
Wang and Chen BMC Genomics (2024) 25:573
https://doi.org/10.1186/s12864-024-10446-4

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

NmTHC: a hybrid error correction method
based on a generative neural machine
translation model with transfer learning
Rongshu Wang1 and Jianhua Chen1*

Abstract

Backgrounds The single-pass long reads generated by third-generation sequencing technology exhibit a higher
error rate. However, the circular consensus sequencing (CCS) produces shorter reads. Thus, it is effective to manage
the error rate of long reads algorithmically with the help of the homologous high-precision and low-cost short reads
from the Next Generation Sequencing (NGS) technology.

Methods In this work, a hybrid error correction method (NmTHC) based on a generative neural machine translation
model is proposed to automatically capture discrepancies within the aligned regions of long reads and short reads,
as well as the contextual relationships within the long reads themselves for error correction. Akin to natural language
sequences, the long read can be regarded as a special “genetic language” and be processed with the idea of genera-
tive neural networks. The algorithm builds a sequence-to-sequence(seq2seq) framework with Recurrent Neural Net-
work (RNN) as the core layer. The before and post-corrected long reads are regarded as the sentences in the source
and target language of translation, and the alignment information of long reads with short reads is used to create
the special corpus for training. The well-trained model can be used to predict the corrected long read.

Results NmTHC outperforms the latest mainstream hybrid error correction methods on real-world datasets from two
mainstream platforms, including PacBio and Nanopore. Our experimental evaluation results demonstrate that NmTHC
can align more bases with the reference genome without any segmenting in the six benchmark datasets, proving
that it enhances alignment identity without sacrificing any length advantages of long reads.

Conclusion Consequently, NmTHC reasonably adopts the generative Neural Machine Translation (NMT) model
to transform hybrid error correction tasks into machine translation problems and provides a novel perspective
for solving long-read error correction problems with the ideas of Natural Language Processing (NLP). More remark-
ably, the proposed methodology is sequencing-technology-independent and can produce more precise reads.

Keywords Long read, Hybrid error correction, Neural machine translation, Natural language processing

Background
NGS technologies generate precise yet short reads,
typically with a maximum length of around 600 bases,
which poses significant challenges for subsequent recon-
struction and analysis processes [1]. Third-generation
sequencing (TGS) technologies, exemplified by PacBio
and Nanopore, generate long reads spanning up to
10 ~ 15kbp which provides a chance to solve challenging

*Correspondence:
Jianhua Chen
chenjh@ynu.edu.cn
1 Department of Electronic Engineering, Information School, Yunnan
University, Kunming, Yunnan, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10446-4&domain=pdf

Page 2 of 21Wang and Chen BMC Genomics (2024) 25:573

downstream problems such as de novo assembly [2],
variant calling [3]. The PacBio platform generates Con-
tinuous Long Reads(CLR), exhibiting ultra-length but
a high error rate ~ 13% [4], and Circular Consensus
Sequencing(CCS) reads with high accuracy but shorter
length (e.g., median = 423 bp, max = 1,915 bp) [5].
Nanopore technology cannot sequence the same mol-
ecule multiple times as PacBio, and the error rates of
Nanopore reads are ~ 15% [6]. Although the error rates
of “single-pass” long reads from the two platforms are
unsatisfactory, their exceptionally read lengths confer an
irreplaceable advantage in downstream analysis. Algo-
rithmically managing the error rates for the vast amount
of accumulated “single-pass” sequencing data in recent
years is both economical and imperative. Therefore, com-
bining existing homologous high-precision short reads
with carefully designed algorithms to correct long reads
is an cost-effective way, which has successfully aroused
the interest of many researchers [7].

As highlighted in the survey of long-read error cor-
rection [8], the integration of high-precision informa-
tion from short reads with the global information of long
reads contributes to enhancing the accuracy and robust-
ness of long-read error correction. Existing hybrid error
correction algorithms can be divided into four types:
short-read alignment-based, short-read assembly based,
De Bruijn graph (DBG)-based, and Hidden Markov Mod-
els (HMMs)-based. Short-read alignment-based methods
involve aligning short reads to long reads and comput-
ing a consensus sequence to rectify the corresponding
interval in the long read. PacBioToCA [9], Proovread
[10], Nanocorr [11], ColorMap [12], HECIL [13], etc. are
based on this strategy. However, aligning short reads to
particularly repetitive and noisy regions of long reads is
a challenging task. To address this issue, assembly-based
methods pre-assemble short reads into longer contigs.
ECTools [14], HALC [15], MiRCA [16] are based on
this strategy, leveraging the contextual information from
adjacent regions post-assembly to facilitate the effec-
tive alignment of contigs to repetitive and noisy regions
in long reads. The DBG-based approaches leverage the
DBG constructed from short-read k-mers to avoid the
intricate assembly process. Subsequently, they anchor the
long reads to the DBG and traverse the graph to obtain
an optimal path. LoRDEC [17], Jabba [18], FMLRC [19],
ParLECH [20] are based on this strategy.

Unfortunately, most of the algorithms mentioned
above suffer from at least one of the following limitations:
1) Different algorithm is designed based on the distinct
error profile of the reads from different platforms, lead-
ing to a discounted performance when applied to the data
from another platform. 2) The majority of algorithms
ignore those fragments that cannot be aligned with any

short read, which can compromise the continuity and the
length of long reads. 3) There is some human preference
setting in traversing the optimal path in DBG based algo-
rithms. Consequently, Canlkan et al. proposed the only
completely data-driven machine learning-based hybrid
correction algorithm, named Hercules [21]. It mod-
els each complete long read as a Hidden Markov Model
(HMM), and refine the parameters automatically based
on the error profiles of error-prone sequencing tech-
nologies. As the only machine learning-based approach,
Hercules is adept at capturing short-term dependencies
inherent in neighboring regions in a sequence. Neverthe-
less, HMMs exhibit limitations in capturing long-term
dependencies due to their reliance on the assumption of
a finite state space. Their performance is constrained by
the finite number of orders and parameters of the model
[22], which results in the unaligned regions that are dis-
tantly located from aligned regions in a long read losing
opportunities for correction. In addition, the training
phase of HMMs is quite time-consuming.

Fortunately, RNN [23] algorithms have been found
to be able to effectively capture and process long-term
dependencies between sequences for sequence labe-
ling, which creates the internal hidden state of the net-
work that allows it to exhibit dynamic temporal or spatial
behavior and shines in biological sequence analysis [24].
DeepVariant [25] and Deepnano [26] both convert the
problem of variant calling and base calling into classifi-
cation tasks in deep learning. However, the features and
labels used for training to classify are manually speci-
fied, and the one-to-one correspondence between them
is also specified based on subjective experience. Mean-
while, classification models often encounter the prob-
lem of imbalance classes, and the training data needs to
be adjusted based on prior knowledge. The generative
sequence-to-sequence(seq2seq) [27] model can auto-
matically solve the above limitations, enabling NMT to
effectively translate text from one language to another.
NMT model based on the seq2seq framework replaces
the statistical machine translation (SMT) model based
on HMM or SVM and becomes the latest underlying
framework of Google Translate [28]. There are research-
ers who have begun to explore the possibility of analyz-
ing biological sequences with NLP ideas. ProLanGO [29]
converts the prediction of protein functional regions into
a language translation task for the first time and reaches
a high accuracy.

Thus, a possible solution to the long-read correction
problem has been conceived. In this work: 1) RNN is
used to overcome the limitation of HMM in capturing
long-term dependencies, allowing the method to ignore
the different error profiles of sequencing platforms and
correct errors by leveraging the contextual relationships

Page 3 of 21Wang and Chen BMC Genomics (2024) 25:573

within long reads; 2) An NMT model is employed to
identify differences between the aligned regions of long
reads and the corresponding short reads for error correc-
tion; 3) A seq2seq-based generative framework is used
to address the bottleneck of unequal input and output
lengths in long-read error correction, a problem that can-
not be solved by traditional classification tasks requiring
one-to-one correspondence between inputs and outputs.

Consequently: 1) This study is the first to apply a gen-
erative language model for hybrid error correction, not
only learning the discrepancies between long reads and
short reads to correct errors in aligned regions, but also
effectively capturing bidirectional contextual relation-
ships to correct those often-overlooked unaligned bases;
2) This approach improved sequence quality, includ-
ing alignment identity and the number of aligned bases,
while maintaining length and continuity; 3) Compared
to non-machine learning algorithms, it can enhance
sequence quality without being platform-dependent, and
compared to the only existing machine learning algo-
rithm, it breaks through the finite state space of HMMs
and capture context to fix those unaligned regions. Ulti-
mately, it demonstrates better comprehensive perfor-
mance over all other non-machine learning and machine
learning algorithms.

