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Background
Increasing agricultural productivity is crucial for food 
security, efficient resource use, economic develop-
ment, and climate change adaptation to meet the needs 
of a growing global population. The main challenges 
to increasing agricultural productivity include limited 
resources, climate change, pests and diseases, soil degra-
dation, technological gaps, smallholder farming, sustain-
ability concerns, and access to knowledge and extension 
services [1]. Addressing these challenges requires sus-
tainable resource use, climate adaptation strategies, 
effective pest and disease management, soil conserva-
tion practices, bridging technological gaps, support-
ing smallholder farmers, balancing productivity with 
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Abstract
In the realm of multi-environment prediction, when the goal is to predict a complete environment using 
the others as a training set, the efficiency of genomic selection (GS) falls short of expectations. Genotype by 
environment interaction poses a challenge in achieving high prediction accuracies. Consequently, current efforts 
are focused on enhancing efficiency by integrating various types of inputs, such as phenomics data, environmental 
information, and other omics data. In this study, we sought to evaluate the impact of incorporating environmental 
information into the modeling process, in addition to genomic and phenomics information. Our evaluation 
encompassed five data sets of soft white winter wheat, and the results revealed a significant improvement in 
prediction accuracy, as measured by the normalized root mean square error (NRMSE), through the integration 
of environmental information. Notably, there was an average gain in prediction accuracy of 49.19% in terms of 
NRMSE across the data sets. Moreover, the observed prediction accuracy ranged from 5.68% (data set 3) to 60.36% 
(data set 4), underscoring the substantial effect of integrating environmental information. By including genomic, 
phenomic, and environmental data in prediction models, plant breeding programs can improve selection efficiency 
across locations.
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environmental sustainability, and strengthening knowl-
edge dissemination and extension services [1].

Plant breeding techniques like genomic selection (GS) 
are crucial for increasing food production as they expe-
dite plant breeding efforts by enhancing trait selection 
in crops [2]. By utilizing genetic markers, GS enables 
breeders to identify high-yielding and disease-resistant 
varieties more efficiently. This technique accelerates the 
development of superior crops, saving time and resources 
compared to traditional plant breeding methods [3]. GS’s 
precision and efficiency in trait selection contribute to 
the development of crops adapted to environmental 
changes, including climate resilience. Ultimately, it opti-
mizes the genetic potential of crops, enhances produc-
tivity, and plays a vital role in global food security by 
producing improved varieties with higher yield, quality, 
and resilience [3].

Implementing GS in plant breeding programs faces 
challenges such as lack of high-quality genomic data, 
computational expertise requirements, and the need for 
high quality phenotypic data [2, 4]. Multi-environment 
trials (MET) play a crucial role in the context of plant 
breeding programs. MET involves testing plant varieties 
across multiple environments to assess their performance 
under diverse conditions, allowing researchers to identify 
genotypes that exhibit consistent superiority across vary-
ing settings [5, 6]. In MET, GS can enhance the efficiency 
of variety selection by providing accurate predictions of 
genotype performance across different environments. 
However, the application of GS in MET is not without 
challenges. One limitation lies in the complex genotype-
by-environment interactions, where the performance of 
genotypes varies across different environmental condi-
tions. GS models may struggle to accurately capture and 
predict these interactions. Previous attempts to apply 
genomic selection in MET have encountered difficul-
ties in achieving robust predictions due to the intricate 
nature of genotype-environment interplay [7–9]. Addi-
tionally, limitations in the availability and representative-
ness of training data, as well as the need for sophisticated 
statistical methodologies, pose further challenges to the 
successful implementation of GS in MET. Addressing 
these issues is essential for realizing the full potential of 
GS in improving crop performance across diverse envi-
ronments. For this reason, transferring prediction models 
across different environments and genetic backgrounds is 
complex due to strong genotype-by-environment interac-
tions, which often produce low prediction accuracies [2]. 
It is also essential to foster a close collaboration among 
breeders, geneticists, statisticians and bioinformaticians 
to implement GS successfully.

As mentioned previously, high prediction accuracies 
are crucial for the successful implementation of the GS 
methodology for several reasons [10]. First, accurate 

predictions enable breeders to identify and select individ-
uals with the highest genetic potential for desired traits, 
improving the efficiency and effectiveness of breed-
ing programs [11]. This leads to faster genetic progress 
and the development of improved varieties with desired 
traits, such as higher yields or disease resistance. Addi-
tionally, high prediction accuracies reduce the costs and 
time associated with phenotypic evaluations by allowing 
breeders to prioritize individuals for further testing based 
on their predicted performance. Accurate predictions 
also minimize the risk of selecting individuals with false 
positive or false negative results, ensuring that resources 
are allocated to individuals with the highest breeding 
value. Ultimately, high prediction accuracies contribute 
to the overall success and impact of GS in driving genetic 
improvement in crops and increasing agricultural pro-
ductivity [12].

For this reason, there is a lot of empirical evidence sug-
gesting that to increase the prediction accuracy of the 
GS methodology, it is important to integrate more than 
one type of input, like genomic information, phenomics 
data, and environmental information [7, 13–22]. First, 
genomic information provides insights into the under-
lying genetic variations that influence complex traits in 
plants, enabling breeders to make informed selections 
based on desired genetic profiles [11]. Second, phenomics 
data, obtained through unmanned aerial systems (UAS) 
or other advanced technologies, captures detailed infor-
mation about plant traits and their responses to environ-
mental conditions, allowing for a more comprehensive 
assessment of plant performance [23, 24]. By integrating 
these two types of data, breeders can better understand 
the genotype by environment interactions and identify 
individuals with superior performance across diverse 
environments. Additionally, incorporating environmen-
tal information, such as climate data, soil characteris-
tics, or field management practices, helps account for 
the environmental variability that affects trait expression 
[10, 18, 21]. This integration enables breeders to develop 
predictive models that consider the complex interac-
tions between genotypes, phenotypes, and environments, 
resulting in more accurate predictions of plant perfor-
mance and selection of individuals with higher breeding 
values. Moreover, the integration of these data sources 
facilitates the identification of genetic markers associ-
ated with specific traits of interest, allowing for more 
precise GS and targeted breeding efforts. It also enables 
the development of predictive models that can adapt to 
changing environmental conditions, thereby enhancing 
the resilience and adaptability of cultivated crops. Over-
all, the integration of genomic information, phenomics 
data (obtained through UAS or other advanced tech-
niques) and environmental information has the poten-
tial to provide a comprehensive and multi-dimensional 
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approach to genomic selection, leading to improved 
accuracy, efficiency, and effectiveness in crop improve-
ment programs [7, 13–22].

