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Abstract 

Background  Like all other species, fungi are susceptible to infection by viruses. The diversity of fungal viruses 
has been rapidly expanding in recent years due to the availability of advanced sequencing technologies. However, 
compared to other virome studies, the research on fungi-associated viruses remains limited.

Results  In this study, we downloaded and analyzed over 200 public datasets from approximately 40 different Bio-
projects to explore potential fungal-associated viral dark matter. A total of 12 novel viral sequences were identified, 
all of which are RNA viruses, with lengths ranging from 1,769 to 9,516 nucleotides. The amino acid sequence identity 
of all these viruses with any known virus is below 70%. Through phylogenetic analysis, these RNA viruses were classi-
fied into different orders or families, such as Mitoviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Mymonaviridae, 
Bunyavirales, and Partitiviridae. It is possible that these sequences represent new taxa at the level of family, genus, 
or species. Furthermore, a co-evolution analysis indicated that the evolutionary history of these viruses within their 
groups is largely driven by cross-species transmission events.

Conclusions  These findings are of significant importance for understanding the diversity, evolution, and relation-
ships between genome structure and function of fungal viruses. However, further investigation is needed to study 
their interactions.
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Introduction
Viruses are among the most abundant and diverse bio-
logical entities on Earth; they are ubiquitous in the 
natural environment but difficult to culture and detect 
[1–3]. In recent decades, the significant advancements 
in omics have transformed the field of virology and ena-
bled researchers to detect potential viruses in a variety 
of environmental samples, helping us to expand the 
known diversity of viruses and explore the “dark mat-
ter” of viruses that may exist in vast quantities [4]. In 
most cases, the hosts of these newly discovered viruses 
exhibit only asymptomatic infections [5, 6], and they 
even play an important role in maintaining the balance, 
stability, and sustainable development of the biosphere 
[7]. But some viruses may be involved in the emergence 
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and development of animal or plant diseases. For 
example, the tobacco mosaic virus (TMV) causes poor 
growth in tobacco plants, while norovirus is known to 
cause diarrhea in mammals [8, 9]. In the field of fun-
gal research, viral infections have significantly reduced 
the yield of edible fungi, thereby attracting increas-
ing attention to fungal diseases caused by viruses [10]. 
However, due to their apparent relevance to health [11], 
fungal-associated viruses have been understudied com-
pared to viruses affecting humans, animals, or plants.

Mycoviruses (also known as fungal viruses) are widely 
distributed in various fungi and fungal-like organisms 
[12]. The first mycoviruses were discovered in the 1960s 
by Hollings M in the basidiomycete Agaricus bisporus, 
an edible cultivated mushroom [13]. Shortly thereafter, 
Ellis LF et  al. reported mycoviruses in the ascomycete 
Penicillium stoloniferum, confirming that viral dsRNA 
is responsible for interferon stimulation in mammals 
[13–15]. In recent years, the diversity of known myco-
viruses has rapidly increased with the development 
and widespread application of sequencing technolo-
gies [16–20]. According to the classification principles 
of the International Committee for the Taxonomy of 
Viruses (ICTV), mycoviruses are currently classified 
into 24 taxa, consisting of 23 families and 1 genus (Boty-
birnavirus) [21]. Most mycoviruses belong to double-
stranded (ds) RNA viruses, such as families Totiviridae, 
Partitiviridae, Reoviridae, Chrysoviridae, Megabirna-
viridae, Quadriviridae, and genus Botybirnavirus, or 
positive-sense single-stranded (+ ss) RNA viruses, such 
as families Alphaflexiviridae, Gammaflexiviridae, Bar-
naviridae, Hypoviridae, Endornaviridae, Metaviridae 
and Pseudoviridae. However, negative-sense single-
stranded (-ss) RNA viruses (family Mymonaviridae) 
and single-stranded (ss) DNA viruses (family Genomov-
iridae) have also been described [22]. The taxonomy of 
mycoviruses is continually refined as novel mycoviruses 
that cannot be classified into any established taxon are 
identified. While the vast majority of fungi-infecting 
viruses do not show infection characteristics and have 
no significant impact on their hosts, some mycoviruses 
have inhibitory effects on the phenotype of the host, 
leading to hypovirulence in phytopathogenic fungi [23]. 
The use of environmentally friendly, low-virulence-
related mycoviruses such as Chryphonectria hypovirus 
1 (CHV-1) for biological control has been considered a 
viable alternative to chemical fungicides [24]. With the 
deepening of research, an increasing number of myco-
viruses that can cause fungal phenotypic changes have 
been identified [3, 23, 25]. Therefore, understanding the 
distribution of these viruses and their effects on hosts 
will allow us to determine whether their infections can 
be prevented and treated.

To explore the viral dark matter hidden within fungi, 
this study collected over 200 available fungal-associ-
ated libraries from approximately 40 Bioprojects in the 
Sequence Read Archive (SRA) database, uncovering 
novel RNA viruses within them. We further elucidated 
the genetic relationships between known viruses and 
these newfound ones, thereby expanding our under-
standing of fungal-associated viruses and providing assis-
tance to viral taxonomy.

