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Abstract
Increasing evidence of brain-immune crosstalk raises expectations for the efficacy of novel immunotherapies 
in Alzheimer’s disease (AD), but the lack of methods to examine brain tissues makes it difficult to evaluate 
therapeutics. Here, we investigated the changes in spatial transcriptomic signatures and brain cell types using 
the 10x Genomics Visium platform in immune-modulated AD models after various treatments. To proceed with 
an analysis suitable for barcode-based spatial transcriptomics, we first organized a workflow for segmentation 
of neuroanatomical regions, establishment of appropriate gene combinations, and comprehensive review of 
altered brain cell signatures. Ultimately, we investigated spatial transcriptomic changes following administration 
of immunomodulators, NK cell supplements and an anti-CD4 antibody, which ameliorated behavior impairment, 
and designated brain cells and regions showing probable associations with behavior changes. We provided the 
customized analytic pipeline into an application named STquantool. Thus, we anticipate that our approach can 
help researchers interpret the real action of drug candidates by simultaneously investigating the dynamics of all 
transcripts for the development of novel AD therapeutics.
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Introduction
Central nervous system (CNS) and central immune sys-
tem (bone marrow: BM) interactions, specifically brain-
immune cross-talk, can occur by a pathway from the 
skull BM, meninges and their lymphatics, and cerebro-
spinal fluid (CSF) to the brain parenchyma [1–14] and/or 
by another pathway from the choroidal plexus (CP) cap-
illary-stroma-epithelium and CSF to brain parenchyma 
[15–19] in addition to by the classic pathway of crossing 
the blood‒brain barrier (BBB) [20–23]. In explicit neu-
roinflammatory diseases such as multiple sclerosis in 
humans or experimental autoimmune encephalomyeli-
tis (EAE) in animal model, immunoglobulins or immune 
cells have been considered to enter the brain parenchyma 
via the BBB [20] of the brain parenchyma or via the 
brain-CSF barrier of the CP [24, 25], or recently via the 
arachnoid barrier cell (ABC) layer of skull BM-meningeal 
lymphatics and CSF/perivascular spaces reaching the 
brain parenchyma [3–5, 17, 26–28].

Novel immunomodulatory therapy in Alzheimer’s 
disease (AD) transgenic models, such as 5xFAD mice, 
should be accompanied by the improvement of cogni-
tive decline associated with aging and/or the ameliora-
tion of the transgenes’ adverse effects, such as priming 
brain cells or immune responses during development 
and aging. When we inadvertently found the effect of 
the anti-CD4 antibody while investigating the effect of 
aducanumab [29] and encountered the probable effect 
of allogeneic natural killer (NK) cell supplements in AD 
models [30], we questioned which cells or transcriptomic 
markers in the brain areas would be the best to predict 
the outcome of these novel, currently unaccounted thera-
peutic candidates. In AD mouse models including 5xFAD 
mice, the surrogate effect markers of previous findings/
trials of systemic or intraventricular administration of 
CD8 + T cells [31], anti-CD8 [32] or anti-CD3 [33] anti-
bodies, Treg cells [34–36] (or for stroke model [37] or 
DEREG model for traumatic brain injury model [38]), 
and amyloid-sensitized Th1 cells [39–41] were amyloid 
plaques/Aβ on immunohistochemistry and transcrip-
tional signatures of major brain cells and brain paren-
chyma [32, 33, 35] or CP infiltrating cells [25, 42]. As 
systemically injected cells and immunoglobulins were 
not examined for their location or biodistribution, direct 
CNS effects or systemic actions on immune systems were 
always the alternative to explain the probable effect of 
novel immunomodulatory therapies, which inevitably led 
to the insufficient understanding of the target cells and 
areas. This resulted in inconsistent findings among the 
reporting investigators.

Single-cell or single-nucleus RNA sequencing 
(scRNAseq/snRNAseq) based on tissue dissociation 
and preparation of a single-cell suspension followed 
by next-generation sequencing allows comprehensive 

characterization of cell types in the tissue [43–46]. 
Recently available barcode-based spatial transcriptomics 
(ST) using the solid-phase capture of RNA on slides, 
such as Visium® [47–50], HDST [51], slideSeqV2 [52], 
Seq-Scope [53], or stereo-Seq [54–56], adds a spatial 
dimension to transcriptomics and enables spatial charac-
terization of genes and cell types through robust regional 
segmentation of the tissue. Regional and cell-type spe-
cific characterization of one or more sections of the 
mouse brain based on this reliable anatomical segmenta-
tion mostly allowed for the comparison of the basal states 
between groups or even the task-related active states 
by calcium two-photon imaging and scRNAseq of the 
visual cortex [57, 58]. Given that ST allows us to obtain 
genome-wide spatial expression profiles, ST can be con-
sidered multiplexed molecular imaging of the brain. We 
can now use spatial transcriptomic brain imaging to 
investigate whether a probable immunomodulatory ther-
apy yields its effect on major brain cells (and infiltrating 
or rare cells of the brain) in each segmented brain area 
after systemic administration [30]. Biodistribution stud-
ies after systemic injection can inform whether immune 
cells or antibodies enter and directly interact with brain 
cells; however, if we do not see the immediate pres-
ence of cells (usually none) and antibodies (less than 
1% of the injected dose), we assumed that they would 
influence brain cells and pathologic processes. Tran-
scriptomic changes owing to proper novel immunomod-
ulatory therapy will enable us to explore the probable 
target cells/genes that would have caused or at least be 
associated with the expected behavioral effects of these 
therapies [30]. This is especially helpful early in the pur-
suit of potential new drugs so that investigators can be 
confident that they are moving in the right direction to 
modify and optimize new therapeutic candidates. Tran-
scriptomic changes of a region or regions and a cell type 
or cells in a group are expected to explain the behavioral 
results of the mouse model. Finally, the transcriptomic 
changes might predate the behavioral improvements. 
In both cases, we expect that transcriptomic profiles at 
a high spatial resolution would excel for drug screening, 
in sensitivity and target-cell specificity [47, 54], over his-
tological results of immunohistochemistry. Additionally, 
single-spot ST yields tissue-globally searchable data that 
can later be reanalyzed repeatedly when the marker gene 
combination [46, 50, 59–62] becomes available.

To do this, we needed to advance the single-spot 
RNA sequencing and its analyses using a customized 
method to derive cell type/state-specific distribution of 
the Visium sections. Paying attention to the proper dis-
sociation of cell types/states using the optimum/mini-
mum number of genes and cell‒cell interaction (CCI) and 
cell‒cell communication (CCC) [63], marker gene com-
binations should be established with the existing public 
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database of scRNAseq/snRNAseq [46, 49, 59, 64–68] and 
our own data [30]. For both tasks, ready-to-adopt meth-
ods are available by the Creative Commons regulations in 
previous investigations.

Stromal and parenchymal cells of various organs, 
including the brain, are now known to show common and 
specific characteristics of cell identity and their ontologi-
cal characteristics, the best known of which are microglia 
and perivascular macrophages or resident macrophages 
[67, 68]. Immune cells of monocyte-derived and resident 
macrophages have distinctive transcriptomic signatures, 
which predict their immune roles and tissue integrity-
preserving roles per characteristic signatures [69]. This 
was also the case for T cells, where resident memory T 
(TRM) cells for intestines, effector memory T (TEM/EMRA) 
cells for blood, liver, and BM, and mixed TRM/EM cells 
for various organs and BM yield their own characteris-
tic transcriptomic signatures that determine their dif-
ferentiation of T cells in every tissue of interest, dictating 
their respective functional roles [70, 71]. Unfortunately, 
neither of these recent cross-tissue, resident immune cell 
studies [69, 71] included the brain, which mandates our 
own analysis.

In this investigation, we performed segmentation of 
brain regions on coronal/sagittal sections per dozens of 
animals using readily available methods and character-
ized the common pathologic transcriptomic signatures 
of 7-month-old 5xFAD mice. Immunomodulatory drugs 
were administered to these mice to confirm behavioral 
improvement. 99mTc-hexamethylpropyleneamineoxime 
(HMPAO)-labeled cell-tracking imaging [72] ruled out 
the immediate infiltration of NK cells in the brain. Spa-
tial transcriptomic changes in mice were examined after 
anti-CD4 immunoglobulin administration and expanded 
NK cell supplement treatment with a dose schedule, 
which improved Y-maze alternation behavior impair-
ment at this age range in 5xFAD mice. Transcriptomic 
changes were dissected across areas and cell types/states 
using publicly available methods and databases, and the 
analytical pipelines were organized as an application 
named STquantool. We found that regional/areal gene 
set-defined type/state-specific cells showed characteristic 
differences after each trial treatment in a genetic model 
of AD, 5xFAD mice, upon spatial transcriptomic Visium 
analysis. Combined brain major cells including neu-
rons, astrocytes, microglia, and oligodendrocytes with 
their associated types and states and brain resident/infil-
trating rare immune cells per region were explored for 
their distinctive transcriptomic changes among mouse 
groups to yield their probable association with behavior 
improvements.

Results
Spatial transcriptomic characterization of gene-set-
defined type/state-specific major brain cells in 7-month-
old wild-type and 5xFAD mice
In total, 35 coronal and 28 sagittal brain sections from 
63 mice of either wild-type or 5xFAD background were 
included in the analysis. A spatial barcode was given for 
every spot, the unit tissue domain of spatial transcrip-
tomics, and at least 50,000 reads were obtained from 
each of the 4,992 spots in a capture region. The brain tis-
sues were covered by an average of 3,000 spots across all 
samples. Using the count matrices computed from Space 
Ranger as inputs to the reciprocal principal component 
analysis (RPCA) based integration and clustering pipe-
lines supplied by Seurat (Seurat 4.1; https://satijalab.org/
seurat/), the multiple brain tissues were segmented based 
on their transcriptome patterns [73]. By optimizing 
parameters such as the resolution of spatial clusters and 
others, we yielded segmented spatial cluster images in 
every case, including those with various treatments and 
manipulations. The treatments and manipulations are 
listed in Supplementary Fig. 1A and Supplementary Table 
1. These included anti-CD4 antibody treatment and NK 
cell supplement treatment groups. Others were 3-month-
old 5xFAD mice, cervical lymphatic ligation, a P301L 
model with or without amyloid/tau-rich lysate injection, 
and fingolimod hydrochloride (FTY720) injection with or 
without lipopolysaccharide (LPS) pretreatment.

The difference between 10 ST data points from wild-
type and 11 from 5xFAD animals was compared for each 
of 14 spatial clusters using 7 to 8 coronal and 3 sagittal 
sections. For the integration of slides based on RPCA, the 
transcriptomes of wild-type animals were used as pivots, 
and the spots from diseased animals were mapped to the 
PCA space of the wild-type reference [74]. The corrected 
counts derived from the integration were used to cluster 
the spots. Spots clusters were visualized in all individual 
sections and verified for their accuracy in designating the 
areas according to already-known anatomical correlates 
(Supplementary Fig. 1B-D). Only the askew sagittal sec-
tion in a few mice missed the dorsal striatum and instead 
supplied the septal lobe in a more median position, but 
the spatial clustering correctly showed the pair of dor-
sal/ventral striatum in some sections and septal/ventral 
striatum in others. The spots from each cluster and group 
were represented by a UMAP plot, a dimensionality 
reduction method for visualization, and the clusters were 
well separated in terms of gene expression (Supplemen-
tary Fig. 1E, F).

