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Abstract
Background  Environmental stress factors, such as biotic and abiotic stress, are becoming more common due to 
climate variability, significantly affecting global maize yield. Transcriptome profiling studies provide insights into the 
molecular mechanisms underlying stress response in maize, though the functions of many genes are still unknown. 
To enhance the functional annotation of maize-specific genes, MaizeGDB has outlined a data-driven approach with 
an emphasis on identifying genes and traits related to biotic and abiotic stress.

Results  We mapped high-quality RNA-Seq expression reads from 24 different publicly available datasets (17 abiotic 
and seven biotic studies) generated from the B73 cultivar to the recent version of the reference genome B73 (B73v5) 
and deduced stress-related functional annotation of maize gene models. We conducted a robust meta-analysis of 
the transcriptome profiles from the datasets to identify maize loci responsive to stress, identifying 3,230 differentially 
expressed genes (DEGs): 2,555 DEGs regulated in response to abiotic stress, 408 DEGs regulated during biotic stress, 
and 267 common DEGs (co-DEGs) that overlap between abiotic and biotic stress. We discovered hub genes from 
network analyses, and among the hub genes of the co-DEGs we identified a putative NAC domain transcription factor 
superfamily protein (Zm00001eb369060) IDP275, which previously responded to herbivory and drought stress. IDP275 
was up-regulated in our analysis in response to eight different abiotic and four different biotic stresses. A gene set 
enrichment and pathway analysis of hub genes of the co-DEGs revealed hormone-mediated signaling processes and 
phenylpropanoid biosynthesis pathways, respectively. Using phylostratigraphic analysis, we also demonstrated how 
abiotic and biotic stress genes differentially evolve to adapt to changing environments.

Conclusions  These results will help facilitate the functional annotation of multiple stress response gene models 
and annotation in maize. Data can be accessed and downloaded at the Maize Genetics and Genomics Database 
(MaizeGDB).
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Background
Maize (Zea mays ssp. mays L.) is one of the most widely 
grown crops across the globe. The importance of maize 
goes beyond food and animal feed; it is currently used as 
a biofuel source, and is also an important genetic model 
plant [1–4]. The growth and development of maize is 
highly dependent on suitable climatic and soil condi-
tions [3, 5, 6]. However, major abiotic stress factors such 
as drought, salinity, and extreme temperatures, and biotic 
stresses including fungal, bacterial, and viral pathogens, 
adversely affect maize production [6]. Abiotic stress can 
cause a 54reduction of over 50% yield of global crop pro-
duction, with drought, heat, salinity and cold stress the 
main threat to maize production in major maize cultiva-
tion regions [4, 7–9]. Drought and heat stress cause up 
to 40% of global yield loss of maize [10], and biotic stress 
leads to a yearly loss of approximately 10% of maize yield 
worldwide [6]. One of the biotic factors that affect crop 
growth is herbivory of pest insects, with arthropods mak-
ing up 6–19% of herbivore attack [10]. Climate change 
potentially increases plant exposure to these environ-
mental stressors, which could increase in occurrence, 
intensity, and complexity due to global warming, climate 
variability, and industrial pollution. For example, climate 
change can directly impact stress factors involved in host 
plants and pathogens and affect temperature changes, 
increasing biotic and abiotic stress, respectively [11, 12].

Because of these stresses, it is necessary to implement 
strategies to develop maize varieties with improved yield 
and climate resilience. Omics approaches such as genom-
ics, transcriptomics, proteomics, and metabolomics 
have been integrated with maize breeding strategies. For 
instance, the availability of transcriptome profiling tech-
nologies has been used to understand the complexity of 
gene expression during plant development and under 
stress conditions [13]. High-throughput next-generation 
sequencing approaches like RNA-Seq have recently been 
used to analyze the transcriptomes of different crops 
under different stress conditions [13–15]. Transcriptome 
profiling has generally been used to analyze the tran-
scriptomes of crops such as Arabidopsis, maize, wheat, 
rice, and soybean [16], and significant progress has been 
made in understanding the molecular mechanisms of 
plant responses to abiotic stress factors [3].

Plants produce various reactions at the molecular level 
in response to stress. Transcription factors (TFs) have 
been identified to play critical roles in providing stress 
tolerance to different stresses [3, 17], such as abscisic 
acid synthesis response. In the last few years, many tran-
scriptome studies have discovered various pathogen 

responses in different maize lines [18]. The advances in 
high-throughput sequencing technologies have led to 
increased numbers of proteomic data, but in many cases, 
their function has to be determined. Therefore, accu-
rately annotating maize proteins would be helpful for fur-
ther downstream experiments [19, 20].

Plant stress response can be complex; some response 
mechanisms can evolve either at the biochemical or 
physiological level, providing a source for gene adaptabil-
ity to environmental changes. Phylostratigraphic analy-
sis has become a promising tool that helps to determine 
the time of occurrence of genes to assess their age and 
link the ages of the genes with their functional role [21]. 
A phylostratigraphic analysis of different stress response 
genes can assist researchers in understanding the evolu-
tionary trajectory of various plant stress responses.

Here we mapped 24 publicly available, high-quality 
RNA-Seq read datasets o the recent version of the ref-
erence genome B73 (B73v5) [22] and deduced stress-
related functional annotation of gene models using an 
in-house developed pipeline. We analyzed the datasets to 
determine specific and common differentially expressed 
genes (DEGs) for biotic and abiotic stress. Gene ontol-
ogy or enrichment analysis of the DEGs was performed 
to gain knowledge regarding the biological processes of 
the stress genes. Functional analysis revealed key genes, 
pathways and annotations for genes involved in different 
stress. Furthermore, we identified stress genes encod-
ing maize transcription factors, and we constructed a 
network analysis that revealed a hub of genes important 
for stress response. Finally, we analyzed DEGs from this 
study associated with the different types of stress (abiotic, 
biotic, co-DEGs) using a phylostratigraphic approach. 
For the phylostratigraphic analysis, we observed that 
abiotic stress genes fell under similar, more ancient phy-
lostratigraphic categories, suggesting that abiotic stress 
adaptation is more conserved. In contrast, biotic stress 
genes have a more diverse phylostratigraphic profile, sug-
gesting that biotic stress gene evolution is more depen-
dent on the host genes involved within more diverse 
environments. The data and results from this study will 
help annotate maize-responsive genes, thereby support-
ing strategies for improving maize varieties.