Materials and methods
Genome assembly
To discover novel fungal-associated viruses, we down-
loaded 236 available libraries from the SRA database, 
corresponding to 32 fungal species (Supplementary 
Table  1). Pfastq-dump v0.1.6 (https://​github.​com/​inuta​
no/​pfastq-​dump) was used to convert SRA format files to 
fastq format files. Subsequently, Bowtie2 v2.4.5 [26] was 
employed to remove host sequences. Primer sequences 
of raw reads underwent trimming using Trim Galore 
v0.6.5 (https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​
trim_​galore), and the resulting files underwent quality 
control with the options ‘–phred33 –length 20 –strin-
gency 3 –fastqc’. Duplicated reads were marked using 
PRINSEQ-lite v0.20.4 (-derep 1). All SRA datasets were 
then assembled in-house pipeline. Paired-end reads were 
assembled using SPAdes v3.15.5 [27] with the option 
‘-meta’, while single-end reads were assembled with 
MEGAHIT v1.2.9 [28], both using default parameters. 
The results were then imported into Geneious Prime 
v2022.0.1 (https://​www.​genei​ous.​com) for sorting and 
manual confirmation. To reduce false negatives dur-
ing sequence assembly, further semi-automatic assem-
bly of unmapped contigs and singlets with a sequence 
length < 500 nt was performed. Contigs with a sequence 
length > 1,500 nt after reassembly were retained. Indi-
vidual contigs were then used as references for mapping 
to the raw data using the Low Sensitivity/Fastest param-
eter in Geneious Prime. In addition, mixed assembly was 
performed using MEGAHIT in combination with BWA 
v0.7.17 [29] to search for unused reads that might corre-
spond to low-abundance contigs.

Searching for novel viruses in fungal libraries
We identified novel viral sequences present in fungal 
libraries through a series of steps. To start, we estab-
lished a local viral database, consisting of the non-redun-
dant protein (nr) database downloaded in August 2023, 
along with IMG/VR v3 [30], for screening assembled 
contigs. The contigs labeled as “viruses” and exhibiting 
less than 70% amino acid (aa) sequence identity with the 
best match in the database were imported into Geneious 
Prime for manual mapping. Putative open reading frames 
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(ORFs) were predicted by Geneious Prime using built-in 
parameters (Minimum size: 100) and were subsequently 
verified by comparison to related viruses. The annota-
tions of these ORFs were based on comparisons to the 
Conserved Domain Database (CDD). The sequences after 
manual examination were subjected to genome cluster-
ing using MMseqs2 (-k 0 -e 0.001 –min-seq-id 0.95 -c 
0.9 –cluster-mode 0) [31]. After excluding viruses with 
high aa sequence identity (> 70%) to known viruses, a 
dataset containing a total of 12 RNA viral sequences was 
obtained. The non-redundant fungal virus dataset was 
compared against the local database using the BLASTx 
program built in DIAMOND v2.0.15 [32], and significant 
sequences with a cut-off E-value of < 10–5 were selected. 
The coverage of each sequence in all libraries was cal-
culated using the pileup tool in BBMap. Taxonomic 
identification was conducted using TaxonKit [33] soft-
ware, along with the rma2info program integrated into 
MEGAN6 [34]. The RNA secondary structure prediction 
of the novel viruses was conducted using RNA Folding 
Form V2.3 (http://​www.​unafo​ld.​org/​mfold/​appli​catio​ns/​
rna-​foldi​ng-​form-​v2.​php).

Phylogenetic analysis
To infer phylogenetic relationships, nucleotide and their 
encoded protein sequences of reference strains belong-
ing to different groups of corresponding viruses were 
downloaded from the NCBI GenBank database, along 
with sequences of proposed species pending ratifica-
tion. Related sequences were aligned using the align-
ment program within the CLC Genomics Workbench 
10.0, and the resulting alignment was further optimized 
using MUSCLE in MEGA-X [35]. Sites containing more 
than 50% gaps were temporarily removed from the align-
ments. Maximum-likelihood (ML) trees were then con-
structed using IQ-TREE v1.6.12 [36]. All phylogenetic 
trees were created using IQ-TREE with 1,000 bootstrap 
replicates (-bb 1000) and the ModelFinder function (-m 
MFP). Interactive Tree Of Life (iTOL) was used for visu-
alizing and editing phylogenetic trees [37]. Colorcoded 
distance matrix analysis between novel viruses and other 
known viruses were performed with Sequence Demarca-
tion Tool v1.2 [38].

To illustrate cross-species transmission and co-diver-
gence between viruses and their hosts across different 
virus groups, we reconciled the co-phylogenetic relation-
ships between these viruses and their hosts. The evolu-
tionary tree and topologies of the hosts involved in this 
study were obtained from the TimeTree [39] website 
by inputting their Latin names. The viruses in the phy-
logenetic tree for which the host cannot be recognized 
through published literature or information provided by 
the authors are disregarded. The co-phylogenetic plots 

(or ‘tanglegram’) generated using the R package phytools 
[40] visually represent the correspondence between host 
and virus trees, with lines connecting hosts and their 
respective viruses. The event-based program eMPRess 
[41] was employed to determine whether the pairs 
of virus groups and their hosts undergo coevolution. 
This tool reconciles pairs of phylogenetic trees accord-
ing to the Duplication-Transfer-Loss (DTL) model [42], 
employing a maximum parsimony formulation to cal-
culate the cost of each coevolution event. The cost of 
duplication, host-jumping (transfer), and extinction (loss) 
event types were set to 1.0, while host-virus co-diver-
gence was set to zero, as it was considered the null event.

Data availability
The data reported in this paper have been deposited in 
the GenBase in National Genomics Data Center [43], 
Beijing Institute of Genomics, Chinese Academy of Sci-
ences/China National Center for Bioinformation, under 
accession numbers C_AA066339.1-C_AA066350.1 that 
are publicly accessible at https://​ngdc.​cncb.​ac.​cn/​genba​
se. Please refer to Table 1 for details.