Methods
This part is structured into three main sections: First,
long-read sequences need to be understood as natural
language sequences by machine, with the original long-
reads serving as the sentences from the source language
and the alignment information between the original long
reads and short reads serving as the corpus of the target
language for translation. Second, how to construct a gen-
erative translation model to facilitate translation from
the source language to the target language is discussed.
Third, several key implementation details crucial for suc-
cessful model fitting, including hyperparameter settings,
data generator, zero-padding masking, and source sen-
tence reversal are outlined. As a result, the well-trained
NMT model with alignment information is used for error
correction.

Understanding a long read as a sentence by machine
Intuitively, there are many similarities between long-
read sequences and natural language sequences, both
are time-series composed of characters. To accomplish
translation tasks, long-read sequences need to be trans-
formed into a form that can be understood and processed
by machines. “Understanding the alignment information”
section describes how to understand the alignment infor-
mation. “Generation of corpus” section explains how to
generate corpus of the source and target languages from

the align information. “Encode tokens to one-hot arrays”
section discusses how to convert the corpus into a vector
stream format that can be used for model computation.

Understanding the alignment information
Imagine a scenario where a model is tasked with trans-
lating the source language sentence “Je veux manger une
pomme.” into the target language sentence “Ich will Äpfel
essen.”. To do this, the model must grasp two key pieces
of information: First, the two sentences must be semanti-
cally aligned, meaning that they both represent the con-
cept of “I’d like to eat an apple.” Second, the elements in
a sentence must be semantically correlated. Inspired by
this translation mechanism, translating long reads into
corrected long reads involves understanding the corre-
spondence between the original long-read and the cor-
rected long-read sequences, as well as the forward and
backward correlations within each long-read sequence to
generate a new target sequence. The former is provided
by the alignment information between the long reads and
homologous high-precision short reads, while the latter
is derived from the long read itself.

When aligning short reads to a long read, it does not
necessarily mean that every base in the short read per-
fectly corresponds to each base in the aligned region
of the long read. There could be various insertions,
deletions, and mismatches at any position within this
region. The specific alignment pattern is represented by
a CIGAR string. By parsing CIGAR strings from many
aligned short reads, the coverage status of a long-read
region can be determined. It is generally accepted that
there is a specific correspondence between this region of
the long read and these aligned short reads. Ultimately,
the hybrid error correction process involves leveraging
the alignment information to correct the corresponding
regions on the long read, as illustrated in Fig. 1.

For example, the CIGAR string for the aligned SR1
to the long read is “5:4M2S3D6M4I1M”, indicating
that starting from position 5 of the long read, there
are 4 matches, 2 substitutions, 3 deletions, 6 matches,
4 insertions, and 1 match. Figure 1 is used to illustrate
such correspondence between the bases of these two
sequences. Similar correspondences for SR2 and SR3
are also illustrated in the figure. From the visualized
alignment of the three short reads, the target long read
corresponding to the original long read is generated,
labeled as Target LR. When the short reads (SR1, SR2,
SR3) are aligned to the long read (LR), two substitu-
tions occur at positions 9 and 10 twice for SR1 and SR2,
resulting in the bases GT in the long read to be replaced
with the target bases AC. Three deletions occur at posi-
tions 11, 12 and 13 for all short reads, indicating that
these positions should not contain any base, thus, the

Page 4 of 21Wang and Chen BMC Genomics (2024) 25:573

original long-read bases ATC should be removed. Four
insertions occur between positions 19 and 20 for all
short reads, suggesting that the bases AACA are missing
in this region, and AACA should be added here to the
target sequence. These changes are identified by analyz-
ing the discrepancies within the alignment information
of long-read and short-read sequences. Whereas the
modification at position 1 is influenced by the forward
and backward relationships among bases at positions
16, 17, 18 and 19. Because a well-trained bidirectional
RNN suggests that the probability of observing CTTT
in the context of AAC is higher than that of observ-
ing GTTT. The arrow in Fig. 1 indicates how the for-
ward and reverse relationship inherent in the long-read
sequence impact the correction of unaligned regions.

Since the locations and the numbers of indels are
irregular, the insertion or deletion of bases disrupts
the alignment of subsequent k-mers, making it difficult
to fit a machine translation model. Thus, it is neces-
sary to apply simple filling of placeholders to both the
source long-read sequences and the target long-read
sequences. When several insertions occur in a short
read aligned long-read fragment, the same number of
“$” placeholders are used to fill the corresponding posi-
tions in the target read, the filled target read is referred
to as the target sequence. When some deletions occur
in a long-read fragment, the same number of “$” place-
holders are used to fill the corresponding positions in
the long read, the filled long read is referred to as the
long sequence. The filling process is illustrated in Fig. 2.

Generation of corpus
To capture the differences and relationships required
for the afore-mentioned machine translation, the model

must be trained carefully with a corpus. The training pro-
cess involves using the model to capture the maximum
conditional probability of a given sequence of tokens
occurring. In seq2seq models, conditional probabil-
ity is typically expressed as the probability of predicting
the target sequence from a given source sequence. This
probability is used to predict the tokens in the target
sequence, one by one, based on the individual tokens in
the source sequence [30]. Therefore, the source and tar-
get sequences should be tokenized first. In the current
task, tokenization refers to the segmentation of source
and target sequences generated in the previous subsec-
tion. First, each sequence is segmented into adjacent but
non-overlapping k-mers according to a fixed length k.
All these k-mers with the specific order form the corpus.
Although overlapping k-mers are often used in DBG-
based error correction algorithms to preserve the contex-
tual correlation between sequences, overlapping k-mers
will increase the size of the corpus, which will consume
more computing resource. Meanwhile, when the model
achieves high enough accuracy by training, the model
will be able to automatically capture the contextual corre-
lation between k-mers, thus there is no need to use over-
lapping k-mers. Figure 3 is a simple segmentation process
of a long read with 3-mers. Since the sequence contains
5 kinds of characters {ATGC$}, the maximum size of the
vocabulary is 5^k, and the target sequences are processed
in the same way to get the target vocabulary.

In Fig. 3, the green unaligned region and the transpar-
ent aligned region are segmented into tokens of length
3 respectively. The objective of model training is that:
given the known token AAC, the model assigns the high-
est probability to the token GAC as the next token. Then,
given both tokens AAC and GAC, the model estimates

Fig. 1 Relationship between the original long read, the aligned short reads and the target long read

Fig. 2 The placeholder filling process for the source and target sequences

Page 5 of 21Wang and Chen BMC Genomics (2024) 25:573

that the most likely token to occur next is $$$, and this
process continues until the entire target sequence is
generated.

It is worth noting that the length of each long sequence
is unequal, the number of tokens of each sequence
obtained after tokenization is also unequal. However,
during seq2seq training, it is required that each batch has
the same data shape, meaning that the number of tokens
in each sentence must be consistent. Otherwise, the
generation for the current batch will stop upon encoun-
tering the earliest ‘end-of-sequence’ character ‘ < /s > ’
in that batch. The specific operation is as follows, 1) all
sequences are traversed to get the maximum number
of tokens, and then all sequences that do not reach the
maximum length are padded with a token ‘ < UNK > ’. 2)
The start token ‘ < s > ’ is added at the beginning of each
sequence, 3) and the end token ‘ < /s > ’ are added at the
end of each sequence. The start token ‘ < s > ’ is used to
inform the model to start prediction, and the end token
‘ < /s > ’ is used to inform the model that the prediction
should be terminated. It is worth noting that, during the
model training process, the calculation of the loss of the
padded tokens needs to go through a special zero-value
mask to remove irrelevant predictions. The specific cal-
culation method will be discussed in detail in the next
section. Assuming that the maximum length of long-read
sentences is 13, the padding process is shown in Fig. 4.