Results
Overview of RNA-Seq datasets
We retrieved 24 RNA-Seq datasets with high-quality 
reads related to biotic and abiotic stress generated from 
the B73 cultivar (Methods). All 24 RNA-Seq datasets 
were mapped to earlier versions of B73 using our pipeline 
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(Fig. 1). The dataset is made up of 17 abiotic and 7 biotic 
stress studies (Additional file 1). The publication years 
of the datasets range from 2014 to 2022. The RNA-Seq 
studies collected for this study captured various types 
of abiotic stress factors, including: drought, heat, cold, 
salinity, waterlogging, nitrogen, cadmium, phosphate, 
nitrate, ammonium and elevated ozone (UV). The biotic 
datasets included samples exposed to Cercospora Zeina 
(causal agent of gray leaf spot), Fusarium graminearum 
(causal agent of Gibberella stalk rot (GSR)), Fusarium 
venenatum, Colletotrichum graminearum, Sugarcane 
Mosaic Virus (SCVM), or Mites herbivores. The detailed 
information of the RNA-Seq data used in this study is 
summarized in Additional file 1.

Differential expression analysis
A fold-change value of [|log2(fold change) | ≥ 1, 
p-value < 0.05] was used to determine a significant stress 
response for each candidate gene model. The number of 

genes specifically expressed in each treatment per experi-
ment is indicated in Additional file 1. Pairwise compari-
sons between stress-treated and control-treated samples 
in each experiment were applied to determine the DEGs. 
The number of DEGs varied depending on the type of 
stress, and DEGs were separated into the number of up-
regulated or down-regulated DEGs for each treatment 
within an experiment. For example, the RNA-Seq experi-
ment with project accession PRJNA335771 describes 
B73 subjected to either salinity, drought, heat and cold 
stress conditions. Each of the abiotic stress sample was 
compared with the control to identify DEGs ([|log2(fold 
change) | ≥ 1, p-value < 0.05]). From the pairwise compar-
isons with the control samples for the above experiment, 
we identified 5,379 (2,630 up- and 2,749 down-regulated) 
DEGs in the salinity stress sample, 2,840 (1,184 up- and 
1,655 down-regulated) in the cold stress sample, 3,143 
(1,540 up- and 1,603 down-regulated) in the drought 
sample and 4,645 (2,451 up- and 2,194 down-regulated) 

Fig. 1  A Pipeline to map high-quality RNA-Seq data in Maize
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in the heat stress sample. In another example of B73 
infected with SCVM- (project accession PRJNA846583), 
we identified 582 DEGs (348 up- and 234 down-regulated 
genes) for pairwise comparison between inoculated and 
mock-inoculated samples. The DEGs for each stress con-
dition of all the datasets were determined and integrated. 
Possible intersections of all DEGs from the experiments 
were identified as 3,230 DEGs. Among a total of 3,230 
DEGs identified from all the 24 different RNA-Seq data-
sets, 2,555 and 408 DEGs were generally expressed dur-
ing abiotic and biotic stress respectively, with 267 DEGs 

overlapping both stress types (referred to here as com-
mon DEGs or co-DEGs) shown in Fig.  2A. An example 
of the expression of a stress-responsive data set hosted by 
MaizeGDB on JBrowse is shown in Fig. 2B.

Abiotic stress DEGs
From the differential expression analysis, many more 
genes (2,555) were identified in response to the abiotic 
stress compared to biotic stress (Fig. 2A). The lists of all 
the abiotic stress-responsive genes and their descrip-
tion obtained from MaizeMine have been indicated in 

Fig. 2  Differentially expressed genes (DEGs) in the 24 experiments with B73 imposed with either biotic or abiotic stress. (A) Venn diagram showing DEGs 
specifically expressed during abiotic (common abiotic DEGs; co-DEGs-Abiotic) and the biotic (common biotic DEGs; co-DEGs-Biotic) and the overlap of 
DEGs among the stresses (B) Example of stress-responsive gene models available as genome browser tracks hosted by MaizeGDB
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Additional file 2. These genes are common among all 
the abiotic stresses and they include genes encoding late 
embryogenesis abundant (LEA) proteins, heat shock 
proteins (HSPs), other chaperones, and ion transport-
ers. We identified 55 genes encoding HSPs as chaperones 
in response to abiotic stress. The Late Embryogenesis 
Abundance (LEA) proteins are known to be involved in 
plant response to abiotic stresses such as drought, cold, 
and salinity. From our analysis, LEA proteins were only 
found in the abiotic DEGs. Conversely, HSPs were associ-
ated with abiotic, biotic and overlapping DEGs.

Biotic stress DEGs
From the differential expression analysis, 408 DEGs 
were identified in response to biotic stress (Fig. 2A). The 
lists of biotic stress-responsive genes and their descrip-
tions are indicated in Additional file 2. Similar to the 
abiotic DEGs, the list of biotic DEGs genes are asso-
ciated with descriptions common to biotic stresses, 
including PR5 (Zm00001eb032580), CHIA-chitin-
ase (Zm00001eb078730), Disease resistance protein 
RPM1(Zm00001eb226700), Protein kinase domain-con-
taining protein (Zm00001eb170460), and Wall-asso-
ciated receptor kinase-like 20 (Zm00001eb177830). 
Significant candidate DEGs include potential PRR 
genes such as WAK-RLK (Zm00001eb177830), known 
to confer pathogen resistance in maize; two LRR-RLK 
genes (Zm00001eb293660 and Zm00001eb153630); 
and two chitinase genes (Zm00001eb167720 and 
Zm00001eb1677). In addition, we identified two genes 
encoding HSPs in response to biotic stress which are 
Zm00001eb012470 (Heat shock cognate 70  kDa protein 
2) and Zm00001eb314890 (Heat stress transcription fac-
tor B-2b).

Co-DEGs
Based on the overlap of DEGs in biotic and abiotic 
stresses, 267 genes were observed as being in both sets 
(Fig.  2A). DEGs identified as a result of the expression 
responses to the various biotic and abiotic stresses are 
listed in Additional file 2, and they include Glutathione 
transferases, Pathogenesis-related proteins, Chitinase, 
and Aquaporins. Similar to biotic stress response, we 
identified two genes encoding HSPs among the co-DEG 
list. These are Zm00001eb109480 (Putative Heat stress 
transcription factor A-2c) and Zm00001eb198620 (Heat 
stress transcription factor B-2b).

