchers will 
encounter when employing one or more circRNA quanti-
fication tools is the disparity in agreement amongst tools. 
Whilst individual tools have been shown to exhibit high 
precision, their ability to detect all true positive circR-
NAs in the benchmarking pool (i.e sensitivity) fluctuates 
[173, 174]. We describe three publications: Zeng et  al. 
(2017) benchmarking 11 circRNA identification tools 
individually [173]; Gaffo et al. (2022) benchmarking com-
binations of 7 circRNA identification methods [92] and 
Vromman et al. (2023) benchmarking 16 circRNA iden-
tification tools in conjunction with orthogonal validation 
techniques [174] to highlight this point.

Zeng et  al. 2017 The authors evaluated CIRCexplorer 
[47], circRNA_finder [27], CIRI [100], DCC [73], find_
circ [22], KNIFE [119], MapSplice [120], NCLScan [123], 
PTESFinder [130], Segemehl [134] and UROBORUS 
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[138] circRNA identification tools in order to assess the 
precision, sensitivity, F1 scores and AUC of each tool in 
both simulated and real datasets. In a simulated posi-
tive dataset containing 14689 HeLa circRNAs depos-
ited in circBase [166], most tools achieved high preci-
sion (>94%). However, the sensitivity of each tool varied, 
ranging from 52%-93%. The authors then calculated the 
harmonic mean of precision and sensitivity (F1 score) 
to determine the best performing tools. Only four tools 
had an F1 score ≥0.9 — KNIFE (0.96), CIRI (0.92), PTES-
Finder (0.91) and Segemehl (0.91). KNIFE was the best 
performing tool in the simulated positive dataset, captur-
ing 92% of the available circRNAs at a precision rate of 
99.66%.

The authors then generated a background simulated 
linear RNA dataset to assess the fraction of false posi-
tive circRNAs called by each tool (NCLScan was omitted 
due to its inability to construct a noncollinear reference 
from linear reads). Alarmingly, Segemehl (1084), find_
circ (712), UROBORUS (620) and KNIFE (554) called a 
high rate of false positive circRNAs in the background 
dataset. The simulated positive dataset was then added 
to the background dataset to generate a mixed dataset. 
Interestingly, Segemehl (87%), UROBORUS (88%) and 
find_circ (92%) exhibited dramatic drops in precision 
compared to the positive dataset analysis, whilst all other 
tools achieved precision rates above 96% in the mixed 
dataset. NCLScan boasted impressive precision rates in 
each dataset (99%) however this score is undermined by 
the fact NCLScan detected only ∼7740 circRNAs from 
the pool of 14689, reflected in poor sensitivity scores 
(52% positive and mixed). Using the simulated datasets 
the authors have demonstrated the underlying variance 
in sets of circRNAs called by each tool, underpinning the 
fact each tool has its own blind spots.

Next, the authors obtained HeLa  RNaseR-, HeLa 
 RNaseR+ and Hs68  RNaseR-, Hs68  RNaseR+ datasets 
with the goal of identifying the percentage of ‘true circles’ 
detected by tools in RNase  R- samples i.e called circR-
NAs that were not then depleted in RNase  R+ samples. 
MapSplice, which had shown high precision and rela-
tively poor sensitivity in the simulated datasets captured 
the highest percentage of true circRNAs (54% HeLa, 76% 
Hs68) indicating that whilst conservative, MapSplice 
captures a high proportion of true positives. Finally, the 
authors identified the top 100 expressed circRNAs ident-
fied by each tool in the RNase  R- datasets to ascertain if 
high BSJ read counts are a reliable proxy for ‘true circles’ 
as performed by Hansen et  al. 2016 [146]. In the HeLa 
dataset, KNIFE (75), CIRCexplorer (73), CIRI (72), cir-
cRNA_finder (72) and DCC (71) captured the highest 
proportion of true circRNAs exhibiting high expression. 

Conversely in the Hs68 dataset which had much higher 
coverage, eight of the circRNA identification tools top 
100 circRNAs were well represented (>70) in the RNase 
 R+ samples. This demonstrates high BSJ read counts are 
not necessarily indicative of true circRNAs, thus the 
common practice of applying BSJ count filters will not 
fully remove false positives. Furthermore, researchers 
should take caution when selecting circRNA identifica-
tion tools for analysing sequencing libraries with lower 
coverage.

