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Abstract

Background Like all other species, fungi are susceptible to infection by viruses. The diversity of fungal viruses
has been rapidly expanding in recent years due to the availability of advanced sequencing technologies. However,
compared to other virome studies, the research on fungi-associated viruses remains limited.

Results In this study, we downloaded and analyzed over 200 public datasets from approximately 40 different Bio-
projects to explore potential fungal-associated viral dark matter. A total of 12 novel viral sequences were identified,

all of which are RNA viruses, with lengths ranging from 1,769 to 9,516 nucleotides. The amino acid sequence identity
of all these viruses with any known virus is below 70%. Through phylogenetic analysis, these RNA viruses were classi-
fied into different orders or families, such as Mitoviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Mymonaviridae,
Bunyavirales, and Partitiviridae. It is possible that these sequences represent new taxa at the level of family, genus,

or species. Furthermore, a co-evolution analysis indicated that the evolutionary history of these viruses within their
groups is largely driven by cross-species transmission events.

Conclusions These findings are of significant importance for understanding the diversity, evolution, and relation-
ships between genome structure and function of fungal viruses. However, further investigation is needed to study

their interactions.
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Introduction

Viruses are among the most abundant and diverse bio-
logical entities on Earth; they are ubiquitous in the
natural environment but difficult to culture and detect
[1-3]. In recent decades, the significant advancements
in omics have transformed the field of virology and ena-
bled researchers to detect potential viruses in a variety
of environmental samples, helping us to expand the
known diversity of viruses and explore the “dark mat-
ter” of viruses that may exist in vast quantities [4]. In
most cases, the hosts of these newly discovered viruses
exhibit only asymptomatic infections [5, 6], and they
even play an important role in maintaining the balance,
stability, and sustainable development of the biosphere
[7]. But some viruses may be involved in the emergence
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and development of animal or plant diseases. For
example, the tobacco mosaic virus (TMV) causes poor
growth in tobacco plants, while norovirus is known to
cause diarrhea in mammals [8, 9]. In the field of fun-
gal research, viral infections have significantly reduced
the yield of edible fungi, thereby attracting increas-
ing attention to fungal diseases caused by viruses [10].
However, due to their apparent relevance to health [11],
fungal-associated viruses have been understudied com-
pared to viruses affecting humans, animals, or plants.

Mycoviruses (also known as fungal viruses) are widely
distributed in various fungi and fungal-like organisms
[12]. The first mycoviruses were discovered in the 1960s
by Hollings M in the basidiomycete Agaricus bisporus,
an edible cultivated mushroom [13]. Shortly thereafter,
Ellis LF et al. reported mycoviruses in the ascomycete
Penicillium stoloniferum, confirming that viral dsRNA
is responsible for interferon stimulation in mammals
[13-15]. In recent years, the diversity of known myco-
viruses has rapidly increased with the development
and widespread application of sequencing technolo-
gies [16-20]. According to the classification principles
of the International Committee for the Taxonomy of
Viruses (ICTV), mycoviruses are currently classified
into 24 taxa, consisting of 23 families and 1 genus (Boty-
birnavirus) [21]. Most mycoviruses belong to double-
stranded (ds) RNA viruses, such as families Totiviridae,
Partitiviridae, Reoviridae, Chrysoviridae, Megabirna-
viridae, Quadriviridae, and genus Botybirnavirus, or
positive-sense single-stranded (+ss) RNA viruses, such
as families Alphaflexiviridae, Gammaflexiviridae, Bar-
naviridae, Hypoviridae, Endornaviridae, Metaviridae
and Pseudoviridae. However, negative-sense single-
stranded (-ss) RNA viruses (family Mymonaviridae)
and single-stranded (ss) DNA viruses (family Genomov-
iridae) have also been described [22]. The taxonomy of
mycoviruses is continually refined as novel mycoviruses
that cannot be classified into any established taxon are
identified. While the vast majority of fungi-infecting
viruses do not show infection characteristics and have
no significant impact on their hosts, some mycoviruses
have inhibitory effects on the phenotype of the host,
leading to hypovirulence in phytopathogenic fungi [23].
The use of environmentally friendly, low-virulence-
related mycoviruses such as Chryphonectria hypovirus
1 (CHV-1) for biological control has been considered a
viable alternative to chemical fungicides [24]. With the
deepening of research, an increasing number of myco-
viruses that can cause fungal phenotypic changes have
been identified [3, 23, 25]. Therefore, understanding the
distribution of these viruses and their effects on hosts
will allow us to determine whether their infections can
be prevented and treated.
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To explore the viral dark matter hidden within fungi,
this study collected over 200 available fungal-associ-
ated libraries from approximately 40 Bioprojects in the
Sequence Read Archive (SRA) database, uncovering
novel RNA viruses within them. We further elucidated
the genetic relationships between known viruses and
these newfound ones, thereby expanding our under-
standing of fungal-associated viruses and providing assis-
tance to viral taxonomy.