Encode tokens to one‑hot arrays
To enable machines to learn from the generated corpus,
the input of the neural network must be a vector or matrix

of numerical type, a common operation is one-hot encod-
ing. For a given vocabulary, each token is represented as
a unique vector whose dimension is equal to the vocabu-
lary size. The component in the vector is 1 at the index
position of the corresponding token and 0 at other posi-
tions. For example, assuming a vocabulary size of 10,000,
the word “apple” is located in the 1000th position in the
vocabulary, it can be represented as a 10,000-dimen-
sional vector with only the 1,000th position being 1 and
the other positions being 0. This kind of vector is called a
one-hot vector. In neural machine translation, the source
sequence and target sequence are usually composed of
multiple tokens. Therefore, each token in the sequence
needs to be represented as a unique one-hot vector, and
the entire sequence is represented as a matrix where each
row contains a one-hot vector of a token. The advantage
of using a one-hot matrix is that it can completely repre-
sent the discrete relationship between tokens and can be
directly used for calculations in neural networks. A sim-
ple one-hot matrix generation is shown in Fig. 5. In the
same way, the target vocabulary belonging to the target
“sequences” is generated, and the one-hot matrix of each
“target sentence” is obtained in the same way.

Although the one-hot matrix is sparse, it can retain
all important information in the sequence. The entire
sequence can be restored by searching the one-hot index
in the vocabulary. The dimensionality reduction tech-
niques used in natural language to save space are not
applicable in our scenario, such as word2vec and embed-
ding [31]. The reason is that dimensionality reduction
based on the attention of semantics and grammars. In the
corpus of long “sentences”, there is no obvious semantic

Fig. 3 The tokenization of the long sequence and the target sequence

Fig. 4 Padding process. There are 13 tokens in the padded sequences

Fig. 5 The generation of one-hot matrix. In the matrix, each row of the matrix corresponds to an array of a “word”

Page 6 of 21Wang and Chen BMC Genomics (2024) 25:573

or grammar founded so that the vectors obtained after
embedding tend to be uniformly distributed. This kind
of vectors will increase the number of iterations during
training, and the complex embedding process also con-
sumes the running time and computing resource with-
out any performance improvement. In addition, any
dimensionality reduction technique would discard some
information of original data. Therefore, no embedding
is needed here. So far, the long reads are converted into
numerical values that can be understood by the machine.

The construction of neural machine translation model
Once the long reads are converted into vectors under-
standable by machines, the next task is to build a model
that can learn the required information. To overcome
the inconsistency in length between before- and post-
corrected long reads, an end-to-end translation model
that can ignore the length disparities in input and output
is constructed, namely, seq2seq model. Seq2seq mod-
els allow the model to map between source and target
sequences without requiring handcrafted rules. They can
also handle variable-length sequences, both on the input
and output sides. This flexibility is crucial for the current
error correction task, where the input long reads have
varying lengths with their corresponding corrected reads.

Furthermore, RNN is considered as a general technique
that can effectively capture long-term dependencies
within long sequences. As an efficient variant of RNN, Bi-
LSTM is used here as the core layer of the model. Finally,
to ensure that the model does not overfit during the
training process, reasonable data segmentation for the
input datasets is implemented here.

The architecture of seq2seq
In the seq2seq framework, the encoder can transform the
input long sequence of variable length to a fixed-length
context vector C. RNN layers, such as Gated Recurrent
Unit (GRU) [32], LSTM, are usually used within the
encoder. To continuously generate tokens of the output
sequence, another recurrent neural network predicts the
next token according to both the encoded information of
the input sequence and the tokens and states generated
from the output sequence previously.

Suppose that there is an input sequence x1, . . . , xT ,
where xt is the tth word. At time step t, the Bi-LSTM will
save the token xt and the hidden state of the last time step
ht-1. Next, the encoder captures information of hidden states
and tokens from all of the time steps and encodes them into
the context vector C. Suppose that the given outputs in the
training set are Y1′ , . . . ,YT ′ . At each time step t′ , the con-
ditional probability of output Yt ′ , P Yt′ Y1′ , . . . ,Yt−1′ ,C ,

will depend on the previous output sequence Y1′ , . . . ,Yt−1′
and the context vector C . To model this conditional prob-
ability, another Bi-LSTM network is used as the decoder.
At time step t ′ , the decoder will update its hidden state
according three inputs: the feature vector from last time
step Yt−1′ , the context vector C, and the hidden state of
last time step ht−1′ After obtaining the hidden state ht ′ by
the decoder, the softmax function of the output layer is
used to calculate the conditional probability distribution of
the output at time step t ′ , and then solve the output token
of time step t ′ . It is worth noting that when implementing
the decoder, the hidden state of the encoder in the final time
step is used directly as the initial hidden state of the decoder.
This requires that the encoder and decoder Bi-LSTM layer
have the same number of hidden units. The only difference
between encoder and decoder is that a dense layer after the
Bi-LSTM layer is needed in the decoder to predict the maxi-
mum probability for each token, and the number of units in
the dense layer is the same as the target vocabulary size. The
flow chart for sequence prediction of the proposed frame-
work is shown in Fig. 6.

As described in the figure, the encoder and decoder
are built with a Bi-LSTM layer. The input long sequence
is decomposed into tokens x1, x2, x3, x4, x5 and fed to the
encoder, whose sole purpose is to create the context vec-
tor C0 and return the hidden state vector H0 . The output
of the encoder [C0,H0] is regarded as the initial state of
the decoder and the specific start token ‘ < s > ’ is sent to
the decoder to start predicting the output token. Thereaf-
ter, the token generated at the current time step and the
updated hidden state vector become the input of the next
time step, prompting the decoder to predict the output
token of the next time step. Once the model generates
end token ‘ < /s > ’, the model will stop prediction.

The selection of encoding and decoding layer
The following section will further explain why the afore-
mentioned seq2seq model chooses Bi-LSTM as its core
layer and how it works. LSTMs are designed to handle long-
range dependencies and remember information over time
due to their unique cell structure with memory cells and
gating mechanisms. Bi-LSTMs process input sequences
from both forward and backward directions. This is valu-
able in seq2seq models because the context in a sequence
does not always flow in one direction. By processing in both
directions, Bi-LSTMs can capture context and dependen-
cies more comprehensively. As a result, Bi-LSTMs are used
in the encoding phase to ensure that the encoder captures
the full context of the input sequence. This context is then
passed to the decoder, which generates the output sequence.
The accuracy of LSTM and bi-LSTM changes with the
number of epochs as shown in Fig. 7.

Page 7 of 21Wang and Chen BMC Genomics (2024) 25:573

When LSTM is used as the encoding layer, the loss
starts to converge to 0 when the training iterates about
200 times, and the accuracy starts to converge to 1 when
the iterates about 125 times. While, when Bi-LSTM is
used as the encoding layer, the loss starts to converge to
0 when the training iterates 120 times, and the accuracy
starts to converge to 1 when the training iterates about
100 times. The model with Bi-LSTM fits more quickly
during training.

Dataset segmentation
Data segmentation involves splitting a dataset into
training, validation, and testing sets distinctively. The
training set is used to train the model, the validation
set helps tune hyperparameters and prevent overfit-
ting, and the test set is used to evaluate the final per-
formance of the model. Suitable segmentation can
improve training efficiency and generalization. In the
current application scenario, the hash algorithm that
hashes sequence names is employed to randomly shuf-
fle the long-read sequences when creating the cor-
pus, ensuring that each dataset has randomness and
representativeness. Given that the long-read datasets
are relatively large, the proportion of the training set
is increased, Hence, the 80% is the training set, 10%
is the validation set, and 10% is the test set. Through
observation, the model converged effectively on the
training set without overfitting, and it performed well
on the test set, indicating that this data segmentation
is reasonable and effective.

Implementation details
So far, the network has been built and the long-read
sequences are transformed into a format that can be fed

Fig. 6 Flow chart of sequence prediction by the proposed framework

Fig. 7 The change of loss and accuracy with epoch for LSTM
and Bi-LSTM. a The change of loss of LSTM with epoch. b The change
of loss of Bi-LSTM with epoch

Page 8 of 21Wang and Chen BMC Genomics (2024) 25:573

into the network. However, several key details are cru-
cial for rapid and effective model convergence, including
hyperparameter settings, data generators, zero-padding
masking, and source sentence reversal.

Hyperparameter settings
The choice of hyperparameters directly affects the per-
formance and generalization ability of the model. An
overly complex model may lead to overfitting, while an
overly simple model might result in underfitting. Dif-
ferent hyperparameter combinations are tested and set
manually as follows:

1) Neurons in Bi-LSTM: Too few neurons may not be
able to extract sufficient information, while more
neurons can better capture complex correlations.
However, too many neurons increase training time
and risk overfitting. The model with Bi-LSTM for
both the encoding and decoding layers with 256*2
neurons converges the fastest without causing
GPU overflow. Additionally, the dense layer in the
decoder is used for classification, with the num-
ber of categories corresponding to the size of the
target vocabulary. Thus, the number of neurons
in the dense layer is set to the size of the target
vocabulary.

