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Abstract
Background  In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders 
sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a 
typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of 
resveratrol’s effect on the muscle of Siberian sturgeon is still unclear.

Results  In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, 
antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle 
of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways (“Oxidative 
phosphorylation” and “Chemical carcinogenes-reactive oxygen species”) were enriched in KEGG analysis, and 
the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria 
were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were 
up-regulated.

Conclusions  In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon 
probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain 
reference significance for the development of a new type of feed for Siberian sturgeon.
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Background
Sturgeon, as an ancient species [1, 2], is famous for its 
precious caviar and delicious meat [2–4]. Among the 
many sturgeon species, Siberian sturgeon (Acipenser 
baerii) is widely farmed in China because of its rapid 
growth and stress resistance [5–7]. In recent years, the 
researches about Siberian sturgeon mainly focused on 
growth [8], gonadal development [9] and behaviors (such 
as swimming [10] and feeding [11]). The mostly studied 
tissues in Siberian sturgeon are brain [12], intestine [13] 
and liver [14], meanwhile the muscle is less revealed. In 
particular, the growth of muscle is one of the key factors 
for muscle quality [15, 16], which is rarely investigated in 
Siberian sturgeon. However, the flesh quality of aquatic 
products is drawing greater attention as peoples’ living 
standards improve [17]. The flesh quality of fish is a com-
plex set of characteristics, including hardness, color, fla-
vor, nutritional value, etc [17, 18].

Noteworthily, deterioration of fish flesh quality is one 
of the most important issues in aquaculture [19]. One of 
the reasons for this is that fishes are confined in a lim-
ited space for a long time, which will make them lack of 
exercise, eventually leading to slow down the growth and 
development of skeletal muscle [20]. Therefore, it is par-
ticularly serious to find a suitable way to make up for the 
loss of flesh quality caused by lack of exercise.

Resveratrol, a nonflavonoid polyphenol originally 
extracted from grape skins and leaves, has been widely 
concerned because of its antioxidant, anti-inflammatory, 
and metabolic regulatory features [21, 22]. The applica-
tion of resveratrol as feed additive in animal breeding 
has been studied extensively [23–26]. It has shown that 
resveratrol has positive effects on growth performance, 
meat quality, intestinal health, immunity and reproduc-
tive performance of swine, poultry and ruminant [22]. 
More noteworthily, studies have shown that resveratrol 
beneficially affects the meat quality of duck, pig and beef 
cattle by improving the color, drip loss and Warner-Brat-
zler shear force of meat by enhancing the antioxidant 
capacity of muscle and changing muscle fiber types [27–
29]. Thus, we hypothesized that resveratrol could also 
improve the meat quality of Siberian sturgeon. However, 
the effect of resveratrol on meat quality of fish has been 
poorly reported.

The aim of this study was to investigate the effect of 
resveratrol on the flesh quality of Siberian sturgeon. 
Resveratrol was supplied into the daily diet and after 45 
days, growth performance, nutritional value, antioxidant 
capacity and transcriptome of the muscle were evaluated. 
This study revealed the positive effects of resveratrol on 
flesh quality, which will provide a certain reference basis 
for the application of resveratrol in aquaculture.

Materials and methods
Fish breeding and experimental design
180 Siberian sturgeon (10-month-old, 248.1 ± 5.9 g) were 
purchased from the fish farm (Tianquan County Chuanze 
Fishery Co., Ltd., Ya’an, China) and randomly put in cir-
cular plastic tanks (1.5 m in diameter and 1 m in height). 
Fish were raised in the water environment as shown in 
Table 1, which was stabilized by heating rods, water qual-
ity monitors (PTF-001B, XiaMen PanTian BioTech Co., 
Ltd, China), bottom filter pumps and oxygen pumps, 
and were fed three times a day (at 8:00 am,14:00 pm, and 
20:00 pm, respectively) on 1% the body weight of com-
mercial feed (Haida Group Co., Ltd., Guangdong, China). 
The main composition of the commercial feed was shown 
in Table  2. In order to visualize the whole experimen-
tal design, we made a concise experimental flow chart 
(Fig. 1A).