Gaffo et  al. 2022 The demonstration of high variance 
in individual sets of circRNAs called by circRNA identi-
fication tools [146, 173] led the research community to 
experiment with combinatorial approaches in an effort to 
increase sensitivity without sacrificing precision. In 2018, 
Hansen et al. [147] performed a combinatorial analysis of 
11 circRNA identification tools, concluding that combin-
ing tool outputs generally reduced the number of highly 
and lowly expressed algorithm specific false positive 
circRNAs. In 2022, Gaffo et  al. [92] released CirCom-
Para2, a tool that integrates seven circRNA identification 
methods (CIRI2 [101], CIRCexplorer2 [85] (parsing the 
outputs of BWA [143], Segemehl [134], STAR [144] and 
TopHat2/TopHat-Fusion [142, 175]), DCC [73] and find_
circ [22] — circRNA_finder [27] and Segemehl [134] were 
omitted from the combinatorial analysis) to automate the 
identification of circRNAs from raw sequencing reads. 
To advise users on the optimal parameters required for 
running CirComPara2, the authors performed an analy-
sis using both simulated and real datasets.

Firstly, a simulated dataset containing 5680 circRNAs 
was generated to characterise the false negatives in each 
identification method. On average 49% of the false nega-
tives exhibited expression levels higher than the median 
expression level of true positives, whilst the expression 
level of false positives was low. Next, the authors identi-
fied the 1945 circRNAs that went undetected by one or 
more methods i.e the ‘false negative set’. They found that 
only 4% of the false negative set went undetected by all 
methods, whilst 95% of the false negative set could be 
detected using combinations of two or more methods. 
The results of the simulated analysis suggest that the 
computational ‘blind-spots’ (i.e inability to detect the 
false negative set) inherent in each method can be miti-
gated by supplementing results in concert.

To identify the optimal combination of methods 
for users to employ, the authors evaluated the num-
ber of recovered false negatives against the fraction of 
false positives introduced using all possible combina-
tions of methods via precision, sensitivity and F1 score. 
Due to findings in the simulated dataset that combining 
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circRNA_finder or Segemehl with other methods 
increased the number of false positives, these methods 
were omitted from the analysis. Unsurprisingly, the set 
of results produced by all individual methods yielded the 
highest sensitivity (0.99) and the lowest precision (0.90). 
Evaluation of sets produced by at least two conjoined 
methods yielded a marked increase in precision (0.99) 
at the cost of marginally reduced sensitivity (0.98). The 
authors demonstrate that increasing the required num-
ber of methods a circRNA must be called by (three or 
more conjoined methods) increases precision, however 
sensitivity drops considerably (0.96-0.69). The authors 
therefore recommend using all seven circRNA identifica-
tion methods, requiring circRNAs to be called by at least 
two methods. This is the default setting for CirComPara2.

In our previous work [124], we observed a similar 
inflection point in F1 scores when combining the results 
of multiple tools (CIRIquant, CIRCexplorer2_STAR, cir-
cRNA_finder, DCC, find_circ, MapSplice, Segemehl). 
Our analysis revealed optimal F1 scores when using three 
or four quantification tools in addition to requiring cir-
cRNAs to be called by at least two methods. Increases in 
F1 scores were observed when using five or more tools, 
however the increased computational cost may not jus-
tify the marginal gains in precision. It should be noted 
that nf-core circrna users are discouraged from including 
DCC due to the high rate of false positives based on our 
findings.

Finally, the authors collected RNase  R- and RNase  R+ 
datasets in human, mice and macaque species. Similarly 
to Zeng et  al. 2017, true positives are defined as circR-
NAs detected in both untreated and treated matched 
samples. CirComPara2 was run using the default settings 
vs. all of its individual constituent methods, outperform-
ing each method (0.86 median sensitivity, 0.91 median F1 
score) with a negligable loss in precision compared to the 
best performing individual method (0.01 median reduc-
tion). In summary, the work by Gaffo et  al. 2022 high-
lights the utility of a combinatorics approach to circRNA 
identification, mitigating the challenge of false negatives 
and false positives encountered by researchers.