2) Learning Rate and Optimizer: The initial learning
rate is set to 0.1, combined with the Adam optimizer,
which can adjust the learning rate according to the
gradient descent.

3) Batch Size: Given the model’s fitting condition and
hardware constraints, the batch size is set to 64.

4) Early Stopping: Instead of a fixed number of train-
ing epochs, we use early stopping to prevent overfit-
ting. The training will stop early if the model does not
improve within 5 iterations (patience = 5).

Data generator
Since there are too many “long sentences” to be pro-
cessed by the model at one time, the datasets should
be split to facilitate the processing of the model, thus,
a data generator is used to split the dataset into small
batches to feed into the model, reducing the memory
usage and preventing GPU overflow. For the proposed
scheme, the goal is to predict the next token in the
target sequence based on the tokens observed so far
in the source sequence, the label is the next token in
the target sequence. Therefore, using the method of
sequential partitioning to load data in small batches
can preserve the correlation between sequences as
much as possible and improve the performance of
the model. The order of split subsequences should be

preserved during iteration, ensuring that the subse-
quences from two adjacent small batches are also adja-
cent in the original sequence.

Actually, the weights of the model will be updated
for each batch of data during the training. It is also
necessary to predict the output values for a batch of
data. Since, if the model trained in batches is used for
the prediction of an entire sequence, there will be pre-
diction bias. It should be noted that the hidden states
of each time step should be updated and fed into the
next time step for prediction. For example, if the batch
size of the data is 64, the model will predict one token
for each of the 64 sequences at the same time and
update 64 hidden states accordingly. These 64 hidden
states should be used during the prediction of the next
time step.

Zero‑padding masking
Since the Keras library requires the tokenized source
sequences in a batch should be the same length, the
token ‘ < UNK > ’ is used to pad the shorter sequences,
ensuring that all sequences in a batch have the same
length. Note that the tokenized target sentences are
also padded to make them have the same length, but
there is no need to compute the loss on the padded
symbols. An operation referred to as “Sequence Mask”
is adopted to remove the token ‘ < UNK > ’ in the cal-
culation of the loss. Specifically, the masks of all the
actual tokens are set to 1 and the masks of the token
‘ < UNK > ’ are set to 0, and the loss matrix is multi-
plied by this mask matrix to get the actual loss. In this
way, the model has filtered out irrelevant predictions
produced by the padding tokens. The padded token
including ‘ < s > ’ and ‘ < UNK > ’ should be removed
after prediction.

Source sentence reversal
To establish better communication between the “source
sentences” and the “target sentences”, the order of
the tokens in the input sequence is reversed, which is
referred to as source sentence reversal. The main intui-
tion behind reversion is that by reversing the order of
the input sequence, the model receives the final tokens
first. The hidden state Ht of the last time step output by
the encoder is sent to the decoder to become the initial
hidden state h′0 , which is used, together with the con-
text vector c from the encoder, to predict the output of
the first token. At this point, the source sentence rever-
sal technique can fully correlate the last token of the
encoder with the first token of the decoder. Specifically,
instead of using the sequence a, b, c to predict α,β , x ,
where α,β , x is the translation of a, b, c , we use c, b, a to
predict α,β , x . In this way, the last hidden state from

Page 9 of 21Wang and Chen BMC Genomics (2024) 25:573

the encoder (for a) is sent to the decoder and used as
the initial hidden state for predicting α . After that, the
previous hidden state (for b) is received by the decoder
to predict β . Such a simple trick of reversing the order
of the input tokens in the “long sentences” can effec-
tively make the model converge. Another benefit of
source sequence reversal is that the “source sentence”
ends with the token ‘ < s > ’ which is the same as the
token that the “target sentence” starts with, thus, there
is no need to perform another processing to build the
connection between the end of the “source sentence”
and the start of “target sentence”. After generating
“long sentences”, the order of each token in a “long sen-
tence” is reversed before this sequence is fed into the
network. Figure 8 shows the convergence of the loss
with or without source sentence reversal.

As shown in Fig. 8a, the model stops training when
the loss reaches around 5.5 and not decreases any-
more. The excessive loss means that the model train-
ing has failed. As shown in Fig. 8b, the loss converges
to 0 after training, indicating that source sentence
reversal can greatly boost the performance of the pro-
posed scheme.

Transfer learning
As of now, the model described previously can correct
a small long-read dataset. 17 sequences are sampled
from the E.coli data set randomly and used the above
NMT model to conduct correction. The result shows
that the number of bases and alignment identity cor-
rected by NmTHC are prominent to other mainstream
methods. However, the generative sequence model

Fig. 8 The convergence of loss with or without source sentence
reversal. a The convergence of loss without reversal. b The
convergence of loss with reversal

Fig. 9 The change of loss and accuracy during the transfer
learning process. a Model convergence in the pre-training
stage. b Convergence of the model in the fine-tuning stage

Page 10 of 21Wang and Chen BMC Genomics (2024) 25:573

is quite time-consuming. It takes more than 20 min
to correct a small dataset of only 150KiB. Extrapolat-
ing this, it would take 70 days to correct a complete
E. coli long-read dataset using a single GPU, which
is intolerable. Fortunately, there are many obvious
similarities among long-read sequences and within
an individual sequence, which is also can be seen in
the high-frequency tokens. In previous training pro-
cesses of generative models, the features of the entire
long-read data were divided into batches of the size
‘batch_size’ and sequentially fed into the network for
training, with each batch serving as the smallest unit
for parameter updates. This means when a new set of
data is input into the network, the network will begin
updating parameters from the start. Such a train-
ing strategy neglects the similarity between long-read
sequences and results in a high learning cost. At this
point, transferring the learned parameters from simi-
lar structures to the entire training process of long
reads would greatly reduce learning time. Thus, a
model-based transfer learning strategy is employed to
learn and transfer these similar regions to address the
time-consuming issue of the correction model. Spe-
cifically, a pre-trained model is used to extract these
similar structures from the source domain and share
them through parameter transfer. Then, the obtained
model is fine-tuned, such as reducing the learning rate
or changing the loss function. Finally, conduct supple-
mentary training with target domain data that is simi-
lar to the source domain, which allows a fast fitting for
a higher-precision model.

The little similarity is likely to result in the negative
transfer, which means the model would not fit in the
target domain. On the other hand, too much similarity
may lead to a low a generalization performance of the
model. Therefore, how to divide the long-read dataset
with reasonable similarity has become the key to the
current transfer task. Fortunately, the long reads with
similar name generally come from DNA fragments
close to each other, and these long reads usually have
high degree of similarity. Therefore, each sequence
name is hashed first, and sequences with the same
hash value are placed in the same chunk. The entire
dataset is randomly divided into N chunks. N-1 is the
number of times the model needs to be transferred in
the future. N can be adjusted according to the size of
the dataset and the change of the loss after transfer.
N = 500 or 1000 is recommended here. There should
be noted that if the chunks are too small, it is not pos-
sible to capture the global structural similarities to get
a satisfied loss and accuracy in the fine-tuning stage.
On the other hand, if the chunks are too large, it would
result in an over-sized vocabulary for the dense layers

to predict, the efficiency of transfer learning would be
affected.

After dividing step, there are two steps for trans-
fer: 1) Pre-training and saving the parameters: choose
any chunk for pre-training and save the weights of
each layer when loss and accuracy are high enough;
2) Unfreezing and fine-tuning: Unfreezing is mak-
ing the previously frozen neural network layers train-
able so that the model can update the parameters of
these layers on a new task to adapt to the target data.
In the current work, a lower learning rate is applied
for the fine-tuning of the model. We divide the fruit
fly long-read dataset according to N = 10,000. There
are 48 sequences in the first chunk, and the number
of bases is 540955 bp. The loss and accuracy curves of

Fig. 10 The changes of loss with the number of epochs
when different optimizers are used. a Loss gradient when Adam
is used as the optimizer. b Loss gradient when RMSProp is used
as the optimizer

Page 11 of 21Wang and Chen BMC Genomics (2024) 25:573

pre-training and fine-tuning after successful transfer
are shown in Fig. 9a and b. The results show that the
model requires 175 epochs to obtain satisfactory loss
in the pre-training stage, but when the pre-trained
model is used as the initial weights after transfer, it can
be fitted in only 35 epochs to get the low enough loss
for error correction.