After a week of acclimatization, fish were randomly 
divided into two groups: C group (fed with a commer-
cial diet) and R group (fed with 0.16 mg/kg of resveratrol, 
according to our previous study [7]). Each group con-
tained 3 tanks, 30 fish per tank. Resveratrol (purity ≥ 99%) 
was purchased from Macklin Biochemical Co., Ltd. 
(Shanghai, China). All animal handling procedures were 
approved by the Animal Care and Use Committee of 
Sichuan Agricultural University, following the guidelines 
of animal experiments of Sichuan Agricultural University 
under permit number 015-01521300.

Sampling
After 45 days of feeding, nine fish were randomly selected 
from each group and anesthetized with 200 mg/L MS-222 
(Jinjiang Aquatic Supplies Co., Ltd., Fujian, China). After 
muscle tissues were sampled, part of them were immedi-
ately fixed in 10% neutral formalin buffer for at least 24 h 
for histological observation, and the rest were placed in 

Table 1  Parameters of water environment for sturgeon breeding
Water environmental parameters
Water temperature 16.0 ± 0.5 ℃
Dissolved oxygen 8.0 ± 0.6 mg/L
pH 7.6 ± 0.2
Ammonia nitrogen ≤ 0.01 mg/L
Nitrite ≤ 0.05 mg/L

Table 2  The nutrient content of the commercial feed
Nutrients Content (%)
Crude protein 45.0
Crude fiber 5.0
Crude ash 18.0
Crude lipid 8.0
Total phosphorus 0.8
Lysine 2.3
moisture 10.0
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Fig. 1  Experimental flowchart, body weight, histological observation and qRT-PCR of Siberian sturgeon. (A) Experimental flowchart, sampling at day 52 
includes two groups: C (fed with 0 mg/kg resveratrol) and R (fed with 0.16 mg/kg resveratrol). (B) The effect of resveratrol on the body weight of Siberian 
sturgeon. (C) Myofiber microstructure of C and R group: Magnification 4× cross sections and longitudinal sections, magnification 10× cross sections and 
longitudinal sections. (D) Myofiber diameter of Siberian sturgeon. (E) The relative expression levels of mTORC1, 4E-BP1 and MYH9 in muscle of Siberian 
sturgeon after the resveratrol treatment. Data were shown as mean ± SEM. *p < 0.05, **p < 0.01, ns: no significance
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liquid nitrogen and then stored at -80℃ for subsequent 
biochemical assay, amino acids composition analysis, 
transcriptome sequencing and quantitative real-time 
polymerase chain reaction (qRT-PCR) validation.

Histological observation
The fixed muscle tissues were dehydrated, transparen-
tized with xylene, and embedded in paraffin wax. The 
solidified wax blocks were cut into 4-mm slices and 
stained with hematoxylin and eosin (H&E) staining. The 
muscle morphological was observed by using a Nikon 
TS100 light microscope (Nikon, Tokyo, Japan).

Biochemical measurements
The activities of catalase (CAT), superoxide dismutase 
(SOD), lactate dehydrogenase (LDH), total antioxidant 
capacity (T-AOC) were detected by using commer-
cial kits (Nanjing Jiancheng Bioengineering Institute, 
Nanjing, China). The concentrations of malondialde-
hyde (MDA) was measured by using test kit (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China). All 
test operations were performed according to the manu-
facturer’s recommended protocols.

Amino acids composition analysis
The amino acid composition was obtained by using an 
amino acid analyzer. The samples were freeze-dried for 
24  h and then grounded to obtain powdered samples, 
from which hydrolyzed amino acids were extracted. 
Approximately 20 mg of each sample was suspended in 2 
mL of 6 mol/L hydrochloric acid (HCl) and 2 µL of phe-
nol. The ampere tubes were filled with nitrogen for 5 min, 
sealed, and hydrolyzed in a drying oven for 24  h. The 
hydrolysates were cooled and transferred to a volumetric 
flask. 1 mL of the supernatant was centrifuged at 12,000× 
g for 10 min and dried by a nitrogen blower. Then, 1 mL 
HCl was added in the dried samples, and the samples 
were mixed in a shaker. The samples were filtered with 
a 0.45  μm cellulose filter membrane prior to analysis. 
Amino acids composition was determined by using an 
automatic amino acid analyzer (L-8900, Hitachi, Japan).