Results
Twelve novel RNA viruses associated with fungi
We investigated fungi-associated novel viruses by min-
ing publicly available metagenomic and transcriptomic 
fungal datasets. In total, we collected 236 datasets, which 
were categorized into four fungal phyla: Ascomycota 
(159), Basidiomycota (47), Chytridiomycota (15), and 
Zoopagomycota (15). These phyla corresponded to 20, 8, 
2, and 2 different fungal genera, respectively (Supplemen-
tary Table  1). A total of 12 sequences containing com-
plete coding DNA sequences (CDS) for RNA-dependent 
RNA polymerase (RdRp) have been identified, ranging in 
length from 1,769 nt to 9,516 nt. All of these sequences 
have less than 70% aa identity with RdRp sequences 
from any currently known virus (ranging from 32.97% 
to 60.43%), potentially representing novel families, gen-
era, or species (Table 1). Some of the identified sequences 
were shorter than the reference genomes of RNA viruses, 
suggesting that these viral sequences represented partial 
sequences of viral genomes. To exclude the possibility 
of transient viral infections in hosts or de novo assem-
bly artefacts in co-infection detection, we extracted the 
nucleotide sequences of the coding regions of these 12 
sequences and mapped them to all collected libraries to 
compute coverage (Supplementary Table  2). The results 
revealed varying degrees of read matches for these viral 
genomes across different libraries, spanning different 
fungal species. Although we only analyzed sequences 
longer than 1,500 nt, it is worth noting that we also dis-
covered other viral reads in many libraries. However, 

http://www.unafold.org/mfold/applications/rna-folding-form-v2.php
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we were unable to assemble them into sufficiently long 
contigs, possibly due to library construction strategies 
or sequencing depth. In any case, this preliminary find-
ing reveals a greater diversity of fungal-associated viruses 
than previously considered.

Positive‑sense single‑stranded RNA viruses
(i) Mitoviridae
Members of the family Mitoviridae (order Cryppa-
virales) are monopartite, linear, positive-sense ( +) 
single-stranded (ss) RNA viruses with genome size of 
approximately 2.5–2.9 kb [44], carrying a single long open 
reading frame (ORF) which encodes a putative RdRp. 
Mitoviruses have no true virions and no structural pro-
teins, virus genome is transmitted horizontally through 
mating or vertically from mother to daughter cells [45]. 
They use mitochondria as their sites of replication and 
have typical 5’ and 3’ untranslated regions (UTRs) of 
varying sizes, which are responsible for viral translation 
and replicase recognition [46]. According to the taxo-
nomic principles of ICTV, the viruses belonging to the 
family Mitoviridae are divided into four genera, namely 
Duamitovirus, Kvaramitovirus, Triamitovirus and Unu-
amitovirus. In this study, two novel viruses belonging 
to the family Mitoviridae were identified in the same 

library (SRR12744489; Species: Thielaviopsis ethacetica), 
named Thielaviopsis ethacetica mitovirus 1 (TeMV01) 
and Thielaviopsis ethacetica mitovirus 2 (TeMV02), 
respectively (Fig. 1A). The genome sequence of TeMV01 
spans 2,689 nucleotides in length with a GC content of 
32.2%. Its 5’ and 3’ UTRs comprise 406 nt and 36 nt, 
respectively. Similarly, the genome sequence of TeMV02 
extends 3,087 nucleotides in length with a GC content 
of 32.6%. Its 5’ and 3’ UTRs consist of 553 and 272 nt, 
respectively. The 5’ and 3’ ends of both genomes are pre-
dicted to have typical stem-loop structures (Fig.  1B). 
In order to determine the evolutionary relationship 
between these two mitoviruses and other known mito-
viruses, phylogenetic analysis based on RdRp showed 
that viral strains were divided into 2 genetic lineages in 
the genera Duamitovirus and Unuamitovirus (Fig.  1C). 
In the genus Unuamitovirus, TeMV01 was clustered 
with Ophiostoma mitovirus 4, exhibiting the highest 
aa identity of 51.47%, while in the genus Duamitovi-
rus, TeMV02 was clustered with a strain isolated from 
Plasmopara viticola, showing the highest aa identity 
of 42.82%. According to the guidelines from the ICTV 
regarding the taxonomy of the family Mitoviridae, a spe-
cies demarcation cutoff of < 70% aa sequence identity is 
established [47]. Drawing on this recommendation and 

Table 1  Assembled sequences with identity to those of previously described viruses

Virus name Accession Length Best Match aa Identity Virus Family E-value Query cover Mapping reads

TeMV01 C_AA066349.1 2,689 Ophiostoma mitovirus 4 
[NP_660179]

51.47% Mitoviridae 0 82% 35,248

TeMV02 C_AA066342.1 3,087 Plasmopara viticola lesion associ-
ated mitovirus 40 [QIR30263]

42.82% Mitoviridae 2e-142 69% 58,505

GtBeV C_AA066339.1 6,479 Diabrotica undecimpunctata virus 
2 [QIT20101]

34.68% Benyviridae 2e-123 77% 58,149

CrBV C_AA066344.1 2,903 Erysiphe necator associated 
ourmia-like virus 2 [UUW21020]

56.58% Botourmiaviridae 0 69% 309,690

LsDV C_AA066341.1 3,425 Cat Tien Macrotermes Deltaflexi-
like virus [UUW06602]

46.61% Deltaflexiviridae 0 94% 47,164

GtTIV C_AA066348.1 7,588 Fusarium sacchari alphavirus-like 
virus 1 [QIQ28421]

60.43% Unclassified 0 97% 1,124

GtMV C_AA066347.1 9,339 Soybean leaf-associated 
negative-stranded RNA virus 2 
[YP_010784557]