Materials and methods

Genome assembly

To discover novel fungal-associated viruses, we down-
loaded 236 available libraries from the SRA database,
corresponding to 32 fungal species (Supplementary
Table 1). Pfastq-dump v0.1.6 (https://github.com/inuta
no/pfastq-dump) was used to convert SRA format files to
fastq format files. Subsequently, Bowtie2 v2.4.5 [26] was
employed to remove host sequences. Primer sequences
of raw reads underwent trimming using Trim Galore
v0.6.5 (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore), and the resulting files underwent quality
control with the options ‘—phred33 —length 20 —strin-
gency 3 —fastqc’ Duplicated reads were marked using
PRINSEQ-lite v0.20.4 (-derep 1). All SRA datasets were
then assembled in-house pipeline. Paired-end reads were
assembled using SPAdes v3.15.5 [27] with the option
‘meta, while single-end reads were assembled with
MEGAHIT v1.2.9 [28], both using default parameters.
The results were then imported into Geneious Prime
v2022.0.1 (https://www.geneious.com) for sorting and
manual confirmation. To reduce false negatives dur-
ing sequence assembly, further semi-automatic assem-
bly of unmapped contigs and singlets with a sequence
length <500 nt was performed. Contigs with a sequence
length>1,500 nt after reassembly were retained. Indi-
vidual contigs were then used as references for mapping
to the raw data using the Low Sensitivity/Fastest param-
eter in Geneious Prime. In addition, mixed assembly was
performed using MEGAHIT in combination with BWA
v0.7.17 [29] to search for unused reads that might corre-
spond to low-abundance contigs.

Searching for novel viruses in fungal libraries

We identified novel viral sequences present in fungal
libraries through a series of steps. To start, we estab-
lished a local viral database, consisting of the non-redun-
dant protein (nr) database downloaded in August 2023,
along with IMG/VR v3 [30], for screening assembled
contigs. The contigs labeled as “viruses” and exhibiting
less than 70% amino acid (aa) sequence identity with the
best match in the database were imported into Geneious
Prime for manual mapping. Putative open reading frames
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(ORFs) were predicted by Geneious Prime using built-in
parameters (Minimum size: 100) and were subsequently
verified by comparison to related viruses. The annota-
tions of these ORFs were based on comparisons to the
Conserved Domain Database (CDD). The sequences after
manual examination were subjected to genome cluster-
ing using MMseqs2 (-k 0 -e 0.001 —min-seq-id 0.95 -c
0.9 —cluster-mode 0) [31]. After excluding viruses with
high aa sequence identity (>70%) to known viruses, a
dataset containing a total of 12 RNA viral sequences was
obtained. The non-redundant fungal virus dataset was
compared against the local database using the BLASTx
program built in DIAMOND v2.0.15 [32], and significant
sequences with a cut-off E-value of< 107> were selected.
The coverage of each sequence in all libraries was cal-
culated using the pileup tool in BBMap. Taxonomic
identification was conducted using TaxonKit [33] soft-
ware, along with the rma2info program integrated into
MEGANG [34]. The RNA secondary structure prediction
of the novel viruses was conducted using RNA Folding
Form V2.3 (http://www.unafold.org/mfold/applications/
rna-folding-form-v2.php).

Phylogenetic analysis

To infer phylogenetic relationships, nucleotide and their
encoded protein sequences of reference strains belong-
ing to different groups of corresponding viruses were
downloaded from the NCBI GenBank database, along
with sequences of proposed species pending ratifica-
tion. Related sequences were aligned using the align-
ment program within the CLC Genomics Workbench
10.0, and the resulting alignment was further optimized
using MUSCLE in MEGA-X [35]. Sites containing more
than 50% gaps were temporarily removed from the align-
ments. Maximum-likelihood (ML) trees were then con-
structed using IQ-TREE v1.6.12 [36]. All phylogenetic
trees were created using IQ-TREE with 1,000 bootstrap
replicates (-bb 1000) and the ModelFinder function (-m
MEFP). Interactive Tree Of Life (iTOL) was used for visu-
alizing and editing phylogenetic trees [37]. Colorcoded
distance matrix analysis between novel viruses and other
known viruses were performed with Sequence Demarca-
tion Tool v1.2 [38].

To illustrate cross-species transmission and co-diver-
gence between viruses and their hosts across different
virus groups, we reconciled the co-phylogenetic relation-
ships between these viruses and their hosts. The evolu-
tionary tree and topologies of the hosts involved in this
study were obtained from the TimeTree [39] website
by inputting their Latin names. The viruses in the phy-
logenetic tree for which the host cannot be recognized
through published literature or information provided by
the authors are disregarded. The co-phylogenetic plots
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(or ‘tanglegram’) generated using the R package phytools
[40] visually represent the correspondence between host
and virus trees, with lines connecting hosts and their
respective viruses. The event-based program eMPRess
[41] was employed to determine whether the pairs
of virus groups and their hosts undergo coevolution.
This tool reconciles pairs of phylogenetic trees accord-
ing to the Duplication-Transfer-Loss (DTL) model [42],
employing a maximum parsimony formulation to cal-
culate the cost of each coevolution event. The cost of
duplication, host-jumping (transfer), and extinction (loss)
event types were set to 1.0, while host-virus co-diver-
gence was set to zero, as it was considered the null event.

Data availability

The data reported in this paper have been deposited in
the GenBase in National Genomics Data Center [43],
Beijing Institute of Genomics, Chinese Academy of Sci-
ences/China National Center for Bioinformation, under
accession numbers C_AA066339.1-C_AA066350.1 that
are publicly accessible at https://ngdc.cncb.ac.cn/genba
se. Please refer to Table 1 for details.