The integration of environmental information, also 
referred to as enviromic data, into genomic prediction 
models has produced diverse outcomes [10, 13, 16, 18, 
25–26]. Certain studies, such as those conducted by [10, 
25], and [26] have demonstrated notable enhancements 
by incorporating this information. However, other inves-
tigations, including those by [18] and [13] have reported 
modest or negligible improvements. These mixed find-
ings underscore the lack of a robust and precise method 
for the effective integration of environmental informa-
tion into genomic prediction models. To address this 
gap [10], proposed the use of feature selection to identify 
optimal environmental predictors. Also, continuously 
growing is the use of UAS data as inputs to improve the 
prediction performance of traits of interest in GS [14, 15, 
17, 20, 27, 28]. However, the incorporation of UAS data 
for genomic prediction is challenging. For example, the 
spatial resolution may not always meet fine-scale needs, 
and data quality can be affected by weather or technical 
issues. Temporal constraints and the need for substan-
tial computational resources pose challenges. Standard-
ization and compatibility issues, regulatory restrictions, 
and data privacy concerns add complexity. Additionally, 
UAS data sensitivity to environmental conditions may 
impact reliability. Addressing these limitations is crucial 
for optimizing the use of UAS data in accurate genomic 
predictions in agriculture. More recently there already 
exist some studies incorporating genomic data, environ-
mental information, and phenomics data for GS [19, 28, 
29]. These publications show some empirical evidence 
that integrating genomic data, environmental informa-
tion, and phenomics data enhances genomic prediction 
by providing a holistic view of the genotype-environ-
ment-phenotype relationship. This approach improves 
predictive accuracy by capturing real-time phenotypic 
traits and dynamic interactions between genes and the 
environment. The synergy of these data sets holds great 
potential for more precise and effective genomic predic-
tions in various fields, including agriculture, medicine, 
and conservation. However, the goal of our study is to 
increase empirical evidence that the method of feature 
selection for incorporating environmental information 
with genomic data, proposed by [10], helps improve pre-
diction performance.

With the aim of further substantiating the benefits of 
integrating diverse inputs to enhance the prediction 
accuracy of the GS methodology, this study focused on 
looking for a more optimal integration of environmen-
tal data with genomics and phenomics information for 
the prediction of grain yield (GY), plant height (PH) 
and heading date (HD) traits in soft white winter wheat. 

However, now since our goal is to evaluate different 
approaches for integrating environmental information 
under a more optimal fashion, we did not also evaluate 
if there are significant improvements regarding includ-
ing or not including UAS information, as was done in 
our previous publication [15]. For these reasons, in this 
research 14 different ways for integrating environmental 
information with genomic and phenomic information 
was evaluated with real data obtained from Washing-
ton State University, spanning 2019 to 2022. To assess 
the predictive performance, a cross-validation scheme 
involving partially tested lines in untested environments 
was implemented, specifically employing the leave-one-
environment-out (LOEO) approach. Through this com-
prehensive approach, the study seeks to highlight the 
value of integrating multiple data sources to improve the 
accuracy of GS predictions.

Results
The results are given for data sets 2, 3, 4 and 5. Data set 
5 contains the information of data sets 1–4. Results for 
data set 1 are not given since it only contains two envi-
ronments. The results are presented only in terms of 
Normalized Root Mean Squared Error (NRMSE). This 
metric is first used for one-to-one comparison of all 
models to subsequently determine the count of times a 
model outperforms the others. This process is carried out 
for both environments and traits. Then directly we com-
pare the average of each model and calculate the percent-
age of improvement of all models relative to the model 
with the highest average NRMSE (worst model) using 
relative efficiency (RE). We also computed the relative 
efficiency of each model regarding model M0 denoted as 
RE_M0, since model M0 denotes the model without envi-
ronmental covariates. It was noted that at times RE_M0 
produced negative values since some models were worse 
than model M0.

Data set 2 (2020)
Regarding the overall count per environment, model M7 
outperformed all the others (144/225; this model wins in 
144 out of 225 possible combinations). The second-best 
model was M6 (140/225), followed by M2 as the third-
best model (124/225). Conversely, M0 turned out to be 
the worst-performing model (63/225), followed by M9 
(72/225) and M10 (73/225). When contrasting by traits, 
the maximum number of times a model could outper-
form the others was 45. This means that, for this data set, 
there are a total of 45 possible combinations. Therefore, 
models M6 and M7 emerged as the best models com-
pared to all the others (40/45), with M2 as the second-
best model (28/45). On the other hand, M0 proved to be 
the worst model without winning at least once (0/45). As 
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the second and third worst models, we have M10 and M9 
(7/45 and 11/45, respectively).

In terms of NRMSE model M7 was the best-perform-
ing model with the smallest NRMSE value (2.82). The 
second-best model was M4 (2.89), followed by M2 as the 
third-best model (NRMSE = 2.97). On the other hand, 
model M0 stood out as the worst-performing model 
(NRMSE = 4.34), with models M9 and M5 being the sec-
ond and third worst models respectively (NRMSE = 4.29 
and NRMSE = 4.11). In terms of RE, compared to the 
worst model (M0), the achieved gains were 53.89% for 
the best model, M7; 50.06% for M4; and 45.89% for M2. 
Ultimately, in terms of NRMSE, it is found that model 
M7 demonstrated the best predictive capability, while 
model M0 exhibited the worst predictive capacity. Finally, 
it is important to point out that model M0 is the model 
without environmental covariates. For this reason, in this 
data set it is observed that adding environmental covari-
ates helps to significantly reduce the prediction error. The 
results of this data set are presented in Figs. 1 and 2 (refer 
to in Annex A Table A1 for detailed information).

Data set 3 (2021)
Among the various models considered, model M6 stood 
out as the top-performing model in terms of total count 
per environment, surpassing all others (184/315; this 
model achieves victory in 184 out of 315 possible com-
binations). The second-best performing models were 
M11 and M12 (174/315), closely followed by M14 as 
the third-best model (161/315). Conversely, model M2 
performed the poorest among all models (73/315), with 
models M7 (105/315) and M5 (112/315) ranking as the 
second and third worst models, respectively. When com-
paring the models based on specific traits, the maximum 
number of times a model could outperform the others is 
45. Among the top-performing models, M14 claims the 
first position (33/45), followed closely by M6 (32/45), 
and M11 and M12 (29/45). On the other hand, models 
M2 and M7 performed the worst (2/45), with M4 (9/45) 
and M5 (10/45) occupied the second and third positions 
as the least effective models, respectively. Furthermore, 
model M0 fell in the middle of the ranking based on envi-
ronments (147/315) and ranks as the fourth-best model 
when evaluated based on traits (28/45).