Results
Performance of model training
During the training process, the cross-entropy clas-
sification function is used to calculate the loss of the
model, and accuracy is used to evaluate the model.
Increasing the batch size can accelerate training as it
reduces the number of time-consuming computational
backpropagations [33]. However, the excessively large
batch size would not only cause GPU overflow but also
increase the possibility of the model stopping at a local

minimum. Meanwhile, too many neurons in the Bi-
LSTM network also makes GPU overflow. Therefore,
the batch size is set to 64, and the number of Bi-LSTM
neurons is set to 512. Adaptive moment estimation
optimizer (Adam) [34] and root mean square prop
optimizer (RMSProp) [35] are tested under the same
conditions. The results from Fig. 10 show that Adam
can make the loss converge more smoothly. Thus,
the Adam algorithm is chosen as the optimizer. The
maximum number of epochs for model training is set
to 200, and the early stop mechanism with patience
5 is set to cut off the training when the loss does not
decrease within 5 iterations. In this way, the model can
be effectively prevented from overfitting. The results
of the model training show that the loss of the model
converges to 0 and the accuracy converges to 1 after
about 130 iterations, indicating that the training of the
model is successful.

Table 1 Information on the selected datasets

a Downloaded from Illumina at ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz and
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz with browser or wget command in a
Linux environment
b Downloaded from PacBio at https:// github. com/ Pacif cBio scien ces/ DevNet/ wiki/ E.- coli- Bacte rial- Assem bly
c Downloaded from Loman Labs at https:// s3. climb. ac. uk/ nanop ore/E_ coli_ K12_ 1D_ R9.2_ SpotON_ 2. pass. fasta

Sequencing specification Sequencing
NCBI accession

Number of reads Reference genome Genome
length(Mbp)

Reference NCBI accession

Illumina Miseq _a 2 × 5729470 E. coli K-12 MG1655 4.6 NC_000913.3

PacBio P6C4 _b 87217

MinION R9 1D _c 164472

Illumina Miseq ERR1938683 2 × 3318467 S. cerevisiae S288c 12.2 GCF_000146045.2

PacBio P6C4 PRJEB7245 239408

MinION R9 2D ERP016443 119955

Illumina Nextseq SRX3676782 2 × 20 619 401 Drosophila melanogaster ISO1 143.7 GCF_000001215.4

Pacbio P5C3 SRX499318 6864972

MinION R9.5 1D SRX3676783 663784

Table 2 The command line parameters of each algorithm

Method Command line parameters

LoRDEC LoRDEC-correct -2 short_reads.fasta -k 29 -s 3 -i long_reads.fasta -o long_reads_LoRDEC.fasta

Jabba karect -correct -matchtype = hamming -celltype = haploid -inputfile = short_reads.fasta
Jabba -o Jabba_output -k 75 -t 64 -g brownie_output/DBGraph.fasta -fasta long_reads.fasta

FMLRC time gunzip -c short_reads.fq.gz | awk ’NR % 4 = = 2’ | sort | tr NT TN | ropebwt2 -LR | tr NT TN |
fmlrc-convert -f./output/comp_msbwt.npy
fmlrc -k 21 -K 59 -p 1./output/comp_msbwt.npy long_reads.fasta fmlrc_long_reads.fasta

ColorMap runCorr.sh long_reads.fasta short_reads.fasta ont pre 16

HALC ABYSS short_reads.fasta -k 21 -o output
python runHALC.py long_reads.fasta contigs.fa -t 64 -o short_reads.fasta

Proovread Proovread -l long_reads.fasta -s short_reads.fasta --pre Proovread

Hercules Hercules -2 -li long_reads.fasta -ai sorted.bam -si short_reads.fasta -t 30 -o hercuels_corrected.fa

https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta

Page 12 of 21Wang and Chen BMC Genomics (2024) 25:573

Datasets and experiment setup
The six datasets used in our experiments are from three
species, Escherichia coli K-12 MG1655 (E. coli), Sac-
charomyces cerevisiae S288C (yeast), and Drosophila
melanogaster ISO1 (fruit fly), from three platforms,
Pacific bioscience (PacBio), Oxford Nanopore (ONT)
technologies, and Illumina. For each dataset, the long
reads to be corrected are from the PacBio or Nanop-
ore platforms, and the high-quality short reads that are

used to correct long reads are from the Illumina plat-
form. However, the availability of reference genomes of
these strains enables us to evaluate the correction qual-
ity in a reliable manner, and they are sequenced and
assembled carefully by Sanger and other institutions.
The details of the datasets are listed in Table 1.

NmTHC and 7 other typical hybrid error correc-
tion algorithms, including LoRDEC, Jabba, FMLRC,
ColorMap, HALC, Proovread and Hercules, are used

Table 3 Experimental results for the E.coli PacBio dataset

“PR-trim” represents the results provided by Proovread default, the long read after correction is in fact high-precision long-read fragments when the low-quality
regions are trimmed. “PR-untrim” stands for the results recovered by the third-party tool “seqtk”. “HALC” and “HALC-trim” are both results provided by HALC default

Method Total bases Aligned bases Alignment
identity

Average
length (bp)

Maximum
length (bp)

N50 (bp) Usr time (m:s) Memory
usage
(GiB)

Original 748009625 729784022 0.9756 8752 44113 13990 -- --

Short-read-DBG-based methods

 LoRDEC 716893126 702098565 0.9793 8402 44133 13491 1332:56 4.8

 Jabba 611947598 611947598 1 7880 41342 12352 161:55 2.1

 FMLRC 748004466 719532482 0.9619 8752 44117 13400 225:45 19.5

Short-read-alignment-based methods

 ColorMap 730726602 715441895 0.9790 8529 44113 13641 1728:22 24.5

 PR-trim 537183316 537132179 0.9990 4971 39836 9435 2804:4 7.5

 PR-untrim 607114493 593125,625 0.9769 9786 44113 14559 2804:4 7.5

Short-read-assembly-based methods

 HALC 711074601 698299377 0.9820 8340 44136 13400 27357:4 4.0

 HALC-trim 689081519 683004708 0.9911 8250 44066 13222 27357:4 4.0

HMM-based method

 Hercules 742217998 723994674 0.9754 8691 44113 13887 95964:55 4.8

Deep learning-based method

 NmTHC 743904487 743534260 0.9995 8723 44113 13941 2656:5 3.0

Table 4 Experimental results for the E.coli ONT dataset

There is no HALC correction result for the ONT dataset in Table 4, 6 and 8 because HALC is designed for PacBio SMRT long reads

Method Total bases Aligned bases Alignment
identity

Average
length (bp)

Maximum
length (bp)

N50 (bp) Usr time (m:s) Memory
usage
(GiB)

Original 1481511788 1479176967 0.9984 9047 131969 14895 -- --

Short-read-DBG-based methods

 LoRDEC 1555452836 1555128350 0.9997 9493 137887 15664 3044:28 4.8

 Jabba 1258239439 1258239439 1 7709 93396 12436 137:49 2.1

 FMLRC 1481511784 1480251346 0.9991 9047 131969 14895 363:48 19.5

Short-read-alignment-based methods

 ColorMap 1518333301 1516962292 0.9990 9253 134311 15180 1811:59 22.7

 PR-trim 979107621 979107621 1 1378 28387 1662 9765:59 7.0

 PR-untrim 1533953584 1532903029 0.9993 9361 137377 15419 9765:59 7.0

HMM-based method

 Hercules 1488092513 1485766466 0.9984 9087 132948 14974 136645:53 4.8

Deep learning-based method

 NmTHC 1483084718 1482913949 0.9998 9057 132122 14913 2423:46 3.0

Page 13 of 21Wang and Chen BMC Genomics (2024) 25:573

to correct the obtained datasets, and their results are
compared. The command line parameters of each algo-
rithm are based on the manual provided by respec-
tive author, and the details are recorded in Table 2.
All experiments in this work are run on a server with
2 CPU (Intel Xeon Gold 6240 @ 2.60 GHz 72 cores),
256 GB memory, and 2 GPUs (Quadro RTX 6000,
Compute Capability 7.5). For NmTHC, the process
of alignment and tokenization is implemented on the
CPU, the training and prediction of the model are

implemented on the GPU. All source codes are based
on Python 3.6 and TensorFlow-gpu 2.3.