Results

Twelve novel RNA viruses associated with fungi

We investigated fungi-associated novel viruses by min-
ing publicly available metagenomic and transcriptomic
fungal datasets. In total, we collected 236 datasets, which
were categorized into four fungal phyla: Ascomycota
(159), Basidiomycota (47), Chytridiomycota (15), and
Zoopagomycota (15). These phyla corresponded to 20, 8,
2, and 2 different fungal genera, respectively (Supplemen-
tary Table 1). A total of 12 sequences containing com-
plete coding DNA sequences (CDS) for RNA-dependent
RNA polymerase (RdRp) have been identified, ranging in
length from 1,769 nt to 9,516 nt. All of these sequences
have less than 70% aa identity with RdRp sequences
from any currently known virus (ranging from 32.97%
to 60.43%), potentially representing novel families, gen-
era, or species (Table 1). Some of the identified sequences
were shorter than the reference genomes of RNA viruses,
suggesting that these viral sequences represented partial
sequences of viral genomes. To exclude the possibility
of transient viral infections in hosts or de novo assem-
bly artefacts in co-infection detection, we extracted the
nucleotide sequences of the coding regions of these 12
sequences and mapped them to all collected libraries to
compute coverage (Supplementary Table 2). The results
revealed varying degrees of read matches for these viral
genomes across different libraries, spanning different
fungal species. Although we only analyzed sequences
longer than 1,500 nt, it is worth noting that we also dis-
covered other viral reads in many libraries. However,
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Table 1 Assembled sequences with identity to those of previously described viruses

Virus name Accession Length Best Match

TeMVO1 C_AA066349.1 2,689 Ophiostoma mitovirus 4
[NP_660179]

TeMVO02 C_AA066342.1 3,087 Plasmopara viticola lesion associ-
ated mitovirus 40 [QIR30263]

GtBeV C_AA066339.1 6,479  Diabrotica undecimpunctata virus
2 [QIT20101]

CrBV C_AA066344.1 2,903 Erysiphe necator associated
ourmia-like virus 2 [UUW21020]

LsDV C_AA066341.1 3,425 Cat Tien Macrotermes Deltaflexi-
like virus [UUW06602]

GtTIV C_AA066348.1 7,588 Fusarium sacchari alphavirus-like
virus 1 [QlQ28421]

GtMV C_AA066347.1 9,339 Soybean leaf-associated
negative-stranded RNA virus 2
[YP_010784557]

ApMV C_AA066346.1 6,235 Erysiphe necator associated
negative-stranded RNA virus 23
[YP_010802816]

CoBV C_AA066345.1 7,277 Suillus luteus associated bunya-like
virus 2 [WLK77441]

GtBV C_AA066343.1 7,364 Entoleuca phenui-like virus 1
[YP_010086241]

TaBV C_AA066340.1 9,516  Trichoderma gamsii mycobunyavi-
rus 1 [WGH72967]

NcPV C_AA066350.1 1,769 Pythium nunn virus 1

[YP_009551507]

aa Identity Virus Family E-value Query cover Mapping reads
5147% Mitoviridae 0 82% 35,248
42.82% Mitoviridae 2e-142  69% 58,505
34.68% Benyviridae 2e-123  77% 58,149
56.58% Botourmiaviridae 0 69% 309,690
46.61% Deltaflexiviridae 0 94% 47,164
60.43% Unclassified 0 97% 1,124
4522% Mymonaviridae 0 95% 43,440
55.90% Mymonaviridae 0 94% 29,691
32.97% Phasmaviridae 0 80% 1,465
54.20% Phenuiviridae 0 95% 839
35.02% Unclassified 0 75% 2914
41.50% Partitiviridae 2e-120  84% 13,506

we were unable to assemble them into sufficiently long
contigs, possibly due to library construction strategies
or sequencing depth. In any case, this preliminary find-
ing reveals a greater diversity of fungal-associated viruses
than previously considered.

Positive-sense single-stranded RNA viruses

(i) Mitoviridae

Members of the family Mitoviridae (order Cryppa-
virales) are monopartite, linear, positive-sense (+)
single-stranded (ss) RNA viruses with genome size of
approximately 2.5-2.9 kb [44], carrying a single long open
reading frame (ORF) which encodes a putative RdRp.
Mitoviruses have no true virions and no structural pro-
teins, virus genome is transmitted horizontally through
mating or vertically from mother to daughter cells [45].
They use mitochondria as their sites of replication and
have typical 5" and 3’ untranslated regions (UTRs) of
varying sizes, which are responsible for viral translation
and replicase recognition [46]. According to the taxo-
nomic principles of ICTV, the viruses belonging to the
family Mitoviridae are divided into four genera, namely
Duamitovirus, Kvaramitovirus, Triamitovirus and Unu-
amitovirus. In this study, two novel viruses belonging
to the family Mitoviridae were identified in the same