Based on the average NRMSE results, it is evident that 
model M6 outperformed other models with the small-
est NRMSE value of 5.99. The second-best model was 
M14 with an NRMSE value of 6.03, followed by models 
M11 and M12 as the third-best models with NRMSE 
values of 6.11. On the contrary, model M2 performed 
the poorest with an NRMSE value of 10.80, while mod-
els M7 and M5 ranked as the second and third worst 
models, respectively, with NRMSE values of 9.02 and 
8.31. In terms of RE, the gains achieved compared to the 

worst-performing model (M2) were substantial. Model 
M6 achieved a gain of 80.28%, followed by model M14 
with a gain of 79.21%, and models M11 and M12 with 
gains of 76.79%. Furthermore, compared to model M0, 
the three best models showed gains of 5.68% (M0), 4.98% 
(M14), and 3.60% (M11 and M12), respectively (See last 
column of Table A2). Finally, regarding NRMSE, it can 
be concluded that model M6 demonstrated the best pre-
dictive capability, while model M2 exhibited the poorest 
predictive capacity. The results of this dataset are pre-
sented in Figs.  3 and 4 (for detailed information, refer 
to in Table A2). For details of the comparison of the 14 
models to model M0 see column RE_M0 (%) of Table A2, 
representing the computed percentage of gain (or loss) of 
each model compared to model M0.

Data set 4 (2022)
When considering the total count per environment, 
model M2 emerged as the best-performing model, sur-
passing all others (170/240; this model achieved vic-
tory in 170 out of 240 possible combinations). Following 
closely behind is model M6, positioned as the second-
best model (167/240), while model M7 ranks as the 
third-best model (163/240). Conversely, model M0 ranks 
as the poorest-performing model (63/240), with models 
M13-M14 sharing the second worst position (64/240), 
and models M11-M12 ranking as the third worst mod-
els (69/240). Comparing the models based on traits, the 
maximum number of times a model could outperform 
the others is 45. Among the top-performing models, 
both models M2 and M6 share the first position (37/45), 
showcasing their strong performance. Following closely 
behind was model M7 (34/45), while model M3 claimed 
the third position (30/45). On the other hand, models 
M13 and M14 have an equal count, making them both 
the worst models in terms of traits (6/45), followed by 
model M0 (9/45) and M9 (11/45). Notably, model M0 
appeared among the two worst models in both the envi-
ronment and trait analyses, indicating its consistently 
poor performance across different evaluations. In Table 
A3, the column RE (%) are computed as the percentage of 
gain of each model regarding the worst model that in this 
data set (M0), while in the last column of Table A3 RE_
M0 (%) are computed as the percentage of gain of each 
model regarding the model without using environmental 
covariates (M0). The results of both columns [RE (%) and 
RE_M0 (%)] of Table A3 are the same since in this data 
set M0 resulted in the worst model in terms of prediction 
error.

Based on the NRMSE, model M6 emerged as the 
best-performing model with the smallest NRMSE value 
of 2.12. Following closely behind was model M7 as 
the second-best model with an NRMSE value of 2.14, 
while model M2 ranked as the third-best model with an 
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NRMSE value of 2.26. Conversely, model M0 stood out 
as the worst-performing model with an NRMSE value 
of 3.40, and models M13 and M14 occupied the second 
worst position with an NRMSE value of 3.26. In terms 

of relative error (RE), the gains achieved compared to 
the worst-performing model (M0) were significant. 
Model M6 achieved a gain of 60.36%, followed by model 
M7 with a gain of 58.40%, and model M2 with a gain of 

Fig. 1 Data set 2 (2020). (A) Count of the number of times a model is better than another, by environment. (B) Count of the number of times a model is 
better than another, by trait
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50.08%. Finally, it can be concluded that for this particu-
lar data set, model M6 demonstrated the best predictive 
capability, while model M0 exhibited the poorest predic-
tive capacity. The results of this data set are presented in 
Figs. 5 and 6 (for detailed information, refer to Table A3).

Data set 5 (all years together)
When analyzing the total count per environment, 
it is evident that model M1 outperformed all other 
models, winning in 542 out of 870 possible combina-
tions (542/870). Models M13 and M14 ranked as the 

second-best models, both achieving a count of 466 out 
of 870 (466/870). Following closely behind was model 
M8, positioned as the third-best model with a count of 
362 out of 870 (362/870). On the other hand, model M2 
performed the poorest with a count of 276 out of 870 
(276/870), while model M4 ranked as the second-worst 
model with a count of 306 out of 870 (306/870). In terms 
of comparing the models based on traits, the maximum 
number of times a model could outperform the others is 
45, representing all possible combinations within the data 
set. Model M1 stood out as the best-performing model, 

Fig. 2 Data set 2 (2020). (A) Prediction accuracy of each predictor (M0 to M14) in terms of normalized root mean square error (NRMSE). (B) Relative ef-
ficiency (RE) of each model compared to the worst model (M0)
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surpassing all others with a count of 40 out of 45 (40/45). 
Following closely behind was model M3 as the second-
best model with a count of 26 out of 45 (26/45), while 
model M9 claimed the third-best position with a count 
of 25 out of 45 (25/45). Model M2 consistently ranked 
as the worst-performing model, with a count of only 3 
out of 45 (3/45), aligning with its performance based on 

environments. Additionally, model M4 was positioned 
as the second-worst model with a count of 10 out of 45 
(10/45).

Based on the NRMSE, model M1 stood out as the 
best-performing model, achieving the smallest NRMSE 
value of 3.67. Following closely behind was model M13 
as the second-best model with an NRMSE value of 4.74, 
while model M14 ranked as the third-best model with 

Fig. 3 Data set 3 (2021). (A) Count of the number of times a model is better than another, by environment. (B) Count of the number of times a model is 
better than another, by trait
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an NRMSE value of 4.89. Conversely, model M2 demon-
strated the poorest performance with an NRMSE value of 
9.91, and models M12 and M7 ranked as the second and 
third worst models, respectively, with NRMSE values of 
9.61 and 8.73. Considering RE, the gains achieved com-
pared to the worst-performing model (M2) were substan-
tial. Model M1 exhibited a gain of up to 170.26%, followed 
by model M13 with a gain of 109.03%, and model M14 

with a gain of 102.82%. Additionally, the top three models 
showed gains of 76.84% (M1), 36.92% (M13), and 32.76% 
(M14), respectively, compared to model M0 (the model 
without using environmental covariates). From these 
results, it can be concluded that, for the entire data set, 
model M1 demonstrated the best predictive capability, 
while model M2 exhibited the poorest predictive capac-
ity. The results of this data set are presented in Figs.  7 

Fig. 4 Data set 3 (2021). (A) Prediction accuracy of each predictor (M0 to M14) in terms of normalized root mean square error (NRMSE). (B) Relative ef-
ficiency (RE) of each model compared to the worst model (M2)
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and 8 (for detailed information, refer to Table A4). More 
details of the percentage of gain of each model regarding 
the worst model (M2) are given Table A4 in the column 
RE (%). The percentage of gain of each model regarding 
the model without using environmental covariates (M0) 
also are given Table A4 in the last column denoted as 
RE_M0 (%).