RNA extraction, cDNA synthesis, library construction, and 
Illumina sequencing
Total RNA was extracted from muscle tissue by TRIzol 
reagent (Invitrogen, USA). Nanodrop2000 (Shanghai, 
China) was used to detect the concentration and purity 
of the extracted RNA, and agarose gel electrophoresis 
was used to detect the RNA integrity. The high-quality 
RNA sample (OD260/280 = 1.8 ~ 2.2, OD260/230 ≥ 2.0) 
was used to construct sequencing libraries. Libraries 
were selected for cDNA target fragments of 200–300 bp 
on 2% Low Range Ultra Agarose followed by PCR ampli-
fied using Phusion DNA polymerase (NEB) for 15 PCR 

cycles. After quantified by TBS380, paired-end libraries 
were sequenced by Illumina NovaSeq 6000 platform.

De novo assembly, annotation and analysis
Trinity (https://github.com/trinityrnaseq/trinityrnaseq) 
was used to assemble the obtained high-quality RNA-
seq sequencing data from scratch to generate contig 
and singleton. Then, TransRate (http://hibberdlab.com/
transrate/index.html) and CD-HIT (https://github.com/
weizhongli/cdhit) were used to optimize the result of 
the assembly filter. The assembly results were evaluated 
by using BUSCO (https://busco.ezlab.org/). The clean 
reads of each sample were compared with the reference 
sequences obtained by Trinity assembly to obtain the 
mapping results of each sample. All transcripts obtained 
by this transcriptome sequencing were annotated against 
six databases (NR, Swiss-Prot, Pfam, COG, GO and 
KEGG databases), and the annotation situation in each 
database was statistically analyzed. The expression level 
of the transcript was quantitatively analyzed by RSEM 
software (http://deweylab.biostat.wisc.edu/rsem/). 
FPKM (Fragments Per Kilobases per Millionreads) was 
used to analyze the expression levels of differential genes. 
DESeq2 algorithms was used to select a subset of differ-
entially expressed genes (DEGs) (adjusted p ≤ 0.05 and 
|log2 (fold-change) | ≥1). DEGs were considered as the 
targets for further analyses.

qRT-PCR analysis
The expression levels of the selected genes in muscle tis-
sues were determined by real-time PCR. The Primer 6.0 
software was used to design primers (Table 3). Total RNA 
was isolated from the muscle with an animal tissue total 
RNA extraction kit (Fuji, Chengdu, China). cDNA was 
synthesized from 2 µg of RNA by a RT Easy™ II kit (Fuji). 
qPCR was performed by a SYBR green real-time PCR 
kit (Takara, Kyoto, Japan) and a Thermo Cycler (BioRad, 
Hercules, CA, USA). Ct values from Siberian sturgeon 
genes expression were normalized to Ct levels of β-actin, 
and the relative expression of genes was estimated by the 
2–ΔΔCT method.

Statistical analyses
All data were presented as mean ± SEM (n = 3). Significant 
difference was determined by using the one-way ANOVA 
in SPSS version 26.0 software, and histograms were 
drawn by GraphPad Prism 8. The p < 0.05 was considered 
statistically significant.

Results
Resveratrol promotes muscle fiber thickening
In order to explore whether resveratrol has an effect on 
the weight gain of Siberian sturgeon, fish were weighed 
before and after feeding on resveratrol. However, no 

https://github.com/trinityrnaseq/trinityrnaseq
http://hibberdlab.com/transrate/index.html
http://hibberdlab.com/transrate/index.html
https://github.com/weizhongli/cdhit
https://github.com/weizhongli/cdhit
https://busco.ezlab.org/
http://deweylab.biostat.wisc.edu/rsem/
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significant differences were observed in final body weight 
(FBW) and percentage weight gain (PWG) between two 
groups (Fig. 1B).