Functional classification of DEGs
Functional classification of abiotic DEGs
To better understand the expression changes that occur 
in response to different environmental stresses, the 
enriched GO terms associated with the abiotic DEGs, a 
GO analysis was performed to determine the biological 

functions of the identified stress-responsive genes using 
AgriGO (Du et al. 2010, Tian et al. 2017) (Fig. 3A). The 
GO annotations of this group showed a number of sig-
nificantly enriched terms associated with stress response, 
particularly “response to oxygen-containing compound”. 
Other significant enriched terms in the biological pro-
cess category include: “response to abiotic stimulus”, 
“response to chemical”, “response to jasmonic acid” and 
“response to abscisic acid”. Strikingly, many abiotic stress-
responsive genes were enriched in the non-stress specific 
GO term “developmental process”. Within the molecular 
function category, the most significantly enriched terms 
were “transcription factor activity”, “sequence-specific 
DNA binding”, and “nucleic acid binding transcription 
factor activity”. Other significantly enriched molecular 
function GO terms were “cation binding”, “oxidoreduc-
tase activity”, and “ion binding”. For the cellular compo-
nent category, the most significantly enriched terms were 
“plasma membrane” and “cell periphery” (Additional file 
3).

Functional classification of biotic DEGs
As shown in Fig. 3B and Additional file 3, the most signif-
icantly enriched GO -biological processes for the biotic 
DEGs is “response to oxygen-containing compound”. 
Other enriched terms in the biological processes are 
“response to chemical”, “response to stimulus”, “response 
to biotic stimulus”, “response to chitin”, and “secondary 
metabolic process”. Within the molecular function cat-
egory, the most significantly enriched terms are “oxalate 
oxidase activity”, “oxidoreductase activity acting on the 
aldehyde or oxo group of donors”, “oxygen as acceptor”, 
and “protein serine/threonine kinase activity”. Other-
wise, most of the biotic DEGs were enriched in catalytic 
and transferase activity. For the cellular component cate-
gory, the most significantly enriched terms were “plasma 
membrane” and “cell periphery” (Additional file 3).

Functional classification of co-DEGs
In the biological enrichment process of co-DEGs 
(Fig.  3C), we found “response to chemical” as the most 
significant term. Similar to the biotic and abiotic stress 
DEGs, many of the co-DEGs were enriched in the biolog-
ical process terms “single-organism process”, “response 
to stimulus”, “single-organism cellular process”, “single-
organism metabolic process”, and “response to stress”. 
In the molecular function category, the most significant 
enriched terms for the co-DEGs are “iron ion binding” 
and “chitin binding”. However, most of the co-DEGs for 
molecular function were enriched in oxidoreductase and 
UDP-glycosyltransferase activity. Only two significantly 
enriched terms were identified for this group of genes, 
“plasma membrane” and “cell periphery”.
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Fig. 3  (A) The Gene Ontology (GO) terms enriched by abiotic stress-responsive genes. (B) GO terms enriched by biotic stress-responsive genes. (C) GO 
terms enriched by co-DEGs. The GO terms are in the three GO domains (biological process, molecular function and cellular component). All the GO terms 
in Fig. 3 and Additional file 3 are significantly enriched (p < 0.05) using Fisher’s exact test and Bonferroni multi-test adjustment from AgriGO v2.0 software. 
The number of genes enriched in each term were plotted against the GO term. More details in Additional file 3
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Kyoto encyclopedia of genes and genomes (KEGG) 
pathway analysis
KEGG pathway analysis of abiotic stress DEGs
To further explore the biological pathways of the DEGs 
involved in maize abiotic stress, we performed KEGG 
enrichment analysis using ShinyGO (Methods). The 
enriched pathways associated with the annotated abiotic 
stress-responsive genes have been illustrated in Fig. 4A. 
Here, 151 and 102 DEGs were mapped to the metabolic 
and biosynthesis of secondary metabolites pathways 
respectively. Other enriched pathways for this group 
of DEGs are plant hormone signal transduction, MAPK 
signaling pathway, and alpha-linolenic acid metabolism. 
Other abiotic DEGs that mapped to each pathway are 
listed in Additional file 4.

KEGG pathway analysis of biotic stress DEGs
The enriched pathways associated with the annotated 
biotic stress-responsive genes are illustrated in Fig.  4B. 
Only two pathways were significant: “biosynthesis of 
secondary metabolites” (21 biotic DEGs mapped), and 
“Zeatin biosynthesis” (three biotic DEGs mapped) (Addi-
tional file 4).

KEGG pathway analysis of co-DEGs
The enriched pathways associated with the annotated 
co-DEGs have been illustrated in Fig. 4C. Similar to the 
abiotic stress-responsive genes, most of the co-DEGs are 
significantly enriched in the Metabolic and Biosynthesis 
of secondary metabolites pathway. Interestingly, phen-
ylpropanoid biosynthesis was identified as another sig-
nificantly enriched pathway for the overlapping genes in 
biotic and abiotic stress. The lists of genes for each of the 
pathways can be found in Additional file 4.

Transcription factor analysis
TF analysis of abiotic DEGs
The abiotic stress DEGs encoding TFs were obtained as 
described in Methods. A total of 352 TFs were enriched 
from the 2555 DEGs (Additional file 5). Percent TF 
enrichment in the DEGs are: WRKY (4.5%), MYB 
(9%), NAC (6.3%), bHLH (8.2%), EREB (12.5%), bZIP 
(3.4%), and GRAS (2.5%). Further analysis of the abiotic 
TFs using the expression data from project accession 
PRJNA335771 (containing drought, heat, cold and salin-
ity DEGs) showed that the major TFs (WRKY, NAC, 
EREB, bZIP, and bHLH) are associated with the regula-
tion of abiotic stress response in maize. There were more 
up-regulated versus down-regulated TFs in response to 
the abiotic stresses considered here (Table  1). Interest-
ingly, we found that a higher proportion of the DEGs 
encoding EREB, bHLH, NAC, WRKY, bZIP, and MYB 
TF families were enriched in DEGs associated with 
salinity stress. We also found that 6 NAC TFs were 

down-regulated during drought stress compared to 2, 1,4 
down-regulated genes encoding NAC TF in response to 
salt, cold and heat stress respectively (Table 1).

