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Abstract 

Background Direct RNA sequencing (dRNA‑seq) on the Oxford Nanopore Technologies (ONT) platforms can pro‑
duce reads covering up to full‑length gene transcripts, while containing decipherable information about RNA base 
modifications and poly‑A tail lengths. Although many published studies have been expanding the potential of dRNA‑
seq, its sequencing accuracy and error patterns remain understudied.

Results We present the first comprehensive evaluation of sequencing accuracy and characterisation of systematic 
errors in dRNA‑seq data from diverse organisms and synthetic in vitro transcribed RNAs. We found that for sequencing 
kits SQK‑RNA001 and SQK‑RNA002, the median read accuracy ranged from 87% to 92% across species, and deletions 
significantly outnumbered mismatches and insertions. Due to their high abundance in the transcriptome, heteropoly‑
mers and short homopolymers were the major contributors to the overall sequencing errors. We also observed sys‑
tematic biases across all species at the levels of single nucleotides and motifs. In general, cytosine/uracil‑rich regions 
were more likely to be erroneous than guanines and adenines. By examining raw signal data, we identified the under‑
lying signal‑level features potentially associated with the error patterns and their dependency on sequence contexts. 
While read quality scores can be used to approximate error rates at base and read levels, failure to detect DNA adapt‑
ers may be a source of errors and data loss. By comparing distinct basecallers, we reason that some sequencing errors 
are attributable to signal insufficiency rather than algorithmic (basecalling) artefacts. Lastly, we generated dRNA‑seq 
data using the latest SQK‑RNA004 sequencing kit released at the end of 2023 and found that although the overall 
read accuracy increased, the systematic errors remain largely identical compared to the previous kits.

Conclusions As the first systematic investigation of dRNA‑seq errors, this study offers a comprehensive overview 
of reproducible error patterns across diverse datasets, identifies potential signal‑level insufficiency, and lays the foun‑
dation for error correction methods.
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Background
Envisioned in the 1980s and developed over the next 
three decades, the nanopore sequencing technology has 
transformed the DNA and RNA sequencing landscape 
in recent years [1, 2]. Sequencing platforms released by 
the Oxford Nanopore Technologies (ONT) have enabled 
high-throughput long-read sequencing of single DNA/
RNA molecules with low experimental requirements. 
Recently, it was reported that DNA reads from the latest 
R10.4 chemistry achieved state-of-the-art  accuracy on 
bacterial genome assembly without short read polishing, 
thanks to significant improvements in the accuracy of 
homopolymer regions [3].

In addition to DNA sequencing, ONT offers currently 
the only commercial platform for the direct sequencing 
of RNA molecules (dRNA-seq) [4, 5]. Ligated to a DNA 
adapter containing a helicase motor, a polyadenylated 
RNA molecule is translocated in the 3’–5’ direction 
through a protein nanopore embedded in an electrically 
charged membrane. The translocation causes systematic 
disruptions to the ionic current flow, characteristic of 
the nucleotides passing through the pore at the time. The 
current signals are basecalled into nucleotide sequences 
with machine learning algorithms, commonly known 
as “basecallers”. Ideally, these basecallers are trained on 
diverse organisms for better generalization and fewer 
biases to rare sequences and species.

Traditionally, high-throughput RNA sequencing proto-
cols have relied on reverse transcription and/or ampli-
fication, which introduce various errors and biases that 
confound downstream analyses [6, 7]. In comparison, 
nanopore dRNA-seq avoids these biases and at the 
same time, produces reads up to thousands of bases in 
length. The ability to cover full-length gene transcripts 
at single read resolution can significantly improve on 
analyses traditionally complex with short read RNA-seq, 
such as identifying transcript isoforms and quantifying 
Poly-A tail lengths [8–10]. So far, nanopore dRNA-seq 
has been applied to diverse organisms such as DNA and 
RNA viruses [11–14], bacteria [15], archaea [16], plants 
[17–19], yeast [20, 21], fish [22], mouse [23] and humans 
[8, 24].

Another promising application of dRNA-seq is the 
characterisation of the “epitranscriptome”. Although 
over 100 types of RNA modifications are known, only a 
small subset of them, such as  m6A,  m5C, and pseudouri-
dine, are transcriptome-wide detectable [25], albeit with 
limited accuracy [26]. By sequencing RNA molecules 
directly, dRNA-seq has the potential to produce charac-
teristic signals not only for the four canonical RNA bases 
but also for the diverse family of RNA base modifications. 
So far, several functionally important RNA modifications 
are found to be detectable with dRNA-seq, with a heavy 

focus on  m6A [14, 19, 20, 24, 27], but also pseudouridine 
[28] and inosine [29]. These  modifications are detected 
by computationally identifying systematic deviations in 
signal levels or basecalling errors at potentially modi-
fied positions. This is typically performed by including 
unmodified control samples (gene knockouts or in vitro 
transcribed RNA) as baseline, due to the abundance of 
background errors even in unmodified RNAs.