Performance evaluation indicators and results
As described by LRECE [36], the biggest of the error
correction algorithm is absence of ground truth (i.e.,
perfectly corrected reads). Fortunately, the reference
genomes can evaluate these algorithms reliably. Essen-
tially, the differences between the corrected long reads
and the reference genome mean uncorrected errors. In

Table 5 Experimental results for the yeast PacBio dataset

There is no Proovread results in Tables 5 since the dataset of yeast PacBio is pair-ended sequencing data, and the long-read names are repeated, which is not allowed
during the processing of Proovread

Method Total bases Aligned bases Alignment
identity

Average
length (bp)

Maximum
length (bp)

N50 (bp) Usr time (m:s) Memory
usage
(GiB)

Original 5499119594 4853379662 0.8825 9108 94868 18406 -- --

Short-read-DBG-based methods

 LoRDEC 5350446756 4885916448 0.9131 8867 94872 17925 7783:21 4.8

 Jabba 2192986588 2183714060 0.9957 8501 46975 12780 990:47 2.1

 FMLRC 5499317944 4834874374 0.8791 9107 94868 18406 665:48 19.5

Short-read-alignment-based methods

 ColorMap 5506697225 4860976804 0.8837 9120 94868 18434 3450:20 6.5

 Proovread -- -- -- -- -- -- -- --

Short-read-assembly-based methods

 HALC 5328432720 5027096412 0.9434 8759 94877 17840 72872:35 4.0

 HALC-trim 4443811376 4300960212 0.9678 8460 57580 15662 72872:35 4.0

HMM-based method

 Hercules 5494486747 4848765700 0.8824 9102 94868 18392 202667:27 5.0

Deep learning-based method

 NmTHC 5466924180 5286441779 0.9669 9025 94868 18355 5501:5 3.0

Table 6 Experimental results for the yeast ONT dataset

Method Total bases Aligned bases Alignment
identity

Average
length (bp)

Maximum
length (bp)

N50 (bp) Usr time (m:s) Memory
usage
(GiB)

Original 382389287 376989685 0.9858 9186 56477 11696 -- --

Short-read-DBG-based methods

 LoRDEC 390792227 386323262 0.9885 9387 58298 11966 374:2 4.8

 Jabba 288736216 288726754 0.9996 7993 47266 10719 115:3 2.1

 FMLRC 382297060 376708825 0.9853 9184 56477 11694 232:11 19.5

Short-read-alignment-based methods

 ColorMap 385129056 379728102 0.9859 9245 56785 11775 1461:6 2.4

 PR-trim 100640 90149 0.8957 602 1102 599 513:27 7.5

 PR-untrim 380864789 376072021 0.9874 9188 55897 11656 513:27 7.5

HMM-based method

 Hercules 383933798 378533253 0.9859 9223 57481 11748 64005:15 3.2

Deep learning-based method

 NmTHC 381328904 380822709 0.9986 9192 56783 11708 1738:14 3.0

Page 14 of 21Wang and Chen BMC Genomics (2024) 25:573

this way, the quality of error correction can be obtained
by evaluating the quality of the alignment of the cor-
rected sequence to the reference genome. In practice,
Minimap2 [37] is used to align both the original and the
corrected long reads to their reference genome with the
command line “minimap2 -x map-pb/ont -t 30”. Finally,
various performance indicators of these alignments are
calculated to evaluate the error correction performance
of the algorithms. The experimental results are calculated
by LRECE. The results on sampled E. coli datasets from

two platforms are shown in Tables 3 and 4, the results on
sampled yeast from two platforms are shown in Tables 5
and 6, and the results on sampled fruit fly from two plat-
forms are shown in Tables 7 and 8.

In the experimental results, “Total bases” is the
total number of bases of the long read after corrected.
“Aligned bases” is the number of corrected bases that can
be aligned to the reference genome. “Alignment iden-
tity” represents the consistency of the segments in the
long reads and the corresponding aligned fragments in

Table 7 Experimental results for the fruit fly PacBio dataset

Method Total bases Aligned bases Alignment
identity

Average
length (bp)

Maximum
length (bp)

N50 (bp) Usr time (m:s) Memory
usage
(GiB)

Original 277577924 163084772 0.5875 2371 54186 12627 -- --

Short-read-DBG-based methods

 LoRDEC 274218615 190615200 0.6951 2345 54151 12355 1111:13 4.8

 Jabba 68570230 68562572 0.9998 4980 31567 7700 2142:49 2.1

 FMLRC 277373140 161807007 0.5833 2369 54184 12597 245:2 19.5

Short-read-alignment-based methods

 ColorMap 275086625 168238015 0.6115 2349 53985 12369 6139:10 2.4

 PR-trim 132095964 132095964 1 4600 30412 8617 4102:13 7.5

 PR-untrim 271685285 169539136 0.6440 2324 53681 12182 4102:13 7.5

Short-read-assembly-based methods

 HALC 272524283 230432806 0.8455 2331 54196 12204 2444:7 4.0

 HALC-trim 221794779 202071143 0.9110 2817 52030 13237 2444:7 4.0

HMM-based method

 Hercules 275620916 162943476 0.5911 2354 54186 12420 21157:17 3.2

Deep learning-based method

 NmTHC 275927399 189503829 0.6867 2361 53282 12522 1800:59 3.0

Table 8 Experimental results for the fruit fly ONT dataset

There is no Proovread results in Tables 8. Proovread produces no result after 15 days of computation on our experiment platform with 72 cores, thus the process is
terminated

Method Total bases Aligned bases Alignment
identity

Average
length (bp)

Maximum
length (bp)

N50 (bp) Usr time (m:s) Memory
usage
(GiB)

Original 4609479994 4193853794 0.9098 7177 446050 11956 -- --

Short-read-DBG-based methods

 LoRDEC 4656943723 4336450357 0.9311 7243 447498 12082 15516:57 4.8

 Jabba 2277474552 2277352751 0.9999 3962 47190 6081 11999:4 2.1

 FMLRC 4606352370 4110500003 0.8923 7172 444617 11949 3097:5 19.5

Short-read-alignment-based methods

 ColorMap 4685641775 4290298819 0.9156 7226 444791 12046 5338:54 2.4

 Proovread -- -- -- -- -- -- -- --

HMM-based method

 Hercules 4615570873 4202349986 0.9104 7185 446013 11974 198745:30 3.2

Deep learning-based method

 NmTHC 4605772604 4559772769 0.9900 7178 445920 11962 18943:10 3.0

Page 15 of 21Wang and Chen BMC Genomics (2024) 25:573

the reference genome, which is defined as the number of
aligned bases divided by the total number of bases and
usually inversely proportional to “Total bases”. In terms
of DNA data processing, if the read is long enough, there
is no need for polymerase chain reaction (PCR) amplifi-
cation, which can avoid base bias and simplify genome
assembly. Thus, we also compared the length of long
reads after correction. “Average length (bp)” and “Maxi-
mum length (bp)” are the average and maximum lengths
of regions where long reads can be aligned to the refer-
ence genome respectively. “N50” is used for assessing
the quality and continuity of a sequence assembly, rep-
resenting the length at which half of the entire assembly
consists of sequences of this length or longer. “Memory
usage (GiB)” is the peak CPU memory occupied by each
algorithm during the correction.

The evaluation metrics for error correction tasks
encompass multiple aspects, often requiring considera-
tions of trade-offs and compromises. As a result, provid-
ing a straightforward judgment regarding the superiority
or inferiority of a specific method is frequently challeng-
ing. To visually illustrate the performance of each method
on a unified chart, we have utilized Min–Max Normali-
zation to standardize the metrics, excluding time and

memory requirements. This normalization process aims
to mitigate scale differences among different indicators.
The formula for this normalization process is outlined as
follows:

Where, Xnormalized is the normalized value, X is the
original data value, Xmin is the minimum value of the
original data, Xmax is the maximum value of the origi-
nal data. In a normalized graph, when metrics derived
from a specific algorithm are densely clustered near
1, it indicates that this algorithm may offer better
overall performance compared to other algorithms
whose metrics are more sparsely distributed and devi-
ate significantly from 1, without major trade-offs or
compromises.

Analysis of the results
While enhancing the alignment identity of long reads
with the reference genome is a crucial objective in error
correction, it is imperative to consider a comprehensive
set of metrics. Figures 11, 12, 13, 14, 15 and 16 depict
the normalized metrics for each benchmark dataset.