Vromman et al. 2023 The authors invited the develop-
ers of 16 circRNA identification tools (CIRCexplorer3 
[86], CirComPara2 [92], circRNA_finder [27], circ-
seq_cup [98], CircSplice [99], circtools [97], CIRI2 [101], 
CIRIquant [106], ecircscreen (unpublished), find_circ 
[22], KNIFE [119], NCLScan [123], NCLcomparator 
[122], PFv2 [131], Sailfish-cir [140] and Segemehl [134]) 
to detect circRNAs using their own tool given a data-
set of three deeply sequenced total RNA cancer cell 
lines. Of particular note in this work is the evaluation of 
each circRNA identification tools using an orthogonal 

approaches: quantitative reverse transcription polymer-
ase chain reaction (RT-qPCR), RNase R treatment and 
amplicon sequencing. In agreement with previous works, 
the authors found that the number of detected circRNAs 
varies between tools, the majority of circRNAs (86%) are 
characterised by low BSJ counts ( ≤ 5) and each tool pre-
dicts differing sets of circRNAs.

For external validation, the authors aimed to select 
80 highly expressed circRNAs (BSJ ≥ 5) and 20 lowly 
expressed circRNAs (<5) for each tool. After remov-
ing duplicate circRNAs selected by chance, the authors 
arrived at a final set of 1516 circRNAs. Using RT-qPCR, 
1479 (97.6%) could be validated. Low abundance circR-
NAs exhibited higher variance in individual tool preci-
sion (median 95%, range 80-100%) compared to high 
abundance circRNAs (median 98.8%, range 90-100%). 
With respect to RNase  R+ treatment, 112 circRNAs were 
discarded due to low abundance in the RNase  R- sam-
ples. Of the remaining 1404 circRNAs, 1319 (93.9%) 
were validated using RT-qPCR on RNase  R+ samples. 
Highly abundant circRNAs had high RNase  R+ precision 
(median 96.3%, range 74-100%) whilst lowly expressed 
circRNAs had lower precision (median 86.7%, range 
50-100%). Generally, the precision rates calculated using 
RNase  R+ is similarly high amongst tools. Amplicon 
sequencing was performed on a random subset (1179) of 
the 1516 circRNAs, with 86% readily validated using this 
technique. Echoing previous results, highly expressed 
circRNAs were more readily validated (median 95.5%, 
range 30-100%) compared to lowly expressed circRNAs 
(median 73.3%, range 17-94%).

The authors next postulated that external validation 
techniques be used in concert, evaluating to what extent 
each method supports the other. Of the 1103 circRNAs 
available for all three methods, 957 passed all valida-
tions, 128 failed one of two validation methods, whilst 18 
failed all three. These results were used to generate the 
compound precision for each tool whereby true positives 
represent circRNAs validated by three methods and false 
positives represent circRNAs that failed any one valida-
tion method. The theoretical number of true positives 
was then calculated by multiplying the compound preci-
sion by the number of circRNAs detected by a tool. By 
using a high quality set of circRNAs, the authors could 
discern what computational strategies produce the most 
reliable results.

Interestingly, circRNAs containing canonical splice site 
signals surrounding the BSJ site and circRNAs originating 
from regions with an annotated linear RNA have a higher 
chance of being successfully validated. Furthermore, 
pseudo-based reference approaches exhibited higher 
validation rates over segmented-based approaches, whilst 
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single-exon circRNAs had lower validation rates than 
multi-exon circRNAs. Additonally, tools that report cir-
cRNAs surrounded by canonical splice sites showed 
higher sensitivity. In terms of combinatorial approaches 
to circRNA identification, Vromman et  al. revealed cir-
cRNAs detected by at least two tools (the default set-
ting for CirComPara2 and nf-core circrna) had a higher 
chance of being validated. However, this method is not 
without flaws, as 0.5% failed all three validation methods 
and 9.9% failed at least one method. Finally, the authors 
investigated different combinations (pairs and triples) of 
tools. The findings were highly pertinent to users con-
sidering an integrated analysis approach: 1) Combining 
a pseudo-reference based tool with a segmented-based 
tool yielded a 61.1% median increase in the number of 
detected circRNAs vs. 35.4% when using two tools with 
the same alignment strategy and 2) Combining tools with 
differing splice site settings (canonical vs. non-canonical) 
yields a 76.2% median increase in the number of detected 
circRNAs vs. 32.6% when using tools with the same splice 
site settings.

The works described above point to the most com-
mon challenges facing researchers identifying circRNAs 
in silico. The high variance in sets of circRNAs called 
by individual tools, the necessity of employing multiple 
tools to increase sensitivity and the utility of combinato-
rial approaches to circRNA identification are key points 
to consider when designing/choosing a circRNA identifi-
cation pipeline.