Despite the growing interest in this technology, nanop-
ore dRNA-seq has been widely perceived as error-prone, 
with reported read accuracies of around 90% for single 
species [5, 15, 18], which hinders the downstream appli-
cations (by requiring control samples or short-read pol-
ishing) and limits its wider popularisation. A systematic 
examination and characterisation of dRNA-seq accuracy 
and error patterns could help 1) clarify its current limita-
tions and potential, 2) direct future computational meth-
ods to account for the underlying uncertainty/errors, and 
3) establish the foundation for improving pore chemis-
try and basecalling algorithms. Here, starting from the 
raw signal data, we re-analysed twelve public datasets 
covering a wide taxonomic range and present the first 
comprehensive benchmark of dRNA-seq accuracy using 
standardized metrics. Notably, systematic errors exist at 
both single base and motif levels that are reproducible 
across all investigated organisms, and such errors show 
strong and complex dependency on their local sequence 
contexts. In addition, we examined the relationship 
between read quality scores and error rates, and how 
adaptor detection failure can impact the read quality of 
short sequences. Lastly, following the release of the lat-
est SQK-RNA004 sequencing kit at the end of 2023, we 
evaluated and compared its accuracy and error profiles to 
SQK-RNA002 using in-house datasets.

Methods
Data sources
We collected public dRNA-seq datasets covering a 
diverse range of organisms and in  vitro transcribed 
RNAs, sequenced with the ONT direct RNA kits SQK-
RNA001 and SQK-RNA002. Sequencing datasets in raw 
fast5 files from the following studies are included in the 
analysis of sequencing accuracy and errors: 

1) native and in vitro transcribed human data [21],
2) the house mouse Mus musculus [23],
3) yeast wildtype strain SK1 [20],
4) Escherichia coli [15],
5) in-cell and in vitro transcribed SARS-CoV-2 [13],
6) Caenorhabditis elegans [30],
7) the zebrafish Danio rerio [22],
8) Arabidopsis thaliana [17],
9) Haloferax volcanii [16],
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10) in vitro transcribed short RNAs [28], from a) 
Bacillus subtilis guanine riboswitch, b) B. subtilis 
lysine riboswitch, and c) Tetrahymena ribozyme (ref-
erence length 202, 274 and 460 bases, respectively).

The reference sequences for organisms 1), 2), 4), 6), 7), 
8), and 9) are obtained from the NCBI reference genome 
database and are respectively Human Build 38 GRCh38.
p14, Mouse Build 39 GRCm39, E. coli ASM584v2, C. ele-
gans WBcel235, Zebrafish Build 11 GRCz11, A. thaliana 
TAIR10.1 and H. volcanii DS2 ASM2568v1, while the 
references for 3), 5) and 10) are provided by the original 
authors on the respective GitHub repositories.

Basecalling, mapping and filtering
Each dataset consists of raw fast5 files that were base-
called with the ONT basecaller Guppy (version 6.1.7) 
using the RNA model rna_r9.4.1_70bps_hac, with 
the option --disable_qscore_filtering to switch 
off the default read Q-score filtering threshold of 7.

The basecalled reads in fastq format are aligned to 
the respective reference genomes with minimap2 [31] 
version 2.24, with the following options -ax splice 
-k14 -uf -secondary=no --eqx --sam-hit-
only, which allows for split read alignment and disables 
secondary alignments. Aligned reads are further filtered 
to exclude supplementary alignments and reads with a 
mapping quality score (“MapQ”) lower than 20 or shorter 
than 100 bases.

To compare Guppy with the community-published 
basecaller RODAN [32], we used the pretrained model 
provided at its GitHub repository (https:// github. com/ 
biodl ab/ RODAN). As RODAN failed to process some of 
the older versions of single read fast5 files for some data-
sets, we converted them into multi-read fast5 files using 
the single_to_multi_fast5 function provided in 
the ont_fast5_api library (https:// github. com/ nanop 
orete ch/ ont_ fast5_ api).

Definition of read accuracy
After alignment and filtering, the alignment errors 
(mismatches, insertions and deletions) in the reads are 
counted by parsing through the CIGAR string in the 
.sam file format. For evaluating read accuracy, we follow 
the definition in [33],

where Nmatch and Nmis are the number of bases on a read 
that are reported as matches and mismatches, and Ndel 
and Nins are the total length of all deletions or inser-
tions as reported by the aligner. This definition of read 

Read Accuracy =
Nmatch

Nmatch + Nmis + Ndel + Nins

accuracy is also commonly known as the “BLAST iden-
tity” and has been used by ONT as the official metric of 
read accuracy (https:// labs. epi2me. io/ quali ty- scores/).

Similarly, the read-level mismatch, insertion and dele-
tion rate is defined as

Definition of base and motif errors
To study error patterns at single nucleotide and motif 
levels, we define the accuracy of a base or a motif in a 
dataset as the frequency of the base/motif being cor-
rectly basecalled/matched as the reference base/motif, 
e.g. a 90% accuracy of base A would be equivalent to A 
being correctly basecalled 90% of the times over the 
whole dataset. Similarly, a mismatch/deletion error rate 
of a base/motif is defined as the frequency of the base/
motif being mismatched or deleted. In the case of motifs 
(length ≥ 2 ), both partial and complete mismatches and 
deletions are counted as a single instance of error. On the 
other hand, an insertion error rate of a motif is defined 
as the frequency of the motif having inserted base(s) any-
where between its first and last base (independent of the 
length of insertion). For example, GAA and GAAA are 
both counted as an insertion error for the motif GA. For 
tractable computation, larger datasets are subsampled 
to 200,000 reads each and reads aligned to soft–masked 
positions (represented as lowercase letters) and ambig-
uous positions (represented as N/n) in the reference 
genomes are excluded.