Notably, our analysis revealed an up-regulation of 
ZmWRKY40 (Zm00001eb149570) in response to salinity 
and cold stress. Furthermore, eight TFs from our analysis 
including ZmMYBR103 (Zm00001eb035050), ZmMYB2 
(Zm00001eb278680), ZmWRKY81 (Zm00001eb149550), 
ZmNac49 (Zm00001eb062170), ZmbHLH150 
(Zm00001eb314810), ZmEREB205 (Zm00001eb430640), 
ZmEREB83 (Zm00001eb369560), and ZmEREB204 
(Zm00001eb042240) were induced during drought, cold, 
heat and salinity stress. All eight TFs were induced in all 
four stresses (drought, cold, heat and salinity stress) men-
tioned above. The above-mentioned results suggest the 
critical role of the TFs in multiple abiotic stress response 
in maize. Moreover, a number of GATA TFs (ZmGAT12, 
ZmGATA14, ZmGATA34) which were recently charac-
terized in maize in response to abiotic and biotic stresses 
were regulated during abiotic stress in our list.

TF analysis of biotic DEGs
We were able to associate 28 TFs with the 408 biotic 
DEGs as described in Methods (details in Additional 
file 5). Interestingly, many of the TFs from the biotic 
DEGs belong to the WRKY family, which is seven out 
of the 28 TFs (∼ 32%). The fraction of the other TFs rep-
resented are NAC (3.5%), bHLH (10.7%), EREB (18%), 
MYB (3.5%). Analysis of the biotic TFs using expression 
data from biotic experiments revealed that a total of 15 
WRKY genes associated Mite herbivore infections were 
up-regulated. All 15 WRKY TFs induced by herbivory 
were up-regulated during separate infections from the 
two species; the generalist twospotted spider mite (Tet-
ranychus urticae, TSM) and the specialist Banks grass 
mite (Oligonychus pratensis, BGM) classified under Mite 
herbivore (Table  2). We found that a higher proportion 
of the DEGs encoding EREB, bHLH, NAC, and MYB 
TF families were enriched in DEGs associated with the 
infection of Mite herbivores. It is worth mentioning that 
although a large proportion of the DEGs encoding EREB 
were in response to Mites herbivore, there was a relatively 
large amount of EREB TFs that were down-regulated in 
response to F. graminearum. This may indicate the nega-
tive role of EREB TFs during maize infection with.

F. graminearum (GSR disease). These three 
NAC genes, ZmNAC20 (Zm00001eb288360), 
ZmNAC25 (Zm00001eb405590), and ZmNAC40 
(Zm00001eb183190) were induced in maize during F. gra-
minearum, F. venenatum, and Mites herbivore infection. 
Further analysis showed that the above three infections 
significantly induced ZmEREB2 (Zm00001eb429870), 
ZmEREB198 (Zm00001eb074930), and ZmMYBR105 
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Fig. 4  Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of (A) abiotic stress-responsive genes. (B) biotic stress responsive genes and (C) Co-
DEGs of maize. The enrichment FDR was set to a cutoff of 0.05
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(Zm00001eb081280). These results suggest a critical role 
for these TFs in plant defense.

TF analysis of co-DEGs
Out of the 267 co-DEGs, we obtained 22 genes that were 
encoded by TFs (details in Additional file 4). Similar to 
abiotic and biotic DEGs, these TF families were repre-
sented by WRKY (19.3%), MYB (3.2%), NAC (12.9%), 
bHLH (3.2%), EREB (16%%), and bZIP (6.5%). Among 
the TFs of the co-DEGs we identified ZmNAC126 
(Zm00001eb093650) and found it to be up-regulated in 
response to the following stresses: heat, drought, salinity, 
cadmium, phosphorus, F. graminearum, F, venenatum, 
SCVM, and Colletotrichum graminocola.

Network analysis
Interaction network of abiotic stress genes and 
phylostratigraphic analysis
Interactions and identification of hub genes from the abi-
otic DEGs were generated using MCODE (Methods). For 
this group of genes, high-ranked clusters were analyzed 
(Additional file 6). The most recent common ancestor 
(mrca) and phylostrata values generated by PhylostratR 
(Methods) were assigned to the genes in each of the 
clusters, together with the gene description and UniProt 
accessions (Additional file 6). The network analysis using 
STRING helps to identify connections among DEGs 
common to abiotic stress. The hub genes for core clusters 
1 and 2 can be seen in Fig. 5A and B. The clusters reveal 
a close functional relationship between the proteins or 
genes involve in abiotic stress. For example, Cluster 1 
(Fig. 5A) comprises nine genes: nnr1 (Zm0001EB17670), 

cl1019_1(Zm00001eb166390), NIR (Zm00001eb193660), 
aprl2 (Zm00001eb105800), Zm00001eb255880, 
Zm00001eb256260, Zm00001eb358930, 
Zm00001eb056910, and Zm00001eb089390 (Additional 
file 6). The GO biological process GO terms associated 
with this cluster include “nitric oxide biosynthesis pro-
cess”, “sulfate assimilation” and “reactive nitrogen spe-
cies metabolic process”. One of the molecular functions 
associated with genes in this Cluster is “adenylylsulfate 
kinase activity”, and they belong to the Sulfur and Purine 
metabolism pathway (Supplementary Fig.  1 of Addi-
tional file 7). All the genes in Cluster 1 were ancient genes 
with phylostrata score of 1 (cellular organisms). Cluster 
2 (Fig. 5B, Additional file 6) comprises 15 genes, and 13 
out of the 15 genes codes for heat shock proteins or chap-
erons. Twelve of the genes had a phylostrata score of 1 
(cellular organisms) and 3 had a phylostrata score of 2 
(eukaryote). The biological processes associated with 
Cluster 2 include “protein folding” and “cellular response 
to unfolded protein”. The molecular functions of genes in 
Cluster 2 include “heat shock protein binding” and “ATP-
dependent protein folding chaperone”. The biological 
process associated with genes in Cluster 3 of abiotic DEG 
network is “rhythmic process” and is enriched in the cir-
cadian rhythm pathway (Supplementary Fig.  3 of Addi-
tional file 7). With the exception of Clusters 8 and 17, all 
the core clusters from the abiotic DEGs contained genes 
with more ancient phylostrata, and genes with a similar 
phylostrata score clustered together.