library (SRR12744489; Species: Thielaviopsis ethacetica),
named Thielaviopsis ethacetica mitovirus 1 (TeMVO01)
and Thielaviopsis ethacetica mitovirus 2 (TeMV02),
respectively (Fig. 1A). The genome sequence of TeMVO01
spans 2,689 nucleotides in length with a GC content of
32.2%. Its 5 and 3° UTRs comprise 406 nt and 36 nt,
respectively. Similarly, the genome sequence of TeMV02
extends 3,087 nucleotides in length with a GC content
of 32.6%. Its 5’ and 3" UTRs consist of 553 and 272 nt,
respectively. The 5" and 3’ ends of both genomes are pre-
dicted to have typical stem-loop structures (Fig. 1B).
In order to determine the evolutionary relationship
between these two mitoviruses and other known mito-
viruses, phylogenetic analysis based on RdRp showed
that viral strains were divided into 2 genetic lineages in
the genera Duamitovirus and Unuamitovirus (Fig. 1C).
In the genus Unuamitovirus, TeMVO01l was clustered
with Ophiostoma mitovirus 4, exhibiting the highest
aa identity of 51.47%, while in the genus Duamitovi-
rus, TeMVO02 was clustered with a strain isolated from
Plasmopara viticola, showing the highest aa identity
of 42.82%. According to the guidelines from the ICTV
regarding the taxonomy of the family Mitoviridae, a spe-
cies demarcation cutoff of<70% aa sequence identity is
established [47]. Drawing on this recommendation and
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phylogenetic inferences, these two viral strains could be
presumed to be novel viral species [48].

(ii) Benyviridae

The family Benyviridae is comprised of multipartite plant
viruses that are rod-shaped, approximately 85-390 nm in
length and 20 nm in diameter. Within this family, there is
a single genus, Benyvirus [49]. It is reported that one spe-
cies within this genus,Beet necrotic yellow vein virus, can
cause widespread and highly destructive soil-borne ‘rhi-
zomania’ disease of sugar beet [50]. A full-length RNA1
sequence related to Benyviridae has been detected from
Gaeumannomyces tritici (ERR3486062), with a length
of 6,479 nt. It possesses a poly(A) tail at the 3’ end and
is temporarily designated as Gaeumannomyces tritici
benyvirus (GtBeV). BLASTXx results indicate a 34.68% aa
sequence identity with the best match found (Fig. 1D).
The non-structural polyprotein CDS of RNA1 encodes
a large replication-associated protein of 1,688 amino
acids with a molecular mass of 190 kDa. Four domains
were predicted in this polyprotein corresponding to rep-
resentative species within the family Benyviridae. The
viral methyltransferase (Mtr) domain spans from nucleo-
tide position 386 to 1411, while the RNA helicase (Hel)
domain occupies positions 2113 to 2995 nt. Additionally,
the protease (Pro) domain is located between positions
3142 and 3410 nt, and the RdRp domain is located at
4227 to 4796 nt. A phylogenetic analysis was conducted
by integrating RdRp sequences of viruses closely related
to GtBeV. The result revealed that GtBeV clustered
within the family Benyviridae, exhibiting substantial evo-
lutionary divergence from any other sequences. Conse-
quently, this virus likely represents a novel species in the
family Benyviridae.

(iii) Botourmiaviridae

The family Botourmiaviridae comprises viruses infecting
plants and filamentous fungi, which may possess mono-
or multi-segmented genomes [51]. Recent research has

(See figure on next page.)
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led to a rapid expansion in the number of viruses within
the family Botourmiaviridae, increasing from the con-
firmed 4 genera in 2020 to a total of 12 genera. A contig
identified from Clonostachys rosea (ERR5928658) using
the BLASTx method exhibited similarity to viruses in the
family Botourmiaviridae. After manual mapping, a 2,903
nt-long genome was obtained, tentatively named Clon-
ostachys rosea botourmiavirus (CrBV), which includes a
complete RARP region (Fig. 1E). Based on phylogenetic
analysis using RdRp, CrBV clustered with members of
the genus Magoulivirus, sharing 56.58% aa identity with
a strain identified from Eclipta prostrata. However, puz-
zlingly, according to the ICTV’s Genus/Species demarca-
tion criteria, members of different genera/species within
the family Botourmiaviridae share less than 70%/90%
identity in their complete RdRP amino acid sequences.
Furthermore, the RdRp sequences with accession num-
bers NC_055143 and NC_076766, both considered to
be members of the genus Magoulivirus, exhibited only
39.05% aa identity to each other. Therefore, CrBV should
at least be considered as a new species within the family
Botourmiaviridae.

(iv) Deltaflexiviridae

An assembled sequence of 3,425 nucleotides in length
Lepista sordida deltaflexivirus (LsDV), derived from
Lepista sordida (DRR252167) and showing homology
to Deltaflexiviridae within the order Tymovirales, was
obtained. The Tymovirales comprises five recognized
families: Alphaflexiviridae, Betaflexiviridae, Deltaflexi-
viridae, Gammaflexiviridae, and Tymoviridae [52]. The
Deltaflexiviridae currently only includes one genus,
the fungal-associated deltaflexivirus; they are mostly
identified in fungi or plants pathogens [53]. LsDV was
predicted to have a single large ORF, VP1, which starts
with an AUG codon at nt 163-165 and ends with a UAG
codon at nt 3,418-3,420. This ORF encodes a putative
polyprotein of 1,086 aa with a calculated molecular mass
of 119 kDa. Two conserved domains within the VP1