For the comparative analysis of hetero- and homopol-
ymers, we define homopolymers as motifs consisting 
of only one nucleotide type, starting from length 2. For 
each aligned read, the aligned segment of the reference 
sequence is parsed and positions of homopolymers are 
recorded. Homopolymers of a certain length are counted 
only once and not further counted as multiple instances 
of shorter motifs (e.g. AAAA is counted as one homopol-
ymer motif of length 4 and not two of length 2). Heter-
opolymers are defined as positions that do not belong to 
homopolymers and therefore, can also be of length 1. For 
example, in the case of AAGCC, there are two homopol-
ymers of length 2 and one heteropolymer of length 1. 
Deletion and mismatch errors are counted and grouped 
based on whether their positions are homopolymeric. 
As indel errors are most often called at the two ends of 
a homopolymer (as opposed to in the middle), insertions 
are excluded in the comparison due to the ambiguity 
regarding whether they originated from a homopolymer 
or a heteropolymer. The accuracy of a homopolymer 
motif is defined as the frequency of the homopolymer 

Mis/Ins/Del =
Nmis/ins/del

Nmatch + Nmis + Ndel + Nins

https://github.com/biodlab/RODAN
https://github.com/biodlab/RODAN
https://github.com/nanoporetech/ont_fast5_api
https://github.com/nanoporetech/ont_fast5_api
https://labs.epi2me.io/quality-scores/
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being correctly basecalled (both the nucleotide type and 
length need to be correct).

For the analysis of context-dependent errors, we com-
puted the frequency of incorrect basecalls of the center 
base within a 3-mer context where the first and last bases 
were correct, in order to limit errors propagating through 
the neighboring positions.

Signal analysis
The signal event data in the basecalled fast5 files output-
ted by Guppy were extracted using the ont_fast5_
api library. Guppy first determines the start signal 
position of basecalling (named first_sample_tem-
plate). The raw signals are first segmented with a 
chunk size of ten observations each and then the transi-
tions between nucleotides are determined by Guppy and 
stored in the “Move” table. Therefore, the length of raw 
signals of a read is roughly first_sample_template 
+ 10 * the length of Move.

The mean signal intensities and standard deviations are 
computed from the signal segments assigned to a base at 
only the correctly basecalled positions (based on align-
ment). The dwell times are computed as the length of the 
signal segments assigned to a base (and thus are multi-
ples of 10).

To plot the signals of a 3-mer motif, due to the dif-
ferences in dwell times, a running window is applied to 
extract the mean signal intensity with a step size of length 
of signals divided by 10 (and thus resulting in ten signal 
samples for each position). Only the correctly basecalled 
3-mers at all three positions are included.

Read quality score
In addition to the per-base quality scores typically 
found in fastq files, Guppy also outputs a quality score 
per read, “read Q-score”, which is reported as mean_
qscore_template in the sequencing_summary.
txt file. Q-scores are typically used as a filter for poorly 
sequenced and basecalled reads. Guppy, by default, clas-
sifies reads with a Q-score lower than 7 into the failed 
folder, which is usually excluded in downstream analysis.

As the quality scores are calibrated to follow the 
expected error distribution of Phred quality scores [34], 
the expected error probability of a read is then

where P is essentially 1 - Expected Read Accuracy. Con-
sequently, Guppy’s default read filter at a Q-score of 7 
corresponds to an expected error rate of 20%, or equiva-
lently, a read accuracy of 80%.

Alternatively, the read Q-score can be obtained from 
fastq files by calculating the mean per-base error rate, fol-
lowed by a back conversion to Phred Q-score:

(1)P = 10
−Q-score

10

where qi is the individual base quality for base i in a read 
of length N.

Sequencing of the curlcake sequences
To facilitate efficient evaluation of basecalling errors 
across all possible 5-mer sequences we employed the 
so-called “curlcake” sequences previously designed by 
[20]. We performed PCR amplification with Primestar 
GXL (Takara Bio) from plasmids (Addgene #139340-
139343) using primers GCC GGT AAT ACG ACT CAC 
TAT AGG  and TTT TTT TTT TCA GGA AAC AGC TAT 
GAC CAT G according to manufacturer’s instructions, 
followed by quality control on agarose gel and purifica-
tion with 0.5 volumes Mag-Bind TotalPure NGS (Omega 
Bio-tek) SPRI beads. In  vitro  transcription of 200 fmol 
DNA template was performed in a 10 µ l reaction con-
taining 40 mM Tris pH 7.5, 18 mM  MgCl2, 10 mM DTT, 
1 mM spermidine, 5 mM NTPs, 40 U RNasin (Molox), 1 
µ l YIPP (NEB) and homemade T7 RNA polymerase for 
3 h at 37 ◦ C, followed by addition of 9 µ l  H2 O and 1 µ l 
DNase I-XT (NEB) followed by incubation at 37 ◦ C for 
30 min. RNA was then purified with 1.6 volumes of Mag-
Bind TotalPure NGS (Omega Bio-tek) SPRI beads and 2 𝜇g  
was poly-adenylated with E. coli Poly(A) Polymerase 
(NEB) according to manufacturer’s instructions, followed 
by another SPRI bead purification with 1.6 volumes.

