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Abstract 

Background The short-read whole-genome sequencing (WGS) approach has been widely applied to investigate 
the genomic variation in the natural populations of many plant species. With the rapid advancements in long-read 
sequencing and genome assembly technologies, high-quality genome sequences are available for a group of varie-
ties for many plant species. These genome sequences are expected to help researchers comprehensively investigate 
any type of genomic variants that are missed by the WGS technology. However, multiple genome alignment (MGA) 
tools designed by the human genome research community might be unsuitable for plant genomes.

Results To fill this gap, we developed the AnchorWave-Cactus Multiple Genome Alignment (ACMGA) pipeline, which 
improved the alignment of repeat elements and could identify long (> 50 bp) deletions or insertions (INDELs). We 
conducted MGA using ACMGA and Cactus for 8 Arabidopsis (Arabidopsis thaliana) and 26 Maize (Zea mays) de novo 
assembled genome sequences and compared them with the previously published short-read variant calling results. 
MGA identified more single nucleotide variants (SNVs) and long INDELs than did previously published WGS variant 
callings. Additionally, ACMGA detected significantly more SNVs and long INDELs in repetitive regions and the whole 
genome than did Cactus. Compared with the results of Cactus, the results of ACMGA were more similar to the previ-
ously published variants called using short-read. These two MGA pipelines identified numerous multi-allelic variants 
that were missed by the WGS variant calling pipeline.

Conclusions Aligning de novo assembled genome sequences could identify more SNVs and INDELs than mapping 
short-read. ACMGA combines the advantages of AnchorWave and Cactus and offers a practical solution for plant MGA 
by integrating global alignment, a 2-piece-affine-gap cost strategy, and the progressive MGA algorithm.

Keywords Multiple genome alignment, Genome comparison, Plant genome

Background
Genomic variation is the basis for the developmental or 
phenotypical diversity of different organisms, and the 
identification of genomic variants is of broad interest. 
Short-read whole-genome sequencing (WGS) has been 
widely used to call variants in different natural varieties 
from the same species and represent the variants as sin-
gle nucleotide variants (SNVs) and insertions or deletions 
(INDELs) [1]. Short-read WGS is cost-effective and uses 
massively parallel sequencing technologies (e.g., Illu-
mina) to generate short-reads (usually 50 to 300 bases) 
across the whole genome randomly and computation-
ally aligns the reads to a pre-existing de novo assembled 
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reference genome sequence. Short-read sequencing 
works well for SNV calling; however, it exhibits a lim-
ited ability to genotype long INDELs (by long INDEL, we 
refer to INDEL > 50 bp herein) [2]. Detecting long varia-
tions is crucial; for example, a 1.2-M inversion in A. thali-
ana chromosome 4 suppressed meiotic recombination in 
Ler and Col-0 hybrids, and this suppression introduced 
isolated inversion haplotypes into the worldwide popula-
tion of Arabidopsis [3, 4]. Furthermore, the existence of 
repetitive regions complicated short-read mapping tech-
niques, where reads originating from one region were 
often mapped to multiple repetitive regions, referred to 
as multi-mapped reads. In such cases, the majority of 
read aligners would report a randomly selected location 
from the possible mapping locations, consequently lead-
ing to a significantly reduced power to identify variants 
in repeat regions [5]. Compared with short-read WGS, 
long-read WGS significantly improved the length of 
reads [6]. Long-read WGS uses long-read mapping tools 
such as minimap2 [7] to align long reads to the reference 
genome sequence and uses long-read variant calling tools 
such as Sniffles2 [8] to call long INDELs. Long-read WGS 
can greatly improve the identification of long INDELs.