Differential expression analysis
Once the circRNA transcriptome has been characterised 
in samples, it is often the goal of researchers to perform 
differential expression analysis (DEA) between pheno-
types of interest using the generated circRNA count 
matrix. DEA can be performed manually using popular 
tools such as DESeq2 [176], EdgeR [177] and limma-
voom [178]. Both DESeq2 and EdgeR fit a negative 
binomial distribution to the counts matrix and use gener-
alized linear models to perform statistical tests, whereas 
limma-voom computes observational weights for a linear 
model using mean-variance relationship between sam-
ples on the logarithmic scale. A common filtering step 
prior to DEA is to require ≥ 2 reads spanning the BSJ site 
of quantified circRNAs. Whilst this will result in a count 
matrix with higher confidence circRNAs, there remains 
the problem of multiple zero values present in columns 
(samples) in which the high confidence circRNAs were 
not detected resulting in a sparse matrix. In our experi-
ence, providing a sparse matrix to the DESEq2/EdgeR/
limma-voom packages will result in an error when cal-
culating the library size factors for normalization. To 

remedy this, we suggest applying a pseudocount to the 
sparse matrix prior to performing DEA.

A major factor of DEA that has only recently been con-
sidered is the increasingly popular use of multiple quan-
tification tools to generate the final count matrix [92, 124, 
147]. This comes with the upside of increasing the recall 
rate of the quantification analysis by overlapping the calls 
of multiple quantification tools, however the number of 
called reads spanning the BSJ site for a circRNA are likely 
divergent across the quantification tools employed [146, 
147]. This presents the issue of which function to apply 
when consolidating reads from multiple tools; should 
researchers average circRNA expression across multiple 
tools? Perhaps they may be inclined to take the maxi-
mum read count value returned for a circRNA. Regard-
less of the function applied, there will at the very least 
be a loss of information and at worst, a significant over-
estimation of a circRNAs expression by selecting highly 
expressed outliers. To overcome this issue, Buratin et al. 
(2022) [179] perform DEA by modelling the effect of the 
phenotype of interest whilst simultaneously modelling 
the variance of circRNA reads between different quanti-
fication tools as a random effect using generalized linear 
mixed models e.g: ∼ phenotype group + (1 quantifica-
tion tool 1) + (1 quantification tool 2) etc. In this manner, 
one can obtain robust differentially expressed circRNAs 
estimates without discarding any of the information 
obtained from mutliple quantification tools. We recom-
mend users adopt this approach when using a consensus 
based approach to calling circRNAs, a method that has 
been shown to increase accuracy in the quantification 
step [147].

Considerable efforts have been made to automate the 
process of differential expression analysis of circRNAs 
for researchers. CIRIquant and nf-core circrna ([106, 
124]) offer automated differential expression analysis of 
circRNAs using edgeR and DESeq2, respectively. The 
main drawback of using automated differential expres-
sion analysis pipelines are the constraints placed on the 
complexity of the model design; these methods are only 
capable of analyzing the predictor variable whilst con-
trolling for the effect of covariates, and do not facilitate 
more complex designs with additive, interactive or nested 
effects. For complex designs, we recommend users per-
form differential expression analysis manually.

Finally, CIRI, CIRI2, CIRIquant, Sailfish-cir and DCC 
(via the CircTest module) are all capable of calculating 
the circular RNA/linear RNA ratio at a junction site [73, 
100, 101, 106]. This ratio can be used to perform differen-
tial splicing analysis between samples of interest to iden-
tify conditions in which transcripts favour circularization 
over canonical linear splicing. CIRIquant and CircTest 
automate this process for users, greatly reducing the time 
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required to perform the analysis. CIRIquant can directly 
perform differential splicing analysis between two sam-
ples using the ‘CIRI_DE’ module via the rate-ratio.test R 
package [180]. CircTest offers the distinct advantage over 
CIRIquant of being able to perform differential splicing 
analysis between multiple samples. Users can apply the 
CircTest module directly to the output directory of DCC, 
or manually supply previously generated circRNA count 
matrices and linear RNA count matrices in addition to a 
phenotype file with sample descriptions. CircTest uses a 
beta binomial distribution to model the data (circRNA/
circRNA + linear RNA) and performs an ANOVA test to 
identify differential splicing events between conditions 
using the AOD R package [181]. We stress that users only 
perform differential splicing analysis using total RNA-
Seq datasets, as RNase R libraries deplete linear RNA.