For direct RNA library preparation the a 10 µ l ligation 
reaction was prepared containing 200 ng of poly-adenylated 
RNA, 1 µ l of 1.4 µ M RTA adapter, 2 µ l NEBNext Quick 
Ligation Buffer (NEB), 0.2 µ l RNasin (Molex) and 1 µ l T4 
DNA Ligase high concentration (NEB), incubated at room 
temperature for 15 min before purification with 0.5 vol-
umes of SPRI beads. The ligated RNA was eluted in 10 µ l 
RNase-free  H2 O before ligation of the RMX or RLA motor 
protein for RNA kits SQK-RNA002 and SQK-RNA004 
respectively according to manufacturer’s instructions. The 
prepared libraries were loaded onto a MinION R9.4.1 (FLO-
MIN106D) flow cell or Promethion RNA (FLO-PRO004RA) 
flow cell respectively and sequenced for 24 hours.

The fast5 and pod5 files were basecalled with the 
ONT basecaller Dorado version 0.4.3, using the 
“rna002_70bps_fast@v3”  model for  SQK-RNA002 and 
“rna004_130bps_sup@v3.0.1” for  SQK-RNA004 respec-
tively. The analysis on read and motif errors are identical 
to previous sections.

Results
Deletions outnumber mismatches and insertions
We downloaded publicly available dRNA-seq datasets 
in raw fast5 format consisting of both native and in vitro 

(2)Read Q-score = −10 log10
1

N
10−qi/10



Page 5 of 15Liu‑Wei et al. BMC Genomics          (2024) 25:528  

transcribed (IVT) samples of diverse organisms. The raw 
signal data were then basecalled into reads with the ONT 
basecaller Guppy, without the default read quality filter-
ing. The basecalled reads were aligned to the respective 
references and further filtered by alignment quality and a 
minimum length threshold of 100. The statistics regard-
ing each dataset included in the evaluation are given in 
Supplementary Table 1. The datasets range from 22,315 
aligned reads in the archaeon H. volcanii to over 2.3 mil-
lion aligned reads in the in vitro transcribed SARS-CoV-2 
sample. For most organisms, the median read accuracy is 
within 88%–92%, with the mouse and the zebrafish data-
sets being the least accurate at 87.8% and 86.7%, respec-
tively. The median read accuracy of ∼90% is in general 
agreement with previous reports for native transcrip-
tomes of single organisms with dRNA-seq [5, 15, 18].

The distributions of mismatches, insertions and dele-
tions are similar across most organisms, where deletions 
represent the most frequent type of error at around 5% 
per read, while mismatches and insertions each account 
for 2–3% (Fig.  1a, Supplementary Table  1). The reads 
from the IVT human sample have overall 1.5% fewer 
errors than the native human sample, possibly due to 
the absence of RNA base modifications. However, such 
a difference is not seen between the two SARS-CoV-2 
samples.

To investigate whether the lengths of reads are related 
to their accuracy, we grouped reads by length, and found 
that the median read accuracy remains roughly constant 
as read length increases (Supplementary Figure  1a, b). 
However, the distribution of read accuracy tends to have 
a larger variance in shorter reads.

Homopolymers and heteropolymers contribute equally 
to sequencing errors
While homopolymeric regions (motifs consisting of 
repeats of one nucleotide) represent the majority of 
errors in nanopore DNA sequencing [3, 35, 36], heter-
opolymers and short homopolymers contribute simi-
larly to the overall sequencing errors in dRNA-seq data. 
In the native human transcriptome, heteropolymers and 
short homopolymers (of length 2 and 3) represent 91.5% 
of the sequenced dataset (Fig.  1b, left axis) and exhibit 
similar deletion and mismatch rates (Fig. 1b, right axis). 
Although longer homopolymers are more errorneous 
with higher deletion rate, they are also much rarer (less 
than 1% of nucleotides are in homopolymers over length 
of 7). The relative abundance of hetero- and homopoly-
mers result in more than 50% of the deletion and mis-
match errors arising from heteropolymeric regions 
(Fig. 1c, native human data) and is similar across datasets 
of other species (Supplementary Figure 2).

As expected, we observed an increase in the dele-
tion rate of homopolymer motifs as the motif length 
increases, whereas mismatches remained stable (Fig. 1b, 
right axis). We then computed the accuracy of homopol-
ymers of specific nucleotides at different lengths across 
the datasets and found that A/U homopolymers are 
more accurate than C/G homopolymers (Supplementary 
Figure  1c). Interestingly, in nanopore DNA sequencing 
datasets [36], higher accuracies of A and T homopoly-
mer motifs have also been observed. This is likely due to 
the larger presence of A/U homopolymers in the training 
data for basecallers arising from their overrepresentation 
in genomes and transcriptomes [37]. Indeed, long A/U 
homopolymers are more abundant compared to C/G 
homopolymers across all the dRNA-seq datasets (Sup-
plementary Figure 1d).