Fig. 1 Identification of novel positive-sense single-stranded RNA viruses in fungal sequencing libraries. A Genome organization of two novel
mitoviruses; the putative ORF for the viral RdRp is depicted by a green box, and the predicted conserved domain region is displayed in a gray

box. B Predicted RNA secondary structures of the 5'- and 3'-terminal regions. C ML phylogenetic tree of members of the family Mitoviridae. The
best-fit model (LG +F +R6) was estimated using IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified
viruses represented in red font. D The genome organization of GtBeV is depicted at the top; in the middle is the ML phylogenetic tree of members
of the family Benyviridae. The best-fit model (VT +F + R5) was estimated using IQ-Tree model selection. The bootstrap value is shown at each branch,
with the newly identified virus represented in red font. At the bottom is the distance matrix analysis of GeBeV identified in Gaeumannomyces tritici.
Pairwise sequence comparison produced with the RdRp amino acid sequences within the ML tree. E The genome organization of CrBV is depicted
at the top; in the middle is the ML phylogenetic tree of members of the family Botourmiaviridae. The best-fit model (VT +F +R5) was estimated
using IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified virus represented in red font. At the bottom
is the distance matrix analysis of CrBV identified in Clonostachys rosea. Pairwise sequence comparison produced with the RdRp amino acid

sequences within the ML tree
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protein were identified: Hel and RdRp (Fig. 2A). How-
ever, the Mtr was missing, indicating that the 5’ end of
this polyprotein is incomplete. According to the phy-
logenetic analysis of RdRp, LsDV was closely related to
viruses of the family Deltaflexiviridae and shared 46.61%
aa identity with a strain (UUW06602) isolated from Mac-
rotermes carbonarius. Despite this, according to the spe-
cies demarcation criteria proposed by ICTV, because
we couldn’t recover the entire replication-associated
polyprotein, LsDV cannot be regarded as a novel species
at present.

(v) Toga-like virus

Members of the family Togaviridae are primarily trans-
mitted by arthropods and can infect a wide range of ver-
tebrates, including mammals, birds, reptiles, amphibians,
and fish [54]. Currently, this family only contains a single
confirmed genus, Alphavirus. A contig was discovered in
Gaeumannomyces tritici (ERR3486058), it is 7,588 nt in
length with a complete ORF encoding a putative protein
of 1,928 aa, which had 60.43% identity to Fusarium sac-
chari alphavirus-like virus 1 (QIQ28421) with 97% cover-
age. Phylogenetic analysis showed that it did not cluster
with classical alphavirus members such as VEE, WEE,
EEE, SF complex [54], but rather with several sequences
annotated as Toga-like that were available (Fig. 2B). It
was provisionally named Gaeumannomyces tritici toga-
like virus (GtTIV). However, we remain cautious about
the accuracy of these so-called Toga-like sequences, as
they show little significant correlation with members of
the order Martellivirales.

Negative-sense single-stranded RNA viruses

(i) Mymonaviridae

Mymonaviridae is a family of linear, enveloped, negative-
stranded RNA genomes in the order Mononegavirales,
which infect fungi. They are approximately 10 kb in size
and encode six proteins [55]. The famliy Mymonaviri-
dae was established to accommodate Sclerotinia scle-
rotiorum negative-stranded RNA virus 1 (SsSNSRV-1), a
novel virus discovered in a hypovirulent strain of Scle-
rotinia sclerotiorum [56]. According to the ICTV, the
family Mymonaviridae currently includes 9 genera,

(See figure on next page.)
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namely Auricularimonavirus, Botrytimonavirus, Hubra-
monavirus, Lentimonavirus, Penicillimonavirus, Phyl-
lomonavirus, Plasmopamonavirus, Rhizomonavirus and
Sclerotimonavirus. Two sequences originating from
Gaeumannomyces tritici (ERR3486068) and Aspergillus
puulaauensis (DRR266546), respectively, and associated
with the family Mymonaviridae, have been identified and
provisionally named Gaeumannomyces tritici mymona-
virus (GtMV) and Aspergillus puulaauensis mymonavi-
rus (ApMV). GtMYV is 9,339 nt long with a GC content
of 52.8%. It was predicted to contain 5 discontinuous
ORFs, with the largest one encoding RdRp. Addition-
ally, a nucleoprotein and three hypothetical proteins with
unknown function were also predicted. A multiple align-
ment of nucleotide sequences among these ORFs identi-
fied a semi-conserved sequence, 5-UAAAA-CUAGGA
GC-3] located downstream of each ORF (Fig. 3A). These
regions are likely gene-junction regions in the GtMV
genome, a characteristic feature shared by mononegavi-
ruses [57, 58]. For ApMYV, a complete RdRp CDS with a
length of 1,978 aa was predicted. The BLASTx searches
showed that GtMV shared 45.22% identity with the RdRp
of Soybean leaf-associated negative-stranded RNA virus
2 (YP_010784557), while ApMV shared 55.90% identity
with the RdRp of Erysiphe necator associated negative-
stranded RNA virus 23 (YP_010802816). The repre-
sentative members of the family Mymonaviridae were
included in the phylogenetic analysis. The results showed
that GtMV and ApMYV clustered closely with members of
the genera Sclerotimonavirus and Plasmopamonavirus,
respectively (Fig. 3B). Members of the genus Plasmopa-
monavirus are about 6 kb in size and encode for a single
protein. Therefore, GtMV and ApMYV should be consid-
ered as representing new species within their respective
genera.