Using well de novo assembled genome sequences, in 
theory, we could identify all types of genomic variants [9]. 
In the last decade, improvements in genome sequenc-
ing and assembly technologies have allowed the assem-
bly of a group of accessions from the same plant species, 
for example, Arabidopsis [10], maize [11], and rice [12]. 
This affordability of large-scale de novo genome assembly 
paved the way to precisely reveal genetic variations using 
the whole-genome alignment (WGA) approach. WGA 
typically only compares two taxa, but because many 
genetics and evolutionary studies have been improved by 
sampling multiple taxa, the multiple-genome alignment 
(MGA) technology is needed. When aligning a divergent 
sequence to a reference genome sequence, multiple align-
ment isomorphs frequently occur, where the essentially 
same sequence is aligned in different ways. MGA is not 
simply combining a set of pairwise genome alignments 
but can unify multiple alignment isomorphs [13]. Herein, 
we restricted our focus to methods that scaled to more 
than two genomes. The majority of the available MGA 
algorithms and tools including Mugsy [14], Mavue [15], 
and TBA [16] were initially developed by the human 
genome research community and optimized to align 
mammal genomes, e.g., human, mouse, rat, or chimpan-
zee. Moreover, there is an unambiguous contrast between 
the number of MGA approaches developed in the first 
decade of the 2000s as opposed to the last ten years [17], 
and these widely mentioned tools were developed before 
the availability of population-scale de novo genomes 
and were rarely optimized using real data, especially 

plant genomes. Compared with animal genomes, plant 
genomes exhibit distinct features owing to high content 
and high activity of transposable elements (TEs), causing 
a high proportion of repetitive elements in the genome 
sequence and long INDELs among individuals [18]. 
Moreover, there is higher sequence diversity between 
plant species. Thus, new approaches are needed to inves-
tigate variants in plant populations efficiently [2].

The Progressive Cactus [19] toolkit incorporates a 
progressive alignment strategy by generating ancestral 
sequences. Cactus has been used to align the genomes of 
600 bird species. Cactus uses the LASTZ software [20] 
for pairwise genome alignment. LASTZ provides high 
sensitivity and controls false positives well for mammal 
genomes, whereas it has not been well optimized for 
plant genomes with high sequence diversity and enriched 
with repetitive elements. AnchorWave [21] is a pairwise 
WGA software developed mainly by the plant commu-
nity and has been carefully optimized for plant genomes.

To perform MGA and variant calling for plant natu-
ral populations, we combined AnchorWave with Cactus 
and developed a novel pipeline, AnchorWave-Cactus 
Multiple Genome Alignment (ACMGA). We compared 
ACMGA with the short-read WGS variant calling pipe-
line and Cactus in identifying variants for Arabidop-
sis and maize. ACMGA aligned a larger proportion of 
genomes and identified more SNVs and INDELs. The 
MGA methods also suggested that multi-allelic variants 
were common in plant populations and largely missed by 
the previous WGS method. ACMGA was optimized to 
perform reference-free MGA for the natural individuals 
of plant inner species.

Implementation
Overview
We developed a reference-free MGA pipeline, ACMGA, 
to perform MGA for plant de novo assembled genome 
sequences. The pipeline adapted the progressive strat-
egy [22] implemented in Cactus by breaking a multiple 
alignment problem into many smaller sub-alignments 
and using reconstructed ancestral genome sequences for 
combining these sub-alignments (Fig.  1), each of which 
aligned only a small number (usually 2–5) of genomes 
against one another in a pairwise way. ACMGA uses 
the AnchorWave software to perform pairwise genome 
alignment. AnchorWave identifies collinear regions via 
conserved anchors (protein-coding genes) and breaks 
collinear regions into shorter fragments, i.e., anchor and 
inter-anchor intervals. By performing global sequence 
alignment using a 2-piece-affine-gap cost strategy 
for each shorter interval and merging them, the pair-
wise genome alignment results were generated in the 
multiple alignment format (MAF). ACMGA uses the 
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“maf-convert” command of LAST [23], SAMtools [24], 
and paftools [7] to convert the alignment results from 
MAF into the SAM and pairwise mApping formats (PAF) 
[7]. ACMGA uses a custom script (replace_ref_que.py, 
available from the GitHub repository) and the paf_invert, 
paf_chain, and paf_tile commands from the Cactus pack-
age [25] to fuse the alignment information of the cur-
rent subtree and feed it into the cactus_consolidated 
command in the Cactus toolkit (v2.4.0) [25] to recon-
struct the ancestral sequence. The reconstructed ances-
tral sequence is used as input for the next progressive 
iteration.