circRNA interactions
ceRNA networks
circRNAs can function as miRNA sponges when they 
enter the cytoplasm [21, 22], affecting the ceRNA net-
work by competitively binding miRNAs and sequester-
ing the degradation of its mRNA target. The predicted 
interactions of circRNA-miRNAs and miRNA-mRNAs 
targets can be used to create a tri-partite ceRNA net-
work representing the circRNA-miRNA-mRNA inter-
play in cells (Fig. 3). Researchers can achieve this by using 
existing databases, performing manual predictions using 

sequence alignment tools against databases, or a combi-
nation of both. Several publicly available databases exist 
which contain predicted circRNA-miRNA interactions 
in downloadable files such as circBase [166] and CSCD 
[182]. Additionally, starBase [183] offers an API func-
tion to submit requests for predicted circRNA-miRNA 
targets. Once the circRNA-miRNA pairs have been gen-
erated, the miRNAs can be used as inputs for deriving 
miRNA-mRNA interactions. Given that miRNAs have 
been studied since the early 1990s (compared to the more 
recent revivial of interest in circRNAs in 2012), there 
exist multiple databases for predicting miRNA-mRNA 
pairs. miRBase [184], miRTaRBase [185], miRNet [186] 
and TargetScan [187] represent a selection of the avail-
able databases for this task.

To predict circRNA-miRNA and miRNA-mRNA tar-
gets manually, users can avail of multiple sequence align-
ment tools miRanda [188] and TargetScan [187]. The 
full mature spliced sequence of each circRNA can be 
scanned for miRNA response element (MRE) sites by 
passing the sequence in FASTA format to each tool. Tar-
getScan offers the advantage of reporting each miRNA 
match as a 6-mer, 7-mer or 8-mer, detailing the number 
of matching nucleotides in the circRNA MRE site and 
the miRNA seed region. To reduce the number of false 
positives in the analysis, users can adopt three strategies: 
1) remove 6-mers sites that are considered poorly con-
served in comparison to 7-mer and 8-mers; 2) overlap 

Fig. 3 Cytoscape visualisation of a ceRNA network. CircRNAs are represented as ellipse nodes, miRNAs as arrow nodes and mRNAs as rectangular 
nodes. Edges represent interactions predicted by both miRanda and TargetScan. The network has been filtered to select circRNA-miRNA-mRNA 
subgraphs representing circRNA sponging of miRNAs whereby upregulation of one biotype influences the expression of downstream targets



Page 19 of 27Digby et al. BMC Genomics          (2024) 25:527  

results between miRanda and TargetScan; or 3) overlap 
predicted MRE sites with AGO2 binding sites. These 
filtering steps can be applied to circRNA-miRNA and 
miRNA-mRNA predictions alike. Finally, in the event 
expression data between phenotypes is available for cir-
cRNAs, miRNAs and mRNAs, users may wish to apply 
filtering to conform to the ceRNA hypothesis by selecting 
circRNA-miRNA-mRNAs subgraphs in which the cir-
cRNA exhibits up-regulation, its target miRNA is down-
regulated and the target mRNA of the down-regulated 
miRNA is up-regulated. The inverse filtering expression 
can be applied to generate a ceRNA network modelling 
up- and down-regulated circRNAs. Tripartite networks 
can then be visualised and analysed using Cytoscape 
[189] and its numerous plugins for network analysis. The 
main challenge in performing manual circRNA-miRNA 
predictions is providing an accurate mature spliced 
sequence to each tool, details of which are discussed in 
“Full circle reconstruction” section.

circRNA‑RBP prediction
Whilst circRNA-miRNA binding is the most studied 
functionality of circRNAs, there is increasing evidence 
to suggest circRNAs interact with RBPs at multiple itera-
tions of their life cycle. Quaking (QKI), FUS, HNRNPL, 
RBM20 and Muscleblind are all RBPs which bind to 
specific intronic motifs, promoting the formation of cir-
cRNAs [25, 44, 45, 190, 191], whilst ADAR1 and DHX9 
have been shown to destabilize inverted Alu repeats, 
supressing back-splicing [159, 192]. CircPABPN1 has 
been shown to modulate the transcription of its cognate 
mRNA PABPN1 by competitively binding and reducing 
the availability of HuR, a translational activator protein 
[193]. Additionally, circFoxo3 binds p21 and CDK2 RBPs, 
forming ternary complexes inhibiting cyclin E/CDK2 
complex formation, arresting cells in G1 phase [194].