Table 1  Number of differentially expressed TFs in response to abiotic stress response
Stress type

TF family Salinity Cold Heat Drought

Regulation Up Down Up Down Up Down Up Down
EREB 37 7 23 3 17 4 17 6
bHLH 22 4 6 - 5 4 4 5
MYB 16 8 6 1 7 3 8 6
NAC 18 2 6 1 3 4 2 6
WRKY 13 2 8 1 2 4 1 1
bZIP 6 4 - - 5 1 4 2

Table 2  Number of differentially expressed TFs in response to biotic stress response
Stress type

TF family Mite herbivores (both TSM &BGM) Sugar mosaic virus (SCMV) Fusarium venenatum Fusarium graminearum 
(GSR)

Regulation Up Down Up Down Up Down Up Down
EREB 33 3 - 2 9 1 4 18
bHLH 19 3 - - 1 4 2 3
MYB 19 6 - 1 7 2 10 2
NAC 14 2 - - 9 - 4 -
WRKY 15 - - 2 7 1 1 1
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Interaction network of biotic stress genes and 
phylostratigraphic analysis
Interactions and identification of hub genes from the 
biotic DEGs were generated using MCODE (Meth-
ods). The network analysis revealed clusters described 
in Additional file 6. Cluster 1 (Fig.  5C) was made up of 
five genes, all within phylostrata 1-cellular organisms. 
Cluster 2 (Fig.  5D) contained four genes, falling within 
phylostrata 3-Viridiplantae, or 4-Streptophyta). The 
genes of cluster 2 include: psa6 (Zm00001eb29999000), 
pco070877 (Zm00001eb1517500), Zm00001eb346280 
and Zm00001eb336410. The biological process associ-
ated with the genes of this Cluster is “photosynthesis” 
(Supplementary Fig. 6 of Additional file 7). We found that 
the genes in Cluster 2 were generally down-regulated. 
Cluster 3 had three genes that fell within phylostrata 
1-cellular organism and 4-Streptophyta. The biological 
process associated with hub genes of Cluster 3 is “Gluta-
thione metabolic process” (Supplementary Fig. 7 of Addi-
tional file 7). Cluster 4 comprised of three genes within 
phylostrata 6-Embryophyta, and8-Euphyllophyta. Similar 
to the abiotic DEGs, biotic DEGs with similar phylostrata 

from the network analysis clustered together, but unlike 
the abiotic DEGs, the biotic DEGs showed a more diverse 
phylostrata profile.

Interaction network of co-DEGs and phylostratigraphic 
analysis
We investigated the interaction of the overlapping genes 
to find the hub of genes among the co-DEGs. We found 
only two clusters from the network analysis of the co-
DEGs (cluster analysis summarized in Additional file 6). 
The two clusters are indicated in Fig.  5E & F. Cluster 1 
was made up of four genes (phylostrata 6-Embryophyata, 
7-Tracheophyta, 11-Mesangiospermae). These hub genes 
include for Cluster 1 are Zm00001eb369060 (IDP275, 
putative NAC domain transcription factor superfamily 
protein; Uncharacterized protein), Zm00001eb223590 
(zim30), Zm00001eb006000 (Zim16, ZIM motif fam-
ily protein), Zm00001eb005990 (zim27, uncharacter-
ized). Cluster 2 contained three genes (all genes had a 
phylostrata of 1-cellular organisms) and the hub genes 
for Cluster 2 were: Zm00001eb346150 (Putative cyto-
chrome P450 superfamily protein, uncharacterized), 

Fig. 5  Network analysis of DEGs created using StringApp through the Cytoscape user interface. Two core clusters analyzed by MCODE for each type of 
stress are indicated above. A and B (core clusters from abiotic DEGs), C and D (core clusters from biotic DEGs), and E and F (core clusters from co-DEGs): 
The node colors are arbitrary, and the words prefaced by “GRMZM” are associated with B73 version 3 gene models; these are the STRINGdb identifiers for 
the maize proteins. StringApp uses the maize reference genome B73 version 3 (RefGen_V3). However, we have included the corresponding latest version; 
B73v5 for each of the B73v3 gene models in our table. (Additional file 6). The numbers indicated on the nodes are gene IDs (linked to NCBI), the numbers 
are displayed for genes without a gene symbol in the network. More details of the Clusters for each stress type with phylostrata scores is indicated in 
Additional file 6
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Zm00001eb191610 (Cinnamoyl-CoA reductase 1), 
Zm00001eb077220 (Phenylalanine ammonia-lyase). 
Similar to abiotic and biotic DEGs, the seven hub genes 
of the co-DEGs clustering together shared similar phy-
lostrata. To explore the molecular mechanism of the hub 
genes identified here, we performed enrichment analy-
sis of genes from the clusters. Hub genes from Cluster 1 
were associated with biological processes; “regulation of 
jasmonic acid-mediated signaling pathway”, “response to 
wounding, and “regulation of defense response”. Genes 
from Cluster 2 were significantly enriched in the GO 
terms “phenylpropanoid metabolic process”, “second-
ary metabolic process”, “lignin metabolic process”, and 
“phenylpropanoid biosynthesis pathway” (Supplementary 
Figs. 8 and 9 of Additional file 7).

Discussion
Under natural conditions, plants are exposed to a com-
bination of abiotic and biotic stresses, and to withstand 
these stresses, plants respond with a series of changes in 
their transcriptome. Research has shown that studying 
gene clusters rather than individual genes is more effec-
tive in understanding plant stress tolerance [23]. There-
fore, meta-analysis of different transcriptome data has 
been found as a robust approach to studying multiple 
stress tolerance in plants. While meta-analysis of RNA-
Seq in maize induced by various fungal pathogens has 
been performed previously [18] and similar meta-analy-
sis under abiotic stress conditions revealed DEGs regu-
lated by abiotic stress in cotton [23], Arabidopsis [24] and 
wheat [25], our study appears to be the first to explore 
candidate genes using meta-analysis of publicly available 
maize biotic and abiotic transcriptome data.