AnchorWave requires a genome annotation file in the 
GFF format for the reference genome. We implemented 
a pipeline to generate GFF files for constructed ancestral 
genomes. We combined coding sequences (CDS) from all 
the input genomes and generated a merged CDS set. For 
each constructed ancestral genome sequence, we used 
minimap2 [7] to map the merged CDSs to the ancestral 
genome sequence and generated a SAM file. Additionally, 

we used SAMtools [24] and BEDTools [26] to convert 
the SAM file into BAM and BED formats sequentially, 
and used the UCSC tools bedToGenePred and genePre-
dToGtf [27] to generate a genome annotation file in the 
GTF format. We reformatted the GTF file into the GFF 
format using GFFread [28] and used the generated GFF 
file together with the ancestral sequence as the input 
for AnchorWave. The ACMGA pipeline is built upon 
the Snakemake workflow execution system [29], which 
ensures robust and scalable execution. Additionally, we 
provided an ACMGA Docker [30] container and the 
users only need to download the Docker image and con-
figure the input file.

Input and output
ACMGA requires a set of FASTA and GFF files of 
genomes and a guide tree to be aligned. FASTA files are 
standard results of modern genome assembly projects. 
The release of almost all high-quality genome sequences 
is accompanied by the release of GFF files. For the newly 
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Fig. 1 The overall schematic of ACMGA. The flowchart shows the overall flow and the subproblem alignment it proceeds through. The end result 
is a reconstructed ancestral genome and an alignment between this ancestral genome and its children. Upon the successful resolution of all 
subproblems, the parent–child alignments are combined into a reference-free MGA result
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assembled genome sequences without annotation, the 
above-mentioned ancestral genome annotation pipeline 
can be used. The progressive MGA strategy uses a guide 
tree to break the MGA process into many pairwise align-
ment problems. The ACMGA pipeline uses GEAN [31] 
to extract protein sequences for each individual and uses 
the OrthoFinder tookit [32] to generate a guide tree. The 
final output of ACMGA is in the hierarchical alignment 
(HAL) format [33], which is a graph-based format for 
storing MGA results. The Cactus toolkit provides many 
tools to parse HAL files.

Results
Genome alignment identifies more SNVs and INDELs 
than does WGS
We performed MGA for 8 de novo assembled Arabidop-
sis genome sequences (An-1, C24, Cvi-0, Eri-1, Kyo, Ler-
0, Sha, and Col-0) [10, 34] and 26 genome sequences of 
maize NAM founder lines [11] using ACMGA and Cac-
tus and compared them with the previously published 
short-read WGS variant calling results [35, 36]. To com-
pare variant callings obtained from different methods, we 
artificially introduced a reference genome for each refer-
ence-free MGA.

We performed variant calling for seven Arabidopsis 
accessions using Col-0 as the reference. We found three 
accessions (An-1, Ler-0, and Cvi-0) [35] among the seven 
accessions subjected to short-read WGS-based variant 
calling via the 1001 genomes project [35]. In the case of 
Arabidopsis Ler-0, ACMGA recognized a total of 747,202 
SNVs, 164,426 INDELs, and shared 472,850 SNVs and 
42,276 INDELs using WGS. Cactus identified a total of 
760,926 SNVs, 189,397 INDELs, and shared 469,357 
SNVs and 26,742 INDELs using WGS (Figs.  2A and B). 
The WGS method identified a total of 585,959 SNVs 
and 42,276 INDELs, which were less than those identi-
fied by the WGA methods. Compared with Cactus, 
ACMGA shared more variants with WGS (Figs. 2A and 
B). The WGS method only identified INDELs less than 
50  bp (Fig.  2C), whereas both MGA methods exhibited 
the ability to identify long INDELs (> 50 bp). Similar pat-
terns were observed in Cvi-0 and An-1 (Additional file 1: 
Figs. S1 and S2).

The length of INDELs in CDSs is more often a multi-
ple of three than those in non-CDSs [37]. For variants 
identified by both ACMGA and Cactus, we observed an 
enrichment of INDELs with length divisible by three in 
coding regions. An enrichment pattern was observed for 
variants identified specifically by ACMGA (Additional 
file 1: Fig. S3-S8), which was an indication of validation. 
Compared with Cactus, ACMGA aligned more base pairs 
as a position match (defined as an ungapped alignment, 
either matched or mismatched nucleotides, Additional 

file 1: Fig. S9) in five out of seven accessions and aligned a 
similar number of base pairs in all Arabidopsis accessions 
in the whole genome (Fig. 2D).