circRNA-RBP interactions can be characterised using 
cross-linking and immunoprecipitation (CLIP-seq) data-
sets however, the assay suffers from limitations. Firstly, 
CLIP-Seq reads are produced via enzymatic degredation, 
producing single-end reads of length <50bp. These short, 
single-end reads are unsuitable for traditional circRNA 
identification tools developed for RNA-Seq data which 
suffer from poor mapping estimates when using short 
reads and in the absence of paired-end reads, will gen-
erate high rates of false-positives. To accurately identify 
circRNAs in CLIP-Seq data, researchers can use Clirc, a 
computational tool capable of detecting BSJ sites bound 
to RBPs [195]. Clirc collapses reads to remove PCR dupli-
cates prior to constructing a psuedo-reference based on 
publicly available human, mouse and drosophila circR-
NAs and circRNAs detected in ENCODE datasets using 
CIRI2. Reads that contiguously align to the reference 

genome are discarded, whilst reads mapping to the 
pseudo-reference are indicative of BSJ sites in circRNAs. 
The authors concede that Clirc is constrained to detect-
ing circRNAs in the pseudo-reference and cannot detect 
circRNAs de novo. Additionally, Clirc can only detect 
RBPs that directly bind to the BSJ site as distinguishing 
RBPs binding to ‘linear’ sequences in circRNAs/mRNAs 
remains intractable.

Databases such as CircInteractome [196] and star-
Base [183] host results of circRNA-RBP interactions 
validated using CLIP-Seq experimental data. Due to the 
costs associated with CLIP-seq, there have been several 
computational methods developed to predict circRNA-
RBP interactions by analysing motif sequences. CircR-
NAs Interact with Proteins (CRIP) is tool that represents 
circRNA-RBP interactions as a binary classification 
problem. The authors have developed a novel sequence 
encoding scheme whereby RNA triplets are represented 
as pseudo-amino acids, one-hot encoded and passed to 
a convolutional neural network (CNN) and a bidirec-
tional long- and short-term memory (LSTM) network to 
exploit sequence information of 37 RBPs and the corre-
sponding 32,216 circRNAs they bind [109]. Source code 
and training data are freely available, allowing users to 
leverage the information provided by CircInteractome to 
predict circRNA-RBP interactions using their own cir-
cRNA sequence data. This does however, require a high 
degree of computational competency to run, in which 
case users may find CirRBP [107] a more suitable alter-
native. CirRBP utilizes a stacked ensemble deep learning 
model to predict RBP binding sites within a user sup-
plied circRNA sequence, sourcing circRNA-RBP binding 
information from CircInteractome, starBase and CSCD2. 
The authors have packaged the underlying algorithm and 
models used for CirRBP as a publicly available webserver 
[197] greatly reducing the computational barrier to entry 
for researchers to perform circRNA-RBP predictions.

circRNA databases
Multiple circRNA databases currently exist provid-
ing users with circRNA annotations, predicted interac-
tions, mature spliced sequence and expression estimates 
across cell lines (Table  2). Typically, these databases are 
derived from a selection of published ribosomal depleted 
RNA-Seq datasets [19, 20, 22, 25, 29, 76, 159, 198] and 
are processed using a circRNA identification pipeline. It 
is worth noting that there is no universal ‘gold standard’ 
pipeline for circRNA identification, thus each database 
will vary in their results. For example, circBase [166] and 
CIRCpedia exclusively use find_circ and CIRCexplorer2, 
respectively, whilst CSCD2 [199] employs CIRI2, CIRC-
explorer2, circRNA_finder and find_circ to produce its 
database, allowing users to identify which circRNAs 
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have been called by multiple tools. Other databases such 
as circRNADb [165] host circRNA annotations collated 
from published literature, removing biases inherent to 
specific pipelines. With respect to the fucntional interac-
tions of circRNAs, the starBase [183] and TRCirc [200] 
databases contain RNA-RNA interactions and RNA-
protein interactions using CLIP-Seq and CHIP-Seq data, 
respectively. Researchers can also search disease specific 
circRNAs backed by experimental findings in published 
literature via Circ2Disease [201].