The histological changes of muscle tissue were 
observed by H&E staining. As shown in Fig.  1C, the 
muscle fibers were more closely arranged and the muscle 
cell volume were increased after feeding on resveratrol. 
Besides, the diameter of muscle fibers was measured by 
Nikon TS100 light microscope, and it was found that the 
diameter of muscle fibers in R group was increased sig-
nificantly (p < 0.01) (Fig. 1D).

Moreover, the expression levels of mTORC1, 4E-BP1 
and MYH9 in the muscle were measured (Fig.  1E), of 
which the expression levels of mTORC1 were signifi-
cantly increased.

Resveratrol improves the nutritional value of Siberian 
sturgeon
To investigate the effect of resveratrol on the nutritional 
value of muscle of Siberian sturgeon, the amino acid 
content in muscle was detected (Table  4). As shown in 
Table 4, the content of serine and histidine in muscle of 
Siberian sturgeon was increased significantly after feed-
ing on resveratrol. In addition, the content of the other 
14 amino acids was increased, but not to a significant 
level. These results indicate that feeding a certain dose of 
resveratrol can improve the nutritional value of Siberian 
sturgeon.

Table 3  Primers used for qRT-PCR in this study
Gene Sequence name Sequence (5′-3′) Tm (℃)
mTORC1 TRINITY_DN12456_c0_g1 F: ​C​C​C​G​A​G​C​C​A​C​G​C​T​C​C​A​T​A​T​T​T​C 59.8

R: ​C​G​G​C​T​G​A​A​G​C​T​T​A​C​A​G​C​A​G​G​C​A
4E-BP1 TRINITY_DN4703_c0_g1 F: ​C​G​G​G​A​G​G​A​A​C​C​C​T​G​T​T​T​A​G​T​A​C​C​A 61.7

R: ​C​C​T​G​G​A​A​T​G​T​T​G​G​G​A​A​G​G​T​A​G​C​G
MYH9 TRINITY_DN8077_c0_g1 F: ​C​C​T​G​C​T​C​T​T​T​C​G​T​C​T​G​T​G​C​T​T​T​C​T 59.9

R: ​T​G​G​C​T​A​T​G​C​T​G​A​A​G​G​T​G​G​T​G​T​C​T
SOD1 TRINITY_DN5659_c0_g1 F: ​A​A​G​G​A​G​G​C​T​G​G​A​C​C​A​G​T​G​A​A​G​T​T 61.2

R: ​T​C​A​T​C​T​T​G​C​G​G​C​G​C​A​C​C​A​T​G
UQCRFS1 TRINITY_DN722_c0_g1 F: ​G​G​A​T​A​G​C​A​G​T​G​A​C​G​G​T​A​G​G​A​A​G​G 63.5

R: ​A​C​A​G​T​C​T​T​G​G​C​A​G​C​G​T​A​G​G​C
NDUFAB1 TRINITY_DN724_c0_g2 F: ​C​G​T​G​T​C​C​T​G​T​A​T​G​T​C​C​T​G​A​A​A​C​T​G 61.7

R: ​T​C​A​A​C​C​T​G​G​T​C​C​A​A​G​C​T​G​T​C​C
COX4 TRINITY_DN522_c0_g1 F: ​T​C​G​G​T​T​G​T​T​G​C​T​G​G​A​G​T​G​T​T​C​T​T​C 63.3

R: ​C​T​C​T​G​G​G​T​C​T​G​G​G​C​A​G​C​T​A​T​C​C
COX6A TRINITY_DN5536_c0_g1 F: ​G​C​A​G​C​A​G​G​G​C​G​A​C​T​C​T​T​A​C​A​A​C 62.5

R: ​A​G​A​G​C​C​A​C​C​A​C​G​A​A​G​G​A​C​A​G​G
ATPeF1A TRINITY_DN5067_c0_g1 F: ​A​G​A​A​C​T​G​G​T​G​C​T​A​T​T​G​T​G​G​A​T​G​T​G 61.7