Similarly, for maize, we compared the genome 
sequence of each accession against B73, resulting in vari-
ant callings for 25 accessions. We extracted the short-
read WGS-based variant callings for the 25 accessions 
from a 282-maize-accession dataset [36]. There were no 
INDEL variant records in the previously published vari-
ant callings in the VCF format, and the INDEL variant 
calling comparison was conducted between ACMGA and 
Cactus. Consider B97 as an example. ACMGA identified 
16,369,146 SNVs and 1,764,054 INDELs, whereas Cac-
tus identified 12,624,909 SNVs and 1,535,888 INDELs. 
ACMGA had 4,491,526 SNVs in common with WGS, 
and Cactus had 4,436,292 SNVs in common with WGS 
(Fig. 3A and 3B). ACMGA identified the largest number 
of SNVs and shared more common SNV variant records 
with WGS than Cactus. Moreover, ACMGA could iden-
tify more long INDELs than could Cactus (Fig.  3C). 
Similar patterns were observed for another 24 maize 
accessions (Additional file 1: Fig. S10-S33). The INDELs 
with length divisible by three were enriched in coding 
regions (Additional file 1: Fig. S34-S83). Compared with 
Cactus, ACMGA aligned more base pairs as a position 
match and aligned a similar number of base pairs in all 
maize accessions in the whole genome (Fig. 3D).

In summary, our findings showed that MGA detected 
a more comprehensive set of genomic variants than did 
short-read WGS, especially longer INDELs. ACMGA 
recalled more variants identified by short-read WGS than 
Cactus.

ACMGA aligns more base pairs as a position match in genic 
regions than does Cactus
Genic sequences are generally more conserved than 
intergenic regions, and there are fewer variants in genic 
regions. To evaluate the performance of the MGA tools, 
we counted the position match and aligned base pairs 
in the CDS and genic regions for 7 Arabidopsis and 25 
maize accessions.

In the CDS regions of Arabidopsis, ACMGA aligned 
more base pairs as a position match in six out of seven 
accessions and aligned a similar number of base pairs 
in all Arabidopsis accessions compared with Cactus 
(Fig.  4A). In the genic regions of Arabidopsis, ACMGA 
aligned more base pairs as a position match in all acces-
sions and aligned a similar number of base pairs in all 
accessions compared with Cactus (Fig. 4B).

In the CDS regions of maize, ACMGA aligned slightly 
fewer base pairs as a position match in most accessions 
and aligned a similar number of base pairs in all maize 
accessions compared with Cactus (Fig. 4C). In the genic 



Page 5 of 12Zhou et al. BMC Genomics          (2024) 25:515  

regions of maize, ACMGA aligned more base pairs as a 
position match in 23 out of 25 accessions and aligned a 
similar number of base pairs in all accessions compared 
with Cactus (Fig. 4D).

ACMGA detects more SNVs in repetitive sequences 
than does Cactus
Repetitive sequences pose a major challenge for MGA, 
and WGS methods also show diminished effective-
ness in analyzing these regions. We annotated repetitive 
sequences for Arabidopsis Col-0 and maize B73 using 
RepeatMasker [38]. The total length of annotated repeti-
tive elements accounted for 13.12% of the Arabidopsis 
Col-0 genome assembly, and LTR elements accounted 
for 6.66%. The annotated repetitive elements accounted 

for 81.94% of the maize B73 genome assembly, and LTR 
elements accounted for 74.86%. We also counted the 
numbers of base pairs aligned as a position match for 7 
Arabidopsis and 25 maize accessions aligned to refer-
ence repetitive sequence regions. For Arabidopsis, the 
numbers of position-matched base pairs in repetitive 
sequences showed no significant difference between 
ACMGA and Cactus (Fig.  5A). For maize, ACMGA 
exhibited a significant increase in the number of posi-
tion-matched base pairs in repetitive sequences com-
pared with Cactus (Fig. 5B).