Using the developed platform, STquantool, the rep-
resentative genes for each cell type were determined by 
literature or data-driven methods and validated based on 
spatial gene expression patterns (Materials and Methods). 
Cell signature scores for each cell type were calculated 

https://satijalab.org/seurat/
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by the difference between the average expression of the 
marker genes and that of the randomly selected control 
genes. Since the cell scores are derived from the curated 
marker genes and indirectly measure the abundance of 
the cell type in each spot, it can be postulated that the 
spatial distribution of the cell scores reflects the spatial 
distribution of the corresponding cell type. Regional/areal 
transcriptomes representing major brain cell types/states 
were then compared between groups by averaging the 
major cell scores in wild-type and 5xFAD mice using the 
Wilcoxon rank-sum test (Supplementary Fig. 2). In addi-
tion to the major cell types, scores were also calculated in 
32 subtypes of neurons [75], several types of astrocytes 
[76], microglia, and oligodendrocytes [66]. In addition, 
the reactive state-specific changes and marker genes of 
astrocytes and microglia were compared between wild-
type and 5xFAD animals in 14 brain regions.

To investigate brain regional changes during patho-
logical progression in AD, we obtained ST data from 
coronal brain sections of the 5xFAD mouse model and 
age-matched wild-type mice at three and seven months 
of age. The 5xFAD AD model is known to show amyloid 
deposition and reactive gliosis from two months of age 
and synaptic loss and cognitive impairment from four 
to six months of age (Supplementary Fig.  3A). Amyloid 
deposition was observed in the adjacent sections of the 
samples used for ST analysis (Supplementary Fig. 3B). In 
both coronal and sagittal sections, beta-amyloid levels 
began to increase at three months of age, and dramatic 
increases were observed remarkably in the deep cortex, 
thalamus, hippocampus, and amygdala of seven-month-
old 5xFAD mice. The major brain cells were classified 
into neurons, astrocytes, microglia and oligodendro-
cytes and their associated cell types (Supplementary 
Fig. 4A). Neurons were classified according to the reports 
of Hodge et al. [75] of the Allen Institute with Aever-
man et al.’s [59] random forest hierarchical clustering 
method (NSForest) to define the optimal marker gene 
combination for neuron subtypes, which was verified by 
the reports of BICCN [77] and another group’s approach 
[78–82]. Astrocytes were classified according to the types 
of white matter-associated and gray matter-associated 
astrocytes [76] once and again into region-specific astro-
cytes for the cortex/hippocampus (telencephalon), thala-
mus, and other brain regions (diencephalon) [49, 83]. 
Reactive astrocytes and their marker gene combinations 
were determined by the suggestions of Escartin et al. [84] 
and other investigators (Habib et al. [85], Ioannou et al. 
[86], Chamling et al. [87] etc.). Oligodendrocytes and 
their associated cell types were designated by following 
an initial report by Marques et al. [66] and were veri-
fied by other investigators’ suggestions [86, 87]. Microg-
lia were classified according to their states but not types 
considering their homeostatic and reactive (microglia 

with neurodegeneration: MgND [88], disease-associated 
microglia: DAM [89], lipid-droplet associated microglia: 
LDAM [90], etc.) states [68, 91, 92], and thus, no subtypes 
of microglia were assigned. Instead, the aging-related 
effect on its own or associated with amyloid pathology 
was examined to show amyloid pathology excluding the 
confounding effect of aging [93].

Using the data by Ximerakis et al. [64] for defining cell 
types, the hierarchical clustering method suggested by 
Hodge et al. [75] and NSForest (version 2.0) by Aever-
man et al. [59], neurons were typed and subtyped into 
20 GABAergic neurons and 12 glutamatergic neurons. 
Their pattern of expression is displayed for wild-type and 
5xFAD mice in Fig.  1A. The differences between wild-
type and 5xFAD mice in coronal and sagittal sections of 
9 areas of interest were quantitatively analyzed (Supple-
mentary Fig.  4B). Subtypes of GABAergic and glutama-
tergic neurons showed unique patterns in wild-type and 
5xFAD mice. The expression patterns of the GABAer-
gic somatostatin (Sst) subtypes in the amygdala differed 
between wild-type and 5xFAD mice (Fig.  1B and Sup-
plementary Fig.  4C). Increased expression in the amyg-
dala was prominent in the 5xFAD mice compared to the 
wild-type mice. Notably, the individual genes (Sst, Nr2f2, 
Tac1, and Moxd1) tended to be expressed at higher levels 
in the amygdala of 5xFAD mice among the gene combi-
nations (Supplementary Fig.  5). Furthermore, increased 
expression of Sst was identified at the protein level in the 
amygdala and striatum regions but not in the deep cor-
tex, thalamus, or hippocampal regions of seven-month-
old 5xFAD mice (Supplementary Fig.  6). The most 
pronounced increase was found in the amygdala, with 
only a slight change in the striatum, and the results were 
consistent with those at the transcript level. Thus, after 
the accumulation of amyloid plaques in the 5xFAD mice, 
a marked increase in specific subclasses of inhibitory 
neuron-associated genes in the amygdala was remarkably 
identified.

The difference between wild-type and 5xFAD mice was 
differential according to the definition (by gene combina-
tion to define reactivity) of reactive astrocytes and reac-
tive microglia in their density and distribution (Fig. 2 and 
Supplementary Fig.  7). Reactive astrocytes and reactive 
microglia shared gene signatures and were supposed to 
collaborate to do the job of waste disposal in situ and out 
of the brain while promoting the interstitial fluid space 
(ISF) to perivascular/CSF space to meningeal lymphat-
ics. Astrocytes were classified into deep or upper cortical 
layer-specific and telencephalon- or diencephalon-origin 
according to Bayraktar et al. [83] and Kleshchevnikov 
et al. [49]. This classification did not reveal a difference 
between wild-type and 5xFAD mice (Supplementary 
Fig. 7A). However, another two types of astrocytes, white 
matter-associated and gray matter-associated, according 
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Fig. 1 Brain region-specific expression patterns of the signatures of neuronal subclasses and spatial changes in neurons in 5xFAD mice compared to wild-
type mice. (A) Spatial patterns of diverse neuronal subclass signatures. The left side is a representative slide of a wild-type mouse, and the right side is that 
of a 5xFAD mouse. Each cell type showed distinct region-specific expression. First, mature neurons were subdivided into GABAergic and glutamatergic 
neurons, and then the cells were further divided into subclasses to show the regional distribution of subclasses of inhibitory and excitatory neurons. 
(B) Spatial pattern of the neuronal signatures (mature neurons, Sst1, Sst2, Sst3, Sst4, and Sst5; left). Representative images of each group were selected 
among 10 spatial transcriptome datasets of wild-type mice and 11 of 5xFAD mice. Spatial patterns of the Sst-subclass of inhibitory neuronal signatures 
of the 5xFAD mice were the most remarkably different compared to those of wild-type mice. The spatial distribution of Sst subclass neurons was similar 
between wild-type and 5xFAD mice, and the expression of Sst subclasses was higher in 5xFAD exclusively in the amygdala. The boxplot revealed the aver-
age module score of Sst-subclass inhibitory neurons, and expression tended to be higher in the amygdala in 5xFAD mice, especially for the Sst4-subclass. 
Each dot represents a mouse in each group. (mNeur: mature neurons; Sst: somatostatin; WT: wild type; TG: 5xFAD mice; GABAergicCGE: caudal germinal 
eminence; GABAergicMGE: medial germinal eminence; GlutamateNPCTL6b: near projection, corticothalamic, and layer 6b; GlutamateL5PT: layer 5 and 
pyramidal tract)
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Fig. 2 Spatial changes in the distribution of the region- or state-specific signatures of microglia and astrocytes in 5xFAD mice compared to wild-type 
mice. (A) Spatial pattern of the region-specific signatures (white matter-associated and gray matter-associated astrocytes) and the state-specific signa-
tures (reactive astrocytes and aging astrocytes; left). Representative images of each group were selected among 10 spatial transcriptome datasets from 
wild-type mice and 11 from 5xFAD mice. Boxplot showing average module scores (right). Each dot represents a mouse in each group. The average mod-
ule score of white matter-associated astrocytes was significantly increased in the white matter and other gray matter regions in 5xFAD mice compared 
to wild-type mice, but no differences were observed in gray matter-associated astrocyte signatures. Moreover, the average module score of reactive 
astrocytes showed a similar expression pattern to that of white matter-associated astrocytes, while significant but smaller differences were observed in 
white matter and several areas in the aging astrocyte signatures. (B) Spatial pattern of the state-specific signatures (plaque-associated, aging-associated, 
homeostatic, reactive, and panmicroglia). The average module score of plaque-associated microglia showed a significant increase in 5xFAD mice com-
pared to wild-type mice, whereas aging-associated microglia showed no difference. Interestingly, both homeostatic and reactive microglia signatures 
showed a dramatic increase in the average module score in 5xFAD mice. Microglia in general (representing all the state-specific and nonspecific signa-
tures) showed increased expression in all the regions without showing any regional distinctiveness. Bonferroni-adj. *p value < 0.05, **p value < 0.01, ****p 
value < 0.0001. (WM: white matter; GM: gray matter; WT: wild type; TG: 5xFAD mice)
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to Werkman et al. [76], yielded differences in density and 
distribution between wild-type and 5xFAD mice. The cell 
score of white matter-associated astrocytes was signifi-
cantly increased in the white matter and other gray mat-
ter regions in the 5xFAD mice, but no differences were 
observed in the gray matter-associated astrocyte signa-
tures (Fig.  2A). In addition, reactive astrocytes defined 
by various ways [84–87, 94] that showed an increase 
in density in white matter and neighboring gray matter 
areas (cortex and thalamus) in 5xFAD mice. Their distri-
bution of reactive states was characterized to be diffuse 
but was prominent around the white matter in coro-
nal and sagittal sections from 7-month-old 5xFAD mice 
compared with that of wild type mice. Aging astrocytes 
showed significant but small differences between wild-
type and 5xFAD mice in the white matter, deep cortex, 
thalamus, and striatum (Fig.  2A). Further analysis with 
individual transcriptomes used as markers for each state-
specific astrocyte revealed the following findings. The 
expression of individual transcriptomes defining white 
matter-associated and reactive astrocytes showed simi-
lar patterns between wild-type and 5xFAD mice, but the 
dominant individual transcriptomes were different (Sup-
plementary Fig. 8A, B). In the gene combination of white 
matter-associated astrocytes, Lyz2, C1qa, Ctss, C1qb, and 
C1qc were the top five genes with significant differences. 
In reactive astrocytes, Gfap, Serpina3n, Vim, and C1qb 
showed dramatic increases in 5xFAD mice compared to 
wild-type mice.

Microglia, classified into homeostatic and reactive 
states [89] and aging-related and plaque-related states 
[93], showed increased density in wide areas for homeo-
static state microglia and reactive microglia (disease-
associated microglia, according to Keren-Shaul et al. [89]) 
and plaque-related (aging-nonrelated but plaque-related) 
reactive microglia. Interestingly, both homeostatic and 
reactive microglia showed a dramatic increase through-
out brain regions in 5xFAD mice compared to wild-type 
mice (Fig. 2B). Plaque-associated microglia also showed a 
significant increase in 5xFAD mice, but aging-associated 
microglia showed no difference (Fig. 2B). Plaque-associ-
ated and reactive microglia shared a similar set of genes 
(Supplementary Fig.  8C, D). In particular, Cst7, Spp1, 
Ccl6, and Axl showed remarkable increases in 5xFAD 
mice compared to wild-type mice for both microg-
lial signatures. For homeostatic microglial signatures, 
other genes, such as Hexb, Cst3, Cx3cr1, Tmem119, and 
P2ry12, showed dramatic increases in 5xFAD mice. Of 
note, microglial signatures did not show differences by 
brain region.