(1)Xnormalized =

X − Xmin

Xmax − Xmin

Fig. 11 Legend of normalized metrics on E.coli PacBio dataset

Page 16 of 21Wang and Chen BMC Genomics (2024) 25:573

From the graph, it can be observed that for five of the six
datasets, except for the fruit fly PacBio dataset, the indi-
cators for NmTHC are more closely clustered around
1, indicating that it performs better with no significant
weaknesses.

Trimming consideration
In Tables 3, 4, 5, 6, 7 and 8, Jabba appears to achieve
an impressive alignment identity metric ranging from
0.99 to 1.00 in most cases, primarily due to its trim-
ming strategy. Specifically, when long reads extend
beyond the paths in the constructed De Bruijn graph,
Jabba trims the extended extremities. While this trim-
ming strategy elevates identity metrics, it results in
significantly smaller values for metrics such as lengths
and N50 compared to other algorithms. Consequently,
this leads to the loss of global information and the
length advantages inherent in long reads. Addition-
ally, the long-read file corrected by Jabba is only one-
third of its original size, a pattern similarly observed
with Proovread. In Figs. 11, 12, 13, 14, 15 and 16, it
is apparent that Jabba and Proovread occasionally

show increased alignment identity. However, there are
noticeable trade-offs in other metrics, such as total
bases and the maximum read length. As a result, the
markers representing these two methods in the figures
display greater dispersion. When researchers are per-
forming subsequent analyses, they should be careful of
the utilization of both methods.

DBG‑based algorithms
It is undeniable that the DBG-based algorithm LoR-
DEC is indeed an outstanding algorithm, and sub-
sequent algorithms like HALC are derived from it.
Admittedly, NmTHC is also quite comparable to it.
Specifically, as shown in Tables 4 and 6, LoRDEC
excels in metrics related to the number of aligned
bases, alignment identity, as well as length indicators
and N50. However, Tables 3, 5, 7 and 8 shows that
NmTHC surpasses LoRDEC in these metrics. Overall,
in 4 out of the 6 data sets, NmTHC outperforms LoR-
DEC in terms of performance. The difference in each
indicator between these two methods is within 5%,
indicating a comparable error correction performance.

Fig. 12 Legend of normalized metrics on E.coli ONT dataset

Page 17 of 21Wang and Chen BMC Genomics (2024) 25:573

The same conclusions can also be demonstrated in
Figs. 11, 13, 15, and 16. Notably, Tables 8 and 9 high-
light NmTHC’s remarkable performance in terms of
the number of aligned bases and alignment identity,
suggesting its capability to handle complex structures
in fruit fly data. Despite the complexity of the struc-
ture, alignment information is the key for generating
feature vectors and labels. As for another DBG-based
algorithm, FMLRC demonstrates exceptionally high
error-correction throughput and saves computa-
tion time. However, based on results from six sets of
data, its error-correction performance is somewhat
disappointing.

The only machine learning‑based algorithm
The effectiveness of NmTHC is evident in Tables 3, 4,
5, 6, 7 and 8, where it enhances the count of aligned
bases, improves alignment identity, and maintains a
read length nearly equivalent to that of Hercules. This
observation substantiates the assertions made in the
introduction for the following reasons: 1) both meth-
ods report post-corrected long read sequences without

trimming. 2) uncovered regions in short reads are
effectively corrected leveraging the RNN’s capacity
to capture long-term dependencies from the adjacent
covered areas. 3) the approach is adaptable to diverse
error profiles, making it suitable for various mainstream
sequencing platforms. In conclusion, NmTHC surpasses
the state-of-the-art machine learning-based method
Hercules across all metrics while significantly reducing
user time requirements.

Preassembly‑based algorithm
For the fruit fly dataset obtained from the PacBio plat-
form, as illustrated in Table 7 and Fig. 15, a noticeable
dissimilarity exists between the original long-read data
and the reference genome, leading to a low alignment
identity. In the results of Jabba and Proovread, there is
a peculiar doubling of the average length accompanied
by a significant reduction in total bases and maximum
length. This is because these two methods exclude many
long-read fragments that cannot be aligned to the high-
precision short reads or the DBG constructed from these
short reads.

Fig. 13 Legend of normalized metrics on Yeast PacBio dataset

Page 18 of 21Wang and Chen BMC Genomics (2024) 25:573

For such sequencing data with significant noise,
HALC offers a solution by initially using a third-party
assembler, Abyss [38], to preassemble the short-read
data to contigs. During this preassembly phase, con-
taminants are removed with the ‘–chastity’ option,
low-quality bases at the end of sequences are trimmed
with ‘–trim-masked’, and dangling edges are pruned
with the ‘-t’ parameter. The obtained clean contigs
and short reads are then used to construct a DBG,
followed by further refinement of the long reads with
LoRDEC. In the case of the fruit fly PacBio dataset,
this strategy has proven to be quite effective. However,
the complex assembly process consumes considerable
time and computational resources, and the preassem-
bly approach is not suitable for other tested datasets.
In addition, HALC is designed only for SMRT PacBio
long reads.

Unlike the previous trimming or pre-assembly strat-
egies, the other algorithms retained these regions,
which results in a suboptimal alignment identity.
Nevertheless, NmTHC still reports higher alignment
identity and a greater number of aligned bases on this
dataset.

Resource consumption statistics
In terms of computing resource consumption, the
tokenization process of “long sentences” and “tar-
get sentences” and the generation of vocabularies of
NmTHC method are executed on the CPU, and a total
of 3.0GiB of main memory is costed. Then, the training
and prediction of the model are deployed onto the GPU,
and a total of 23181MiB of GPU memory is consumed.
The data generator is used to load “long sentences” in
batches for training and prediction, only the current
batch of data and the parameters of the model are saved
in the GPU. Thus, the GPU memory consumed is fixed
regardless of the size of long reads such as fruit fly and
the only concern is the running time. Other compared
algorithms only consume main memory, and their
memory consumption is shown in the “Memory usage”
column in the above tables.

In terms of running time, it is well established that
generative models are time-consuming and computa-
tionally resource-intensive. To evaluate the time effi-
ciency of the algorithms, the Unix “time” command
is used to record the running time of each method,
then the command line will output three values, “real

Fig. 14 Legend of normalized metrics on Yeast ONT dataset

Page 19 of 21Wang and Chen BMC Genomics (2024) 25:573

time” is the elapsed real (wall clock) time used by the
process, “user time” is the CPU-seconds used by pro-
cess directly in user mode. It is worth noting that when
multiple cores in the CPU are called, the “real time”
may be smaller than “user time”. The number of CPU
cores specified by each method is different, “user time”
is used here to measure the time consumption. The
machine learning-based method Hercules is obviously
time-consuming.

In recent years, there has been rapid develop-
ment in hardware GPUs and the cloud GPU arrays.
As a machine learning-based hybrid error correc-
tion method running on GPUs, NmtHC can further
enhance its time efficiency with the advancement of
GPU resources. To validate this, the training process is
distributed in parallel across two GPUs with the inter-
face “tensorflow.config” in Keras library. It is necessary
to double the “batch_size” and specify that no regu-
larization is performed between GPUs. The results
are shown in Table 9. The process of alignment takes
170 min of user time. Thus, the actual user time spent

on 2 GPUs is almost half that of 1 GPU. The corrected
long-read quality obtained from a model trained by
parallel GPUs is comparable to that of a single GPU-
trained model. This shows that if there are sufficient
GPUs or cloud GPU arrays, our algorithm can achieve
faster high-precision error correction.

Conclusions
This work employs the idea of NLP to realize an NMT-
based Hybrid Correction (NmTHC) method which
adopts a RNN to build a seq2seq framework, treating the
long reads to be corrected as the sentences in the source
language and the corrected long reads as the sentences
in the target language, realizing the error correction with
the help of the special corpus generated from the align-
ment information between long and the high precision
short reads.

The proposed method can automatically capture
longer-term dependencies among sequences and identify
the discrepancies between long and short reads for error
correction. This benefits an improvement in alignment

Fig. 15 Legend of normalized metrics on Fruit fly PacBio dataset

Page 20 of 21Wang and Chen BMC Genomics (2024) 25:573

identity while maintaining a high count of total bases
and aligned bases. NmTHC avoids trimming any uncov-
ered bases and leverages long-term correlation to cor-
rect them. As a result, NmTHC performs better than
other mainstream error correction algorithms, including
efficient LoRDEC and autonomous learning Hercules.
NmTHC offers a fresh perspective for machine learning-
based error correction tasks.