R: ​G​C​C​A​A​C​T​C​T​T​C​T​A​C​G​C​T​C​C​T​T​A​G
ATPeF1D TRINITY_DN1360_c0_g1 F: ​A​C​G​G​T​G​A​A​C​G​C​A​G​A​C​T​C​C​T​C 63.5

R: ​C​G​G​A​C​T​G​T​G​C​T​T​T​C​T​C​C​A​G​A​T​T​A​G
SLC25A4S TRINITY_DN2071_c0_g1 F: ​C​A​T​C​A​T​A​C​C​C​T​T​G​G​C​A​G​T​G​T​C​G​T​A​G 62.5

R: ​G​A​C​C​T​C​G​C​T​G​T​G​C​T​T​C​G​T​G​T​A​T​C
β-actin Reference gene F: ​T​G​A​G​G​T​A​G​T​C​A​G​T​C​A​G​G​T​C​A 62.5

R: ​T​G​G​T​C​G​T​A​C​C​A​C​T​G​G​T​A​T​T​G

Table 4  The composition and content of amino acids of muscle 
in Siberian sturgeon

Dietary Resveratrol Levels, 
mg/kg

SEM p values

0 0.16
Asp 1.71 1.92 0.08 0.21
Thr 0.76 0.85 0.03 0.18
Ser 0.67 0.75 0.03 0.03*
Glu 2.44 2.69 0.10 0.27
Gly 0.92 0.95 0.01 0.16
Ala 1.00 1.09 0.03 0.22
Val 0.83 0.92 0.03 0.23
Met 0.51 0.57 0.02 0.17
Ile 0.78 0.87 0.03 0.25
Leu 1.35 1.51 0.06 0.22
Tyr 0.58 0.65 0.03 0.19
Phe 0.73 0.81 0.03 0.23
Lys 1.63 1.83 0.08 0.24
His 0.53 0.62 0.02 0.03*
Arg 1.04 1.13 0.03 0.22
Pro 0.50 0.54 0.01 0.08
total amino acids 15.97 17.7 0.63 0.20
*p < 0.05
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Resveratrol enhances the activity of the antioxidative 
enzymes in the muscle
To explore the effects of resveratrol on the antioxidative 
ability of muscle in Siberian sturgeon, the activity of the 
antioxidative enzymes was detected in muscle tissue of 
sturgeon after feeding on resveratrol (Fig.  2). The high 
increase of CAT, LDH, SOD and T-AOC activities was 
occurred in the muscle, indicating that the antioxidant 
capacity was enhanced after intaking resveratrol. Besides, 
the significant decrease of MDA level was observed.

Resveratrol inhibits the ROS generation-related pathways
The transcriptome analysis of 6 samples was completed 
by Illumina Novaseq 6000, and the Clean Data of all 
samples reached more than 6.7 Gb, while the percent-
age of Q30 bases was more than 93.24%. A total of 59,910 

unigenes and 92,003 transcripts expressed in this analy-
sis were detected. A total of 2603 DEGs were obtained 
between the two groups, including 1373 up-regulated 
genes and 1230 down-regulated genes (Table 5). All genes 
and transcripts obtained by transcriptomic assembly 
were annotated against the six databases (NR, Swiss-Prot, 
Pfam, eggNOG, GO and KEGG), and the annotations in 
each database were shown in Table 6.

Table 5  The numbers of DEGs after feeding 0.16 mg/kg 
resveratrol
Group Total DEGs Up-regulated Down-regulated
R vs.C 2603 1373 1230

Table 6  Annotation summary of Siberian Sturgeon muscle 
tissue transcriptome
Database-Annotated Number of anno-

tated unigenes
Percentage 
of annotated 
unigenes (%)

Annotated in GO 18,854 31.02
Annotated in KEGG 19,885 32.72
Annotated in eggNOG 22,828 37.56
Annotated in NR 27,794 45.73
Annotated in Swiss-Prot 21,244 34.96
Annotated in Pfam 18,222 29.98
Total annotated 28,217 46.43