Systematic errors of single nucleotides and motifs
To explore how sequencing errors are distributed at sin-
gle nucleotide level, we computed the frequency of (in)
correct basecalls across the four RNA bases (Fig. 2a, Sup-
plementary Figure 3). Across all datasets, guanines have 
consistently the highest accuracy, whereas cytosines and 
uracils tend to be the least accurate. Similar to the accu-
racy at read level, deletions remain the most frequent 
type of error at the individual base level, but are much 
more prevalent in Cs and Us. In terms of mismatches, C 
bases are more likely to be basecalled as U while G bases 
are more often confused with A. The mismatch error pat-
terns are consistent with the similarity of the raw signals 
between the bases (Fig. 2b), where the four bases ranked 
by signal intensity are G > A > U > C (Supplementary 
Figure 4a, left panel, thus C is closest to U). Among the 
signal features, the dwell times (the number of raw signal 
observations assigned to a single basecall by Guppy) of G 
and A bases are considerably shorter than U and C bases 
(Fig. 2c). The difference in dwell times could be possibly 
related to the larger amount of deletion errors of U and 
C bases, for which the basecaller may require more infor-
mation to correctly determine the number of bases.

At each time step of nanopore sequencing, around 
five consecutive RNA bases reside in the pore simulta-
neously and produce a signal event, which, if distinct 
enough from the surrounding signals, will lead to a cor-
rect basecall. Consequently, the surrounding sequence 
neighborhoods of a particular position, also known 
as the sequence contexts, are known to have an effect 
on accuracy. To examine the impact of sequence con-
texts on the accuracy in dRNA-seq data, we extended 
the analysis of single nucleotide errors by including 
the 3-mer sequence contexts. Here we study the effect 
of sequence contexts by considering the mismatch and 
deletion rates of the center base in a 3-mer, in which 
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the first and last bases are correctly basecalled. The 
strongest bias towards specific sequence contexts are 
found in cytosine (Fig.  2d), whereas guanine is the 
most robust as a center base over its sequence con-
texts (Supplementary Figure  4b). We did not observe 
a general correlation between mismatch and deletion 
errors, reaffirming that the two errors likely arise from 
different signal-level causes. Extending the sequence 
contexts from 3-mers to 5-mers further shows more 

detailed separation of error profiles (Supplementary 
Figure 5).

To exemplify the signal impact of sequence contexts, 
we analysed the raw signals of two 3-mer motifs sur-
rounding cytosine, GCA and UCU, which are respec-
tively the most and least accurate 3-mer centered at C, 
together with and their closest mismatched counter-
parts, GUA and UUU (Fig.  2e). While GCA and GUA 
motifs show more distinct separation in signal space at all 

Fig. 1 Sequencing accuracy of nanopore dRNA‑seq and the error distribution in homopolymers versus heteropolymeric regions. a An overview 
of read error rate across diverse organisms, grouped by mismatch, insertion and deletion rate per read. Reads with accuracy lower than 70% 
were filtered for visualization. IVT – in vitro transcribed RNA. Samples are numbered from left to right in the figure legend. b The occurrence 
frequency distribution (left axis, in log scale) and the the error rate per base (right axis) in heteropolymeric and homopolymeric motifs of different 
lengths in the native human dataset. Error types are indicated using line styles. c The relative distribution of all mismatch and deletion errors 
in homopolymeric and heteropolymeric regions in the native human dataset. Homopolymer lengths are indicated in brackets and those of length 
longer than 3 are grouped together for visualisation
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three positions, the signal differences of UCU and UUU 
are minimal, especially at the center position. In such 
an absence of distinct signals, we suspect that the base-
caller would have to rely on long-range information to 

determine the identity of the center nucleotide, resulting 
in increased complexity and errors.

Similarly, we found large differences between the 
errors of length-2 heteropolymeric motifs, especially for 

Fig. 2 Systematic errors and context dependency in nanopore dRNA‑seq. a Confusion matrix showing the frequencies of each base being correctly 
basecalled, miscalled or deleted, computed by taking the mean of all samples. b The relationship between signal similarity of nucleotides and their 
mismatch profiles. The arrow types indicate the mismatch rate from one nucleotide to another. c The distributions of dwell time at correctly 
basecalled positions, grouped by nucleotide type. d The error profiles of C across heteropolymeric 3‑mer contexts, conditional on that the 
neighboring two bases are correctly basecalled. 3‑mers with internal homopolymeric motifs were excluded in the plot, due to ambiguity of deleted 
positions (for example, a C deletion of CCA could be assigned to the first or the center position). Each data point represents the mean error rate 
of all such 3‑mer motifs in one dataset. e The signal distribution of two pairs of motifs (GCA vs. GUA and UCU vs. UUU) at correctly basecalled 
positions. The concrete lines are the mean signal intensity and the shaded error bars are the mean signal standard deviation at each position. As 
the dwell times can differ, a running window is applied to extract the mean signal intensity with a step size of the signal length divided by 10, 
resulting in 10 signal samples for each base. The red dotted lines represent the nucleotide boundaries at signal positions 10 and 20. f The error 
rate of 2‑mer heteropolymeric motifs across the samples, grouped by error type. Each data point corresponds to the accuracy of a motif in one 
dataset. g The insertion error profiles of GA and CU motifs, based on the native human dataset. Inserted motifs fewer than 5% of the total number 
of insertions are grouped into “others”
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deletions and mismatches (Fig.  2f ). Among the 2-mers, 
GA/AG are the most accurate while UC/CU have con-
sistently the lowest accuracy. Interestingly, although most 
2-mers are close to their mirrored counterparts (“XY” 
and “YX”), there exist clear differences between certain 
pairs. In particular, GC motifs have consistently higher 
accuracy than CGs. Whilst deletions were generally 
more common than mismatches and insertions, for some 
2-mers mismatch errors were very close to deletions, 
or even higher as seen in the “CG” motif. One possible 
explanation for the lower deletion error in some 2-mers 
is that these motifs are more different in signal space, and 
as a consequence more distinguishable by the basecaller. 
Insertion errors were similar for all 2-mers, suggesting 
that insertions likely arise from signal noise that is not 
motif-specific. The inserted bases generally consist of 
repeats of the second base in the motif, but can also occa-
sionally involve other bases, for example, GA −→ GUA 
(Fig. 2g, Supplementary Figure 6).