45.22% Mymonaviridae 0 95% 43,440

ApMV C_AA066346.1 6,235 Erysiphe necator associated 
negative-stranded RNA virus 23 
[YP_010802816]

55.90% Mymonaviridae 0 94% 29,691

CoBV C_AA066345.1 7,277 Suillus luteus associated bunya-like 
virus 2 [WLK77441]

32.97% Phasmaviridae 0 80% 1,465

GtBV C_AA066343.1 7,364 Entoleuca phenui-like virus 1 
[YP_010086241]

54.20% Phenuiviridae 0 95% 839

TaBV C_AA066340.1 9,516 Trichoderma gamsii mycobunyavi-
rus 1 [WGH72967]

35.02% Unclassified 0 75% 2,914

NcPV C_AA066350.1 1,769 Pythium nunn virus 1 
[YP_009551507]

41.50% Partitiviridae 2e-120 84% 13,506
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phylogenetic inferences, these two viral strains could be 
presumed to be novel viral species [48].

(ii) Benyviridae
The family Benyviridae is comprised of multipartite plant 
viruses that are rod-shaped, approximately 85–390 nm in 
length and 20 nm in diameter. Within this family, there is 
a single genus, Benyvirus [49]. It is reported that one spe-
cies within this genus,Beet necrotic yellow vein virus, can 
cause widespread and highly destructive soil-borne ‘rhi-
zomania’ disease of sugar beet [50]. A full-length RNA1 
sequence related to Benyviridae has been detected from 
Gaeumannomyces tritici (ERR3486062), with a length 
of 6,479 nt. It possesses a poly(A) tail at the 3’ end and 
is temporarily designated as Gaeumannomyces tritici 
benyvirus (GtBeV). BLASTx results indicate a 34.68% aa 
sequence identity with the best match found (Fig.  1D). 
The non-structural polyprotein CDS of RNA1 encodes 
a large replication-associated protein of 1,688 amino 
acids with a molecular mass of 190  kDa. Four domains 
were predicted in this polyprotein corresponding to rep-
resentative species within the family Benyviridae. The 
viral methyltransferase (Mtr) domain spans from nucleo-
tide position 386 to 1411, while the RNA helicase (Hel) 
domain occupies positions 2113 to 2995 nt. Additionally, 
the protease (Pro) domain is located between positions 
3142 and 3410 nt, and the RdRp domain is located at 
4227 to 4796 nt. A phylogenetic analysis was conducted 
by integrating RdRp sequences of viruses closely related 
to GtBeV. The result revealed that GtBeV clustered 
within the family Benyviridae, exhibiting substantial evo-
lutionary divergence from any other sequences. Conse-
quently, this virus likely represents a novel species in the 
family Benyviridae.

(iii) Botourmiaviridae
The family Botourmiaviridae comprises viruses infecting 
plants and filamentous fungi, which may possess mono- 
or multi-segmented genomes [51]. Recent research has 

led to a rapid expansion in the number of viruses within 
the family Botourmiaviridae, increasing from the con-
firmed 4 genera in 2020 to a total of 12 genera. A contig 
identified from Clonostachys rosea (ERR5928658) using 
the BLASTx method exhibited similarity to viruses in the 
family Botourmiaviridae. After manual mapping, a 2,903 
nt-long genome was obtained, tentatively named Clon-
ostachys rosea botourmiavirus (CrBV), which includes a 
complete RdRP region (Fig.  1E). Based on phylogenetic 
analysis using RdRp, CrBV clustered with members of 
the genus Magoulivirus, sharing 56.58% aa identity with 
a strain identified from Eclipta prostrata. However, puz-
zlingly, according to the ICTV’s Genus/Species demarca-
tion criteria, members of different genera/species within 
the family Botourmiaviridae share less than 70%/90% 
identity in their complete RdRP amino acid sequences. 
Furthermore, the RdRp sequences with accession num-
bers NC_055143 and NC_076766, both considered to 
be members of the genus Magoulivirus, exhibited only 
39.05% aa identity to each other. Therefore, CrBV should 
at least be considered as a new species within the family 
Botourmiaviridae.

(iv) Deltaflexiviridae
An assembled sequence of 3,425 nucleotides in length 
Lepista sordida deltaflexivirus (LsDV), derived from 
Lepista sordida (DRR252167) and showing homology 
to Deltaflexiviridae within the order Tymovirales, was 
obtained. The Tymovirales comprises five recognized 
families: Alphaflexiviridae, Betaflexiviridae, Deltaflexi-
viridae, Gammaflexiviridae, and Tymoviridae [52]. The 
Deltaflexiviridae currently only includes one genus, 
the fungal-associated deltaflexivirus; they are mostly 
identified in fungi or plants pathogens [53]. LsDV was 
predicted to have a single large ORF, VP1, which starts 
with an AUG codon at nt 163–165 and ends with a UAG 
codon at nt 3,418–3,420. This ORF encodes a putative 
polyprotein of 1,086 aa with a calculated molecular mass 
of 119  kDa. Two conserved domains within the VP1 