Fig. 2  Effect of resveratrol on antioxidant system in the muscle of Siberian sturgeon. (A) The concentration of MDA. (B, C, D) CAT, LDH and SOD activity 
in the muscle. (E) T-AOC in the muscle. (F) The expression level of SOD1 in muscle of Siberian sturgeon after feeding on resveratrol. Data were shown as 
mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. ns: no significance
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Prior to DEGs analysis, the principal component and 
the intersample venn analysis were performed based 
on the expression matrix. From the venn plots, there 
were 11,863 unique genes in the R group, and 7165 
unique genes in the C group, and 24,344 common genes 
expressed in both groups (Fig. 3A). Volcano plot (Fig. 3B) 

and hierarchical clustering analysis (Fig. 3C) showed that 
the DEGs distributed in the two groups, indicating that 
there are significant differences in gene expression.

The DEGs were then annotated by GO analysis, and 
the results showed that unigenes were classified into 3 
GO term types, of which “Cell part”, “Cellular process”, 

Fig. 3  Effects of resveratrol on the transcriptomic dynamic changes of Siberian Sturgeon muscle. (A) Venn diagram of DEGs among C and R groups. (B) 
Volcano plot of DEGs in two groups. (C) Hierarchical clustering analysis based on FPKM of DEGs. Red and blue indicated that the gene expression level 
was up-regulated and down-regulated, respectively
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and “Binding” were dominant in the categories “Cellular 
component”,“Biological process”, and “Molecular func-
tion”, respectively (Fig.  4A). To investigate the potential 
pathways involved in antioxidant function of muscle tis-
sue in Siberian sturgeon fed with resveratrol, 2603 DEGs 
were classified into KEGG pathways, of which the path-
way with most annotated unigenes was “Signal transduc-
tion” (126 unigenes), followed by “Cancer: overview” (120 
unigenes), “Cardiovascular disease” (84 unigenes) and 
“Neurodegenerative disease” (82 unigenes) (Fig. 4B).

To further investigate the DEGs involved in the anti-
oxidant reaction between two groups, 509 genes were 
selected for GO enrichment analysis based on KEGG 
annotation. The results showed that the top 20 significant 
enrichment GO terms were mostly related to the elec-
tron respiratory transport chain process in mitochondria 
(Fig. 5A). Moreover, 455 genes were selected for KEGG 
enrichment analysis. Notably, in the top 30 significant 
enrichment pathways, the antioxidant-related aspects 
such as “Oxidative phosphorylation” and “Chemical car-
cinogenesis - reactive oxygen species” were the main 
enrichment pathways (Fig. 5B).

Furthermore, cluster of 46 DEGs enriched in “Oxida-
tive phosphorylation” and “Chemical carcinogenesis - 
reactive oxygen species” pathways was analyzed (Fig. 6A). 
7 DEGs related to Oxidative phosphorylation and ROS 
generation were selected for cluster analysis, the result 
showed that there were significantly different expres-
sion patterns between C group and R group (Fig. 6B). To 
verify the validity and accuracy of transcriptome data, 7 
DEGs were selected from the antioxidant-related path-
ways (“Oxidative phosphorylation” and “Chemical car-
cinogenesis-reactive oxygen species”) for qRT-PCR. As 
shown in Fig.  5D, the relative gene expression change 
trend obtained by transcriptome sequencing and qRT-
PCR was consistent, indicating the accuracy and reli-
ability of transcriptome data. The expression levels of 
genes (UQCRFS1, NDUFAB1, COX4, COX6A, ATPeF1A, 
ATPeF1D) associated with mitochondrial complex were 
significantly down-regulated, implying that the electron 
transport chain on the mitochondrial membrane is inhib-
ited, which results in the inhibition of ROS generation. 
Meanwhile, compared to C group, the expression level of 
SLC25A4S mediating the transmission of ROS was sig-
nificantly decreased in R group, indicating that ROS is 
strongly induced in the muscle of Siberian Sturgeon fed 
with resveratrol.