Comparison between models M3 and M6
The specific comparison between the results of models 
M3 and M6 illustrates that including only one covariate 
(Xe.avg) summarizing the filtered covariates (Xe ) can 
be equal or more efficient than including all the covari-
ates available in Xe . It is important to point out that 
models M3 and M6 in the predictor contain exactly the 
same information (See Table 1 for details) but the unique 

Fig. 5 Data set 4 (2022). (A) Count of the number of times a model is better than another, by environment. (B) Count of the number of times a model is 
better than another, by trait
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difference is that M3 estimates one beta coefficient for 
each covariate since all covariates are included in the 
modeling process, whereas M6 estimates only one beta 
coefficient (Xe.avg ; details for how this average was com-
puted are provided in material and methods) of the infor-
mation available in Xe . In Table  2 we can observe that 
across data sets by environment the percentage of won 
models by M6 regarding the worst model was 59.99%, 

whereas the percentage of won models of M3 regarding 
the worst model was 51.10%. If analyzed by trait, the won 
models of M6, regarding the worst model, was 71.67%, 
but the won models of M3 in the same context was only 
of 51.11%. Regarding NRMSE across data sets also this 
was better for model M6 (NRMSE = 4.16) and worse for 
model M3 (NRMSE = 4.338). For this reason, the gain in 
RE(%) regarding the worst model was better for model 

Fig. 6 Data set 4 (2022). (A) Prediction accuracy of each predictor (M0 to M14) in terms of normalized root mean square error (NRMSE). (B) Relative ef-
ficiency (RE) of each model compared to the worst model (M0)

 



Page 11 of 20Montesinos-López et al. BMC Genomics          (2024) 25:544 

M6 (65.84%) and worse for model M3 (59.41%). This 
comparison illustrates that parsimonious models can be 
more efficient.

Discussion
Multi-environment genomic prediction presents for-
midable challenges arising from diverse factors such as 
genetic variation, genotype-by-environment interaction, 
environmental heterogeneity, limited training data, and 
the risks of overfitting and generalization. Collectively, 
these elements compound the complexity of accurately 

forecasting genotype performance across different envi-
ronments. The prediction of tested line performance 
in novel environments is hindered by sparse data for 
specific line-by-environment combinations, intricate 
genotype-by-environment interactions, the impact of 
environmental variations on performance, limited model 
stability across environments, and unaccounted factors 
influencing performance. Successfully navigating these 
challenges necessitates extensive data collection, the 
employment of advanced modeling approaches, and a 
profound understanding of the interplay between genetic 

Fig. 7 Data set 5 (all years together). (A) Count of the number of times a model is better than another, by environment. (B) Count of the number of times 
a model is better than another, by trait
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and environmental factors. Sustained research efforts 
are crucial for continual enhancements in the accuracy 
and reliability of predicting line performance in new and 
diverse environments.

To enhance the prediction accuracy in challenging 
scenarios such as tested lines in untested environments 
(here called leave one environment out) and untested 
lines in untested environments, the integration of mul-
tiple types of input has proven crucial. This has been 

supported by studies that integrated two types of inputs 
[11, 12, 14–19, 20], as well as those that incorporated 
three different sources [7, 21]. Such integration of diverse 
inputs offers promising avenues for improving prediction 
accuracy in these challenging scenarios.

In this study, under tested lines in untested environ-
ments, we explored the integration of three distinct 
sources of inputs, namely genomics, phenomics, and 
environmental information in soft white winter wheat. 

Fig. 8 Data set 5 (all years together). (A) Prediction accuracy of each predictor (M0 to M14) in terms of normalized root mean square error (NRMSE). (B) 
Relative efficiency (RE) of each model compared to the worst model (M2)
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The results demonstrated that incorporating environ-
mental information alongside genomic and phenomics 
data led to a substantial increase in prediction accuracy. 
On average, across various data sets, traits, and environ-
ments, the prediction accuracy, as measured by NRMSE, 
improved by 49.19%. However, it is important to note 
that the extent of improvement in prediction accuracy 
varied across the different data sets. For instance, in data 
set 3 (year 2021), the gain in terms of NRMSE was only 
5.68%, whereas in data set 4 (year 2022), it was 60.36%. 
These findings highlight the diverse impact of incorpo-
rating environmental information on prediction accuracy 
across different data sets and underscore the need for 

careful consideration of specific data characteristics and 
contexts in genomic prediction research.

The present study demonstrated a significant improve-
ment in prediction accuracy when incorporating envi-
ronmental information in addition to genomics and 
phenomics data. However, it is important to note that the 
observed gains in prediction accuracy varied across dif-
ferent data sets, suggesting heterogeneity in the results. 
These discrepancies can be attributed to variations in 
the quality of the feature selection process and the spe-
cific characteristics of each data set. Furthermore, we 
observed that a naive incorporation of covariates often 
proved ineffective and, in some cases, even detrimental 
to prediction accuracy (like model M1 in Table A2; Data 

Table 1 Description of the 15 predictors implemented. Environmental covariates (0 denotes not used, whereas 1 denotes used), 
selection method of environmental covariates (C = Pearson´s correlation and B = Boruta). TC denotes a threshold correlation, and this 
takes values of 0.3, 0.4, 0.5, 0.6, and 0.7. The largest TC value was evaluated first and if any covariate satisfied this TC value, the second 
largest was used and so on
Model Predictor Environmental 

covariates
Selection 
method

Average of 
covariates

Corre-
lation

M0 Ke , Kg , Kge  and M 0 - 0 -

M1 Ke , Kg , Kge , Xe  and M 1 - 0 > 0

M2 Kec , Kg , Kgec and M 1 C 0 TC

M3 Ke , Kg , Kge , Xe  and M 1 C 0 TC

M4 Kec , Kg , Kgec , Xe  and M 1 C 0 TC

M5 Ke , Kg , Kge ,Xe2  and M 1 C 0 TC

M6 Ke , Kg , Kge , Xe.avg  and M 1 C 1 TC

M7 Kec , Kg , Kgec , Xe.avg  and M 1 C 1 TC

M8 Kec , Kg , Kgec , Xe.avg  and M 1 C & B 1 TC

M9 Ke , Kge , Xgec , M , 1 B 0 -

M10 Ke , Kg , Kge , Xe (Tenative true), M 1 B 0 -

M11 Kec , Kg , Kgec , Xe.avg  (Tentative false) and M 1 B 1 -

M12 Kec , Kg , Kge , Xe.avg  (Tenative true) and M 1 B 1 -

M13 Kec , Kg , Kgec , Xe.avg  (Tenative true) and M 1 B 1 -

M14 Kec , Kg , Kgec , Xe.avg  (Tenative False) and M 1 B 1 -

Table 2 Comparison of models M3 and M6 in terms of count of the number of times these models were better than another in 
terms of normalized root mean square error (NRMSE), both by environments and by traits. Prediction accuracy was in terms of NRMSE; 
relative efficiency (RE) in terms of percentage