Oligodendrocytes and their lineage cells classified 
by Marques et al. [66], which comprise mature oligo-
dendrocytes, myelin-forming oligodendrocytes, newly 
formed oligodendrocytes, committed oligodendrocyte 

precursors (COP) and oligodendrocyte precursor cells 
(OPC), showed distinct distribution along the areas, 
mainly identified in the white matter and faintly in the 
thalamus and lateral hypothalamus (Supplementary 
Fig.  7B). A significant difference in newly formed oli-
godendrocytes in the deep cortex and thalamus was 
observed between wild-type and 5xFAD mice, but the 
expression was very low, and the difference was also 
small. The classification according to Chamling et al. [87], 
consisting of oligodendrocytes, OPCs and cycling pro-
genitors, also showed similar characteristic distributions. 
The oligodendrocyte signatures showed relatively little 
difference between wild-type and 5xFAD mice.

Astrocytes and microglia, specifically white mat-
ter-associated astrocytes, reactive astrocytes, plaque-
associated microglia, and homeostatic and reactive 
microglia, tended to increase exclusively in the white 
matter in 3-month-old 5xFAD mice compared to age-
matched wild-type mice. This meant that the changes 
with the signatures started at an earlier age and occurred 
around white matter, reflecting a similar result to our 
previous report [95] (Supplementary Fig.  9). The most 
interesting finding was that homeostatic microglia 
also revealed increased expression in most gray matter 
regions at the later stage of amyloid pathology, similar to 
the expression pattern of reactive microglia. Increased 
expression of Tmem119 (a marker for homeostatic 
microglia) and Cst7 (a marker for reactive microglia) in 
the gray matter regions, especially in the deep cortex, 
thalamus, hippocampus, and amygdala, was validated at 
the protein level in 7-month-old 5xFAD mice compared 
to 3-month-old 5xFAD mice (Supplementary Fig.  10A). 
In addition, increased expression of GFAP, S100beta, 
and Ctss (markers for reactive astrocytes) was confirmed 
at the protein level in the deep cortex, thalamus, amyg-
dala, and white matter regions (Supplementary Fig. 10B). 
Thus, the results of verifying the protein expression level 
were consistent with the ST analysis results.

Finally, DEGs were explored between the groups using 
the MAST model [96] to find regional differences at the 
gene level. Of note, we considered gene abundance in 
addition to the log fold change of mean expression in the 
spots corresponding to the two groups to classify DEGs 
in each brain region. Based on the properties of barcode-
based spatial transcriptomics, adding abundance infor-
mation for the corresponding gene within one barcode 
can increase confidence in identifying DEGs. The spatial 
expression of individual DEGs in 5xFAD mice compared 
to wild-type mice was visually assessed by STquantool 
(Supplementary Fig.  11 and Supplementary Table 2). 
Venn diagrams of the significantly different transcripts 
per region were drawn, and the GO terms associated 
with the genes were visualized as dot plots to exam-
ine the differences between wild-type and 5xFAD mice. 
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The reliability of the applied DE analysis was validated 
by quantitative reverse-transcription PCR (qRT‒PCR 
analysis) in the thalamus and hippocampus (Supple-
mentary Fig.  12). Among the DEGs from the thalamus, 
Hexb, Lyz2, Cst7, H2-K1, Ctss, and Gfap were increased 
in the thalamus of 5xFAD mice compared to wild-type 
mice. Additionally, the detected DEGs in the hippocam-
pus, Scg5, C1qb, Ctss, Hexb, Cst3, S100a6, Cst7, Gfap, and 
Lyz2, were also significantly increased. Thus, we demon-
strated that our transcriptomic approach faithfully cap-
tured changes in DE analysis. In 5xFAD mice, both the 
white matter and gray matter regions showed significant 
increases in gliogenesis- and glial cell activation-related 
genes. For downregulated genes-associated pathways, 
none were detected in the white matter, but ATP biosyn-
thetic process and purine nucleoside triphosphate bio-
synthetic process were significantly decreased in deep 
cortex of 5xFAD mice compared to wild type. The DEG-
related upregulated and downregulated pathways in 
other regions are listed in Supplementary Table 3.

Spatial transcriptomic characterization of rare brain-
resident or infiltrating cells in 7-month-old wild-type and 
5xFAD mice
Spatial transcriptomic characterization of rare brain cells 
poses problems of finding the proper unique set of gene 
combinations for determining these rare cells residing 
among the confounding major cells. Unlike major cells, 
the distribution of which is already known, rare cells are 
low in number and do not have any presumed distribu-
tion. Information on the propensity (rarity) of these cells 
is either derived from scRNAseq studies using dissoci-
ated samples from various areas of the brain, even col-
lected from a number of animals, or from the zoomed-in 
small areas observed by histochemistry. Abundance 
studies of rare immune cells in the brain reported that 
the abundance of T cells was 4/mm3, that of neurons 
was 90,000/mm3 and that of microglia was 6,500/mm3 
[97–99]. Other cells such as B cells, monocytes, infiltrat-
ing macrophages, dendritic cells (DCs) either conven-
tional or plasmacytoid, or neutrophils were counted and 
reported for the brain tissue as a whole because all these 
studies were from scRNAseq analysis using suspended 
cells from dissociated brain tissue.

In contrast to the previous studies that disregarded 
the heterogeneous distribution of rare immune cells in 
the brain, solid-phase spot RNA sequencing enabled 
genome-wide quantification and localization of tran-
scripts, as first documented by Ståhl et al. [47]. In this 
method and in the now available Visium, a spot has its 
own count (log1p of the count ratio), which was mea-
sured by in situ capture of transcripts in the tissue. How-
ever, a spot is composed of a mixture of multiple cells, 
and it can be difficult to distinguish the transcripts of the 

rare immune cells from those of the major cell types. In 
line with this, the problem is to find an appropriate gene 
(transcriptome) combination to sort out only the spe-
cific marker transcriptomes that can discern rare cells 
from others. Selecting the possible key gene sets defin-
ing rare cells with the highest specificity is influenced 
by the choice of the input data, which are composed of 
participating cells [50]. For example, T or B lymphoid 
cells, quite unique with their high propensity for ribo-
somal protein genes such as Rpl or Rps, are characterized 
by any cell-type annotation method to yield candidate 
marker gene combinations. However, other major brain 
cells are also equipped with these protein-producing 
genes expressed in sufficient amounts to appear to be 
rare brain cells, confounding the presence/density of 
rare lymphoid cells in any area of the brain. Addition-
ally, since rare immune cells are commonly investigated 
by combining cell sorting strategies with scRNAseq, the 
rare cell markers acquired from the subpopulation single-
cell dataset may overlap with the major cell type markers. 
This caused serious overestimation, which was disclosed 
immediately upon visual assessment. This was also the 
case despite the use of the recent data available by Schaf-
flick et al. [68] and NSForest by Aeverman et al. [59]. We 
adopted visual curation to exclude the frankly absurd 
transcriptomes as marker gene candidates and finally 
sorted out the rare cells with optimal marker gene com-
binations to compare wild-type and 5xFAD mice (Fig. 3 
and Supplementary Fig. 13).

Immune resident cells were classified in three ways (1) 
using novel data by Eraslan et al. [69] (Supplementary 
Fig.  13A) for tissue-specific monocyte-derived macro-
phages and data by Dominguez Conde et al. [71] (Fig. 3A) 
for tissue-resident T cells, (2) using the data by Schafflick 
et al. [68] (Fig.  3B) and markers refined using NSFor-
est 2.0 and (3) using the data by Xiemrakis et al. [64] 
and refined using NSForest 2.0 by Aeverman et al. [59] 
(Fig. 3C). The first two reports [69, 71] were derived by 
using various tissues excluding the brain, while the other 
two reports [64, 68] were derived by using brain tissues.

Defining marker gene combinations was more intricate 
for these rare immune resident/infiltrating cells, as they 
were defined by surface markers in the report of Eraslan 
et al. [69], in organs/tissues other than the brain, or by 
transcriptome signatures suited for each study. Although 
the data were from body tissues, not the brain, in the 
first approaches, as the tissue stromal cells are included 
in DEG analysis and assuming stromal cells might be 
more similar between tissues including brain, transcrip-
tomes of major parenchymal/stromal cells coexpressing 
with rare immune cells were to be correctly excluded. 
We chose NSForest to help exclude confounding stro-
mal tissues. Monocyte-derived macrophages include two 
types, according to Eraslan et al. [69]: one for immune 
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Fig. 3 (See legend on next page.)
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function (MHCII+) and the other (LYVE1+) for vascular 
integrity and repulsion of infiltrating immune cells. For 
immune function, specifically for the brain, conventional 
DCs with MHCII + cells were found to be effective for 
antigen presentation by adaptive immune cells (T cells 
and B cells), although border-associated macrophages 
or microglia were not [100]. We asked whether this sur-
face marker-defined characterization can be translated 
to mouse (5xFAD) amyloidosis using the signature of 
MHCII+-related immune-functioning macrophages 
and LYVE1+-related integrity-charged macrophages 
described by Eraslan et al. [69] (Supplementary Fig. 13A). 
Integrity-charged macrophage signature scores were not 
different among the groups of 7-month-old wild-type 
and 5xFAD mice in all regions of brain. Spot signatures of 
immune macrophages were higher in 5xFAD mice than 
in wild-type mice in the white matter.

Signature gene combinations used in the cross-tissue 
immune cell analysis by Dominguez Conde et al. [71] 
revealed no difference between wild type and 5xFAD 
mice for T cells and innate lymphoid cell T/ILCs. How-
ever, significant differences were found among these 
mice for myeloid compartment cells in the white matter 
and the gray matter regions adjacent to the white matter, 
including the thalamus, deep cortex, and striatum and for 
B cells in the deep cortex and white matter (Fig. 3A).

This result came from the following stepped analy-
sis including the curation procedure. At the first step 
of curation, individual transcriptomes belonging to the 
three compartments described by Dominguez Conde 
et al. [71] were examined visually for their distribution/
intensity, and several transcriptomes that were already 
reported in the literature as signatures for major brain 
cells and their reactive states were removed, which 
excluded the background effects of abundant brain cells, 
eventually yielding marker gene combinations for the 
three compartments and their cell types. Having removed 
(1) Cx3cr1 and Tyrobp (microglia) from T/ILCs, (2) Ighm 
(Scheurer et al. [101] for neurons) and C1qa (microglia) 
from the B-cell compartment, and (3) Trem2 (microglia), 

Clu (astrocytes), Selenop (microglia, astrocytes, oligo-
dendrocytes), Igf1 (reactive microglia and reactive astro-
cytes), C1qa and Cx3cr1 from the myeloid compartment, 
the scores of T/ILCs were still not different between 
wild-type and 5xFAD mice, and the scores of B-cell or 
myeloid compartments revealed a slight but significant 
increase in 5xFAD mice compared with wild-type mice. 
Individual variations within 5xFAD mice could also be 
recognized upon visual assessment. For individual genes 
for T/ILCs, localization was prominent for Cd4 (stria-
tum) and showed little difference regardless of abun-
dance (Slc4a4, Spry2, Ncam1, and Pcdh9 are abundant), 
and no difference was observed except for Pdcd1 (smaller 
cell fraction in various T cells including Trm/em_CD8 
according to Dominguez Conde et al. [71]), which was 
slightly increased in 5xFAD mice. For the B-cell compart-
ment, the difference between mouse groups, if any, was 
presumed to be due to Itgax and Fcrls, both of which 
were related to aging-associated B cells, and Fcrls was 
related to memory B cells and plasma cells/plasmablasts. 
For the myeloid compartment, the difference in scores 
among mouse groups was contributed by Tyrobp, Lyz2, 
Fcer1g, C1qc, and Apoe, all of which are related to various 
types of tissue-specific macrophages and classical/non-
classical monocytes (Supplementary Fig. 14).