(ii) Bunyavirales

The Bunyavirales (the only order in the class Elliovirice-
tes) is one of the largest groups of segmented negative-
sense single-stranded RNA viruses with mainly tripartite
genomes [59], which includes many pathogenic strains
that infect arthropods(such as mosquitoes, ticks, sand
flies), plants, protozoans, and vertebrates, and even cause

Fig. 2 Identification of novel members of family Deltaflexiviridae and Toga-like virus in fungal sequencing libraries. A On the right side of the image
is the genome organization of LsDV; the putative ORF for the viral RdRp is depicted by a green box, and the predicted conserved domain region

is displayed in a gray box. ML phylogenetic tree of members of the family Deltaflexiviridae. The best-fit model (VT + F + R6) was estimated using
|Q-Tree model selection. The bootstrap value is shown at each branch, with the newly identified virus represented in red font. B The genome
organization of GtTIV is depicted at the top; the putative ORF for the viral RdRp is depicted by a green box, and the predicted conserved domain
region is displayed in a gray box. ML phylogenetic tree of members of the order Martellivirales. The best-fit model (LG + R7) was estimated using
|Q-Tree model selection. The bootstrap value is shown at each branch, with the newly identified virus represented in red font
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severe human diseases. Order Bunyavirales consists of
14 viral families, including Arenaviridae, Cruliviridae,
Discoviridae, Fimoviridae, Hantaviridae, Leishbuviridae,
Mypoviridae, Nairoviridae, Peribunyaviridae, Phasma-
viridae, Phenuiviridae, Tospoviridae, Tulasviridae and
Wupedeviridae. In this study, three complete or near
complete RNA1 sequences related to bunyaviruses were
identified and named according to their respective hosts:
CoBV (Conidiobolus obscurus bunyavirus; SRR6181013;
7,277 nt), GtBV (Gaeumannomyces tritici bunyavirus;
ERR3486069; 7,364 nt), and TaBV (Thielaviopsis aethacet-
ica bunyavirus; SRR12744489; 9,516 nt) (Fig. 4A). The 5
and 3’ terminal RNA segments of GtBV and TaBV com-
plement each other, allowing the formation of a pan-
handle structure [60], which plays an essential role as
promoters of genome transcription and replication [61],
except for CoBYV, as the 3’ terminal of CoBV has not been
fully obtained (Fig. 4B). BLASTx results indicated that
these three viruses had identities ranging from 32.97%
to 54.20% to the best matches in the GenBank database.
Phylogenetic analysis indicated that CoBV was classified
into the family Phasmaviridae, with distant relationships
to any of its genera; GtBV clustered well with members of
the genus Entovirus of family Phenuiviridae; while TaBV
did not cluster with any known members of families
within Bunyavirales, hence provisionally placed within
the Bunya-like group (Fig. 4C). Therefore, these three
sequences should be considered as potential new family,
genus, or species within the order Bunyavirales.

Double-stranded RNA viruses

Partitiviridae

The Partitiviridae is a family of small, non-enveloped
viruses, approximately 35—40 nm in diameter, with biseg-
mented double-stranded (ds) RNA genomes. Each seg-
ment is about 1.4-3.0 kb in size, resulting in a total size
about 4 kb [62]. The family Partitiviridae is now divided
into five genera: Alphapartitivirus, Betapartiivirus,
Cryspovirus, Deltapartitivirus and Gammapartitivirus.
Each genus has characteristic hosts: plants or fungi for
Alphapartitivirus and Betapartitivirus, fungi for Gam-
mapartitivirus, plants for Deltapartitivirus, and protozoa
for Cryspovirus [62]. A complete dsRNA1 sequence Neo-
callimastix californiae partitivirus (NcPV) retrieved from

(See figure on next page.)
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Neocallimastix californiae (SRR15362281) has been iden-
tified as being associated with the family Partitiviridae.
The BLASTp result indicated that it shared the highest aa
identity of 41.5% with members of the genus Gammapar-
titivirus. According to the phylogenetic tree constructed
based on RdRp, NcPV was confirmed to fall within the
genus Gammapartitivirus (Fig. 5). Typical members
of the genus Gammapartitivirus have two segments in
their complete genome, namely dsRNA1 and dsRNA2,
encoding RdRp and coat protein, respectively [62]. The
larger dsRNA1 segment of NcPV measures 1,769 nt in
length, with a GC content of 35.8%. It contains a single
ORF encoding a 561 aa RdRp. A CDD search revealed
that the RdRp of NcPV harbors a catalytic region span-
ning from 119 to 427aa. Regrettably, only the complete
dsRNA1 segment was obtained. According to the classi-
fication principles of ICTV, due to the lack of informa-
tion regarding dsRNA2, we are unable to propose it as
a new species. It is worth noting that according to the
Genus demarcation criteria (https://ictv.global/report/chapt
er/partitiviridae/partitiviridae), members of the genus
Gammapartitivirus should have a dsRNA1 length rang-
ing from 1645 to 1787 nt, and the RdRp length should fall
between 519 and 539 aa. However, the length of dsRNA1
in NcPV is 1,769 nt, with RdRp being 561 aa, challeng-
ing this classification criterion. In fact, multiple strains
have already exceeded this criterion, such as GenBank
accession numbers: WBW48344, UDL14336, QKK35392,
among others.