Env Trait
Data set Model Won models % Won models % NRMSE RE(%)
Data set 2 (2020) M3 113 50.22 20 44.44 3.02 43.63
Data set 2 (2020) M6 140 62.22 40 88.89 3.07 41.31
Data set 3 (2021) M3 147 46.67 16 35.56 6.89 56.73
Data set 3 (2021) M6 184 58.41 32 71.11 5.99 80.28
Data set 4 (2022) M3 138 57.50 30 66.67 2.43 39.60
Data set 4 (2022) M6 167 69.58 37 82.22 2.12 60.36
Data set 5 M3 435 50.00 26 57.78 5.01 97.67
Data set 5 M6 432 49.66 20 44.44 5.46 81.40
Across data M3 208.25 51.10 23 51.11 4.34 59.41
Across data M6 230.75 59.97 32.25 71.67 4.16 65.84
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set 3 (2021)). Also, we observed that it is not necessary to 
use all environmental covariates, since many models with 
variable selection outperformed model M1 that used 
all environmental covariates (examples are the results 
of Data set 2 (2020), Data set 3 (2021) and Data set 4 
(2022)]. This highlights the importance of careful consid-
eration and thoughtful integration of covariates, as their 
inclusion can either enhance or diminish the accuracy of 
predictions.

Concerning the identification of the most crucial envi-
ronmental covariates for predicting each environment, 
our findings underscore their dependence on both the 
specific environment and the corresponding year. For 
example, for those models that used the Pearson´s cor-
relation to select the optimal covariates, requires for data 
set 5 (all years together) between 1 and 339 environmen-
tal covariates, with an average across environments of 
155 environmental covariates. This indicates there is a lot 
of variability in the number of covariates required for a 
specific environment, and that only a small average frac-
tion of 5.33% of the environmental covariates for data set 
5 (all years together) were required to decrease the pre-
diction error. Details for data set 5 (all years together) of 
the environmental covariates selected for each environ-
ment are provided in Table C1. This observation holds 
significant weight as it elucidates why the inclusion of all 
environmental covariates as model inputs often fails to 
consistently enhance prediction accuracy. Consequently, 
we consistently observed that conducting feature selec-
tion is pivotal for improving the prediction performance 
of each unique environment.

It is crucial to emphasize that no significant differ-
ences were found between the two implemented meth-
ods for feature selection, namely Pearson’s Correlation 
and the Boruta algorithm. However, an exhaustive com-
parison was not done between the two selection meth-
ods since with Boruta, some models (Models M9, 10 and 
11) selected not only environmental information but 
also marker information. Regarding using Pearson’s cor-
relation, a higher threshold for feature selection yielded 
better results. Nonetheless, a drawback arose as, in 
many instances, specifying a larger threshold resulted in 
none of the environmental covariates meeting the cri-
teria for selection. Consequently, Pearson’s correlation 
proved ineffective in selecting any environmental covari-
ates under these circumstances. On the other hand, the 
Boruta method presents a distinct advantage by not 
necessitating a specific threshold and we found that it 
was slightly better than Pearson’s Correlation (with better 
performance in three out of the five data sets). This char-
acteristic renders Boruta an exceptionally appealing and 
efficient tool for variable selection.

Generally, our findings indicate that the inclu-
sion of environmental covariates enhances prediction 

performance in terms of NRMSE. However, a distinct 
pattern regarding the superiority of a specific predictor 
was not clearly discernible. The only consistent trend 
observed was a slight improvement in predictors that 
incorporate the average covariate, Xe.avg , as evidenced 
in the data sets for 2020, 2021, and 2022. The notable 
advantage of utilizing the average covariate Xe.avg  lies in 
the requirement for estimating only a single parameter 
(beta coefficient).

It is crucial to emphasize that our findings align with 
prior research that demonstrated the beneficial impact 
of incorporating environmental covariates on enhancing 
prediction accuracy [23, 24]. However, it should be noted 
that the extent of improvement in prediction accuracy 
varies depending on the specific data set and the mod-
eling approach utilized. Also, it is important to point 
out that the gain found in this research was in terms of 
NRMSE. We have chosen not to employ the Pearson´s 
correlation coefficient as a metric for reporting predic-
tion performance, primarily due to the absence of sig-
nificant improvement associated with this measure (See 
Table B1 of Annex B), but we are aware that this metric 
is directly related to the genetic gain of genomic selec-
tion [30]. The limited enhancement of using this metric 
can be ascribed, in part, to our exclusive concentration 
on feature selection within the domain of environmental 
covariates. Also, it can be attributed to the fact that the 
environmental covariates were assessed not at the geno-
type level but rather at the environmental (location) level.

Conclusions
In this research, we employed a cross-validation scheme, 
partially tested lines and untested environment, to assess 
the benefits of integrating environmental covariates, in 
addition to the already integrated genomics and phenom-
ics information. Our objective was to evaluate the impact 
of this integration on prediction accuracy. Our findings 
indicate that the inclusion of environmental information 
resulted in a notable increase of 49.19% in the predic-
tion accuracy, as measured by the normalized root mean 
square error across multiple data sets. Among the four 
data sets examined in our study, all of them demonstrated 
improved prediction accuracy when environmental 
information was integrated. Notably, data set 3 exhib-
ited the smallest gain, with an increase of only 5.68%. 
Conversely, data set 4 from the year 2022 showcased the 
largest gain, with a substantial increase of 60.36%. These 
results provide empirical evidence supporting the notion 
that incorporating additional inputs into the modeling 
process holds significant potential for enhancing predic-
tion accuracy. However, it is crucial to approach the inte-
gration of environmental covariates with care, as naive 
integration often proves unhelpful. Therefore, we rec-
ommend the use of feature selection techniques, such as 
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Pearson’s correlation and Boruta, to ensure an optimal or 
near-optimal integration. By employing these techniques, 
a more refined and effective integration of environmental 
covariates is guaranteed.

Methods
Data set descriptions
Data sets 1 to 5, referred to as the wheat data, were uti-
lized in this study and are the same used in the paper 
“Genomics combined with UAS data enhances predic-
tion of grain yield in winter wheat” by Montesinos-López 
et al. [15]; they were used for the GY trait, in addition to 
plant high (PH) and days to heading (HD). The wheat 
lines used in the study were obtained from the breed-
ing program of Washington State University (WSU) and 
were cultivated at different locations within the state of 
Washington (see supplementary Figure S1). Below is a 
summary of the characteristics of each data set:

Data set 1, Wheat_1 (Year 2019): Is comprised of 1,379 
distinct wheat lines evaluated across two environments, 
namely Kincaid and Pullman. The data set contains a 
total of 1,379 observations with no replication of lines in 
multiple environments.

Data set 2, Wheat_2 (Year 2020): Consists of 758 
unique wheat lines assessed in six different environ-
ments, namely Farmington, Harrington, Kincaid, Lind, 
Ritzville, and Walla Walla. The data set contains a total 
of 952 observations due to the presence of repeated lines 
across multiple environments.