The second one by Schafflick et al.’s data [68] was tested 
for either the marker gene combination recommended by 
Schafflick et al. according to their supplementary table 
(log fold change: LFC > 0.5) for 12 border cell leukocytes 
(including microglia) or the marker gene combination 
curated by NSForest upon inputting their data. Schaf-
flick’s own data yielded obviously too high intensity for 
CD4 and CD8 T cells among 12 border-associated leu-
kocytes, such as B1, B2, CD4 T, CD8 T and NK cells, 
microglia, CNS-associated macrophages (CAM), mac-
rophages, monocytes, myeloid DC (mDC), plasmacy-
toid DC (pDC) and granulocytes. When we surveyed the 
constituents of the tentative marker transcriptomes for 
these inappropriate signatures, ribosomal genes (many 
isoforms of Rpl and Rps) were presented as false positive 

(See figure on previous page.)
Fig. 3 Spatial changes in the distribution of myeloid and lymphoid cell signatures in 5xFAD mice compared to wild-type mice. (A) Spatial pattern of the 
signatures of myeloid, B cell, and T-cell and ILC compartments according to the marker gene combination reported by Dominguez Conde et al. [71] (left) 
and the boxplot showing the average module scores (right). Each dot represents a mouse in each group. The average module score of the myeloid com-
partment showed a significant increase in the white matter and gray matter regions adjacent to the white matter, including the thalamus, deep cortex, 
and striatum. B-cell compartment signatures showed an increase in the deep cortex and white matter. In contrast, T-cell/ILC compartment signatures 
were low without differences between wild-type and 5xFAD mice. (B) Spatial pattern of the subtype signatures of myeloid cells, including CAM, macro-
phage, monocyte, plasmacytoid DC, and granulocyte according to marker gene combination from Schafflick et al. [68]. Notably, CAM and macrophage 
signatures showed the most pronounced increase in 5xFAD mice compared to wild-type mice in most of the regions. Monocytes and plasmacytoid DCs 
were increased in the deep cortex and white matter, and plasmacytoid DCs were further increased in the thalamus, pyriform area and striatum. (C) Spatial 
pattern of the subtype signatures of lymphoid cells, including NK and T cells, according to marker gene combination from Xiemrakis et al. [64]. In the case 
of the NK cell signature, a significant increase was observed in the deep cortex of 5xFAD mice, which is associated with an increase in CD56dim NK cells. 
Among T-cell signatures, tissue-resident memory T-cell signatures were higher in 5xFAD mice in the deep cortex, white matter, thalamus, pyriform area 
and striatum. The CD4 signature was explicit in the striatum in both wild-type and 5xFAD mice, but the expression was too low to show a quantitative 
difference between wild-type and 5xFAD mice. Bonferroni-adj. *p value < 0.05, ***p value < 0.001, ****p value < 0.0001. (WT: wild type; TG: 5xFAD mice; ILC: 
innate lymphoid cells; CAM: CNS-associated macrophage; DC: dendritic cells; NK: natural killer)
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markers of CD4 T and CD8 T cells. This misclassification 
of marker genes is assumed to be caused originally by the 
fact that the parenchymal and border leukocytes were 
included after their selection for CD45 positivity, mean-
ing that they could not exclude the differential expression 
of these cells from the major brain cells, including stro-
mal cells. Individual transcriptomes per spot were easily 
observed to disclose whether we chose the highest LFC 
with adjusted p values for determining marker genes, 
Ighm for b1 cells (also found in the cortex not related to 
B cells) [101], H3f3b (histone protein also nonspecific for 
the brain) for b1 cells, Stmn1 for b2 cells (rather brain-
wide expression), Dut (enzyme for nucleotide and ubiq-
uitous, including brain cells) for B cells and many similar 
examples (Supplementary Fig. 13B). Although DEG anal-
ysis depends upon the input data composition, we tried 
NSForest on Schafflick’s data and obtained a better 
marker gene combination. This Schafflick/NSForest anal-
ysis yielded improved intensity matching considering the 
prevalence of cell populations in the brain parenchyma 
except for b2 cells (still too dense due to Tuba1b (tubulin 
related)) and CD4 T cells (depending heavily upon one 
transcriptome Trbc2 (T-cell receptor beta constant 2 but 
also expressed in the cortex)). The other 10 cell signatures 
appeared to represent the cell intensity/distribution cor-
rectly; however, they also included nonspecific and dense 
Apoe for CAM, dense Cst3 for macrophages, Mal (Myelin 
And Lymphocyte Protein, implying its localization both 
in lymphocytes and myelin of neurons) for monocytes, 
and Tyrobp (in association with Trem2, a well-known 
marker for microglia) for both monocytes and pDCs. 
Upon the application of NSForest, 6 to 10 marker genes 
were obtained, and zero to three genes were adjusted 
(kept or removed, meaning curated by operators’ consen-
sus). The application of curated gene combination to our 
ST samples revealed that CAM and macrophages showed 
the most pronounced increase in 5xFAD mice compared 
to wild-type mice globally throughout the brain regions 
(Fig.  3B). Additionally, pDCs showed increases in the 
white matter and some gray matter regions. However, 
the transcriptome density of DCs was considered inap-
propriate, as it yielded much higher intensity along the 
entire brain, considering that DCs occupy only 0.14% of 
myeloid/lymphoid cells of the brain and border, including 
microglia (0.8% among myeloid/lymphoid cells excluding 
microglia) [68].

Among lymphoid cell signatures, an increase in tissue-
resident memory T cells was inferred in 5xFAD mice 
compared to wild-type mice (Fig. 3C and Supplementary 
Fig. 14). However, it is necessary to consider the techni-
cal limitations of spot-based transcriptomic analysis for 
evaluating rare brain cell signatures. It is still unclear 
which genes specifically define rare cells, while gene 

combinations may overlap with major brain cells on ST 
brain imaging.

Using a single gene as a marker would be better and 
more convenient for designating rare cell types. It was 
possible to designate infiltrating macrophages derived 
from circulating monocytes originating from BM (Sup-
plementary Fig.  15). The CD11c surface marker and its 
gene Itgax were used as markers for these cells. Resi-
dent T cells were suggested to be CD73 positive, and its 
gene Nt5e was identified by Fang et al. [102]. CD56bright 
and its gene Ncam1 are considered to be circulating and 
immature NK cell markers but are also highly expressed 
in neurons [103, 104]. Perivascular macrophages cause 
a great problem in distinguishing them from microglia, 
and Lyve1 is the discriminator of pvMϕs and microg-
lia (Sall1) [105]. Similarly, for brain major cells, Trem2 
and Tyrobp were suggested to be conjoint markers for 
microglia, and Cspg and Olig2 were expected to represent 
OPCs, not any other cell types. Homeostatic microglia 
could have been defined by Sall1; however, a transgenic 
mouse study [105] found that Hexb was the better marker 
for authentic microglia than Sall1. The importance of 
Aif1 (IBA1) as an activated microglial marker and of Gfap 
as an activated astrocyte marker was disclosed to be non-
specific or at least subtype specific, respectively. Once a 
marker was well defined for designating rare cell types 
well discriminated from major brain cells, including 
microglia and perivascular space (pv) macrophages (and 
submeningeal macrophages), then that marker in a spot 
could disclose the fact that the gene signature of that spot 
might be from the rare cell of interest, but it does not 
mean that the signature was not from the rare cells if no 
signal was observed. Genes widely expressed over all cell 
types but with specific isoforms could be used to define 
the cell types, and Prdx (for peroxiredoxin) was one of 
the examples (Prdx6 and Prdx2 for astrocytes, Prdx4 for 
microglia and Prdx1 for oligodendrocytes) (Supplemen-
tary Fig. 16).

To validate the results obtained from the cell signature 
score based method of measuring cell type abundance, 
we performed the cell type deconvolution analysis and 
compared the results between the two methods. The cell 
type deconvolution method captures the gene expres-
sion patterns of cell types from the single-cell reference 
dataset and predicts the cell type composition in the ST 
spot, which is a mixture of multiple cells. We performed 
the analysis mainly for microglia and infiltrating immune 
cells, which showed significant changes between 5xFAD 
mice (TG) and wild-type mice (WT) in the signature 
score-based method. For microglia, the proportions of 
both homeostatic and reactive microglia were globally 
increased in the gray and white matter regions of TG 
mice, which was consistent with the results obtained 
from the cell signature scores (Supplementary Fig.  17). 
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Minor immune cells, including myeloid cells such as 
macrophages, monocytes, and dendritic cells, were also 
upregulated in multiple gray and white matter regions of 
TG, and the results were similar to those obtained using 
cell signature scores (Supplementary Fig. 18A, B). How-
ever, for lymphoid cell types such as innate lymphoid 
cells, natural killer cells and T cells, which are rare, the 
patterns of change between the two methods were incon-
sistent for a few gray matter regions, while the biological 
effect may be small due to very low cell abundance (Sup-
plementary Fig. 18C, D). Overall, the results suggest that 
cell signature scores derived from curated markers are an 
accurate and reliable measure of cell abundance for the 
relatively common cell types, while rare cell types require 
special attention in interpretation.

Improvement of behaviors with much variation by 
immunomodulatory therapy of anti-CD4 antibody and NK 
supplements in the 5xFAD AD mouse model
During a preliminary behavioral study to prove the effect 
of aducanumab, pretreatment with anti-CD4 antibody 
caused a larger degree of changes in alternation scores 
in the control animals (meaning higher improvement in 
the group of animals treated with anti-CD4 antibody) 
[29, 30]. Three batches of several animals with anti-CD4 
antibody treatment reproduced the previous groupwise 
behavioral improvement with similar variation (67.7% ± 
18.4%) at 7 months of age in 5xFAD model mice (Fig. 4). 
We assumed that anti-CD4 antibody treatment modu-
lated the systemic adaptive immune system, as trans-
genic insertion of five types of mutated human APP/PS1 
genes would have caused immune disturbance due to 
their presence in the mouse chromosome. The presence 
of human mutated genes would have resulted in brain-
immune interaction dysfunction as well as plaque-prone 
amyloid burden in animals. Spatial transcriptomic anal-
ysis was considered to reveal the eventual response of 
brain cells, either major or rare resident and infiltrating 
immune cells, if any.