Fig. 1  Identification of novel positive-sense single-stranded RNA viruses in fungal sequencing libraries. A Genome organization of two novel 
mitoviruses; the putative ORF for the viral RdRp is depicted by a green box, and the predicted conserved domain region is displayed in a gray 
box. B Predicted RNA secondary structures of the 5’- and 3’-terminal regions. C ML phylogenetic tree of members of the family Mitoviridae. The 
best-fit model (LG + F + R6) was estimated using IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified 
viruses represented in red font. D The genome organization of GtBeV is depicted at the top; in the middle is the ML phylogenetic tree of members 
of the family Benyviridae. The best-fit model (VT + F + R5) was estimated using IQ-Tree model selection. The bootstrap value is shown at each branch, 
with the newly identified virus represented in red font. At the bottom is the distance matrix analysis of GeBeV identified in Gaeumannomyces tritici. 
Pairwise sequence comparison produced with the RdRp amino acid sequences within the ML tree. E The genome organization of CrBV is depicted 
at the top; in the middle is the ML phylogenetic tree of members of the family Botourmiaviridae. The best-fit model (VT + F + R5) was estimated 
using IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified virus represented in red font. At the bottom 
is the distance matrix analysis of CrBV identified in Clonostachys rosea. Pairwise sequence comparison produced with the RdRp amino acid 
sequences within the ML tree

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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protein were identified: Hel and RdRp (Fig.  2A). How-
ever, the Mtr was missing, indicating that the 5’ end of 
this polyprotein is incomplete. According to the phy-
logenetic analysis of RdRp, LsDV was closely related to 
viruses of the family Deltaflexiviridae and shared 46.61% 
aa identity with a strain (UUW06602) isolated from Mac-
rotermes carbonarius. Despite this, according to the spe-
cies demarcation criteria proposed by ICTV, because 
we couldn’t recover the entire replication-associated 
polyprotein, LsDV cannot be regarded as a novel species 
at present.

(v) Toga‑like virus
Members of the family Togaviridae are primarily trans-
mitted by arthropods and can infect a wide range of ver-
tebrates, including mammals, birds, reptiles, amphibians, 
and fish [54]. Currently, this family only contains a single 
confirmed genus, Alphavirus. A contig was discovered in 
Gaeumannomyces tritici (ERR3486058), it is 7,588 nt in 
length with a complete ORF encoding a putative protein 
of 1,928 aa, which had 60.43% identity to Fusarium sac-
chari alphavirus-like virus 1 (QIQ28421) with 97% cover-
age. Phylogenetic analysis showed that it did not cluster 
with classical alphavirus members such as VEE, WEE, 
EEE, SF complex [54], but rather with several sequences 
annotated as Toga-like that were available (Fig.  2B). It 
was provisionally named Gaeumannomyces tritici toga-
like virus (GtTIV). However, we remain cautious about 
the accuracy of these so-called Toga-like sequences, as 
they show little significant correlation with members of 
the order Martellivirales.

Negative‑sense single‑stranded RNA viruses
(i) Mymonaviridae
Mymonaviridae is a family of linear, enveloped, negative-
stranded RNA genomes in the order Mononegavirales, 
which infect fungi. They are approximately 10 kb in size 
and encode six proteins [55]. The famliy Mymonaviri-
dae was established to accommodate Sclerotinia scle-
rotiorum negative-stranded RNA virus 1 (SsNSRV-1), a 
novel virus discovered in a hypovirulent strain of Scle-
rotinia sclerotiorum [56]. According to the ICTV, the 
family Mymonaviridae currently includes 9 genera, 

namely Auricularimonavirus, Botrytimonavirus, Hubra-
monavirus, Lentimonavirus, Penicillimonavirus, Phyl-
lomonavirus, Plasmopamonavirus, Rhizomonavirus and 
Sclerotimonavirus. Two sequences originating from 
Gaeumannomyces tritici (ERR3486068) and Aspergillus 
puulaauensis (DRR266546), respectively, and associated 
with the family Mymonaviridae, have been identified and 
provisionally named Gaeumannomyces tritici mymona-
virus (GtMV) and Aspergillus puulaauensis mymonavi-
rus (ApMV). GtMV is 9,339 nt long with a GC content 
of 52.8%. It was predicted to contain 5 discontinuous 
ORFs, with the largest one encoding RdRp. Addition-
ally, a nucleoprotein and three hypothetical proteins with 
unknown function were also predicted. A multiple align-
ment of nucleotide sequences among these ORFs identi-
fied a semi-conserved sequence, 5’-UAAAA-CUA​GGA​
GC-3’, located downstream of each ORF (Fig. 3A). These 
regions are likely gene-junction regions in the GtMV 
genome, a characteristic feature shared by mononegavi-
ruses [57, 58]. For ApMV, a complete RdRp CDS with a 
length of 1,978 aa was predicted. The BLASTx searches 
showed that GtMV shared 45.22% identity with the RdRp 
of Soybean leaf-associated negative-stranded RNA virus 
2 (YP_010784557), while ApMV shared 55.90% identity 
with the RdRp of Erysiphe necator associated negative-
stranded RNA virus 23 (YP_010802816). The repre-
sentative members of the family Mymonaviridae were 
included in the phylogenetic analysis. The results showed 
that GtMV and ApMV clustered closely with members of 
the genera Sclerotimonavirus and Plasmopamonavirus, 
respectively (Fig. 3B). Members of the genus Plasmopa-
monavirus are about 6 kb in size and encode for a single 
protein. Therefore, GtMV and ApMV should be consid-
ered as representing new species within their respective 
genera.