Data set 3, Wheat_3 (Year 2021): Includes 452 distinct 
wheat lines evaluated in eight environments, namely 
Davenport, Harrington, Kahlotus, Kincaid, Lind, Pull-
man, Ritzville, and Walla Walla. The data set contains a 
total of 780 observations due to the inclusion of certain 
lines in multiple environments.

Data set 4, Wheat_4 (Year 2022): Is comprised of 363 
unique wheat lines assessed in six environments, namely 
Davenport, Farmington, Harrington, Prescott, Pullman, 
and Ritzville. The data set contains a total of 483 obser-
vations due to the presence of repeated lines across mul-
tiple environments.

Data set 5, Wheat_5 (Joint information of years 2019–
2022): Is comprised of 2279 unique wheat lines assessed 
in twenty environments, namely 2019_Kincaid, 2019_ 
Pullman, 2020_Farmington, 2020_ Harrington, 2020_ 
Kincaid, 2020_ Ritzville, 2020_ Walla_Walla, 2021_Dav-
enport, 2021_ Harrington, 2021_ Kahlotus, 2021_ Kin-
caid, 2021_ Pullman, 2021_ Ritzville, 2021_ Walla_Walla, 
2022_Davenport, 2022_ Farmington, 2022_ Harrington, 
2022_ Prescott, 2022_ Pullman, 2022_ Ritzville. The 
data set contains a total of 3891 observations due to 
the presence of repeated lines across multiple environ-
ments and the environment results of the year/location 
combinations.

To collect phenotypic data, the Sentera Quad Multi-
spectral Sensor (Sentera, St Paul, MN) was employed. 
This sensor encompasses four sensors that cover a total 
of eight broad spectral bands ranging from 450  nm to 
970  nm, which, based on previous research, are rel-
evant for evaluating winter wheat in Washington. An 
unmanned aerial system (DJI Inspire 1) equipped with 
the Sentera camera flew along a predetermined route at 
an altitude of 45 m, capturing georeferenced images with 
85% overlapping coverage. UAS data was collected within 
a four-hour window of solar noon, with an effort to be as 
close to solar noon as possible. Flights often took 20 min 
to collect and were done on days with clear skies to limit 
variability in solar radiation. Data were collected on 
wheat plants between the heading and flowering (Feekes 
10.1 and 10.5) growth stage. The collected UAS images 
were processed in Pix4Dmapper (Pix4D Inc., Denver, 
CO) to create a single orthomosaic image for each sensor 
per location. These orthomosaic images were then trans-
ferred to the Geographic Information System (QGIS) for 
plot identification and subsequently subjected to fur-
ther processing using a custom R code. This processing 
involved image calibration, index calculation, and extrac-
tion of mean data for individual plots.

For radiometric calibration in 2019, a single reflec-
tance panel with 85% reflectance was employed for the 
RGB and red edge bands. The NIR band was normal-
ized using a coefficient of 3.07 during the calculation of 
spectral reflectance indices (SRIs), according to the for-
mula: NIR = (2.921 × Blue) - (0.754 × Red). In the years 
2020 to 2022, a set of calibration panels consisting of five 
panels with reflectance ranging from 2 to 85% (Mosa-
icMill Oy, Vantaa, Finland) was used. All raw band lay-
ers were adjusted based on the relationship: SR = DN × 
Slope ± Intercept, where the slope and intercept were 
derived from the regression of observed reflectance in 
calibration panels. In this equation, DN represents the 
raw observed pixel values, and SR represents the true 
reflectance value. Adjusted multispectral band values 
were utilized in all data sets to calculate indices for sub-
sequent model analysis.

The genotyping process employed genotyping-by-
sequencing (GBS; [31]) to analyze all the wheat lines. Ini-
tially, the original data set consisted of a total of 6,075,743 
single nucleotide polymorphisms (SNPs). However, the 
data set underwent a series of filtering steps to refine the 
SNPs for further analysis. The filtering criteria included 
removing SNPs with homozygosity greater than 80%, less 
than 50% missing data, a minor allele frequency greater 
than 0.05, and heterozygosity less than 5%. Following 
these filtering steps, the data set was reduced to 19,645 
SNPs, which met the specified criteria.

To address missing data in the markers, imputation 
was performed using the ‘expectation-maximization’ 
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algorithm implemented in the ‘R’ package rrBLUP [32]. 
This imputation process helped to fill in the missing val-
ues within the data set. Within each data set, the best 
linear unbiased estimates (BLUEs) were computed uti-
lizing two experimental designs (alpha lattice design and 
augmented randomized complete block design). These 
designs were utilized to obtain reliable and unbiased esti-
mates for further analysis. For details on the BLUEs com-
putation see Montesinos-López et al. [15].

In addition to the genomic and phenomics (UAS data), 
we collected environmental information for each envi-
ronment. The environmental covariates measured in 
each one are given in Table 3.

In each environment, all the covariates given in Table 3 
were measured daily from the date of planting of each 
trial location until the date of harvest. For this reason, 
for each environment there were available 2904 records 
since each covariate was measured daily, and on average 
these covariates were measured across 207 days. Data 
were downloaded from the WSU AgWeatherNet system 
of weather stations (www.weather.wsu.edu) using the 
weather station that was closest to the trial location.

Feature selection methods
We implemented two feature selection methods exactly 
as was done in the study of Montesinos-López et al. [10]. 
The first feature selection method involved determining 
the correlation between the environmental covariates 

and the response variable. The selection process identi-
fied the highest correlation within each training set for 
each trait. However, it is crucial to note that this selec-
tion of covariates is carried out without considering the 
response variables in the testing set. In other words, the 
covariates corresponding to the environment being pre-
dicted are not included. The threshold correlations used 
for selecting environmental covariates were 0.3, 0.4, 
0.5, 0.6, and 0.7. When the correlations fall below the 
0.3 value, it indicates that the training process was per-
formed without any environmental covariates. However, 
if only a few covariates met the threshold correlation of 
0.7, only those covariates were used in the training pro-
cess. If no covariates satisfied this threshold, the ones 
meeting the lower threshold (0.5) were used, and so on.

The second feature selection method employed the 
Boruta algorithm, which aims to identify covariates that 
are either strongly or weakly relevant to the response 
variable. In this case, the covariates included in the train-
ing process of the models were determined using only the 
response variables from the training set. The observa-
tions that form part of the testing set were not utilized for 
selecting the significant environmental covariates.

Boruta is an algorithm specifically designed for fea-
ture selection in high-dimensional data sets with noisy 
features [33]. It operates by creating a shadow feature 
set, which is a replica of the original feature set with ran-
domly permuted values. These shadow features serve 
as a control to assess the statistical significance of the 
original features. The relevance of the original features 
is determined based on whether their importance scores 
significantly exceed the importance scores of their corre-
sponding shadow features. Boruta is efficient in data sets 
containing numerous noisy features, where traditional 
feature selection methods may encounter challenges. 
However, it can be computationally intensive and may 
require careful parameter tuning to achieve optimal out-
comes [33].