Estimating read errors from read and base quality scores
The basecaller-generated quality scores are a helpful esti-
mate for read accuracy without relying on the availabil-
ity of reference genomes. There are two types of quality 
scores provided by ONT basecallers such as Guppy, 1) 
read-level quality scores (Q-scores) in the sequence_
summary.txt file, and 2) base-level quality scores 
encoded as ASCII characters found in fastq files for each 
base on each read. Both types of quality scores are Phred 
quality scores, e.g. Q10 is equivalent to an error rate of 
10% and Q20 equivalent to 1% (Equation 1). For dRNA-
seq basecalling with Guppy, the default read Q-score 
filter is set to 7 (corresponding to an expected read 
accuracy of 80%). Reads with a lower Q-score than 7 are 
stored in the failed folder and are typically not included 
in downstream analysis.

To evaluate the accuracy of basecaller-estimated error 
rates, we compared the estimated error rate from read 
Q-scores with the empirical read error rates measured 
after alignment. For most organisms, the measured read 
error rates can be reasonably estimated at read Q-scores 
higher than 10, while at lower Q-scores the read error 
is often overestimated (Fig.  3a). This suggests that the 
default Q-score filter of 7 may be overly stringent. One 
important note here is that the measured read errors are 
a result of both basecalling and alignment. That is, align-
ers such as minimap2 employ “soft clipping” and do not 
always align reads at full length. Therefore, the empirical 
read error rates only reflect the errors at the aligned part 
of the reads. Indeed, reads with lower Q-scores tend to 
have more soft-clipped bases (Fig. 3b), indicating a larger 
number of errors at the start or end of the reads.

In addition to the read Q-scores, the base-level qual-
ity scores for each basecalled read can be useful in pre-
dicting per base errors in the basecalls (mismatches and 
insertions). We found that correctly sequenced bases 
tend to have higher quality scores than mismatched 
and inserted positions (Fig.  3c). Moreover, except for 
uracil, the per-base error rate can be accurately esti-
mated when base-level quality scores are higher than 
15 (Fig. 3d).

Theoretically, the read Q-scores are obtained by the 
log transformation of the mean per base error estimate, 
based on the relationship described in Equation 2. How-
ever, we observed a systematic deviation between the 
empirically computed Q-scores and the original read 
Q-scores reported by Guppy, especially at higher values 
(Fig. 3e). This deviation is found across all datasets and is 
highly linear (fitted with an ordinary least square model, 
p-value ≈ 0).

Adapter detection failure
In dRNA-seq, RNA molecules are ligated to a 3’ DNA 
sequencing adapter (Fig. 4a). As a result, the start of the 
read contains signals from the DNA adapter. ONT base-
callers such as Guppy have a built-in functionality to 
detect the end of the DNA adapter and begin basecall-
ing only at the start of the RNA molecule (recorded as 
first_sample_template in the fast5 files).

Whilst read lengths were not found to impact read 
accuracy (Supplementary Figure 1b), we observed sys-
tematic biases in the length distribution of soft-clipped 
bases. In contrast to the 5’ end, the length distribution 
of the soft-clipped bases at the 3’ end showed a clear 
bimodal pattern, with a second mode locating roughly 
between 50 and 130 bases and accounting for 30% of 
the reads (Fig. 4b, native human). The unique bimodal-
ity of 3’ soft-clips are found across datasets, with the 
second mode accounting for up to 41.5% of the reads 
in the zebrafish sample (Supplementary Figure  7), 
indicating that this is a common pattern in dRNA-seq 
data.

Upon manually inspecting the signal data of the 
reads, we discovered that the soft–clipped bases at the 
3’ end were erroneous basecalls originating from the 
DNA adapter. For many of these reads, Guppy began 
basecalling at the beginning of the adapter, instead 
of at the start of the RNA segment. The beginning of 
reads with this issue typically contains a jump in signal 
intensity that is comparable to the one typically seen at 
the end of the adapter, marking the DNA/RNA bound-
ary (Fig. 4c).

To evaluate the impact of adapter detection failure on 
the quality of downstream RNA basecalls, we compared 
the alignment error rates and basecall quality scores 
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of reads with and without successful adapter detec-
tion. We found that basecalls in the DNA adapter are 
of low quality (Supplementary Figure  8a), but we did 
not observe that having these spurious basecalls at the 
start of the read negatively impacts the error rate of the 
subsequent RNA basecalls (Supplementary Figure  8b). 
However, for shorter reads (less than 400 bases), we 
observed that the spurious DNA basecalls significantly 
impact the read Q-score, dragging it below the default 
Q-score cutoff of 7 and leading to unnecessary data loss 
(Fig. 4d, Supplementary Figure 8c).