We further explored the performance of variant call-
ing in repetitive sequences using ACMGA, Cactus, and 
short-read WGS. In Arabidopsis Ler-0, ACMGA identi-
fied more SNVs from repetitive elements (Fig. 5C) than 
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did Cactus and WGS. In An-1 and Cvi-0, ACMGA and 
WGS respectively identified the largest number of SNVs 
from repetitive elements (Additional file  1: Fig S84 and 
S85). In maize B97, ACMGA identified more SNVs 
from repetitive elements (Fig.  5D) than did Cactus and 
WGS. A long terminal repeat (LTR) harbors more vari-
ants because it accounts for a very large proportion of 
repetitive elements. Similar patterns were observed for 
the remaining 24 maize accessions (Additional file 1: Fig. 
S86-S109).

MGA identifies many multi‑allelic variants
Multi-allelic variants, many of which have been demon-
strated to be functional and disease-relevant [39], have 
largely been ignored or simplified as biallelic variants. 

We used Col-0 and B73 as reference genome sequences 
to count the number of base pairs affected by multi-
allelic variants. For four Arabidopsis accessions (Col-0, 
Ler-0, An-1, and Cvi-0), ACMGA and Cactus identified 
15,355,658 and 14,524,518 base pairs affected by multi-
allelic variants, representing 12.88% and 12.19% of 
the Col-0 genome sequence, respectively. In contrast, 
WGS methods identified only 3,326 base pairs affected 
by multi-allelic variants, representing a mere 0.0027% 
(Fig.  6A). For the 25 maize populations, ACMGA and 
Cactus identified 1,586,074,982 and 1,555,175,750 base 
pairs affected by multi-allelic variants, representing 
74.40% and 72.95% of the B73 genome sequence, respec-
tively (Fig. 6B). Thus, MGA methods can be significantly 
effective in identifying multi-allelic variants.
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Computational cost comparison between ACMGA 
and Cactus
ACMGA uses AnchorWave for pairwise genome align-
ment. For each ancestral sequence generation iteration, 
ACMGA runs AnchorWave alignments for five rounds. 
The comparison data from each iteration are fed into the 
cactus_consolidated command. Generally, the number of 
iterations equals the number of accessions, and the total 
number of AnchorWave alignments can be calculated by 
(number of accessions − 2) × 5 + 4. On a computer with 
128 GB memory and the Intel Xeon W-2295 CPU, Cac-
tus took about 4  h to align eight Arabidopsis genomes, 
whereas ACMGA took about 5.5 h. For the wall time cost 
of ACMGA, AnchorWave accounted for approximately 
70%, and cactus_consolidated accounted for approxi-
mately 30%. The time cost of ACMGA and Cactus was 
linearly associated with the number of input genome 
sequences. For each iteration, the computational cost of 
AnchorWave and LASTZ was squarely associated with 
genome sequence lengths. The time cost of AnchorWave 

is also related to genomic sequence diversity and high 
sequence diversity would cost more computational 
resources [21]. For large genomes, repeat masking is 
needed for the Cactus pipeline, and the annotation of 
repetitive elements (using EDTA [40], for example) 
would also cost extra computational resources.

Discussion
MGA identifies more variants than does short‑read WGS
We compared the genomic variations obtained via 
multiple de novo assembled genome alignment and 
WGS. Multiple zero-gap de novo assembled genome 
sequences are being generated. Theoretically, the 
alignment of assembled sequences can identify all 
variations, a capability that surpasses what short-read 
WGS can achieve [9]. Compared with short-read WGS, 
MGA can identify more variants in repetitive regions, 
possibly due to read aligners exhibiting a limited abil-
ity to accurately map short-reads in repeat regions 
[5]. Additionally, to call a variant, short reads must be 
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mapped to the reference genome. For highly discord-
ant regions, this reduces SNV calls [41]. When an indi-
vidual sample lacks read coverage at a specific variant 
site, this may reflect a structural variation. Short-read 
WGS often loses this information when imputation 
is applied to assign a reference allele or alternative 
allele to the missing site based on linkage disequilib-
rium [2]. Furthermore, MGA identifies many long 
INDELs, whereas short-read WGS does not exhibit 
the ability to identify long INDELs directly. ACMGA 
identified more long INDELs than did Cactus, possi-
bly due to the pairwise alignment with AnchorWave 
optimized for the detection of long INDELs compared 
with LASTZ. For the INDELs specifically identified by 
ACMGA, we observed INDELs with length divisible by 
three were enriched in the CDS region, which makes 
biological sense [37]. Overall, MGA (especially when 
using ACMGA) reveals a more comprehensive set of 
genetic variations.