The Boruta algorithm operates through the following 
steps:

Step 1. Generate a shadow feature set by randomly per-
muting the values of each feature.

Step 2. Train a random forest model using both the 
original feature set and the shadow feature set.

Step 3. Calculate the feature importance scores for each 
original feature by comparing them to the importance 
scores of their corresponding shadow features.

Step 4. Determine the maximum importance score for 
each feature.

Step 5. Employ the Binomial test to assess the statis-
tical significance of each feature. If it is deemed signifi-
cant, the feature is marked as important; otherwise, it 
is marked as unimportant. The Binomial test is a statis-
tical test utilized in Boruta to evaluate the significance 

Table 3 Description of environmental covariates (EC) used in 
each environment
No. EC abbreviation EC full name
1 Air MinA°F Minimum air temperature in °F
2 Air AvgA°F Average air temperature over the 

24 h in °F
3 Air MaxA°F Maximum air temperature in °F
4 Avg1.5 m DPA°F Average dewpoint temperature in 

°F at 1.5 m height
5 Avg1.5 m RH% Average relative humidity at 1.5 m 

height
6 Soil 2 in.A°F Soil temperature at two inches 

depth in °F
7 Soil MinA°F Minimum soil temperature at eight 

inches depth in °F
8 Soil AvgA°F Average soil temperature at eight 

inches depth in °F
9 Avg 2 in.SWPkPa Average stem water potential at 

two inches depth
10 Avg 8 in.SWPkPa Average stem water potential at 

eight inches depth
11 TotPrecin Total precipitation in inches
12 TotalSolarRadMJ/mA2 Total solar radiation for a 24 h period
13 EToin Evapotranspiration from the soil in 

inches with reference to grass
14 ETrin Evapotranspiration from the soil in 

inches with reference to alfalfa

http://www.weather.wsu.edu
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of feature importance scores. It compares the observed 
number of successes (e.g., the number of times a feature’s 
importance score exceeds a threshold) with the expected 
number of successes under a null hypothesis. This test 
determines whether the observed results are statistically 
significant or can be attributed to chance. In Boruta, 
the Binomial test is employed to determine if the fea-
ture importance scores are significantly higher than the 
importance scores of the shadow features, indicating the 
importance of the original features [33].

Step 6. Repeat steps 1–5 for a predetermined number 
of iterations.

Step 7. Rank the features based on their importance 
scores and select the top n features for the final feature 
set. In Boruta, features are categorized as “Confirmed” 
if they are considered important, “Rejected” if they are 
deemed unimportant, and “Tentative” if they require fur-
ther investigation or are considered less important.

Bayesian model
The Bayesian model used with all predictors given in 
Table 1 is

 

Yij =µ + Ei + gj +

gEij +

r∑

k=1

Xikβk +

3∑

l=1

MijlβM,l + ∈ij
 (1)

Where Yij  is the response variable for the genotype j 
in environment i, µ  is a general mean, Ei  are the ran-
dom effects of locations (environments) distributed as 
E = (E1, . . . , EI)

T ∼ N
(
0, σ2

EHe

)
, where He  is the 

environmental relationship matrix as computed by [34], 
but instead of using genomic information, it was com-
puted using environmental variables; that is, He =

XeX
T
e

r
, where Xe = (X1, . . . , Xr)  is the standardize (centered 
and scaled) matrix of dimension I × r  containing the 
environmental information of I  environments and 
for each environment were measured r  environmen-
tal covariates; Xik  denotes the environmental covariate 
k measured in environment i, βk  is the beta coefficient 
corresponding to covariate Xik ; gj, j = 1, . . . , J , are 
the random effects of genotypes (lines), gEij  are the 
random effects of genotype× environment interac-
tion (GE) and ∈ij  are the random error components in 
the model assumed to be independent normal random 
variables with mean 0 and variance σ2. Furthermore, 
it is assumed that g = (g1, . . . , gJ)

T ∼ N
(
0, σ2

gKg

)

, where Kg  is the genomic relationship matrix as com-
puted by [34], which is slightly different than what [35] 
proposed, using the marker data (Kg =

MeM
T
e

p
)  where 

M e  is the standardize (centered and scaled) matrix of 
dimension J × p  containing the marker information 
of J  genotypes for which p  markers were measured. 

gE = (gE11, . . . , gE1J, . . . , gEIJ)
T ∼ N

(
0, Kgecσ

2
gE

)

, where Kgec = Kec � ZgKgZ
T
g , where 

Kec = ZeHeZ
T
e,Ze  is the design matrix of environ-

ments, �  denotes the Hadamard product and Zg  is 
the design matrix of genotypes. It is important to point 
out that the dimension of Xe  is reduced after variable 
selection and in place of being I × r , it is I × rs  with 
rs ≤ r . Mijl  denotes the lth  multispectral index, with 
l = 1,2, 3 computed from the multispectral information 
for the jth line and ith environment and βM,l  denotes the 
beta coefficient corresponding to the lth  multispectral 
index. In vector notation the information of the three 
multispectral index (UAS data) is denoted as M ; with 
M ij = [M11, . . . ,MqJ, . . . ,MIJ ]; M ij = [Mij1,Mij2,Mij3] 
and βM = [βM,1βM,2, βM,3] . It is crucial to highlight that 
the efficiency of incorporating replicated lines in each 
environment is a noteworthy aspect, particularly in 
relation to how design matrices and linear kernels are 
computed for all implemented predictors. For beta coef-
ficients (βk  and βM,l ) a prior assumed independent and 
identically normal distribution, with mean zero and vari-
ance σ2

βk
(or σ2

βM,l
) were used. For the implementation 

of model (1) we used the BGLR R library of [36] where 
terms with these priors for the beta coefficients are 
specified in model as Bayesian Ridge Regression (BRR), 
whereas for the remaining components of model (1) each 
component is specified as model RKHS, where RKHS 
stands for Reproducing Kernel Hilbert Spaces. Since the 
implementation was done under a Bayesian framework 
all terms in the predictor are assumed random variables.

Predictors implemented
It should be noted that among the models, only Model 
M0 does not utilize environmental covariates, while the 
remaining models employ all environmental covariates or 
a subset of these covariates. All implemented predictors 
are given in Table 1.