Discussion
In aquaculture, sturgeons tend to live in confined spaces 
with restricted movement which can damage their flesh 
quality [30–33]. Many studies have shown that resve-
ratrol can ameliorate the flesh quality of livestock and 
poultry [30, 34, 35]. However, the effect of resveratrol on 

flesh quality of Siberian sturgeon has not been reported. 
In order to investigate the effects of resveratrol on flesh 
quality of Siberian sturgeon, the antioxidant capacity, tis-
sue structure, nutritional composition and transcriptome 
of muscle of sturgeon were observed after feeding with 
resveratrol.

The muscular hardness, affected by myofiber diam-
eter, is one of the important indexes of flesh quality [36, 
37]. The skeletal muscle myogenesis is dependent on the 
ability of myoblasts to proliferate, synthesize proteins 
and fuse into myotubes [38, 39], which further impacts 
on the myofiber diameter. In our study, we observed that 
myofiber thickened after feeding on resveratrol (Fig. 1C), 
which was consistent with Rondinelle’s research results 
on Pacu fish [40]. Further research found, as shown in 
the 15th enrichment pathway in KEGG enrichment 
analysis (Fig. 5B), genes related to protein digestion and 
absorption were significantly enriched in current study. 
Meanwhile, after feeding on resveratrol, the amino 
acid content in muscle presented an increasing trend 
(Table 4). Combining our previous research [7], we spec-
ulated that this trend was attributed to the fact that res-
veratrol could promote the digestion and absorption of 
protein and amino acid, which are abundant in fish feed. 
Not only was the raw materials for protein synthesis in 
the muscle of Siberian sturgeon increased, but also the 
intracellular amino acids activated mTORC1 promoting 
protein synthesis by phosphorylating eukaryotic transla-
tion initiation factor binding protein (4E-BPs) [41, 42]. In 
this study, the expression level of mTORC1 was signifi-
cantly up-regulated and the expression level of 4E-BP1 
was significantly down-regulated (Fig. 1E), indicating that 
resveratrol may stimulate protein production through 
mTORC1/4E-BP1 pathway, which promoted muscle 
myogenesis, thickened the diameter of muscle fibers 
and ultimately led to increased the muscular hardness. 
In addition, Actin is one of muscle structural proteins. 
MYH9 is involved in the regulation and tight junction of 
actin skeleton [43]. The increase of its gene expression 
(Fig.  1E) indicates that resveratrol can promote muscle 
growth and development.

Another important aspect of flesh quality is oxidative 
processes, which impacts on the meat quality charac-
teristics (meat color, tenderness, texture, water-holding 
capacity, etc.), also called spoilage [44]. The higher the 
ROS content is in muscle, the easier it is to oxidize pro-
teins and lipids, resulting in meat quality deterioration 
[45]. In muscle tissue, ROS is mainly cleared by antioxi-
dant enzymes [46, 47]. In order to evaluate the effects 
of the dietary resveratrol on the antioxidant capacity 
of muscle of Siberian sturgeon, we detected MDA con-
tent, LDH, CAT, SOD activity and T-AOC of muscle 
after feeding on resveratrol (Fig. 2). MDA is a good bio-
marker of protein oxidation and lipid peroxidation in 
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Fig. 4  Effects of resveratrol on the transcriptomic dynamic changes of Siberian Sturgeon muscle and DEGs classification. (A) Histogram of GO annotation 
analysis. (B) Histogram of KEGG annotation analysis
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Fig. 5  Enrichment analysis of muscle tissue transcriptome in Siberian sturgeon. (A) GO enrichment analysis. (B) KEGG enrichment analysis
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animal tissues [48]. In the present study, compared with 
the control group, MDA level in muscle of Siberian stur-
geon was decreased significantly, suggesting that resvera-
trol depresses the oxidation of proteins and lipids in the 
muscle. SOD and CAT play significant roles in scaveng-
ing ROS– superoxide free radical (•O2−) and hydrogen 
peroxide (H2O2), respectively [48, 49]. The enhancement 

of SOD and CAT activity can reflect the decrease of •O2− 
and H2O2 content in muscle. LDH catalyzes the conver-
sion of pyruvate to lactic acid in the cytosol, accompanied 
by the conversion of NADH to NAD+, which reduces the 
raw material of the electron transport chain and reduces 
the production of ROS at the source [50]. The enhance-
ment of LDH activity indicates that the oxidative stress 