(ii) Bunyavirales
The Bunyavirales (the only order in the class Elliovirice-
tes) is one of the largest groups of segmented negative-
sense single-stranded RNA viruses with mainly tripartite 
genomes [59], which includes many pathogenic strains 
that infect arthropods(such as mosquitoes, ticks, sand 
flies), plants, protozoans, and vertebrates, and even cause 

(See figure on next page.)
Fig. 2  Identification of novel members of family Deltaflexiviridae and Toga-like virus in fungal sequencing libraries. A On the right side of the image 
is the genome organization of LsDV; the putative ORF for the viral RdRp is depicted by a green box, and the predicted conserved domain region 
is displayed in a gray box. ML phylogenetic tree of members of the family Deltaflexiviridae. The best-fit model (VT + F + R6) was estimated using 
IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified virus represented in red font. B The genome 
organization of GtTlV is depicted at the top; the putative ORF for the viral RdRp is depicted by a green box, and the predicted conserved domain 
region is displayed in a gray box. ML phylogenetic tree of members of the order Martellivirales. The best-fit model (LG + R7) was estimated using 
IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified virus represented in red font
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severe human diseases. Order Bunyavirales consists of 
14 viral families, including Arenaviridae, Cruliviridae, 
Discoviridae, Fimoviridae, Hantaviridae, Leishbuviridae, 
Mypoviridae, Nairoviridae, Peribunyaviridae, Phasma-
viridae, Phenuiviridae, Tospoviridae, Tulasviridae and 
Wupedeviridae. In this study, three complete or near 
complete RNA1 sequences related to bunyaviruses were 
identified and named according to their respective hosts: 
CoBV (Conidiobolus obscurus bunyavirus; SRR6181013; 
7,277 nt), GtBV (Gaeumannomyces tritici bunyavirus; 
ERR3486069; 7,364 nt), and TaBV (Thielaviopsis aethacet-
ica bunyavirus; SRR12744489; 9,516 nt) (Fig. 4A). The 5’ 
and 3’ terminal RNA segments of GtBV and TaBV com-
plement each other, allowing the formation of a pan-
handle structure [60], which plays an essential role as 
promoters of genome transcription and replication [61], 
except for CoBV, as the 3’ terminal of CoBV has not been 
fully obtained (Fig.  4B). BLASTx results indicated that 
these three viruses had identities ranging from 32.97% 
to 54.20% to the best matches in the GenBank database. 
Phylogenetic analysis indicated that CoBV was classified 
into the family Phasmaviridae, with distant relationships 
to any of its genera; GtBV clustered well with members of 
the genus Entovirus of family Phenuiviridae; while TaBV 
did not cluster with any known members of families 
within Bunyavirales, hence provisionally placed within 
the Bunya-like group (Fig.  4C). Therefore, these three 
sequences should be considered as potential new family, 
genus, or species within the order Bunyavirales.

Double‑stranded RNA viruses
Partitiviridae
The Partitiviridae is a family of small, non-enveloped 
viruses, approximately 35–40 nm in diameter, with biseg-
mented double-stranded (ds) RNA genomes. Each seg-
ment is about 1.4–3.0 kb in size, resulting in a total size 
about 4 kb [62]. The family Partitiviridae is now divided 
into five genera: Alphapartitivirus, Betapartiivirus, 
Cryspovirus, Deltapartitivirus and Gammapartitivirus. 
Each genus has characteristic hosts: plants or fungi for 
Alphapartitivirus and Betapartitivirus, fungi for Gam-
mapartitivirus, plants for Deltapartitivirus, and protozoa 
for Cryspovirus [62]. A complete dsRNA1 sequence Neo-
callimastix californiae partitivirus (NcPV) retrieved from 

Neocallimastix californiae (SRR15362281) has been iden-
tified as being associated with the family Partitiviridae. 
The BLASTp result indicated that it shared the highest aa 
identity of 41.5% with members of the genus Gammapar-
titivirus. According to the phylogenetic tree constructed 
based on RdRp, NcPV was confirmed to fall within the 
genus Gammapartitivirus (Fig.  5). Typical members 
of the genus Gammapartitivirus have two segments in 
their complete genome, namely dsRNA1 and dsRNA2, 
encoding RdRp and coat protein, respectively [62]. The 
larger dsRNA1 segment of NcPV measures 1,769 nt in 
length, with a GC content of 35.8%. It contains a single 
ORF encoding a 561 aa RdRp. A CDD search revealed 
that the RdRp of NcPV harbors a catalytic region span-
ning from 119 to 427aa. Regrettably, only the complete 
dsRNA1 segment was obtained. According to the classi-
fication principles of ICTV, due to the lack of informa-
tion regarding dsRNA2, we are unable to propose it as 
a new species. It is worth noting that according to the 
Genus demarcation criteria (https://​ictv.​global/​report/​chapt​
er/​parti​tivir​idae/​parti​tivir​idae), members of the genus 
Gammapartitivirus should have a dsRNA1 length rang-
ing from 1645 to 1787 nt, and the RdRp length should fall 
between 519 and 539 aa. However, the length of dsRNA1 
in NcPV is 1,769 nt, with RdRp being 561 aa, challeng-
ing this classification criterion. In fact, multiple strains 
have already exceeded this criterion, such as GenBank 
accession numbers: WBW48344, UDL14336, QKK35392, 
among others.