To provide a better understanding of the contents of 
Table  1, we will describe the computation of certain 
predictor components. For example, Ke  is calculated 
as Ke =

ZeZ
T
e

I
, Kge = Ke � ZgKgZ

T
g , and Xe.avg  repre-

sents an average covariate derived from the environmen-
tal covariates (Xe ). When the feature selection is not 
applied, Xe  includes all available environmental covari-
ates. However, when the feature selection is applied, only 
the selected covariates are included. The average covari-
ate, Xe.avg , is computed from Xe  with an order of I × rs  
after variable selection. The computation of Xe.avg  
involves the following steps:

1. Determine the correlation direction (positive or 
negative) of each column of Xe  using only the 
training set.
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2. Multiply the columns of Xe  with a negative 
correlation by -1 to ensure a positive correlation 
with the response variable. The resulting matrix is 
denoted as X∗

e .
3. Compute Xe.avg  for the entire data set by taking the 

average of each row of X∗
e.  As a result, Xe.avg  has 

an order of I × 1. However, since the covariates are 
measured at the environment (location) level, Xe.avg  
is expanded to an order of IJ × 1, where each 
covariate is the same for all lines within the same 
environment.

By using Xe.avg  as a single covariate, only one beta coef-
ficient needs to be estimated instead of the rs  beta coef-
ficients required when using the Xe  matrix as an input. 
In predictor M9, it is important to note that Xgec rep-
resents the selected covariates, but instead of select-
ing only from the environmental covariates, the Boruta 
selection was performed on both markers and environ-
mental covariates together. Pearson’s correlation and the 
Boruta method were used for feature selection, which 
will be explained in the following section. All predictors 
presented in Table 1 were implemented using the BGLR 
package by Pérez and de los Campos [36] in the R statisti-
cal software [37].

The training of each model differs in terms of the envi-
ronmental covariates included in each data set. There-
fore, Model M0 stands apart from the other models as it 
makes predictions without incorporating any information 
from the environmental covariates. As a result, the lin-
ear kernels Ke =

ZeZ
T
e

I
 and Kge = Kec � ZgKgZ

T
g  were 

computed only with the design matrices of environments 
(Ze ). On the other hand, Model M1 is the same as Model 
M0 but includes all available environmental information 
as covariates (Xe ) without variable selection. Model 
M2 is similar to Model M0, but the computation of lin-
ear kernels (Kec = ZeHeZ

T
e and Kgec = Kec � ZgKgZ

T
g  

takes into account the environmental covariates after 
variable selection using Pearson’s correlation.

Model M3 is equivalent to Model M1, but it uses the 
covariates Xe  after variable selection with Pearson’s cor-
relation. Model M4 is identical to model M2, but it also 
incorporates environmental information as covariates 
(Xe ) following variable selection with Pearson’s corre-
lation. Model M5 is similar to model M3, but instead of 
solely utilizing Xe  as covariates after variable selection 
with Pearson’s correlation, it also includes the square of 
each column of Xe  as covariates (Xe2 = Xe +Xe ∗Xe

). Model M6 is analogous to model M3, but instead of 
employing Xe  as a covariate after variable selection 
with Pearson’s correlation, it only employs the average 
covariate (Xe.avg). Model M7 is equivalent to model M4, 
except that it incorporates the average covariate (Xe.avg) 
instead of Xe  as a covariate after variable selection using 

Pearson’s correlation. Model M8 is identical to model M7, 
except that the variable selection process was conducted 
simultaneously using both Pearson’s correlation and 
Boruta. Model M9 performed variable selection of mark-
ers and environmental covariates simultaneously using 
the Boruta algorithm, resulting in the selected covariates 
referred to as Xgec , while Ke and Kge  were computed 
solely using the design matrix of the environment (Ze

). Model M10 is similar to model M3, but the selection 
of environmental covariates was accomplished using the 
Boruta algorithm, which selected both tentative and con-
firmatory covariates. It is important to note that in model 
M10, the Boruta algorithm was also applied to select 
markers, and subsequently, the linear kernels of lines 
(Kg ) and genotype by environment (Kge ) interactions 
were computed using the selected markers. Model M11 
is equivalent to model M8, but the selection of environ-
mental and marker covariates was performed exclusively 
using the Boruta algorithm, selecting only confirmatory 
covariates. Model M12 is identical to model M11, except 
that the Boruta algorithm was utilized to select both ten-
tative and confirmatory covariates. Model M13 is similar 
to model M12, but the selected environmental covari-
ates were also employed to compute the linear kernels 
of environments (Kec ) and genotype by environment 
(K.gec) interactions. Finally, model M14 is equivalent to 
model M13, but only confirmed features were selected 
using the Boruta algorithm. For further details on each 
predictor, please refer to Table  1. Even though certain 
predictors used similar information, we evaluated them 
since some predictors used this information as covariates 
(with particular priors) and in other cases were used as 
linear kernels under the assumption of random effects. 
Since we made feature selection of markers and envi-
ronmental covariates with the Boruta algorithm in some 
models (M9, M10 and M11), the results of these models 
in which feature selection was performed with Pearson´s 
correlation (models M2-M7) were not directly compared.

Assessment of predictive performance
To evaluate the accuracy of predictions, a leave-one-
environment-out (LOEO) cross-validation approach was 
utilized for each data set. This cross-validation strategy 
is important when breeders are interested in predicting 
phenotypes (or breeding values) of all genotypes under 
study in a complete environment. For this reason, this 
cross-validation is very challenging due to the fact that 
we want to predict performance of all genotypes in a new 
or untested environment with no available information in 
the training set. It is important to point out that LOEO 
cross-validation is considerably more difficult than when 
we use a cross-validation for tested lines in tested envi-
ronments (also called CV2 Cross validation [38–39]) 
since this LOEO cross validation is for tested lines in 
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untested environments (also called CV0 cross validation 
[38, 39]). The LOEO strategy involved iteratively con-
structing the training set by excluding one environment 
(testing set) while utilizing the remaining environment 
as the training set. The evaluation methodology adhered 
to the approach is described by Montesinos-López et al. 
[40] with more details. However, it should be noted that 
the selection of environmental covariates mentioned in 
Table 1 was performed after splitting the data into train-
ing and testing sets. Only the training set was used for 
selecting the important covariates. This approach was 
adopted to avoid data leakage, which occurs when the 
data used to train a machine learning algorithm contains 
information that the model is trying to predict. This leak-
age of information is a primary error in machine learning 
and can greatly impact the performance and validation 
accuracy of the model. Utilizing the entire data set before 
splitting it into training and testing sets leads to overly 
optimistic results that may not translate well into real-
world applications. Also, it is important to point out that 
the UAS information was not included in the test data.

The prediction accuracy was measured using the Nor-
malized Root Mean Squared Error (NRMSE). Addi-
tionally, we conducted a computation to determine the 
number of instances where model m outperformed 
model m’ in terms of NRMSE, considering m = 0,…,14 
and m’ = 0,…,14, with m being different from m’. This 
count was performed for each data set, taking into con-
sideration the specific traits and environments being 
evaluated. Furthermore, we calculated the Relative Effi-
ciency (RE) of each model relative to the worst model, 
using the following expression:

 
RE =

(
NRMSE (Mi)

NRMSE (Mk)
− 1

)
× 100

Let Mi  represent any of the models, where i ranges from 
0 to 14, within each data set. Similarly, Mk  represents the 
model with the highest NRMSE value among all models 
in a specific data set.
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