Comparison with the community basecaller RODAN
For dRNA-seq data, RODAN [32] is currently the only 
non-ONT basecaller published by the research com-
munity. To examine whether RODAN has significantly 
improved over Guppy in basecalling performance, we 
re-basecalled all the datasets in this study with RODAN 
and compared its performance with Guppy (Supple-
mentary Table  2). Among the datasets, four organisms 
(native human, C. elegans, E. coli, and Arabidopsis) were 
included in the training data of RODAN. RODAN per-
formed 2–5% better than Guppy in three of these four 

Fig. 3 Read and base quality scores in dRNA‑seq. a The relationship between read Q‑scores and read error rates. First, Q‑scores of each sample 
are divided into intervals of size 0.2 and the mean error rates of all reads belonging to their respective Q‑score intervals are computed. The lines 
are then plotted by interpolating from the mean error rates of neighboring intervals. The dashed line is computed from Equation 1 and reflects 
the theoretical (expected) error rates based on the Phred quality scores. b The relationship between read Q‑scores and the aligned fraction 
of reads after alignment for each dataset. c The distribution of per base quality scores, grouped by the per‑base error type. d The relationship 
between per base quality scores and per‑base error rate (mismatch rate + insertion rate), grouped by nucleotide. e The relationship between read 
Q‑scores and “empirical” Q‑scores computed from per base quality scores of reads in fastq files, based on the native human sample. The linear model 
is fitted by the ordinary least square method
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datasets (except Arabidopsis). In the species outside its 
training set, RODAN has a 1–2% higher median read 
accuracy than Guppy on the mouse, H. volcanii, the short 
RNAs and the IVT SARS2 datasets; however, on the 
zebrafish dataset its median read accuracy is 4.8% lower 
than Guppy.

While the read accuracies are comparable on most 
datasets (Supplementary Figure  9), the reads from 
RODAN have shorter median aligned read lengths in 10 
out of 12 datasets (Fig. 5a, Supplementary Table 2). The 
largest drop in the aligned read lengths is observed in the 
native SARS2 dataset, where the median read length from 

Fig. 4 Adapter detection failure in Guppy. a A graphical illustration of the adapter trimming process. Polyadenylated RNA molecules are ligated 
with a DNA adapter at the 3’ end. The ONT basecaller will first perform adapter trimming before starting to basecall. b The length distribution 
of the soft‑clipped bases at the 5’ and 3’ ends of reads, the latter of which shows a clear bimodal distribution, indicative of adapter detection 
failure, based on the native human sample. c A signal visualization of a selected read whose adapter failed to be detected by Guppy. The left y‑axis 
shows the signal intensity value (in pA) and the right y‑axis shows the quality scores per base. d The distribution of read Q‑scores depending 
on whether the adapter was detected successfully, grouped by read length, based on the short RNA dataset. Adapter detection failure can reduce 
Q‑score for short reads, leading to them being filtered at the conventional Q‑score threshold of 7 (dashed line)
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RODAN is 708 nucleotides shorter, i.e. a 34% decrease. 
To explore whether RODAN’s performance is related to 
read length, we grouped reads by length and found that 
RODAN performs overall better than Guppy in shorter 
reads, but the improvement diminishes as read length 
increases, with the exception of organisms in RODAN’s 
training dataset (Fig. 5b).

Lastly, the systematic sequencing errors at single nucle-
otide and motif levels are also prevalent in the reads 
basecalled by RODAN (Supplementary Figure  10), sug-
gesting that the fundamental causes of sequencing errors 
reported in this study are not basecaller-specific, but 
could rather be related to intrinsic difficulties imposed by 
the raw signal data.

Update on the direct RNA sequencing kit SQK‑RNA004
To compare the performance of dRNA-seq sequencing 
kits, we generated synthetic in  vitro transcribed “curl-
cake” RNA with two exisiting direct RNA sequencing 
protocols, SQK-RNA002 and the latest SQK-RNA004, 
which was released by ONT at the end of 2023. The curl-
cake sequences were first introduced in [20] and consist 
of 4 artificial RNA sequences. Each curlcake sequence is 
around 2,000 - 3,000 nucleotides in length and was com-
putationally designed to contain all possible 5-mer con-
texts with high folding energy (software from https:// cb. 
csail. mit. edu/ cb/ curlc ake/). The overall read accuracy 
of the RNA004 sample is 93.5%, which is an improve-
ment over 92.1% in RNA002. The improvement in read 

Fig. 5 Comparison of basecalling performance between Guppy and the community basecaller RODAN. a The joint and marginal distributions 
of read length and read accuracy in 1) the native human, 2) SARS2 and 3) zebrafish samples. Each dataset was subsampled to 200,000 reads 
due to the runtime for kernel density estimation. b The relationship between aligned read length and the performance difference of RODAN 
versus Guppy. The � Error rate is  ErrorGuppy ‑  ErrorRODAN, thus a positive value means RODAN is more accurate than Guppy. The symbols represent 
whether the dataset was present ( • ) or absent ( × ) in the training set of RODAN

https://cb.csail.mit.edu/cb/curlcake/
https://cb.csail.mit.edu/cb/curlcake/
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accuracy was mainly a result of reduced mismatch and 
insertion errors, while deletion error rate remained high 
(Fig. 6a).