Acknowledgements
Not applicable.

Authors’ contributions
RW implemented the code. RW and JC wrote the manuscript. JC guided the
project. All authors read and approved the manuscript.

Funding
This work is funded by National Natural Science Foundation of China under
Grant (61861045). The funder had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
The source code for NmTHC is available at https:// github. com/ Beaut y9527/
NmTHC.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Fig. 16 Legend of normalized metrics on Fruit fly ONT dataset

Table 9 Parallel GPU time consumption test on E.coli PacBio dataset

“NmTHC-1” means there is 1 GPU working alone. “NmTHC-2” means there are 2 GPUs working in parallel

Method Aligned reads Total bases Aligned bases Alignment
identity

Average
length (bp)

Maximum
length (bp)

N50 (bp) Real time (m:s)

NmTHC-1 85086 743904487 743534260 0.9995 8723 44113 13941 2606:49

NmTHC-2 85034 743583020 743212642 0.9995 8725 44113 13936 1464:51

https://github.com/Beauty9527/NmTHC
https://github.com/Beauty9527/NmTHC

Page 21 of 21Wang and Chen BMC Genomics (2024) 25:573

Competing interests
The authors declare no competing interests.

Received: 25 October 2023 Accepted: 22 May 2024

References
 1. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation

sequencing: computational challenges and solutions. Nat Rev Genet.
2012;13(1):36–46.

 2. Kim K-R, Yu J-N, Hong JM, Kim S-Y, Park SY. Genome assembly and micros-
atellite marker development using illumina and PacBio sequencing in the
Carex pumila (Cyperaceae) from Korea. Genes (Basel). 2023;14(11):2063.

 3. Wang S, Zhang X, Qiang G, Wang J. DelInsCaller: an efficient algorithm for
identifying Delins and estimating haplotypes from long reads with high
level of sequencing errors. Genes (Basel). 2023;14(1):4.

 4. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A,
Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms:
comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq
sequencers. BMC Genomics. 2012;13(1):1–13.

 5. Foord C, Hsu J, Jarroux J, Hu W, Belchikov N, Pollard S, He Y, Joglekar A,
Tilgner HU. The variables on RNA molecules: concert or cacophony?
Answers in long-read sequencing. Nat Methods. 2023;20(1):20–4.

 6. Li C, Chng KR, Boey EJH, Ng AHQ, Wilm A, Nagarajan NJG. INC-Seq:
accurate single molecule reads using nanopore sequencing. Gigascience.
2016;5(1):s13742-13016-10140–3747.

 7. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang
Z, Rasko DA, McCombie WR, Jarvis ED. Hybrid error correction and de
novo assembly of single-molecule sequencing reads. Nat Biotechnol.
2012;30(7):693–700.

 8. Morisse P, Lecroq T, Lefebvre A. Long-read error correction: a survey and
qualitative comparison. BioRxiv. 2020977975. https:// doi. org/ 10. 1101/
2020. 03. 06. 977975.

 9. Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long read
accuracy by short read alignment. 2012.

 10. Hackl T, Hedrich R, Schultz J, Förster FJ. proovread: large-scale high-
accuracy PacBio correction through iterative short read consensus.
Bioinformatics. 2014;30(21):3004–11.

 11. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC,
McCombie WR. Oxford Nanopore sequencing, hybrid error correc-
tion, and de novo assembly of a eukaryotic genome. Genome Res.
2015;25(11):1750–6.

 12. Haghshenas E, Hach F, Sahinalp SC, Chauve C. CoLoRMap: cor-
recting long reads by mapping short reads. Bioinformatics.
2016;32(17):i545–51.

 13. Choudhury O, Chakrabarty A, Emrich SJ. HECIL: a hybrid error correction
algorithm for long reads with iterative learning. Sci Rep. 2018;8(1):1–9.

 14. Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. Error cor-
rection and assembly complexity of single molecule sequencing reads.
BioRxiv. 2014006395. https:// doi. org/ 10. 1101/ 006395.

 15. Bao E, Lan L. HALC: high throughput algorithm for long read error correc-
tion. BMC Bioinformatics. 2017;18:1–12.

 16. Kchouk M, Elloumi M. Efficient hybrid De novo error correction and
assembly for long reads. 2016 27th International workshop on database
and expert systems applications (DEXA). 2016;88–92.

 17. Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correc-
tion. Bioinformatics. 2014;30(24):3506–14.

 18. Miclotte G, Heydari M, Demeester P, Rombauts S, Van de Peer Y, Auden-
aert P, Fostier J. Jabba: hybrid error correction for long sequencing reads.
Algorithms Mol Biol. 2016;11(1):1–12.

 19. Wang JR, Holt J, McMillan L, Jones CD. FMLRC: hybrid long read error cor-
rection using an FM-index. BMC Bioinformatics. 2018;19:1–11.

 20. Das AK, Goswami S, Lee K, Park S-J. A hybrid and scalable error correction
algorithm for indel and substitution errors of long reads. BMC Genomics.
2019;20(11):1–15.

 21. Firtina C, Bar-Joseph Z, Alkan C, Cicek AE. Hercules: a profile HMM-based
hybrid error correction algorithm for long reads. Nucleic Acids Res.
2018;46(21):e125.

 22. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University
Press; 1998.

 23. Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network. Physica D. 2020;404:132306.

 24. Pan W, Li H, Zhou X, Jiao J, Zhu C, Zhang Q. Research on pig sound
recognition based on deep neural network and hidden Markov models.
Sensors (Basel). 2024;24(4):1269.

 25. Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A,
Newburger D, Dijamco J, Nguyen N, Afshar PT. A universal SNP and
small-indel variant caller using deep neural networks. Nat Biotechnol.
2018;36(10):983–7.

 26. Boža V, Brejová B, Vinař T. DeepNano: deep recurrent neural networks for
base calling in MinION nanopore reads. PLoS ONE. 2017;12(6):e0178751.

 27. Sutskever I, Vinyals O, Le Quoc V. Sequence to sequence learning with
neural networks. arxiv preprint arxiv. 201414093215.

 28. Klein G, Kim Y, Deng Y, Senellart J, Rush AM. Opennmt: open-source
toolkit for neural machine translation. 2017.

 29. Cao R, Freitas C, Chan L, Sun M, Jiang H, Chen Z. ProLanGO: protein func-
tion prediction using neural machine translation based on a recurrent
neural network. Molecules. 2017;22(10):1732.

 30. Chowdhary KR. Natural language processing. Fundamentals of artificial
intelligence. Springer India. 2020;603–49.

 31. CHURCH KW. Word2Vec. Nat Lang Eng. 2017;23(1):155–62.
 32. Dey R, Salem FM. Gate-variants of Gated Recurrent Unit (GRU) neural

networks. IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS). 2017;1597–1600.

 33. Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch
A, Jia Y, He K. Accurate, large minibatch sgd: training imagenet in 1 hour.
2017.

 34. Zhang Z. Improved adam optimizer for deep neural networks. IEEE/ACM
26th international symposium on quality of service (IWQoS). 2018;1–2.

 35. Zou F, Shen L, Jie Z, Zhang W, Liu W. A Sufficient condition for conver-
gences of Adam and RMSProp. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2019;11127–11135.

 36. Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error
correction methods. BMC Genomics. 2020;21:1–15.

 37. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics. 2018;34(18):3094–100.

 38. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS:
a parallel assembler for short read sequence data. Genome Res.
2009;19(6):1117–23.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/2020.03.06.977975
https://doi.org/10.1101/2020.03.06.977975
https://doi.org/10.1101/006395

	NmTHC: a hybrid error correction method based on a generative neural machine translation model with transfer learning
	Abstract
	Backgrounds
	Methods
	Results
	Conclusion

	Background
	Methods
	Understanding a long read as a sentence by machine
	Understanding the alignment information
	Generation of corpus
	Encode tokens to one-hot arrays

	The construction of neural machine translation model
	The architecture of seq2seq
	The selection of encoding and decoding layer
	Dataset segmentation

	Implementation details
	Hyperparameter settings
	Data generator
	Zero-padding masking
	Source sentence reversal

	Transfer learning
	Results
	Performance of model training
	Datasets and experiment setup
	Performance evaluation indicators and results
	Analysis of the results
	Trimming consideration
	DBG-based algorithms
	The only machine learning-based algorithm
	Preassembly-based algorithm

	Resource consumption statistics

	Conclusions
	Acknowledgements
	References