AnchorWave has been optimized to align complex plant 
genomes
LASTZ [42] is used in Cactus to perform pair-
wise genome alignment using the seed-and-extend 
approach. This approach uses shared k-mers as seeds to 
trigger alignment and then extends the alignment from 
these shared sequences using dynamic algorithms. To 
increase sensitivity, LASTZ uses flexible seeds that 
allow mismatches [23], and it has been adjusted in Cac-
tus to be more sensitive. To increase specificity, repeat 
elements are generally annotated and soft-masked [43]. 
If these masked sequences are not used as seeds, the 
alignment would not be initiated in repeat regions.

ACMGA uses the AnchorWave software to perform 
pairwise genome alignment. AnchorWave uses the 
global alignment approach to increase the sensitivity 
in highly diverse regions and repetitive elements and 
uses the 2-piece-affine-gap cost strategy to improve the 
accuracy of long INDEL identification [21].

In maize, ACMGA identified more SNVs and INDELs 
than Cactus. Additionally, ACMGA has aligned more 
bases in genic regions, repetitive regions, and across 
the whole genome relative to Cactus. Compared 
with maize, the genome size of Arabidopsis is much 
smaller, and there are fewer long INDELs and repeti-
tive sequences. When applied to Arabidopsis, ACMGA 
identified fewer variants than Cactus, whereas it shows 
more overlaps with WGS, indicating enhanced preci-
sion. AnchorWave has been optimized to align plant 
genomes with dispersed repeats, long INDELs, and 
highly diverse sequences, with ACMGA preserving 
these attributes.

MGA can identify more multi‑allelic variants
Many population genetics models are built on assump-
tions of biallelic sites. When more than two alleles are 
commonly present at a locus, approaches to understand-
ing their evolution become complicated. Meanwhile, 
some of the observed multi-allelic variants might result 
from assembly errors. Due to the high prevalence of long 
INDELs, as well as inversions and translocations in plant 
genomes, a large proportion of SNVs occur at positions 
that overlap with those long variants, resulting in multi-
allelic variants. As INDELs, inversions, and transloca-
tions continue to accumulate, they often happen nestly 
[44], and nested variants are very common in plants 
[45]. One of the advantages of genome de novo assem-
bly and MGA over short-read variant calling approaches 
is the ability to call long and nested variants [46]. Solu-
tions to represent such multi-allelic variants may come 
from well-designed graph algorithm-based reference-free 
MGA tools.

Alignment methods based on graph algorithms are 
efficient
Graph genomes encode genetic variants as nodes and 
edges, which preserves the continuity of the sequence 
and structural variation between individuals. In ACMGA, 
the cactus_consolidated part of Cactus is used. It uses the 
Cactus graph as the graph algorithm for MGA [19]. The 
graph model, due to its ability to handle the complexity of 
genome-scale sequence alignment, has become a preva-
lent data structure in numerous MGA tools. Graphs offer 
a simple method to depict the similarities and differences 
between genomes, facilitating the visualization and par-
allel computation of alignments. As the cost of genome 
assemblies continues to decrease, the importance of the 
graph data structure for executing efficient and precise 
MGA on population-scale assemblies will grow, particu-
larly for highly complex plant genomes.

Methods
Genome sequences and preprocessing
We obtained the genome sequences of seven de novo 
assembled Arabidopsis accessions from a previous pub-
lication [10] (https:// 1001g enomes. org/ data/ MPIPZ/ 
MPIPZ Jiao2 020/) and obtained the Col-0 TAIR10 genome 
assembly from Ensembl [47] (https:// plants. ensem bl. org/ 
Arabi dopsis_ thali ana/ Info/ Index). We downloaded the 
de novo assembled genome sequences of 25 maize NAM 
founder lines [11] and B73 v5 from MaizeGDB (https:// 
downl oad. maize gdb. org/).