One of the key challenges facing researchers when 
using circRNA databases is the lack of a standardised 
naming format for circRNAs. Chen et al. (2023) [218] use 
the example of the functional FAM20A circRNA to depict 
the wide discrepancies between nomenclature: HSA_
CIRCpedia_64725 in CIRCpedia, hsa-FAM120A_0006 
in circAtlas, hsa_circFAM120A_007 in circBank, and 

hsa_circ_0001875 in circBase. With ‘hsa’ being the only 
common string between the four identifiers, Chen et al. 
proposed a novel naming convention for circRNAs. They 
provide examples for classic exonic circRNAs, EIcircR-
NAs and ciRNAs: 1) circCOX5A(2,3) an exonic circRNA 
derived from the COX5A gene that uses exons 2 and 3; 
2) circCAMSAP1(2,RI,3) an exonic-intronic circRNA 
derived from the CAMSAP1 gene that uses exons 2 and 
3, with a retained intron (RI) between exons 2 and 3; 3) 
ciANKRD52(2) an intronic circRNA derived from the 
ANKRD52 gene that retains the second intron. CircAt-
las (version 3.0) [219] provides users with mapping keys 
between circRNA positional, circBank, circBase and 
CIRCpedia identifiers to the latest ’uniform ID’ values 
suggested by Chen et al. (2023). Whilst we agree that the 
standardisation of circRNA identifiers is a useful endeav-
our, we believe it may take several years to adopt. The 

Table 2 Online databases for circRNAs

a Species abbreviations: ade, Actinidia deliciosa; ath, Arabidopsis thaliana; bdi, Brachypodium distachyon; bta, Bos taurus; cel, Caenorhabditis elegans; csi, Camellia 
sinensis; dme, Drosophila melanogaster; dre, Danio rerio; gar, Gossypium arboreum; gga, Gallus gallus; ghi, Gossypium hirsutum; gma, Glycine max; gra, Gossypium 
raimondii; gsp, Gossypium spp.; hsa, Homo sapiens; hvu, Hordeum vulgare; lch, Latimeria chalumnae; lme, Latimeria menadoensis; mml, Macaca mulatta; mmu, Mus 
musculus; nbe, Nicotiana benthamiana; ocu, Oryctolagus cuniculus; osa, Oryza sativa; osi, Oryza sativa ssp. indica; pbe, Pyrus betulifolia; ptr, Poncirus trifoliata; rno, Rattus 
norvegicus; sly, Solanum lycopersicum; ssc, Sus scrofa; stu, Solanum tuberosum; sly, Solanum lycopersicum; tae, Triticum aestivum; zma, Zea mays

 bURL not accessible at time of drafting review

Database Data available Organismsa Reference

AtCir cDB A. thaliana circRNAs, miRNA targets ath [202]

circA tlas circRNA sequences, conservation score, miRNA & RBP targets, isoforms, 
expression in tissues, junction ratio, reported diseases

hsa, mml, mmu, rno, ocu, clf, fca, ssc, oar, gga [169]

circB ase circRNA sequences, circRNA expression in cell lines/tissues hsa, mmu, cel, lch, lme [166]

CircB ankb miRNA targets,  m6A modifications, conservation, mutations and coding 
potential

hg19 [203]

CircI ntera ctome miRNA & RBP targets, primer design, siRNA sites hsa [196]

CircN et miRNA & RBP targets, ceRNA networks construction, coding potential hsa [204]

CircF unBase circRNA predicted function, miRNA & RBP targets, visual representation 
of ceRNA network

ath, osa, tae, sly, gsp, hvu, ade, hsa, mml, rno, 
mmu, gga, ssc, bta, dme, ocu

[205]

CIRCp edia circRNA exprression in cells and tissues hsa, mmu, cel, dme, dre, rno [206]

CSCD2 circRNAs in cancer, target miRNAs & RBP, coding potential hsa [199]

circR NADb exonic circRNAs, coding potential hsa [165]

CircR iCb circRNAs in cancer hsa [207]

Circ2 Disea se circRNAs associated with diseases hsa [201]

CircR 2Dise ase circRNAs associated with diseases hsa [208]

Circ2 Traitsb circRNA-miRNA disease associations hsa [209]

circR NADis easeb circRNAs associated with diseases hsa [210]

CropC ircDB circRNAs in maize & rice osa, zma [211]

DeepB ase circRNA, lncRNA, miRNAs in tissues and cancers hsa [212]

exoRB ase Atlas of mRNAs, lncRNAs,& circRNAs in extracellular vesicles hsa [213]

MiOnc oCirc Compendium of circRNA datasets in cancer hsa [214]

Neuro Circ circRNA expression in brain regions, circQTLs hsa [215]

Plant CircN etb ceRNA regulatory networks ath, gma, hvu, osa, sly, tae, zma, bdi [216]