At the single nucleotide level, A had the largest 
improvement of 1.7% in match rate and a 0.4% decrease 
in deletion rate with RNA004 (Fig. 6b). Similarly to previ-
ous kits, C and U remain the two least accurate nucleo-
tides, with even a slight increase in deletion errors. At the 
2-mer level, all motifs saw a decrease in mismatches and 
insertions, while deletion errors are largely at the same 
level between the two kits (Fig. 6c). The relative accuracy 
of 2-mers remain the same as the previous kits, with GA/

AG motifs having the least errors and UC/CU having the 
most, especially with regard to mismatches and deletions.

Discussion
Since the release of the first MinION device by ONT, the 
accuracy of nanopore DNA sequencing has significantly 
improved due to developments in both pore chemis-
try and basecalling algorithms [3, 33]. At the same time, 
dRNA-seq has gained considerable popularity due to 
its reduced bias and the ability to sequence RNA base 
modifications and characterise the epitranscriptome. 
However, improvements in the sequencing accuracy 

Fig. 6 Comparison between the direct RNA sequencing kit SQK‑RNA002 and SQK‑RNA004. a The error rate per read of the curlcake samples, 
grouped by error type and colored by sequencing kit. b Confusion matrix showing the frequencies of each nucleotide being correctly basecalled, 
miscalled or deleted, based on the curlcakes sequenced with SQK‑RNA004. The differences to SQK‑RNA002 are shown in the brackets. c The 
mismatch, insertion and deletion rates of 2‑mer motifs in the curlcake samples, colored by sequencing kit



Page 13 of 15Liu‑Wei et al. BMC Genomics          (2024) 25:528  

of dRNA-seq has so far been limited [5]. Here, we sys-
tematically evaluated the accuracy and systematic error 
patterns of dRNA-seq in datasets covering diverse organ-
isms across the tree of life. We found that the read accu-
racy is around 90% across organisms in both native and 
IVT samples, and that deletions account for the majority 
of errors.

The high error rate of dRNA-seq has several impor-
tant implications in downstream analyses such as tran-
script identification and discovery. Firstly, as each native 
RNA read represents a single polyadenylated RNA tran-
script that is potentially protein coding, one promising 
application of dRNA-seq is to identify and quantify the 
expression of novel transcript isoforms and open reading 
frames (ORFs). However, the abundance of indel errors 
can often lead to frameshift errors in gene prediction, a 
well-known challenge in long-read sequencing [38]. To 
address this, [11] attempted to reduce errors by correct-
ing dRNA-seq reads with Illumina short reads, yet the 
remaining indel errors still precluded ORF prediction in 
more than 80% of the reads.

Another downstream application of dRNA-seq is 
the detection of RNA base modifications. As nucleo-
tide modifications can alter electric signal and conse-
quently cause basecalling errors, they can be identified 
through comparison of alignment errors between modi-
fied and unmodified control samples [39]. A proportion 
of the observed errors in our study could be a result of 
the presence of native base modifications. Notably, the 
modification-free IVT human dataset has less errors than 
its native counterpart, but the same pattern is not seen 
in the two SARS2 datasets. In general, the relationship 
between errors and modifications is complex: certain 
types of modifications, such as  m6A,  m5C and pseudou-
ridine, can lead to increased basecalling errors, although 
with strong preferences towards certain motifs [17, 40, 
41]. Given that signal deviations arise both from intrinsic 
errors and modifications, a careful and rigorous investi-
gation is warranted to examine 1) how different modifi-
cations can alter signals and 2) how signal changes can 
affect sequencing errors.

There are generally two sources from which sequenc-
ing errors in nanopore sequencing data can arise: firstly, 
the raw signals produced by the nanopore sequencer and 
secondly, the basecalling algorithm translating the sig-
nal data into nucleotide sequences [33]. In addition to 
improvements of ONT devices and chemistry for nano-
pore DNA-seq, there is also continuous development of 
new basecallers released by both ONT and the broader 
research community [42, 43]. However, for dRNA-seq 
data, RODAN [32] remains currently the only published 
community basecaller outside of ONT. From our evalu-
ation, the performance of RODAN holds up well against 

Guppy in terms of read accuracy, especially for organisms 
in its training data. As species-specific training data are 
known to improve performance of nanopore basecallers 
in those species [42, 44], the improvements of RODAN 
suggest a promising direction for training species-spe-
cific basecallers also for dRNA-seq data. Lastly, the pres-
ence of the same systematic error patterns in RODAN 
and the latest SQK-RNA004 kit  points to more funda-
mental causes of errors in the raw signal data, necessitat-
ing further development of pore chemistry to improve 
the decoding of raw signal data.

Conclusions
While dRNA-seq offers exciting opportunities for study-
ing RNA transcription and modifications, our evalua-
tion highlights the need for continued improvements in 
data quality and accuracy. Clearly, further development 
and optimization of dRNA-seq protocols, pore chem-
istry and basecalling algorithms are desirable. With the 
recent release of the SQK-RNA004 sequencing kit and its 
improvements in throughput and accuracy, we expect to 
see more effort in developing this technology and realis-
ing its potential. At the same time, appropriate compu-
tational methods for data quality control, uncertainty 
quantification, and error correction are needed to miti-
gate the effects of high error rates and systematic biases 
in downstream analyses.
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