For Arabidopsis, we obtained WGS variants from 
the 1001 Genomes Project [35] (https:// 1001g enomes. 
org/ data/ GMI- MPI/ relea ses/ v3.1/). Regarding maize, 

https://1001genomes.org/data/MPIPZ/MPIPZJiao2020/
https://1001genomes.org/data/MPIPZ/MPIPZJiao2020/
https://plants.ensembl.org/Arabidopsis_thaliana/Info/Index
https://plants.ensembl.org/Arabidopsis_thaliana/Info/Index
https://download.maizegdb.org/
https://download.maizegdb.org/
https://1001genomes.org/data/GMI-MPI/releases/v3.1/
https://1001genomes.org/data/GMI-MPI/releases/v3.1/
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we used WGS variants from maize HapMapV3.2.1 [36]
(http:// cbsus rv04. tc. corne ll. edu/ users/ panzea/ downl oad. 
aspx? fileg roupid= 34). Subsequently, we liftovered the 
VCF file from AGPv4 coordinates to AGPv5 coordinates 
using CrossMap (v0.6.5) with a Chain file (https:// downl 
oad. maize gdb. org/ Zm- B73- REFER ENCE- NAM-5. 0/ 
chain_ files/).

Additionally, we obtained the TE annotation file of 
maize B73 from MaizeGDB and converted it into the 
BED format using GFF2bed [48]. Finally, we applied soft-
masking to the genomes of 26 maize NAM founder lines 
using the maskfasta function of BEDTools [26].

Variant calling from MGA results
The ACMGA pipeline generated an MGA result in the 
HAL format, the same as Cactus. To compare ACMGA, 
Cactus, and published short-read WGS-based variant call-
ings, we divided the MGA results into multiple pairwise 
alignment results. To begin with, we used hal2fasta [33] 
and faToTwoBit [27] to reformat the reference and query 
genome sequences into the UCSC two-bit format and used 
halStats [33] to generate the query genome sequence in 
the BED format. Next, we used halLiftover [33], with the 
query genome sequence BED file and the result HAL file 
as input to create pairwise alignments, which were forced 
to the positive strand and generate the psl format result 
with pslPosTarget [27]. These pairwise alignments were 
then reformatted into chain format using axtChain [27]. 
Subsequently, we used chain2paf [49] and the paf2maf 
command of wgatools (https:// github. com/ wjwei- hands 
ome/ wgato ols) to convert the chain format into the MAF 
format. Finally, we used the MAFToGVCF plugin of TAS-
SEL [50] to generate variant calling in the GVCF format. 
Before comparing variants called by different methods, we 
used “vt normalize” [51] to normalize INDELs.

Counting the numbers of aligned base pairs and position 
match base pairs
To count the number of position matches and aligned 
base pairs for each accession, we extracted the genome 
coordinate information of the CDS, genic, and whole-
genome wide for Arabidopsis Col-0 and maize B73 and 
created BED files. Next, all the alignments in the MAF 
format were reformatted into BAM files using the “maf-
convert sam” command of LAST [23] and SAMtools 
v1.11 [24]. We used the “depth” command of SAMtools to 
calculate how many base pairs were aligned in the CDS, 
genic, and whole-genome regions. We used the “samtools 
depth | awk ’$3 > 0{print $0}’ | wc -l” command to calcu-
late how many base pairs of the reference genome have a 
matched position in the query genome.

Counting multi‑allelic variant sites
We compared the number and proportion of reference 
genome base pairs affected by multi-allelic variants 
for two reference-free MGA tools and WGS methods 
separately. For the cases of overlapping with deletions, 
we counted the cumulative length of these overlap-
ping with deletions (Additional file  1: Fig. S110A) as 
the number of reference genome base pairs affected 
by multi-allelic variants. For deletion overlapping with 
the SNV or insertion, the length of the deletion was 
counted as the number of reference genome base pairs 
affected by multi-allelic variants. Each insertion was 
counted as impacting one base pair of the reference 
genome (A cartoon explanation can be found in Addi-
tional file 1: Fig. S110B and C).

Availability and requirements
Project name: AnchorWave-Cactus Multiple Genome 
Alignment.

Project home page: https:// github. com/ HFzzz zzzz/ 
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