In another preliminary study with APP/PS1 model 
mice using the water maze with expanded NK cell sup-
plements derived from the spleen of wild-type BALB/c 
mice, anecdotal cases of behavioral improvement were 
observed (data not shown). Three batches of allogeneic 
NK cell supplements, as 5xFAD mice are on a B6 back-
ground, reproduced the behavioral improvement of alter-
nation scores on Y-maze tests on average, however, with 
much variation (Fig. 4). Much variation in both the anti-
CD4 antibody treatment study and NK supplementa-
tion study indicated that 5xFAD mice at 7 months of age 
were undergoing their own course of aggravation of the 
pathological changes of Aβ oligomer insults and amyloid 
plaque burden, resulting in later pathological and behav-
ioral dysfunction at approximately 12 months of age or 

later. Spatial transcriptomic analysis was also considered 
to reveal the regional and cell-type specific changes of 
transcriptomes of major and rare brain cells correspond-
ing to each individual mouse’s degree of behavioral dys-
function in the NK supplement-treated group.

Regional cell-type/state-specific transcriptome changes 
in 5xFAD mice compared with wild-type mice after 
intravenous administration of NK cell supplements
Three mice with higher alternation scores on the Y-maze 
test were selected for both the saline-treated and NK 
cell supplement-treated groups (Supplementary Fig. 19). 
Coronal/sagittal brain sections of these mice were sub-
jected to Visium analysis. Each group was paired to the 
same plates so that the batch effect of the read per slide 
would be minimized. Using 30,000 to 50,000 counts per 
mouse, we retrieved the count data, which were nor-
malized for their total count, and log1p of the ratio data 
were used for further analysis. Spatial clustering allowed 
anatomical segmentation to yield 14 regions with almost 
similar sizes (Supplementary Table 4). Cell type- and 
state-specific marker gene combinations were also used 
to analyze cell-specific and/or cell state-specific changes 
after NK cell supplement treatment. For the 5xFAD case 
with NK cell supplements, one mouse with a very high 
behavior score was chosen as the ‘behaviorally best’ rep-
resentative of the group, and another mouse with a very 
low score was chosen as the ‘behaviorally worst already at 
7 months of age’ representative. This essentially allowed 
us to examine the transcriptomic changes according to 
the behavioral impairment of the 5xFAD mice at the age 
of 7 months. NK cell supplements contributed at least to 
the widening of the distribution of scores of behavioral 
impairments at this middle age.

GABAergic Sst subtype neurons showed a significant 
decrease after NK supplementation in the amygdala, 
which showed an abnormally increased signature in 
5xFAD (n = 11) compared with wild-type mice (n = 10) 
(Fig. 5A). Among the Sst neuronal signatures, Sst, Tac1, 
and Nr2f2 showed dramatic decreases in the amygdala 
after NK cell supplement administration in 5xFAD mice, 
but there were no distinct differences in the other regions 
(Supplementary Fig. 20A, B). The Sst-expressing neurons 
in the cortex are known to contribute to modulating cor-
tical circuits, synaptic plasticity and maintaining spatial 
working memory [106]. Patients with AD exhibited low 
Sst expression in the cortex and hippocampus. However, 
the function of Sst-inhibitory neurons in the amygdala 
remains poorly understood [107]. No significant dif-
ference was found either in the mature neuron score or 
in any other subtype of neurons other than Sst neurons 
between 5xFAD mice without NK supplements and those 
with NK supplement treatment. Thus, normalization 
of excitatory and inhibitory neuronal imbalances in the 
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Fig. 4 Improved behavior after intravenous administration of NK cell supplement and anti-CD4 antibody in 5xFAD mice. (A) Timeline of the experiments 
for intravenous NK cell supplements (upper) and anti-CD4 antibody (lower) administration in 6.5-month-old wild-type and 5xFAD mice. NK cells (2 × 106 
cells/injection) were administered once a week for a total of five times, and anti-CD4 antibody (0.5 mg/injection) was administered once as a single injec-
tion. After a month, behavior analysis was performed, and brain tissue samples were obtained for spatial transcriptomic brain imaging analysis. (B) The 
behavioral function of exploring new environments was examined using the Y-maze test and expressed as alternating percentages. Each dot represents 
a mouse in each group. The alternation rate was decreased in 5xFAD mice compared to wild-type mice, with much variation at this age in wild-type and 
5xFAD mice. The alternation percentage score of 5xFAD mice increased significantly after injection of NK cell supplements and anti-CD4 antibody treat-
ments compared with that of 5xFAD mice without treatments. Wild-type mice also showed variation; however, their alternation scores were not different 
between the no treatment and either treatment group. Wilcoxon *p value < 0.05, **p value < 0.01. (aCD4: anti-CD4 antibody; WT: wild type; TG: 5xFAD 
mice; WT_NK: NK cell-treated wild type; WT_aCD4: anti-CD4 antibody-treated wild type; TG_NK: NK cell-treated 5xFAD; TG_aCD4: anti-CD4 antibody-
treated 5xFAD)
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Fig. 5 (See legend on next page.)
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amygdala may improve behavior function. Further inves-
tigation of the neurons in the amygdala region could play 
an important role in understanding the pathology of AD 
and in providing therapeutic directions. Additionally, the 
NK cell signature tended to increase after administration 
of NK cell supplements exclusively in the white matter 
region of 5xFAD mouse brains (Supplementary Fig. 21A). 
The change in the module score level was not observed 
with the anti-CD4 antibody treatment, which was in con-
trast with the change after NK cell supplement treatment 
(Supplementary Fig.  21B). The signatures of astrocytes, 
microglia, and oligodendrocytes did not show any differ-
ence. Additionally, no difference in rare brain cells, either 
resident or infiltrating, was observed (Supplementary 
Fig.  22). The biodistribution of 99mTc-HMPAO-labeled 
NK cells was examined using SPECT/CT to determine 
how systemically injected NK cells caused changes in 
the brain (Supplementary Fig. 23). Within 1 h after injec-
tion, the labeled NK cells were mainly taken up by the 
liver, and this radioactivity decreased gradually by 16 h. 
Of note, no definite brain uptake of the labeled NK cells 
was observed with the resolution of SPECT/CT images. 
Thus, NK cells may have caused changes in brain cells at 
the transcriptional level indirectly via cytokines or other 
secretory factors released by NK cells and/or inherent 
peripheral immune cells influenced by supplemented NK 
cells.

Regional cell-type/state-specific transcriptome changes 
in 5xFAD model mice compared with wild-type mice after 
intravenous anti-CD4 antibody treatment
Three mice in the anti-CD4 antibody treatment group 
were selected, and their coronal brain sections were 
plated on Visium slides. The frame of sample distribution 
on the quadrants of each Visium slide was the same as 
above for NK cell supplement treatment. Further analy-
sis of transcriptomes per spot and spatial clustering and 
designation of transcriptomes to the approximately 3,000 
spots were also the same.

Among major brain cells, state-specific glial cells, such 
as aging astrocytes and reactive microglia, which showed 
a significant increase in 5xFAD mice compared to wild-
type mice, showed a slight decrease exclusively in the 
white matter after administration of anti-CD4 antibody 
in 5xFAD mice (Fig.  5B). In the gene combination of 
aging astrocytes, the expression of Lgmn, Gsn, Mt1, Fcrls, 
and Hexb was noticeably decreased in the white matter 
after anti-CD4 antibody administration in 5xFAD mice, 
and expression decreased slightly in the other regions 
(Supplementary Fig.  20C, D). In the reactive microglial 
signature, Cst7, Spp1, and Cd9 showed a decreased pat-
tern throughout the region, while other genes, such as 
Axl, Csf1, and Ccl6 showed decreased patterns mainly 
in the white matter (Supplementary Fig. 20C, D). Inter-
estingly, the CD4 T-cell signature tended to decrease 
slightly in the deep and upper cortex (striatum) after 
anti-CD4 antibody treatment (Supplementary Fig.  21B). 
However, mature neuronal signatures showed typi-
cal and very similar patterns of distribution between 9 
major brain regions and within each region irrespec-
tive of whether the sample was from wild type, 5xFAD, 
wild type with anti-CD4 antibody treatment or 5xFAD 
with anti-CD4 antibody treatment mice (Supplementary 
Fig. 22A). No significant differences in other types of glial 
cells, including white matter-associated astrocytes, reac-
tive astrocytes, plaque-associated microglia, homeostatic 
microglia, and oligodendrocytes, were found, meaning 
that all 10 wild-type mice and all 11 5xFAD mice could 
not be differentiated between no treatment and anti-CD4 
antibody treatment (Supplementary Fig.  22B, C). The 
difference between wild-type and 5xFAD mice was sus-
tained but did not reveal any dramatic effect of anti-CD4 
antibody treatment.

Rare brain cells, resident or infiltrating, were distin-
guished between the no treatment group and the anti-
CD4 antibody treatment group. The expression levels 
of monocytes and pDCs, which showed a significant 
increase in 5xFAD mice compared to wild-type mice, 
tended to slightly decrease only in the white matter after 

(See figure on previous page.)
Fig. 5 Brain region-specific transcriptome changes in cell signatures after NK cell supplementation and anti-CD4 antibody treatment in 5xFAD mice. (A) 
Spatial pattern of the signatures of somatostatin (Sst)-inhibitory neuronal signatures (Sst1, Sst2, Sst3, Sst4, and Sst5; left) and the boxplot showing the 
average module scores in the amygdala (right). Each dot represents a mouse in each group. The average module scores of Sst neuronal subclasses tended 
to decrease specifically in the amygdala after administration of NK cell supplement in 5xFAD mice. Interestingly, the Sst neuronal signatures, which were 
increased in expression in the amygdala of 5xFAD mice, were decreased to the expression level in wild-type mice by NK cell supplements. In contrast, 
the module score was not different between the no treatment and anti-CD4 antibody treatment groups, while there were differences between the no 
treatment and NK cell supplement groups. (B) Spatial pattern of the signatures of state-specific glial cells (aging astrocytes and reactive microglia; left) 
and (C) immune cells (monocytes and plasmacytoid DCs) and the boxplot showing the average module scores in the white matter (right). The expres-
sion of state-specific subtypes of glial cell and immune cell signatures, which showed a significant increase in 5xFAD mice compared to wild-type mice, 
tended to slightly decrease in the white matter after anti-CD4 antibody treatment. Considering that NK cell supplementation showed no appreciable 
differences in glial cell and immune cell signatures, anti-CD4 treatment effects on these cell subtypes of state-specifics looked real. Expression, however, 
did not decrease to the level observed in wild-type mice. In summary, NK cell supplementation and anti-CD4 antibody treatment affected different state/
type-cell signatures and brain regions, respectively. (aCD4: anti-CD4 antibody; WT: wild type; TG: 5xFAD mice; WT_NK: NK cell-treated wild type; WT_aCD4: 
anti-CD4 antibody-treated wild type; TG_NK: NK cell-treated 5xFAD; TG_aCD4: anti-CD4 antibody-treated 5xFAD; Sst: somatostatin; DC: dendritic cells; NK: 
natural killer)
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anti-CD4 antibody treatment (Fig. 5C). In both monocyte 
and pDC signatures, the expression of Tyrobp was dra-
matically reduced throughout the brain, whereas S100a4, 
S100a10, and Mal in the monocyte signature showed 
decreased expression patterns exclusively in the white 
matter after anti-CD4 antibody treatment. A reduction in 
the expression of individual genes by the anti-CD4 anti-
body was mainly identified in the white matter region 
(Supplementary Fig. 20C, D).

While NK cell supplementation showed no appreciable 
differences in immune cell signatures, the fact that anti-
CD4 antibody treatment showed effects on subtypes of 
immune cells is noteworthy. However, the expression 
level was not decreased to that observed in wild-type 
mice.