Plant circB ase circRNAs in plants, ceRNA regulatory network ath, gma, hvu, osa, sly, tae, zma, gar, ghi, gra, 
ptr, stu, csi, nbe, pbe, osi

[217]

starB ase RNA-RNA interactions based on CLIP-Seq data 23 species [183]

TRCirc Transcriptional regulation of circRNAs using CHIP-Seq data hsa [200]

https://deepbiology.cn/circRNA/
https://ngdc.cncb.ac.cn/circatlas/
http://www.circbase.org/
http://www.circbank.cn/
https://circinteractome.nia.nih.gov/
https://awi.cuhk.edu.cn/~CircNet/php/index.php
https://bis.zju.edu.cn/CircFunBase/index.php
http://yang-laboratory.com/circpedia
http://gb.whu.edu.cn/CSCD2/
http://reprod.njmu.edu.cn/cgi-bin/circrnadb/circRNADb.php
https://hanlab.uth.edu/cRic/
http://bioinformatics.zju.edu.cn/Circ2Disease/
http://bioinfo.snnu.edu.cn/CircR2Disease/
http://gyanxet-beta.com/circdb/
http://cgga.org.cn:9091/circRNADisease/
http://deepbiology.cn/crop/
https://rna.sysu.edu.cn/deepbase3/
http://www.exorbase.org/
https://mioncocirc.github.io/
https://voineagulab.github.io/NeuroCirc/
https://bis.zju.edu.cn/plantcircnet/index.php
http://ibi.zju.edu.cn/plantcircbase/
https://rnasysu.com/encori/
https://bio.liclab.net/TRCirc/view/index
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main hurdle we observe is that the most popular circRNA 
identification tools that are currently in use by research-
ers are solely based on identifying BSJ reads in RNA-Seq 
data. These tools cannot fully resolve the internal struc-
ture of circRNAs, thus researchers are not able to accu-
rately annotate internal exon/intron usage required to 
conform to the proposed naming convention. Secondly, 
circBase, CSCD2 and CIRCpedia remain hugely popular 
databases for circRNAs. Finally, the research community 
must agree on the reference used for reporting circR-
NAs (e.g ENSEMBL [220], RefSeq [221]) and make clear 
which reference annotation files were used for circRNA 
annotation in order to make results reproducible.

Concluding remarks
circRNAs are a class of non-coding RNAs which are 
gaining recognition for their roles in cellular processes as 
transcriptional regulators. Despite circRNAs represent-
ing an increasingly popular area of research, there still 
remain several challenges in accurately characterising 
circRNAs computationally. This is perhaps most appar-
ent in a subset of widely utilised circRNA identification 
tools that are entirely predicated on detecting the BSJ of 
circRNAs in sequencing data. Whilst these tools are use-
ful for detecting and quantifying circRNAs, they struggle 
to fully resolve the full circRNA sequence or delineate 
circRNA isoforms generated from the same BSJ. Further-
more, these tools suffer from varying rates of sensitivity 
and depending on the underlying methods used, can be 
prone to false positives. Integrated methods have been 
developed to address this issue however, these tools can 
hardly be considered a panacea given recent studies have 
shown circRNAs called by multiple tools can fail exter-
nal validation. The development of a gold standard set of 
circRNAs is a necessary step to benchmark the perfor-
mance of current and future circRNA identification tools, 
diagnosing their inherent blind spots. Another strik-
ing absence in the field of circRNA research is the lack 
of a reference GTF/GFF file of known circRNAs. In our 
opinion this goes hand in hand with the development of a 
gold standard set of circRNAs and the unification of cir-
cRNA nomenclature. Once developed, the research com-
munity can report circRNAs in a consitent manner and 
develop rapid pseudo-alignment based tools mimicking 
those in the space of RNA-Seq (Kallisto [222], Salmon 
[223]). Third-generation sequencing represents a prom-
ising avenue for full circle characterisation of circRNAs 
and accurate prediction of interactions with miRNAs 
and RBPs. However, few computational tools consider 
the final tertiary structure of circRNAs which can greatly 
influence its capacity to bind miRNAs and RBPs or form 
scaffold structures.

In conclusion, our work provides an accessible guide 
for researchers to navigate the landscape of compu-
tational circRNA research. We have provided a com-
prehensive overview of the tools available for circRNA 
identification, full circle reconstruction, differential 
expression analysis, circRNA interactions and databases, 
highlighting the limitations of current tools and suggest-
ing solutions to common pitfalls.
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