With our meta-analysis using 24 publicly available 
RNA-Seq datasets of maize under various stresses, we 
identified 2,555 and 408 abiotic and biotic regulated 
genes (DEGs), respectively. We also identified 267 co-
DEGs in response to all the stresses mentioned in this 
study. While the fact that more abiotic than biotic DEGs 
were observed might be due to fewer available B73 abi-
otic vs. biotic RNA-Seq experiment studies, meta-anal-
ysis of rice transcriptome data (five publicly available 
abiotic stress and six biotic stress experiments) identified 
5,863 and 2,154 genes that are differentially regulated 
by abiotic and biotic stress respectively [26], suggesting 
that there might be fewer biotic DEGs generally among 
plants. Additionally, a meta-analysis of tomato using 213 
abiotic and 178 biotic microarray samples found 1,862 
and 835 abiotic and biotic regulated genes, respectively 
[23].

Late Embryogenesis Abundance (LEA) proteins are 
known to be involved in plant response to abiotic stresses 
such as drought, cold, and salinity. From our analysis, 
LEA proteins were only found in the abiotic DEGs, and 

this is consistent with previous reports in maize and 
wheat [27, 28]. Heat-shock Proteins (HSPs) are involved 
in protein folding, activation, and transport, protecting 
proteins from degrading during stress [27], and we iden-
tified HSPs from abiotic, biotic and overlapping DEGs, 
confirming the importance of HSPs in regulating all types 
of stress. HSPs’ response to stress depends on the inten-
sity and varying length of stress, and this could account 
for the many HSPs identified in response to abiotic stress 
compared to biotic stress. However, evidence of HSPs in 
biotic stress tolerance has been elaborated [29].

The candidate DEGs that were significantly induced 
from the biotic DEG analysis include potential PRR 
genes such as WAK-RLK (Zm00001eb177830), which 
is known to confer pathogen resistance in maize [18]. 
Other WAK-RLK genes (Zm00001eb334620 and 
Zm00001eb156230) previously reported [18] were also 
identified in our biotic DEG list. Two LRR-RLK genes 
(Zm00001eb293660 and Zm00001eb153630) identi-
fied as hub genes in the co-expression network of the 
meta-analysis study in maize during multiple patho-
gen stresses were identified in our list of biotic regu-
lated DEGs, supporting the critical role that these genes 
would play in biotic stress response. Moreover, genes 
encoding Peroxidase (Zm00001eb140320) and P450 
(Zm00001eb043620) previously reported as co-DEGs 
of multiple pathogen responses, were also found in our 
biotic DEG list; previous research indicates the role of 
several P450 genes in disease resistance in rice and bar-
ley [18, 30–32]. Additionally, two chitinase genes iden-
tified from the same report (Zm00001eb167720 and 
Zm00001eb167710) believed to play a role in disease 
resistance in maize were found in our DEG list. However, 
Zm00001eb167710 was also identified in our co-DEG 
list. There is evidence to support the role of chitinase in 
drought and heat stress in addition to been significantly 
induced during pathogen response. This could explain 
the presence of Zm00001eb167710 among our co-DEGs 
[33, 34]. Interestingly, a salicylic acid (SA) marker gene 
Zm00001eb032600 (ZmPR5) induced by different patho-
gens was also identified in our biotic regulated genes [18]. 
Comprehensive evidence of the role of SA in pathogene-
sis-related (PR) gene expression, systemic acquired resis-
tance, and hypersensitive response has been reported, 
although it regulates some abiotic stresses [35, 36]. The 
co-DEGs (267 genes) identified in this work are hypoth-
esized to be involved in a cross-talk between abiotic and 
biotic stress response. A gene encoding ATP binding cas-
sette (ABC) transporter (Zm00001eb357950) was vali-
dated in response to three pathogens. Although this gene 
was induced by biotic stress from the previous study [18] 
we found it in our co-DEG list after the meta-analysis.

Transcription factors are key regulators of plant 
growth and development, and could play essential roles 
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in regulatory networks to improve abiotic and biotic 
stress tolerance in plants [37]. Major TF plant fami-
lies such as EREB, MYB, WRKY, bHLH, bZIP, NAC, 
and GRAS were differentially expressed TFs from our 
analysis. Major TF families such as NAC, AP2/ERF, 
bZIP and MYB have been reported as key regulators in 
plant responses to biotic and abiotic stress [9, 38, 39]. 
The EREB TF family was the largest of the TFs differ-
entially regulated by abiotic stress from our analysis. 
To support our finding, we found that the ERF TF fam-
ily was the largest TF family identified in seedling maize 
in response to abiotic stress [9]. Interestingly, most of 
the differentially expressed TFs from the biotic DEGs 
were from the WRKY TF family. These TFs, WRKY64, 
(Zm00001eb159340), WRKY115 (Zm00001eb368640), 
and WRKY108 (Zm00001eb112840) were also reported 
previously in [18]. ZmWRKY83 (Zm00001eb286490) has 
previously been identified to be induced during F. gra-
minearum infection [40]. From our analysis, ZmWRKY83 
was up-regulated in response to F. venenatum and Mites 
herbivores (both BGM and TSM). These findings support 
the significant role that ZmWRKY83 could play in gen-
eral pathogen response. Our findings suggest a role for 
ZmWRKY40 in response to abiotic (cold and salinity) and 
biotic stress (Mites herbivores). Previous reports indicate 
that ZmWRKY40 was induced by high salinity, drought, 
ABA, and high temperature [4]. Additionally, important 
role of WRKY40 in PAMP-triggered basal defense in 
Malus has been outlined [41].