Long-term evolutionary relationships

between fungal-associated viruses and hosts
Understanding the co-divergence history between
viruses and hosts helps reveal patterns of virus trans-
mission and infection and influences the biodiversity
and stability of ecosystems. To explore the frequency of
cross-species transmission and co-divergence among
fungi-associated viruses, we constructed tanglegrams
illustrating the interconnected evolutionary histories of
viral families and their respective hosts through phyloge-
netic trees (Fig. 6A). The results indicated that cross-spe-
cies transmission (Host-jumping) consistently emerged
as the most frequent evolutionary event among all
groups of RNA viruses examined in this study (median,

Fig. 3 Identification of two new members in the family Mymonaviridae. A At the top is the nucleotide multiple sequence alignment result of GtMV
with the reference genomes. the putative ORF for the viral RdRp is depicted by a green box, the predicted nucleoprotein is displayed in a yellow
box, and three hypothetical proteins are displayed in gray boxes. The comparison of putative semi-conserved regions between ORFs in GtMV

is displayed in the 5'to 3'orientation, with conserved sequences are highlighted. At the bottom is the genome organization of AmPV; the putative
ORF for the viral RdRp is depicted by a green box. B ML phylogenetic tree of members of the family Mymonaviridae. The best-fit model (LG + F +R6)
was estimated using IQ-Tree model selection. The bootstrap value is shown at each branch, with the newly identified viruses represented in red font
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66.79%; range, 60.00% to 79.07%) (Fig. 6B). This finding is
highly consistent with the evolutionary patterns of RNA
viruses recently identified by Mifsud et al. in their exten-
sive transcriptome survey of plants [63]. Members of the
families Botourmiaviridae (79.07%) and Deltaflexiviridae
(72.41%) were most frequently involved in cross-species
transmission. The frequencies of co-divergence (median,
20.19%; range, 6.98% to 27.78%), duplication (median,
10.60%; range, 0% to 22.45%), and extinction (median,
2.42%; range, 0% to 5.56%) events involved in the evolu-
tion of fungi-associated viruses gradually decrease. Spe-
cifically, members of the family Benyviridae exhibited the
highest frequency of co-divergence events, which also
supports the findings reported by Mifsud et al.; certain
studies propose that members of Benyviridae are trans-
mitted via zoospores of plasmodiophorid protist [64].
It’s speculated that the ancestor of these viruses under-
went interkingdom horizontal transfer between plants
and protists over evolutionary timelines [65]. Members
of the family Mitoviridae showed the highest frequency
of duplication events; and members of the families
Benyviridae and Partitiviridae demonstrated the high-
est frequency of extinction events. Not surprisingly, this
result is influenced by the current limited understand-
ing of virus-host relationships. On one hand, viruses
whose hosts cannot be recognized through published
literature or information provided by authors have been
overlooked. On the other hand, the number of viruses
recorded in reference databases represents just the tip
of the iceberg within the entire virosphere. The involve-
ment of a more extensive sample size in the future should
change this evolutionary landscape.

Discussion

Our understanding of the interactions between fungi
and their associated viruses has long been constrained
by insufficient sampling of fungal species. Advances
in metagenomics in recent decades have led to a rapid
expansion of the known viral sequence space, but it is
far from saturated. The diversity of hosts, the instability
of the viral structures (especially RNA viruses), and the
propensity to exchange genetic material with other host
viruses all contribute to the unparalleled diversity of viral
genomes [66]. Fungi are diverse and widely distributed
in nature and are closely related to humans. A few fungi

(See figure on next page.)
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can parasitize immunocompromised humans, but their
adverse effects are limited. As decomposers in the bio-
logical chain, fungi can decompose the remains of plants
and animals and maintain the material cycle in the bio-
logical world [67]. In agricultural production, many fungi
are plant pathogens, and about 80% of plant diseases are
caused by fungi. However, little is currently known about
the diversity of mycoviruses and how these viruses affect
fungal phenotypes, fungal-host interactions, and virus
evolution, and the sequencing depth of fungal libraries in
most public databases only meets the needs of studying
bacterial genomes. Sampling viruses from a larger diver-
sity of fungal hosts should lead to new and improved evo-
lutionary scenarios.

RNA viruses are widespread in deep-sea sediments
[68], freshwater [69], sewage [70], and rhizosphere soils
[71]. Compared to DNA viruses, RNA viruses are less
conserved, prone to mutation, and can transfer between
different hosts, potentially forming highly differenti-
ated and unrecognized novel viruses. This characteristic
increases the difficulty of monitoring these viruses. Pre-
viously, all discovered mycoviruses were RNA viruses.
Until 2010, Yu et al. reported the discovery of a DNA
virus, namely SSHADV-1, in fungi for the first time [72].
Subsequently, new fungal-related DNA viruses are con-
tinually being identified [73-75]. Currently, viruses have
been found in all major groups of fungi, and approxi-
mately 100 types of fungi can be infected by viruses,
instances exist where one virus can infect multiple fungi,
or one fungus can be infected by several viruses simul-
taneously. The transmission of mycoviruses differs from
that of animal and plant viruses and is mainly categorized
into vertical and horizontal transmission [76]. Verti-
cal transmission refers to the spread of the mycovirus to
the next generation through the sexual or asexual spores
of the fungus, while horizontal transmission refers to
the spread of the mycovirus from one strain to another
through fusion between hyphae. In the phylum Asco-
mycota, mycoviruses generally exhibit a low ability to
transmit vertically through ascospores, but they are com-
monly transmitted vertically to progeny strains through
asexual spores [77].