Methods to scrutinize spatial cell-type and cell-state 
specific changes upon the platform of setting norms and 
characterization of abnormality of a test mouse
As spatial distribution is critical for characterization 
of a new mouse specimen for their status of normalcy, 
pathology, and response to therapy, the specimen can 
be on every section, but on a limited number of coronal 
sections (per monkey samples in a report by Chen et al. 
[55]) or sagittal sections. To acquire representative infor-
mation regarding mouse groups, we combined multi-
individual mouse sections to yield the apparently correct 
spatial segmentation. Each region was then prepared to 
present their norms for various scores for cell types, cell 
states and response to the tentative immunomodula-
tory drugs. We tried to establish methods to reveal the 
regional cell-type/state-specific norms and their probable 
changes by drug intervention. We set up norms for nor-
mal mice using wild type mouse data genotype, and then 
the effect of the age or the influence of drug treatments 
were characterized. For example, the presence of anom-
aly were examined for individual mice according to their 
disease states (5xFAD mice of certain age with diverse 
behavior/Aβ abnormality, P301L mice with no behav-
ioral/pathological abnormality) and the effect of therapy 
(anti-CD4 antibody or NK cell treatments).

Cell types should have been annotated to the then-
best knowledge of the scientific community based on 
the resource reports in the literature up to the date of 
this investigation run by trial-and-evaluation and then 
the choice; for example, for neurons and neuronal sub-
types, Hodge et al.’s report [75] was adopted as is or after 
NS Forest [59] to define 20 GABAergic neurons and 12 
glutamatergic neurons. Available data were downloaded 
from specific sites or supplementary tables of each 
report. Thus, for example, Scng-VIP neuron subtypes 
described in a more recent report by Bugeon et al. [57] 
were ignored but later can be reanalyzed with the current 
Visium data by specifying their markers along the regions 

segmented after integration of slides using RPCA. For 
astrocytes and microglia, the reactive state signature was 
surveyed by scrutinizing the counts of transcriptomics at 
each spot according to the reports by Keren-Shaul et al. 
[89], Friedman et al. [91], Grubman et al. [93] and oth-
ers. Coexpression of the same transcriptome by astro-
cytes and microglia, such as Apoe, Gfap, Tspo and others, 
was removed from the tentative marker gene combina-
tion. The same procedure was performed for astrocytes 
and oligodendrocytes or microglia and oligodendrocytes. 
Oligodendrocytes and their lineage cells did not have a 
‘reactive’ transcriptome signature. Signature transcrip-
tomes between reactive and homeostatic microglia (and 
astrocytes) were also surveyed for their conjoint expres-
sion between both states. Homeostatic transcriptomes 
were designated to exclude the signature of reactive tran-
scriptomes and vice versa, referring to literature reports 
by Prinz et al. [108–114], and Kim et al. [105], so that 
Sall1 and Hexb were used to measure the abundance of 
microglia as each microglia express these genes constitu-
tively while assuming that these transcriptomes did not 
increase in quantity per microglia when reactive [105, 
113]. As spatial transcriptomic imaging using Visium 
yielded a linear (semi)quantitative (due to log1p transfor-
mation for further processing using Seurat 4.1)) metric, 
no fractional presentation was adopted to disclose that 
homeostatic microglia were increased in quantity of sig-
nature per spot in 5xFAD mice compared with wild-type 
or P301L mice.

Quantification was performed for 9 regions (hypothal-
amus, thalamus, deep cortex, white matter, upper cortex, 
hippocampus, amygdala, piriform area, and striatum) for 
major cell types, including neuron subtypes, reactive and 
homeostatic glial cells, astrocyte subtypes, oligodendro-
cyte lineage cell subtypes and rare resident/infiltrating 
immune cells. For regions, for example, white matter-
associated astrocytes or white matter-localized microglia 
were quantified and correlated with white matter-local-
ized oligodendrocyte lineage subtypes. Dense and thus 
intense quantities of mature oligodendrocytes could 
be compared among mouse groups. In contrast, diffuse 
and sparsely distributed rare immune cells were found 
in three compartments by Dominguez Conde et al. [71], 
four types by Xiemerakis/NSForest [59, 64], and 12 types 
by Schafflick et al. [68]. Tissue resident macrophages by 
Dogra et al. [115] and Eraslan et al. [69] were also quan-
tified for intensity to yield the difference for each region 
among mouse groups. The Wilcoxon rank-sum test was 
used to determine the significance between pairs of 
groups (uncorrected p value or corrected by three for 
paired group comparisons). Beyond group comparison, 
an anomaly detection procedure (or confirmation of 
normalcy meaning no difference found on any regional, 
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cell-type, cell-state specific signature by density per 
region) was performed for each mouse.

Once a region and cell type and its state were found, 
we performed DEG analysis to find the transcriptomes 
of interest in each brain region. Then, the association of 
discovered genes with biological pathways was exam-
ined using an overrepresentation test based on evidence-
driven databases. This was to determine the significance 
of the found transcriptome designating their func-
tional role in pathology (amyloid pathology or tauopa-
thy, glial cell dysfunction, etc.), physiology (aging) and 
their participation in the response to tentative immu-
nomodulatory therapy. Considering the diversity of 
behavior improvement after anti-CD4 antibody and NK 
cell supplement treatments and the unpaired nature of 
the Visium study, we could only detect the treatment 
effect (and non-effect) of the transcriptome signature of 
regional cell types/states upon treatment per individual. 
Transcriptomes of the marker gene combination that we 
used were all checked for their individual transcriptomes 
to elucidate key transcriptomes for specifying type/state 
characteristics or therapy effects. We also tried to assess 
their individual contribution to this specification to find 
one, two or more distinctive transcriptomes to predict 
their presence in each spot. This means that curation by 
operator in addition to the readymade Wilcoxon, logis-
tic, or NSForest methods was used in at least two steps, 
first to choose a seemingly optimal combination ruling 
out cross-expressing, background, or confounding genes 
and then at last to find the succinct combination of tran-
scriptomes for cell-type/state annotation or if any, the 
sole transcriptome (Supplementary Fig.  2). The above 
pipelines for dissecting cell-type- and cell-state-specific 
regional transcriptomic changes can be readily imple-
mented with our in-house application STquantool, which 
facilitates the visualization of spatial gene expression and 
enables quantification across multiple transcriptomic 
datasets.

Discussion
In this investigation, we used ST for its superiority over 
scRNAseq/snRNAseq to localize the specific transcrip-
tomic signature of cell type or cell state in almost 5 thou-
sand spots, among which 3,000 or more spots harbored 
either coronal or sagittal sections of brain tissue. Before 
going further to use this transcriptomic signature to dis-
close the effects of novel but unproven neuromodulatory 
treatments, we trimmed the method of the use of this 
Visium-based ST imaging to elucidate regional, cell-type/
state-specific changes. The method for choosing one or 
two optimal transcriptomic marker combinations among 
so many possible combinations was adjusted to yield the 
best contrast between cell types/subtypes using the lit-
erature resources and our in-house method of curation. 

A simple and easy method to sort out the candidate tran-
scriptomes was set up to ensure that we found the best 
cell type/state annotation methods for either abundant 
brain cells or rare immune cells. The challenge was to 
separate 4 or more major brain cell types and their sub-
types with transcriptome combinations and to define 
rare immune cells for their exact propensity and distri-
bution/location. Stahl et al.’s [47] suggestion of counting 
the transcriptomes per spot using the original ST Visium 
methods and Tirosh et al.’s [44] approach to generate cell 
signature scores based on the curated marker genes and 
comparing them between mouse groups with genuine or 
sham treatments worked well for this endeavor. We over-
came the problem of high dependence of this endeavor 
on the choice of tentative marker gene combinations 
varying upon the diverse input data derived from the 
preliminary DEG studies using single-cell data of brain 
tissues [67, 68, 108] and even tissues other than brain 
tissues. Assessing the sophisticated use of the public 
database and scrutinizing the individual transcriptomes 
visually by the operators (neuroimaging experts) were 
essential. Curation by operators is heuristic at best and 
is surely subject to operator arbitrariness; however, this 
was eventually the key step to enhance the authenticity of 
the observation of large number of cells (2 to 10 per spot) 
admixed in spots and a dozen specimens from individu-
ally different but syngeneic mice. From the neuroimag-
ing perspective, integrated single spot imaging (100 µ x 
100 µ x 10 µ) containing an average of 5 cells (2 to 10) in 
each unit domain did not have a significant batch/indi-
vidual variation effect to confound further analysis, as we 
observed dozens/hundreds of spots at the same time, and 
the batch effect was corrected during sample integration. 
With this visual investigation, we soon became confident 
that spatial transcriptomic brain spot imaging with visual 
assessment and its quantitative analysis using the frame-
work of voxel (spot) imaging of mouse/human brains was 
suitable for the evaluation of the effect of certain drugs/
treatments for disease-course modification in dementia 
mouse models.

The transcriptomic signature of brain cells could clearly 
segment every section from the mice, regardless of dis-
ease or treatment status, taking advantage of 22,000 or 
more transcriptomes per cell to identify the cell type/
state with thousands of variable transcriptomes. Unlike 
functional neuroimaging such as functional magnetic 
resonance imaging (fMRI) or positron emission tomog-
raphy (PET), which needs coregistration and segmenta-
tion considering individual variation for further analysis, 
the segmentation of neuroanatomical entities on Visium 
could be performed without any more assumptions, 
except that functional regional entities could be deter-
mined by transcriptomes belonging to spots and their 
conglomerated spots make explicit functional regions. 
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An eccentric case of regionally remote but similar tran-
scriptome composition was observed in that the cortical 
amygdala and subcortical septal lobe were categorized 
as the same cluster on sagittal section, but excluding 
this exception, all the other spatial clusters were within 
the expected anatomical border definition (https://con-
nectivity.brain-map.org/3d-viewer?v=1&types=IMAG
EPLANE&IMAGEPLANE=imageplanes). Thus, spa-
tial or regional representation of characteristic changes 
related to pathology and treatment response could then 
be described and quantified. Finding marker gene com-
binations to define the spots as belonging to certain 
functional regions of interest then could be achieved by 
finding the optimal or best combination, which would be 
appropriate and succinct.