We found that the highest TF enrichment was in salt 
stress. The role of these TF families (EREB, NAC, MYB, 
WRKY, bHLH and bZIP) in salt tolerance have been 
reported [42]. Consistent with our findings of the TFs in 
response to salt stress, Lv et al. 2016 [43] noted a sharp 
response to 10 NAC TFs from watermelon (Citrullus 
lanatus) in response to salt stress. NACs response to 
salt treatment could suggest their probable role in plant 
salt stress tolerance. We also provide evidence to sup-
port the regulation of the TFs in drought; some NAC 
genes were found to be down-regulated after PEG treat-
ment in Citrullus lanatus [43]. This could explain the 
number of down-regulated NAC TFs in our findings 
during drought stress (Table  1) suggesting the potential 
involvement of NAC in drought stress. It is worth men-
tioning that a putative NAC domain transcription factor 
superfamily protein (Zm00001eb369060) IDP275, a hub 
gene from our co-DEG list, was induced during com-
bined stress of herbivory and drought stress [10]. From 
our analysis, this putative NAC TF was up-regulated 
under the abiotic stresses cold, heat, drought, salin-
ity, cadmium, phosphorus, waterlogging, and ammo-
nium. Also, this TF was up-regulated after infection 
with Fusarium venenatum, Fusarium graminearum, 
Mites herbivores-BGM infestation and Colletotrichum 

graminicola. In addition, we identified ZmNAC126 
among the co-DEGs. The role of ZmNAC126 in chloro-
phyll degradation to enhance leaf senescence has been 
previously reported [44]. We hypothesize that the candi-
date genes identified here, especially the co-DEGs, could 
be regulators of multiple stress response in maize. Maize 
GATA transcription factors involved in environmental 
stress response, which were recently characterized in 
response to abiotic stress, were identified from the list of 
the abiotic DEGs from this study. These GATA TFs are 
Zm00001eb240100 (putative GATA transcription factor 
22, ZmGATA12), Zm00001eb258290 (ZmGATA14), and 
Zm00001eb385190 (ZmGATA34) [45]. Although these 
GATA TFs were found in response to some biotic stress 
from the report, we only found them to be regulated in 
our abiotic stresses. These findings could be due to GATA 
regulation by specific biotic stress conditions.

Many of our results are supported by findings from 
previous studies, suggesting that our stress-response 
functional annotation pipeline is robust and accurate. For 
example, our functional annotation of biotic, abiotic and 
shared DEGs were significantly enriched in biological 
processes such as “response to stress”, “response to stim-
ulus”, “response to external stimulus”, “response to sali-
cylic acid mediated pathway”, “‘jasmonic acid mediated 
pathway”, and “abscisic acid-activated signaling pathway” 
(Fig. 3, Additional file 3, Additional file 8, and Additional 
file 9). These terms were also among the enriched GO 
terms in both biotic and abiotic DEGs in tomatoes and 
rice, supporting the role of hormone and metabolism as 
part of plant stress adaptation [23, 26]. Also, “secondary 
metabolic process” was one of the most enriched GO 
terms among the biotic, abiotic and co-DEGs, and our 
KEGG pathway analysis showed that DEGs from biotic, 
abiotic and the co-DEGs were significantly enriched for 
“biosynthesis of secondary metabolites”, which is consis-
tent with previous report by Tahmasebi et al., 2019 [23].

We performed phylostratigraphic analyses on abiotic, 
biotic, and co-DEGs of each of the core genes from our 
cluster analyses. Although some of the clusters had genes 
with different phylostrata, for most of the clusters, genes 
with the same phylostrata clustered together. From our 
analysis, most of the abiotic stress genes belonged to 
the lowest a phylostrata of 1, or cellular organisms, sug-
gesting an ancient origin. Phylostratigraphic analysis in 
Arabidopsis during abiotic stress revealed a considerable 
number of abiotic stress genes with ancient origin as well, 
and that genes of the same age tend to link together in 
a stress gene network [21]. Similarly, using a phylotrans-
criptomic approach, the average gene age and divergence 
of induced genes was identified in response to biotic 
stress (herbivore elicitation) in tobacco [46]. Understand-
ing of the evolution of stress genes could show the tempo 
of plant adaptation to stress and support discovery and 
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functional characterization of stress-related genes [21]. 
Notably, genes from cluster 8 and 17 of the abiotic DEGs 
in our analysis were made up of genes with somewhat 
higher phylostrata, or of more recent origin (Additional 
file 6). The difference in the ages of genes within a net-
work could be as a result of changes in the composition 
of genes of different abiotic stress. Also, genes from these 
clusters could be from different types of abiotic stress. In 
the process of evolution, new genes could be introduced 
to affect the function of a group of genes, and this reason 
could explain how abiotic stress genes could have higher 
phylostrata than biotic genes. Another potential reason 
for abiotic genes belonging to higher phylostrata is that, 
in the natural environment, stress factors occur con-
currently or in combination, and plants develop shared 
responses [21].

We investigated the GO terms associated with the hub 
genes of the clusters. We found that the biological pro-
cesses “nitric oxide biosynthesis”, “protein folding” and 
“rhythmic process” are key processes involved in abiotic 
stress tolerance in plants. The biological process “nitric 
oxide biosynthesis” enriched by genes from Cluster 1 
of the abiotic DEGs has been reported in response to 
drought, salinity, oxidative and heavy metal stress [47]. 
The significance of “protein folding” by heat shock fac-
tors in regulating different stresses have been elaborated 
[21, 29]. Additionally, strong evidence of the importance 
of the “rhythmic process” in controlling different types 
of abiotic stress-responsive genes have been discussed 
[48]. Moreover, we identified “photosynthesis” as a bio-
logical process of genes belonging to Cluster 2 of the 
biotic DEGs. We further identified that all the genes in 
this cluster were down-regulated. This result supports 
previous findings of rice generally down-regulating pho-
tosynthesis during biotic and abiotic stress. It confirms 
the importance of the photosynthetic machinery in envi-
ronmental stress response. Also, we found the biological 
process “Glutathione metabolic process” associated with 
hub genes of Cluster 3 of the biotic DEGs. Glutathione 
is mentioned as a crucial metabolite in the life of plants. 
Glutathione metabolism is reported as one of the most 
ancient defense systems in plants and regulates abiotic 
and biotic stresses [49, 50]. Our findings of co-DEG hub 
genes in the regulation of Jasmonic acid mediated signal-
ing pathway is consistent with report of stress-induced 
hormone-responsive genes in rice [26]. Hub genes in this 
cluster were mostly up-regulated in our analysis in both 
biotic and abiotic stress. The phenylpropanoid meta-
bolic process was enriched in the hub genes of cluster 2 
of the co-DEGs. Genes from the phenylpropanoid path-
way, such as phenylalanine ammonium lyases (PALs), are 
involved in lignin synthesis, reinforcing cell wall, and is 
important in plant immune defense system [18, 28]. Also, 
the phenylpropanoid pathway was significant during 

drought and heat stress in switchgrass, with PAL showing 
response to abiotic stresses [34, 51, 52].