Fig. 6  Heatmap of the oxidative phosphorylation-related DEGs, comparison of the expression of 7 selected DEGs by RNA-seq and qRT-PCR. (A) Heatmap 
of oxidative phosphorylation and ROS generation-related DEGs. (B) Heatmap of 7 selected DEGs. (C, D) Comparison of the expression of 7 selected DEGs 
by RNA-seq and qRT-PCR. The qPCR results were calculated by normalizing to the reference gene (β-actin), Mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001
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of muscle fibers is delayed. In short, the enhancement of 
antioxidant enzyme activity reflected the improvement 
of the antioxidant capacity of muscle. We speculated that 
this change would slow down the deterioration of flesh 
and improve the quality of meat. These results were simi-
lar to the previous study, which found that resveratrol 
enhanced CAT activity and total antioxidative capacity 
(T-AOC) in muscle of broilers [51].

With the purpose of exploring the internal mecha-
nism of resveratrol strengthening the antioxidant capac-
ity of muscle, transcriptome analysis was performed 
on muscle tissue. KEGG enrichment analysis revealed 
that “Oxidative phosphorylation” and “Chemical car-
cinogenesis - reactive oxygen species” were enriched to 
the top 10 pathways (Fig.  5B). We selected 7 key genes 
in these two pathways (UQCRFS1, NDUFAB1, COX4, 
COX6A, ATPeF1A, ATPeF1D, SOD-1) for gene expres-
sion verification (Fig.  6D). NDUFAB1 is the subunit of 
NADH dehydrogenase, and NADH is the electron donor 
of the mitochondrial electron transport chain [52]. In 
this study, the significant down-regulation of NDUFAB1 
indicates that the starting point of the electron transport 
chain is inhibited, and the number of hydrogen ions and 
electron transport in mitochondria is reduced. Respec-
tively, UQCRFS1, COX4 and COX6A are subunits of 
electron transport chain complex III and complex IV, 
which are considerable sites for producing ROS [53, 54]. 
The expression levels of UQCRFS1, COX4 and COX6A 
were significantly decreased, indicating that the process 
of electron transport is inhibited. We speculated that this 
would lead to a decrease in the probability of oxygen and 
electron contact on the mitochondrial inner membrane, 
which implies that less ROS will be generated. ATPeF1A 
and ATPeF1D are subunits of ATP synthase [55], and the 
decrease of their gene expression indicates the reduction 
of ATP production in mitochondria. We speculated that 
this was attributed to the fact that resveratrol enhances 
the activity of muscle LDH enzyme (Fig. 2C), and previ-
ous study have shown that the enhanced activity of LDH 
enzyme can make mitochondria produce low demand 
for ATP through oxidative phosphorylation, avoiding the 
increase of ROS in mitochondria [50]. SLC25A4S, one 
of mitochondrial permeability transition pore (mPTP), 
plays an important role in a pathway for •O2− to exit the 
mitochondria [56]. We found that the gene expression 
of SLC25A4S was down-regulated significantly, indicat-
ing less •O2− is transported into the cytoplasm. SOD1 is 
a typical type of SOD family in antioxidant defense sys-
tem. The increase of gene expression of SOD1 indicates 
the enhancement of enzyme activity, which suggests that 
the active oxygen scavenging ability of muscle fibers is 
promoted [57]. Our results are consistent with the ear-
lier report that the antioxidative stress capability of res-
veratrol was confirmed by increasing the gene expression 

of SOD1, and SOD enzyme activity and decreasing ROS 
activity [58]. Taken together, these results suggest that 
resveratrol can improve the antioxidant capacity of mus-
cle by reducing the production of ROS and enhancing the 
ability to remove ROS in muscle fibers.

Conclusion
In summary, our study reveals that resveratrol enhances 
the flesh quality of Siberian sturgeon by thickening mus-
cle fiber diameter, and increasing the nutritional value 
and the antioxidant capacity of muscle. This study will 
contribute to understand the mechanism of antioxidants 
improving flesh quality of fish, and promote the develop-
ment of aquaculture.
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