In this study, we identified two novel species belong-
ing to different genera within the family Mitoviridae.
Interestingly, they both simultaneously infect the same

Fig. 4 I|dentification of three new members in the order Bunyavirales. A The genome organization of CoBY, GtBV, and TaBV; the putative ORF
for the viral RdRp is depicted by a green box, and the predicted conserved domain region is displayed in a gray box. B The complementary
structures formed at the 5'and 3'ends of GtBY and TaBV. C ML phylogenetic tree of members of the order Bunyavirales. The best-fit model
(VT +F+R8) was estimated using 1Q-Tree model selection. The bootstrap value is shown at each branch, with the newly identified viruses

represented in red font
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Fig. 5 Identification of a new member in the family Partitiviridae. The genome organization of NcPV is depicted at the top; the putative ORF
for the viral RdRp is depicted by a green box, and the predicted conserved domain region is displayed in a gray box. At the bottom is the ML
phylogenetic tree of members of the family Partitiviridae. The best-fit model (VT +F +R4) was estimated using IQ-Tree model selection. The

bootstrap value is shown at each branch, with the newly identified virus represented in red font

fungus— Thielaviopsis ethacetica, the causal agent of
pineapple sett rot disease in sugarcane [78]. Previously, a
report identified three different mitoviruses in Fusarium
circinatum [79]. These findings suggest that there may
be a certain level of adaptability or symbiotic relation-
ship among members of the family Mitoviridae. Benyvi-
ruses are typically considered to infect plants, but recent

evidence suggests that they can also infect fungi, such as
Agaricus bisporus [80], further reinforced by the virus we
discovered in Gaeumannomyces tritici. Moreover, mem-
bers of the family Botourmiaviridae commonly exhibit
a broad host range, with viruses closely related to CrBV
capable of infecting members of Eukaryota, Viridiplan-
tae, and Metazoa, in addition to fungi (Supplementary
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Fig. 6 Co-evolutionary analysis of virus and host. A Tanglegram of phylogenetic trees for virus orders/families and their hosts. Lines and branches
are color-coded to indicate host clades. The cophylo function in phytools was employed to enhance congruence between the host (left) and virus
(right) phylogenies. B Reconciliation analysis of virus groups. The bar chart illustrates the proportional range of possible evolutionary events,
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Fig. 1). The LsDV identified in this study shared the
closest phylogenetic relationship with a virus identified
from Macrotermes carbonarius in southern Vietnam
(17_N1+N237) [81]. M. carbonarius is an open-air for-
aging species that collects plant litter and wood debris
to cultivate fungi in fungal gardens [82], termites may
act as vectors, transmitting deltaflexivirus to other fungi.
Furthermore, the viruses we identified, typically associ-
ated with fungi, also deepen their connections with spe-
cies from other kingdoms on the tanglegram tree. For
example, while Partitiviridae are naturally associated
with fungi and plants, NcPV also shows close connec-
tions with Metazoa. In fact, based largely on phylogenetic
predictions, various eukaryotic viruses have been found
to undergo horizontal transfer between organisms of
plants, fungi, and animals [83]. The rice dwarf virus was
demonstrated to infect both plant and insect vectors [84];
moreover, plant-infecting rhabdoviruses, tospoviruses,
and tenuiviruses are now known to replicate and spread
in vector insects and shuttle between plants and animals
[85]. Furthermore, Bian et al. demonstrated that plant
virus infection in plants enables Cryphonectria hypovi-
rus 1 to undergo horizontal transfer from fungi to plants
and other heterologous fungal species [86].

Recent studies have greatly expanded the diversity of
mycoviruses [87, 88]. Gilbert et al. [20] investigated pub-
licly available fungal transcriptomes from the subphylum
Pezizomycotina, resulting in the detection of 52 novel
mycoviruses; Myers et al. [18] employed both culture-
based and transcriptome-mining approaches to identify
85 unique RNA viruses across 333 fungi; Ruiz-Padilla
et al. identified 62 new mycoviral species from 248 Bot-
rytis cinerea field isolates; Zhou et al. identified 20 novel
viruses from 90 fungal strains (across four different mac-
rofungi species) [89]. However, compared to these stud-
ies, our work identified fewer novel viruses, possibly due
to the following reasons: 1) The libraries from the same
Bioproject are usually from the same strains (or isolates).
Therefore, there is a certain degree of redundancy in the
datasets collected for this study. 2) Contigs shorter than
1,500 nt were discarded, potentially resulting in the over-
sight of short viral molecules. 3) Establishing a threshold
of 70% aa sequence identity may also lead to the exclu-
sion of certain viruses. 4) Some poly(A)-enriched RNA-
seq libraries are likely to miss non-polyadenylated RNA
viral genomes.

Taxonomy is a dynamic science, evolving with
improvements in analytical methods and the emer-
gence of new data. Identifying and rectifying incorrect
classifications when new information becomes avail-
able is an ongoing and inevitable process in today’s rap-
idly expanding field of virology. For instance, in 1975,
members of the genera Rubivirus and Alphavirus were
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initially grouped under the family Togaviridae; how-
ever, in 2019, Rubivirus was reclassified into the family
Matonaviridae due to recognized differences in trans-
mission modes and virion structures [90]. Additionally,
the conflicts between certain members of the genera
Magoulivirus and Gammapartitivirus mentioned here
and their current demarcation criteria (e.g., amino
acid identity, nucleotide length thresholds) need to be
reconsidered.

Taken together, these findings reveal the potential
diversity and novelty within fungal-associated viral
communities and discuss the genetic similarities among
different fungal-associated viruses. These findings
advance our understanding of fungal-associated viruses
and suggest the importance of subsequent in-depth
investigations into the interactions between fungi and
viruses, which will shed light on the important roles of
these viruses in the global fungal kingdom.
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