Conclusions
Our meta-analysis has revealed key genes, TFs, biologi-
cal processes, and pathways regulated by abiotic stress, 
biotic stress and both stress types. Among the novel 
findings of this work, our analyses show that hormone-
responsive and phenylpropanoid pathways are important 
in both combined, abiotic, and biotic stress response. 
We also found that the phylostrata of the hub genes of 
the same age in maize tend to be connected together in 
the network. The genes and TFs identified can further be 
characterized in maize to explore or establish their role 
in biotic and abiotic stress tolerance. The availability of 
24 RNA-Seq datasets, all mapped using a standardized 
approach to the latest maize reference genome, offers a 
gold-standard dataset for in-depth exploration of the 
roles of gene expression in maize stress responses.

Materials and methods
Sample collection, data processing, and differential 
expression analysis
Twenty-four [24] high-quality RNA-Seq datasets from 
published RNA-Seq studies related to biotic and abiotic 
stress generated from tissues of the B73 cultivar were 
used in this analysis (Table  3). To be considered high 
quality, an expression dataset must minimally meet the 
following criteria: (1) published in a peer-reviewed jour-
nal; (2) deposited in a public data repository; (3) collected 
under controlled conditions with replicates; and (4) pro-
vided with metadata and a detailed method description. 
The dataset was downloaded in FASTQ format from the 
European Nucleotide Archive (ENA) server. The reads 
were mapped to the B73v5 reference genome (Zm-
B73-REFERENCE-NAM-5.0) in January, 2023 using the 
STAR-2.7.2b program [53] followed by counting reads 
using the Subread package FeatureCounts [54]. This 
was followed by normalization and then determination 
of significant gene expression changes between controls 
and treated samples using the R program EdgeR [55]. 
DEGs were determined with a cut-off value [|log2(fold 
change) | ≥ 1, p-value < 0.05]. Meta-analysis of abiotic 
and biotic stress was performed separately to identify 
DEGs involved in both stress conditions. To visualize the 
unique and overlap of significantly DEGs (p < 0.05) of abi-
otic and biotic stress-responsive genes, a Venn-diagram 
was used (VENNY v.2.1 https://bioinfogp.cnb.csic.es/
tools/venny/index.html). The methods developed to map 
the high-quality RNA-Seq reads have been illustrated 
in Fig.  1. The pipeline was validated by bench-marking 
fold-change values from the pipeline against published 
fold-change values (Additional file 10). The list of DEGs 

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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were uploaded to MaizeMine (a data mining resource) to 
obtain a description/annotation of the DEGs [56].

Functional analysis of stress responsive genes
Gene ontology enrichment analysis
The expressed stress-responsive genes were analyzed for 
enriched GO categories using Singular Enrichment Anal-
ysis (SEA) from AgriGO v2.0 (GO analysis toolkit and 
database for the agriculture community; http://systems-
biology.cau.edu.cn/agriGOv2/ with the maize reference 
genome B73 as the background (Maize AGPv4 (Maize-
Gamer) [57]. The overrepresented terms in the three 
categories, biological process, cellular component, and 
molecular function were filtered based on the statistical 
information which is Fisher’s exact test and Bonferroni 
multi-test adjustment with p-value < 0.05. The number of 
input gene lists and the p-values were plotted against the 
GO terms (Fig. 3, Additional file 11).

KEGG pathway enrichment analysis
To provide further annotation to the DEGs we performed 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis using ShinyGO v.0.77 [58] 
and g: Profiler online tool [59]. An adjusted P-value < 0.05 
was used as a threshold for significantly enriched 
pathways.

Network analysis and hub gene cluster identification
Gene networks for the set of abiotic, biotic and co-DEG 
differentially expressed genes were constructed with 0.7 
level of confidence using STRINGApp [60]. Cytoscape 
v.3.9.1 was then used to visualize the presentation of the 
results from STRING. The Molecular Complex Detection 
(MCODE) Cytoscape plugin was further used to conduct 
hub genes cluster analysis [61]. Enrichment analysis for 
two clusters from each stress type was performed using g: 
Profiler to identify enriched GO terms and KEGG path-
ways associated with the clusters.

Phylostratigraphic analysis
To provide additional functional characterization of the 
stress-responsive genes, we used a phylostratigraphic 
approach to extract the phylostratum of the DEGs using 
an R framework for Phylostratigraphy [62]. The strata 
68,525.faa and 469,616.faa were pruned from the Uniprot 
data (obtained in April 2023) and Diamond [63] was run 
as a separate step. The step focal_taxid was set to 4577, 
Zea mays.

Identification of transcription factors
The TFs annotated by GRASSIUS [64] used to show dif-
ferential expression in response to abiotic and biotic 
stress were accessed from MaizeGDB [65]. We high-
lighted the number of the major TF families under vari-
ous types of stress.
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Table 3  Summary of RNA-Seq reads from projects mapped to the latest maize reference genome B73v5. The details of each project 
are indicated in Additional file
Project Publication 
Year

Number of Publica-
tions/ Projects

Publicly available Ref Genome at Year of 
Publication

Release Date Ref Genome used for Mapped 
Reads

2014 2 B73 RefGen_v3 2013 B73 RefGen_v2
2015 2 B73 RefGen_v3 2013 B73 RefGen_v2
2016 2 Zm-B73-REFERENCE-GRAMENE-4.0 2016 B73 RefGen_v3
2017 4 Zm-B73-REFERENCE-GRAMENE-4.0 2016 B73 RefGen_v3
2018 2 Zm-B73-REFERENCE-GRAMENE-4.0 2016 B73 RefGen_v2
2018 1 Zm-B73-REFERENCE-GRAMENE-4.0 2016 B73 RefGen_v3
2019 1 Zm-B73-REFERENCE-NAM-5.0 2019 Zm-B73-REFERENCE-GRAMENE-4.0
2020 4 Zm-B73-REFERENCE-NAM-5.0 2019 Zm-B73-REFERENCE-GRAMENE-4.0
2021 3 Zm-B73-REFERENCE-NAM-5.0 2019 Zm-B73-REFERENCE-GRAMENE-4.0
2022 2 Zm-B73-REFERENCE-NAM-5.0 2019 Zm-B73-REFERENCE-GRAMENE-4.0
2022 1 Zm-B73-REFERENCE-NAM-5.0 2019 B73(de novo assembly)
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