Long‑term evolutionary relationships 
between fungal‑associated viruses and hosts
Understanding the co-divergence history between 
viruses and hosts helps reveal patterns of virus trans-
mission and infection and influences the biodiversity 
and stability of ecosystems. To explore the frequency of 
cross-species transmission and co-divergence among 
fungi-associated viruses, we constructed tanglegrams 
illustrating the interconnected evolutionary histories of 
viral families and their respective hosts through phyloge-
netic trees (Fig. 6A). The results indicated that cross-spe-
cies transmission (Host-jumping) consistently emerged 
as the most frequent evolutionary event among all 
groups of RNA viruses examined in this study (median, 

Fig. 3  Identification of two new members in the family Mymonaviridae. A At the top is the nucleotide multiple sequence alignment result of GtMV 
with the reference genomes. the putative ORF for the viral RdRp is depicted by a green box, the predicted nucleoprotein is displayed in a yellow 
box, and three hypothetical proteins are displayed in gray boxes. The comparison of putative semi-conserved regions between ORFs in GtMV 
is displayed in the 5’ to 3’ orientation, with conserved sequences are highlighted. At the bottom is the genome organization of AmPV; the putative 
ORF for the viral RdRp is depicted by a green box. B ML phylogenetic tree of members of the family Mymonaviridae. The best-fit model (LG + F + R6) 
was estimated using IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified viruses represented in red font

(See figure on next page.)

https://ictv.global/report/chapter/partitiviridae/partitiviridae
https://ictv.global/report/chapter/partitiviridae/partitiviridae
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66.79%; range, 60.00% to 79.07%) (Fig. 6B). This finding is 
highly consistent with the evolutionary patterns of RNA 
viruses recently identified by Mifsud et al. in their exten-
sive transcriptome survey of plants [63]. Members of the 
families Botourmiaviridae (79.07%) and Deltaflexiviridae 
(72.41%) were most frequently involved in cross-species 
transmission. The frequencies of co-divergence (median, 
20.19%; range, 6.98% to 27.78%), duplication (median, 
10.60%; range, 0% to 22.45%), and extinction (median, 
2.42%; range, 0% to 5.56%) events involved in the evolu-
tion of fungi-associated viruses gradually decrease. Spe-
cifically, members of the family Benyviridae exhibited the 
highest frequency of co-divergence events, which also 
supports the findings reported by Mifsud et  al.; certain 
studies propose that members of Benyviridae are trans-
mitted via zoospores of plasmodiophorid protist [64]. 
It’s speculated that the ancestor of these viruses under-
went interkingdom horizontal transfer between plants 
and protists over evolutionary timelines [65]. Members 
of the family Mitoviridae showed the highest frequency 
of duplication events; and members of the families 
Benyviridae and Partitiviridae demonstrated the high-
est frequency of extinction events. Not surprisingly, this 
result is influenced by the current limited understand-
ing of virus-host relationships. On one hand, viruses 
whose hosts cannot be recognized through published 
literature or information provided by authors have been 
overlooked. On the other hand, the number of viruses 
recorded in reference databases represents just the tip 
of the iceberg within the entire virosphere. The involve-
ment of a more extensive sample size in the future should 
change this evolutionary landscape.

Discussion
Our understanding of the interactions between fungi 
and their associated viruses has long been constrained 
by insufficient sampling of fungal species. Advances 
in metagenomics in recent decades have led to a rapid 
expansion of the known viral sequence space, but it is 
far from saturated. The diversity of hosts, the instability 
of the viral structures (especially RNA viruses), and the 
propensity to exchange genetic material with other host 
viruses all contribute to the unparalleled diversity of viral 
genomes [66]. Fungi are diverse and widely distributed 
in nature and are closely related to humans. A few fungi 

can parasitize immunocompromised humans, but their 
adverse effects are limited. As decomposers in the bio-
logical chain, fungi can decompose the remains of plants 
and animals and maintain the material cycle in the bio-
logical world [67]. In agricultural production, many fungi 
are plant pathogens, and about 80% of plant diseases are 
caused by fungi. However, little is currently known about 
the diversity of mycoviruses and how these viruses affect 
fungal phenotypes, fungal-host interactions, and virus 
evolution, and the sequencing depth of fungal libraries in 
most public databases only meets the needs of studying 
bacterial genomes. Sampling viruses from a larger diver-
sity of fungal hosts should lead to new and improved evo-
lutionary scenarios.

RNA viruses are widespread in deep-sea sediments 
[68], freshwater [69], sewage [70], and rhizosphere soils 
[71]. Compared to DNA viruses, RNA viruses are less 
conserved, prone to mutation, and can transfer between 
different hosts, potentially forming highly differenti-
ated and unrecognized novel viruses. This characteristic 
increases the difficulty of monitoring these viruses. Pre-
viously, all discovered mycoviruses were RNA viruses. 
Until 2010, Yu et  al. reported the discovery of a DNA 
virus, namely SsHADV-1, in fungi for the first time [72]. 
Subsequently, new fungal-related DNA viruses are con-
tinually being identified [73–75]. Currently, viruses have 
been found in all major groups of fungi, and approxi-
mately 100 types of fungi can be infected by viruses, 
instances exist where one virus can infect multiple fungi, 
or one fungus can be infected by several viruses simul-
taneously. The transmission of mycoviruses differs from 
that of animal and plant viruses and is mainly categorized 
into vertical and horizontal transmission [76]. Verti-
cal transmission refers to the spread of the mycovirus to 
the next generation through the sexual or asexual spores 
of the fungus, while horizontal transmission refers to 
the spread of the mycovirus from one strain to another 
through fusion between hyphae. In the phylum Asco-
mycota, mycoviruses generally exhibit a low ability to 
transmit vertically through ascospores, but they are com-
monly transmitted vertically to progeny strains through 
asexual spores [77].