Determination of the best annotation of neurons and 
other major brain cells was initially dependent upon pre-
vious reports mainly derived from nonspatial scRNAseq/
snRNAseq analysis [63, 73, 80, 116]. In these previous 
studies, the spatially expected designation of cells was 
suggested as a success of cell clustering, raising concerns 
that there was no gold standard information regarding 
their true location; nevertheless, the cell clustering and 
annotation allows assignment of regional identity of brain 
cells based on anatomical region-specific marker genes. 
ST brain imaging obviated this concern. In ST imaging, 
however, there remain two major problematic ambigui-
ties for spatial clustering and cell type/state identification 
per spot. The first one is spatially agnostic annotation 
by transcriptome signature, which previous researchers 
tried to solve by sampling regions of brain such as pos-
terior isocortex, hippocampus (or hippocampal forma-
tion), striatum, thalamus and hypothalamus, etc., in the 
reports of Saunders et al. [65] or Chai et al. [117]. This 
problem was easily solved by ST imaging using Visium of 
3 to 5 thousand spots, which allows capturing transcrip-
tomic changes across the broad area of the brain. Now, 
imaging with a resolution of 100 µ x 100 µ on 2D is avail-
able, allowing easy segmentation; this differs from fMRI/
PET in that the huge multiplexing capability of ST brain 
imaging allows almost infinite reanalyses using combi-
natorics. The second is cell/state identification per spot 
by using the transcriptomic signature of the marker gene 
combination determined by previous DEG studies using 
detached and sometimes surface-marker-sorted brain 
cells. When scRNAseq/snRNAseq was used for detached 
brain cells to determine the effect of drug/treatment on 
those brain cells, lack of spatial localization was the major 
hurdle blocking the understanding of the role of any 
treatment. In situ hybridization of immunohistochemis-
try complemented transcriptomic global/regional brain 
signatures to address this, but without reassuring results 
to explain the therapy effect. ST brain imaging solved 
this problem. As shown in this study, ST brain imaging 

is equipped with the expression profile per spot for the 
entirety of genes of the individual cells localized on each 
spot, and the data could be analyzed in an unsupervised 
fashion without any assumption or in appropriate cases 
by using a priori knowledge derived from the literature 
resources of scRNAseq/snRNAseq. Considering the chal-
lenges and difficulties in overcoming these problems, we 
streamlined the use of visual reading by expert operators 
called curation. The steps required for curation were kept 
minimal and practical, and it was performed initially to 
exclude nonspecific and cross-expressing transcriptomes 
between major cells, and finally to exclude cross-tissue, 
stromal cell-dependent and confounding background 
signatures. It would have been better to base curation on 
individual transcriptomic features of any types of cells for 
their association with disease states or drug/treatment 
responsiveness.

To tackle these problems, we asked how we could use 
individual mouse ST brain imaging data to determine 
the disease states, which are variable even in syngeneic 
animals, and the variable treatment responses affect-
ing major and rare brain cells. Taking advantage of the 
automatic segmentation results for groups of individual 
mouse specimens, irrespective of section planes and 
stereotaxic coordinates, we tried to individualize the 
transcriptomic features of each individual specimen 
compared with the norms we constructed. Comparing 
regional, cell type/state-specific transcriptomic signa-
tures using visual and quantitative decisions of an indi-
vidual mouse with norms was performed. This analysis 
method allowed for the individuation-based evaluation 
of animals for their behavior correlates. We were able to 
obtain and reproduce a wide variety of behavior metrics, 
which is in this study included the alternation score on 
the Y-maze; the Y-maze alternation scores of 7-month-
old wild-type mice ranged widely as well as those of 
5xFAD mice, but those of 8.5-month-old wild-type mice 
converged with smaller variation to lower values, mean-
ing commonly poorer performance at this age even in 
wild-type mice. After anti-CD4 antibody treatment, the 
variation was sustained with a slight improvement in their 
average scores (Fig. 4B). After NK cell supplement treat-
ment, variation was also sustained, with slight improve-
ment in their average scores (Fig. 4B). We assumed that 
these behavior variabilities are the keystone for prov-
ing the feasibility of tentative novel immunomodulatory 
treatments and that we would find that the mouse behav-
ior scores concord with the transcriptomic signature 
[57]. NK cell-treated 5xFAD mice with higher Y-maze 
alternation scores definitely showed that their amygdala 
GABAergic Sst neuronal subtypes decreased in intensity 
(Fig. 5A). This decrease (or increase, if any) did not prove 
the efficacy of NK cell supplement treatment on 5xFAD 
mice but definitely disclosed that transcriptomics of the 
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neuronal subtype of that region were correlated with the 
degree of behavior impairment. More importantly, this 
meant that many other neuronal subtypes, other homeo-
static or reactive glial cells and their subtypes, did not 
show any change in intensity over all the regions exam-
ined on these sections despite the improved behavior 
score. Anti-CD4 antibody treatment recapitulated only a 
slight decrease in specific immune cell signatures in the 
white matter, but beyond this finding, no other discovery 
of drug-responsive transcriptomic changes in any region 
or in any cell type or cell state was found. This was even 
observed on individual interpretations both visually and 
quantitatively for each mouse (Fig.  5B and Supplemen-
tary Fig. 21). We could say that anti-CD4 immunoglobu-
lins did not affect the transcriptomic signatures of major 
brain cells (on this single coronal section), and this was 
also the case with rare immune cells. Due to the lack of 
Y-maze score measures of the anti-CD4 antibody-treated 
wild-type and 5xFAD mice, behavior correlation could 
not be reported here.

The interpretation of rare immune cell signatures for 
the localization of immune cells presented different chal-
lenges from major brain cells. First, due to the intrinsic 
limitations of Visium, rare cell transcripts may not be 
well captured compared to the abundant cell type. Addi-
tionally, Visium captures a mixture of transcripts from 
multiple cells and lacks single-cell resolution. Therefore, 
it relies on cell type abundance estimation tools, which 
may be less reliable than image-based ST methods that 
capture transcript expression at the single-cell level. 
Nevertheless, we attempted to overcome the limitations 
with several strategies. The first was to remove the back-
ground effects of major brain cells. Homeostatic and 
reactive microglia and their coexpressed transcriptomes 
between microglia and infiltrating monocytes were the 
major challenge but were easy to remove, and astrocytes 
and oligodendrocytes followed by reactive glial cells 
expressed the same/similar transcriptomes. Double-
checking the unique transcriptomes and their combi-
nations was attempted with the data by Ximerakis et al. 
[64] and Schafflick et al. [68]. based on brain tissue stud-
ies. The study by Schafflick et al. [68]. used cells sorted 
by FACS for CD45 (gene Ptprc) positivity and thus we 
were unable to remove the coexpressed transcriptomes 
of ribosomal protein transcriptomes for lymphoid cells, 
which if removed, would have enabled correct classifica-
tion of myeloid and lymphoid cells among major brain 
cells in terms of intensity and distribution. Nevertheless, 
visual/manual curation by surveying individual tran-
scriptomes helped to remove absurdly intense and unre-
alistically distributed transcriptomic signatures. When 
we used only the data of Schafflick et al. [68]. , we could 
not correct the inappropriate signature for B and T-cell 
compartments even after NSForest application to their 

data. The data came to look realistic after we adopted 
cross-tissue data and visual curation upon the two 
reports by Eraslan et al. [69] and Dominguez Conde et al. 
[71]. DEG data with an arbitrary threshold of 2.0 higher 
or -2.0 lower log fold change (LFC) for MHC + infiltrat-
ing immune macrophages (Mϕs) or LYVE + infiltrating 
integrity Mϕs produced 200 or more or 100 or more 
transcriptomes, respectively. We needed to remove, upon 
visual curation, 30% or 20% of transcriptomes to anno-
tate the infiltrating monocyte-derived Mϕ. Infiltrating 
Mϕ and border-associated Mϕ [67, 68] should have been 
differentiated but this was not possible due to the lack of 
clear distinction between the two cell types in the liter-
ature and the sparsity of the cells of both types. Tissue-
resident and effector memory cells were traced with the 
transcriptomic signature by Dominguez Conde et al. [71]. 
As these authors included a variety of tissues (unfortu-
nately, brain was not included) and stromal tissue speci-
ficity was considered a possible confounder in common 
for every tissue and thus, as expected, they yielded the 
signature for three compartments of T/ILC, B-cell and 
myeloid compartments. Of course, the types/subtypes of 
classically well-known immune cells belonging to these 
three compartments represented well the rare immune 
cells that would have originated from the bone marrow. 
We found differences in the intensity and distribution of 
the three compartments in the brain sections between 
5xFAD mice and wild-type mice (Fig. 3). Drug/treatment 
effects should have been disclosed with this comparison, 
but we simply state that further investigation is war-
ranted with a larger number of mice to avoid confound-
ing factors which may hide or spuriously render probable 
false-negative/positive results regarding the effect of any 
tentative immunomodulatory treatments (Supplemen-
tary Tables 5 and 6).

The ultimate objective of using ST brain imaging with 
its visual and quantitative analysis is to convincingly des-
ignate the target cells, either major or rare, with regional 
localization; this can be for either brain parenchymal/
stromal or rare immune cells, either resident or infiltrat-
ing immune cells and their homeostatic/reactive states, 
and target genes with significant contributions to patho-
logic changes in cells/regional tissues and their response 
to effective or ineffective treatments. More importantly, 
we could be sure that the unfound cells and transcrip-
tomes were innocent, meaning that they were not 
affected by the test trial of a novel immunomodulatory 
therapy. For neuroimmune interactions during the dis-
ease process or in response to disease modifying drugs, 
we now know that the skull BM communicates with the 
dural sinus and peri-sinus regions, dural lymphatics as 
well as across ABC and CSF and thus perivascular spaces 
and ISF; communication can also take a totally differ-
ent and unique route via the capillary endothelium and 
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stroma of the choroid plexus, and choroid epithelium 
despite its tight junctions as well as the brain blood ves-
sels’ microvascular endothelium despite its tight junc-
tions. Once immune cells from the three compartments 
of T/ILCs, B cells and myeloid cells infiltrate the brain 
parenchyma, dynamically changing along the aging 
or disease process (in 5xFAD or P301L mice), they can 
respond to systemic immunomodulatory drug treat-
ment directly or at least indirectly. The abundance of T 
cells (average 4/mm3) relative to neurons (90,000/mm3) 
or microglia (6,500/mm3) suggests that a few immune 
cells could change the response of major brain cells by 
significantly changing the transcriptomic signature of 
major brain cells. How the signals are transferred and/
or translated from systemically administered anti-CD4 
immunoglobulins or NK cell supplements should be 
investigated further. In this study, the study scheme and 
analysis methods were proposed to be applied to use ST 
brain imaging to investigate the impact of novel tenta-
tive disease-modifying treatments on neurodegenerative 
diseases and to elucidate whether regional brain cell-
type/state-specific changes in the entire transcriptome 
per spot/region/cells of the brain or immune system 
would respond. The comprehensiveness and resolution 
of the results will be much improved with more novel 
technology [54, 55] that will be available soon in many 
institutions, such as Visium methods [47]. Accordingly, 
methodology for analyzing spatial transcriptomics can 
be incorporated into high-resolution ST technologies to 
determine changes in cell types and abundance of rare 
immune cells with greater confidence.

Materials and methods
AD models at different ages
Three-month- and 7.5-month-old male 5xFAD mice 
(Tg6799; on a C57BL/6-SJL background) containing 
five FAD mutations in human APP (the Swedish muta-
tion, K670N/M671L; the Florida mutation, I716V; and 
the London mutation, V717I; and the PS1 mutations 
M146L/L286V) and wild-type mice were used for spatial 
transcriptomic brain imaging data. Six- and seventeen-
month-old male tau P301L mice (MAPT P301L muta-
tions; on an FVB/N background) were used. Mice of all 
strains were raised in a laboratory cage with controlled 
temperature and humidity and on a 12 h light-dark cycle 
with free access to food and water. All experimental pro-
tocols and animal usage were approved (SNU-181018-6, 
SNU-190221-1-5) by the Institutional Animal Care and 
Use Committee (IACUC) at Seoul National University. 
All animals were handled in accordance with the Animal 
Research: Reporting of in vivo Experiments (ARRIVE) 
guidelines (https://arriveguidelines.org). Details are in 
Supplementary Notes.