In this study, we identified two novel species belong-
ing to different genera within the family Mitoviridae. 
Interestingly, they both simultaneously infect the same 

(See figure on next page.)
Fig. 4  Identification of three new members in the order Bunyavirales. A The genome organization of CoBV, GtBV, and TaBV; the putative ORF 
for the viral RdRp is depicted by a green box, and the predicted conserved domain region is displayed in a gray box. B The complementary 
structures formed at the 5’ and 3’ ends of GtBV and TaBV. C ML phylogenetic tree of members of the order Bunyavirales. The best-fit model 
(VT + F + R8) was estimated using IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified viruses 
represented in red font
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fungus—Thielaviopsis ethacetica, the causal agent of 
pineapple sett rot disease in sugarcane [78]. Previously, a 
report identified three different mitoviruses in Fusarium 
circinatum [79]. These findings suggest that there may 
be a certain level of adaptability or symbiotic relation-
ship among members of the family Mitoviridae. Benyvi-
ruses are typically considered to infect plants, but recent 

evidence suggests that they can also infect fungi, such as 
Agaricus bisporus [80], further reinforced by the virus we 
discovered in Gaeumannomyces tritici. Moreover, mem-
bers of the family Botourmiaviridae commonly exhibit 
a broad host range, with viruses closely related to CrBV 
capable of infecting members of Eukaryota, Viridiplan-
tae, and Metazoa, in addition to fungi (Supplementary 

Fig. 5  Identification of a new member in the family Partitiviridae. The genome organization of NcPV is depicted at the top; the putative ORF 
for the viral RdRp is depicted by a green box, and the predicted conserved domain region is displayed in a gray box. At the bottom is the ML 
phylogenetic tree of members of the family Partitiviridae. The best-fit model (VT + F + R4) was estimated using IQ-Tree model selection. The 
bootstrap value is shown at each branch, with the newly identified virus represented in red font
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Fig. 6  Co-evolutionary analysis of virus and host. A Tanglegram of phylogenetic trees for virus orders/families and their hosts. Lines and branches 
are color-coded to indicate host clades. The cophylo function in phytools was employed to enhance congruence between the host (left) and virus 
(right) phylogenies. B Reconciliation analysis of virus groups. The bar chart illustrates the proportional range of possible evolutionary events, 
with the frequency of each event displayed at the top of its respective column
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Fig.  1). The LsDV identified in this study shared the 
closest phylogenetic relationship with a virus identified 
from Macrotermes carbonarius in southern Vietnam 
(17_N1 + N237) [81]. M. carbonarius is an open-air for-
aging species that collects plant litter and wood debris 
to cultivate fungi in fungal gardens [82], termites may 
act as vectors, transmitting deltaflexivirus to other fungi. 
Furthermore, the viruses we identified, typically associ-
ated with fungi, also deepen their connections with spe-
cies from other kingdoms on the tanglegram tree. For 
example, while Partitiviridae are naturally associated 
with fungi and plants, NcPV also shows close connec-
tions with Metazoa. In fact, based largely on phylogenetic 
predictions, various eukaryotic viruses have been found 
to undergo horizontal transfer between organisms of 
plants, fungi, and animals [83]. The rice dwarf virus was 
demonstrated to infect both plant and insect vectors [84]; 
moreover, plant-infecting rhabdoviruses, tospoviruses, 
and tenuiviruses are now known to replicate and spread 
in vector insects and shuttle between plants and animals 
[85]. Furthermore, Bian et  al. demonstrated that plant 
virus infection in plants enables Cryphonectria hypovi-
rus 1 to undergo horizontal transfer from fungi to plants 
and other heterologous fungal species [86].

Recent studies have greatly expanded the diversity of 
mycoviruses [87, 88]. Gilbert et al. [20] investigated pub-
licly available fungal transcriptomes from the subphylum 
Pezizomycotina, resulting in the detection of 52 novel 
mycoviruses; Myers et  al. [18] employed both culture-
based and transcriptome-mining approaches to identify 
85 unique RNA viruses across 333 fungi; Ruiz-Padilla 
et al. identified 62 new mycoviral species from 248 Bot-
rytis cinerea field isolates; Zhou et al. identified 20 novel 
viruses from 90 fungal strains (across four different mac-
rofungi species) [89]. However, compared to these stud-
ies, our work identified fewer novel viruses, possibly due 
to the following reasons: 1) The libraries from the same 
Bioproject are usually from the same strains (or isolates). 
Therefore, there is a certain degree of redundancy in the 
datasets collected for this study. 2) Contigs shorter than 
1,500 nt were discarded, potentially resulting in the over-
sight of short viral molecules. 3) Establishing a threshold 
of 70% aa sequence identity may also lead to the exclu-
sion of certain viruses. 4) Some poly(A)-enriched RNA-
seq libraries are likely to miss non-polyadenylated RNA 
viral genomes.

Taxonomy is a dynamic science, evolving with 
improvements in analytical methods and the emer-
gence of new data. Identifying and rectifying incorrect 
classifications when new information becomes avail-
able is an ongoing and inevitable process in today’s rap-
idly expanding field of virology. For instance, in 1975, 
members of the genera Rubivirus and Alphavirus were 

initially grouped under the family Togaviridae; how-
ever, in 2019, Rubivirus was reclassified into the family 
Matonaviridae due to recognized differences in trans-
mission modes and virion structures [90]. Additionally, 
the conflicts between certain members of the genera 
Magoulivirus and Gammapartitivirus mentioned here 
and their current demarcation criteria (e.g., amino 
acid identity, nucleotide length thresholds) need to be 
reconsidered.

Taken together, these findings reveal the potential 
diversity and novelty within fungal-associated viral 
communities and discuss the genetic similarities among 
different fungal-associated viruses. These findings 
advance our understanding of fungal-associated viruses 
and suggest the importance of subsequent in-depth 
investigations into the interactions between fungi and 
viruses, which will shed light on the important roles of 
these viruses in the global fungal kingdom.
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