Peripheral CD4 T-cell blockade in the 5xFAD AD model
Anti-CD4 antibody (0.5  mg/mouse; Bio X Cell) was 
intravenously injected into 6.5-month-old 5xFAD and 
wild-type mice according to group. Samples of different 
tissues were obtained after a month. Coronal sections of 
brain samples were used for spatial transcriptomic data 
acquisition.

Administration of NK cell supplement in the 5xFAD AD 
model
NK cells were expanded for 7 days after the isolation of 
NK cells from BALB/c mouse spleens. NK cells (2 × 106 
cells/mouse in saline) were intravenously administered 
once a week for a total of five times to 6.5-month-old 
5xFAD and wild-type mice. Brain samples were obtained 
after five weeks and used for spatial transcriptomic data.

Spatial gene expression library construction
Mice were anesthetized with isoflurane inhalation and 
perfused intracardially with cold DPBS (Dulbecco’s 
Phosphate-Buffered Saline; Gibco). Then, whole brains 
were removed. Brain hemispheres were prepared in fro-
zen blocks using OCT compound (Sakura) and cryo-
sectioned into 10  μm coronal and sagittal sections. 
According to the manufacturer’s protocols using Visium 
Spatial Tissue Optimization slides (10X Genomics), the 
permeabilization time was optimized to 12  min. The 
brain sections were methanol-fixed, hematoxylin and 
eosin (H&E)-stained and imaged on a TissueFAXS PLUS 
(TissueGenostics). The slides were merged into a picture 
of the whole brain using TissueFAXS imaging software. 
Then, the sections were permeabilized and processed to 
obtain cDNA Visium Spatial Gene Expression libraries 
according to the manufacturer’s protocol. To verify the 
size of PCR-enriched fragments, the template size distri-
bution was checked using a high-sensitivity DNA assay 
(Agilent Technologies 2100 Bioanalyzer).

Generation of the count matrix
The libraries were sequenced using HiSeqXten (Illumina) 
with a read length of 28  bp for read 1 (Spatial Barcode 
and UMI), 10 bp index read (i7 index), 10 bp index read 
(i5 index), and 90 bp for read 2 (RNA read). Raw FASTQ 
data and H&E images were processed by the Space 
Ranger v1.1.0 (10X Genomics) pipeline for the gene 
expression analysis of Visium Spatial Gene Expression 
library data. Illumina base call files from the Illumina 
sequencing instrument were converted to FASTQ format 
for each sample using the ‘mkfastq’ command. Visium 
spatial expression libraries were analyzed with the ‘count’ 
command. Image alignment to predefined spots was per-
formed using the fiducial alignment grid of the tissue 
image to determine the orientation and position of the 
input image. Sequencing reads were aligned to the mm10 

https://arriveguidelines.org
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reference genome (mm10-2020-A) using STAR (v2.5.1b) 
aligner. Gene expression profiling in each spot was per-
formed with unique molecular identifier (UMI) and 10X 
barcode information.

Integration and spot clustering
A total of 63 spatial transcriptomic datasets, including 
brain tissue from wild-type and 5xFAD mice, with 32,885 
genes in common were integrated and analyzed. The gen-
erated gene counts were normalized using ‘LogNormal-
ize’ methods with a scale factor of 10,000. The top highly 
variable genes (HVGs; n = 2,000) in each tissue slide were 
identified using the variance stabilizing transformation 
(vst) method. The 2000 integration genes across all slides 
were then selected by ranking the genes by the number of 
slides in which they are variable in and their median rank 
of variability across the slides. For each slide, the log-nor-
malized count matrix for the selected genes was scaled 
and the total RNA counts in each spot was regressed to 
remove the influence of the total count in the integra-
tion process. Principal component analysis (PCA) was 
performed for dimensionality reduction. Integration was 
performed for multiple spatial datasets prior to spot clus-
tering to remove the batch effect. To flexibly integrate a 
large number of slides with both coronal and sagittal sec-
tions, reciprocal PCA (RPCA) was used to discover a set 
of anchors between the datasets, and normal (wild-type) 
mice were used as a reference during integration. The 
anchors were utilized to correct the count matrix in each 
spatial spot. The corrected counts were then scaled and 
PCA was performed. For spot clustering, a shared nearest 
neighbor (SNN) graph was constructed and graph-based 
clustering was performed using the Louvain algorithm. 
The resulting spot clusters were visualized using two dif-
ferent approaches: spatially mapped to the tissue based 
on spatial barcodes, or plotted in 2-dimensional space 
using Uniform Manifold Approximation and Projection 
(UMAP). The optimal resolution of the spot clusters was 
determined by decreasing the resolution value and visu-
ally examining the appropriate granularity of the spatial 
clusters that corresponded well to the anatomical struc-
ture. The anatomical location of each cluster was visually 
determined by comparison with the Allen Mouse Brain 
Reference Atlas (https://mouse.brain-map.org/static/
atlas). As a result, the resolution was set to 0.15 for sub-
sequent analysis. All analyses were performed using the R 
package, Seurat (version 4.1.1) [74].

Differential gene expression analysis
MAST (Model-based Analysis of Single-cell Transcrip-
tomics) was used to perform differential gene expression 
analysis [96]. MAST accounts for the bimodal distribu-
tion of counts in the spatial transcriptomics and uses a 
generalized linear model with the proportion of genes 

expressed in each spot as a covariate to model the nor-
malized counts. Differentially expressed genes (DEGs) 
were extracted from the comparison of wild-type and 
5xFAD mice in each spot cluster defining the anatomical 
region in the brain. The cutoff for significantly different 
genes was false discovery rate (FDR)-adjusted p < 0.05 
and log FC > 0.25.

Overrepresentation analysis
Overrepresentation analysis was performed and the 
Gene Ontology (GO) biological process terms associated 
with DEGs were identified. The count ratio was defined 
as the ratio of the proportion of the genes constituting 
GO terms among the DEGs to the proportion of genes 
constituting GO terms among total genes. Statistical 
significance was calculated based on the hypergeomet-
ric model, and correction for multiple comparisons was 
performed using the Benjamini-Hochberg procedure. 
The dot plots for the significant GO terms were drawn 
by showing the number of overlapping genes between 
the DEGs and each GO term, the count ratio, and the 
adjusted p-values. Overrepresentation tests were per-
formed using clusterProfiler [118], which supports sta-
tistical analysis and visualization of functional profiles 
for gene sets. The packages ‘enrichplot’ and ‘igraph’ were 
additionally used to visualize the results.

Marker panel selection and curation
To analyze the spatial patterns of major cell types and 
immune cell types, the panel of marker genes was con-
structed and curated for each cell type. For the cell types 
identified in studies not using scRNAseq, individual 
genes were determined based on reference papers. For 
the cell types defined by scRNAseq, Necessary and Suf-
ficient Forest (NSForest) version 2 [59] was applied and 
signature genes for the cell type were determined based 
on the cell type annotation information. The NSFor-
est algorithm scores genes according to binary expres-
sion profiles in a specific cell type compared to other cell 
types. Then, based on the random forest algorithm, the 
minimum gene set that best describes the given cell type 
was searched. After selecting signature genes based on 
NSForest, the gene sets were refined to exclude the genes 
that are highly expressed in major cell types. This is par-
ticularly important when the scRNAseq data represent a 
subpopulation of the cells in the brain, such as immune 
cell sorted datasets. As a validation process, the spatial 
expression of the selected marker genes was examined 
and the genes were excluded if they showed a non-spe-
cific distribution pattern for the cell type. As a final step, 
genes that were not present in our spatial transcriptomic 
data were excluded. The curated gene sets are listed in 
Supplementary Table 7.

https://mouse.brain-map.org/static/atlas
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Comparison of cellular signatures across groups
After curation of the marker panel, a gene set that best 
represents a particular cell type, the signature score of 
each cell type was computed on the spatial transcrip-
tomic data by utilizing the AddModuleScore function 
in Seurat [44] with default parameters. For each gene in 
the gene set, a fixed number of control genes with the 
same average expression level as the gene were randomly 
selected. The difference between the average expression 
of the gene set and that of the control gene sets was cal-
culated and named the cell signature score. The score in 
each spot was spatially mapped to the tissue using the 
SpatialFeaturePlot function in Seurat, and the spatial dis-
tribution pattern was identified. The average of the sig-
nature scores in a given region of interest was calculated 
and the values were compared between groups using the 
Wilcoxon rank-sum test. Correction for multiple com-
parison was performed using the Bonferroni method. 
The cutoff for the adjusted p-value was 0.05.

Cell type deconvolution analysis
The cell type distribution represented by the cell signa-
ture scores was compared to that derived by the cell type 
deconvolution method, CellDART [46]. CellDART first 
trains a model to extract cell type proportions from the 
synthetic mixture of cells generated from the reference 
scRNAseq dataset, and then adapts the model to predict 
the cell type composition of the spot, which is a mixture 
of multiple cells. For the major brain cell types, snRNA-
seq datasets from mouse brain coronal slices [49] were 
used as a reference for predicting spatial cell distribution. 
However, in the case of immune cells, the majority of 
scRNAseq datasets are obtained after cell sorting strat-
egies such as fluorescence-activated cell sorting (FACS), 
and there is a mismatch in cell type and composition 
between spatial and single-cell datasets. Therefore, the 
cell type deconvolution tool spSeudoMap was used to 
compensate for this discrepancy [50]. For lymphoid and 
myeloid brain cell types, scRNAseq samples from CNS 
border immune cells were used [119], and for microglia, 
scRNAseq samples from brain immune cells were used 
[89]. The distribution of representative cell types that 
showed significant differences between wild-type and 
5xFAD mice was evaluated: homeostatic microglia, reac-
tive microglia, macrophages, monocytes, dendritic cells, 
innate lymphoid cells, natural killer cells, and T cells. The 
cell type annotation information from the reference sin-
gle-cell dataset was used for the deconvolution analysis. 
Default parameter values suggested in the user manual 
were applied for the analysis.

Statistical analysis
For the spatial transcriptomic data, plots in R were cre-
ated either with the ggplot2 R package or Seurat modified 

by custom codes for data visualization. All p-values 
reported in this study were adjusted by FDR (for DE anal-
ysis using MAST) using Benjamini-Hochberg procedure 
or Bonferroni method (all other analyses). The p-values 
below 0.05 were considered statistically significant.

Development of an application to visualize and quantify ST 
datasets
An R shiny-based application named STquantool was 
developed to comprehensively analyze ST datasets to 
explore cell type- and cell state-specific regional changes 
in wild-type, 5xFAD, and treatment mouse models. The 
application allows users to easily load and integrate the 
multiple ST datasets and visualize the spatial expression 
of genes and cell type scores based on Seurat [74] and 
shiny running on R (ver. 4.1.1). One of the key features 
of STquantool is that it facilitates the curation of cell 
type-specific marker combinations by sorting out key 
genes based on the NSForest [59] algorithm and finaliz-
ing the markers by visually assessing the spatial expres-
sion patterns. As an adjunct, the cell type decomposition 
method CellDART [46] can be implemented to find the 
spatial distribution patterns of major cell types constitut-
ing brain tissues. Moreover, the spatial patterns of the cell 
scores and cell fraction can be quantified and statistically 
analyzed with STquantool. Finally, the gene-level tran-
scriptomic alterations between the mouse groups can 
be explored by performing the DEG analysis provided in 
the application. Then, the functional implications of the 
selected genes can be represented by gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
terms [120–122]. The suggested platform was packaged 
and can be readily installed from GitHub (https://github.
com/bsungwoo/STquantool.git).
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