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Abstract 

Backgrounds The single-pass long reads generated by third-generation sequencing technology exhibit a higher 
error rate. However, the circular consensus sequencing (CCS) produces shorter reads. Thus, it is effective to manage 
the error rate of long reads algorithmically with the help of the homologous high-precision and low-cost short reads 
from the Next Generation Sequencing (NGS) technology.

Methods In this work, a hybrid error correction method (NmTHC) based on a generative neural machine translation 
model is proposed to automatically capture discrepancies within the aligned regions of long reads and short reads, 
as well as the contextual relationships within the long reads themselves for error correction. Akin to natural language 
sequences, the long read can be regarded as a special “genetic language” and be processed with the idea of genera-
tive neural networks. The algorithm builds a sequence-to-sequence(seq2seq) framework with Recurrent Neural Net-
work (RNN) as the core layer. The before and post-corrected long reads are regarded as the sentences in the source 
and target language of translation, and the alignment information of long reads with short reads is used to create 
the special corpus for training. The well-trained model can be used to predict the corrected long read.

Results NmTHC outperforms the latest mainstream hybrid error correction methods on real-world datasets from two 
mainstream platforms, including PacBio and Nanopore. Our experimental evaluation results demonstrate that NmTHC 
can align more bases with the reference genome without any segmenting in the six benchmark datasets, proving 
that it enhances alignment identity without sacrificing any length advantages of long reads.

Conclusion Consequently, NmTHC reasonably adopts the generative Neural Machine Translation (NMT) model 
to transform hybrid error correction tasks into machine translation problems and provides a novel perspective 
for solving long-read error correction problems with the ideas of Natural Language Processing (NLP). More remark-
ably, the proposed methodology is sequencing-technology-independent and can produce more precise reads.

Keywords Long read, Hybrid error correction, Neural machine translation, Natural language processing

Background
NGS technologies generate precise yet short reads, 
typically with a maximum length of around 600 bases, 
which poses significant challenges for subsequent recon-
struction and analysis processes [1]. Third-generation 
sequencing (TGS) technologies, exemplified by PacBio 
and Nanopore, generate long reads spanning up to 
10 ~ 15kbp which provides a chance to solve challenging 
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downstream problems such as de novo assembly [2], 
variant calling [3]. The PacBio platform generates Con-
tinuous Long Reads(CLR), exhibiting ultra-length but 
a high error rate ~ 13% [4], and Circular Consensus 
Sequencing(CCS) reads with high accuracy but shorter 
length (e.g., median = 423  bp, max = 1,915  bp) [5]. 
Nanopore technology cannot sequence the same mol-
ecule multiple times as PacBio, and the error rates of 
Nanopore reads are ~ 15% [6]. Although the error rates 
of “single-pass” long reads from the two platforms are 
unsatisfactory, their exceptionally read lengths confer an 
irreplaceable advantage in downstream analysis. Algo-
rithmically managing the error rates for the vast amount 
of accumulated “single-pass” sequencing data in recent 
years is both economical and imperative. Therefore, com-
bining existing homologous high-precision short reads 
with carefully designed algorithms to correct long reads 
is an cost-effective way, which has successfully aroused 
the interest of many researchers [7].

As highlighted in the survey of long-read error cor-
rection [8], the integration of high-precision informa-
tion from short reads with the global information of long 
reads contributes to enhancing the accuracy and robust-
ness of long-read error correction. Existing hybrid error 
correction algorithms can be divided into four types: 
short-read alignment-based, short-read assembly based, 
De Bruijn graph (DBG)-based, and Hidden Markov Mod-
els (HMMs)-based. Short-read alignment-based methods 
involve aligning short reads to long reads and comput-
ing a consensus sequence to rectify the corresponding 
interval in the long read. PacBioToCA [9], Proovread 
[10], Nanocorr [11], ColorMap [12], HECIL [13], etc. are 
based on this strategy. However, aligning short reads to 
particularly repetitive and noisy regions of long reads is 
a challenging task. To address this issue, assembly-based 
methods pre-assemble short reads into longer contigs. 
ECTools [14], HALC [15], MiRCA [16] are based on 
this strategy, leveraging the contextual information from 
adjacent regions post-assembly to facilitate the effec-
tive alignment of contigs to repetitive and noisy regions 
in long reads. The DBG-based approaches leverage the 
DBG constructed from short-read k-mers to avoid the 
intricate assembly process. Subsequently, they anchor the 
long reads to the DBG and traverse the graph to obtain 
an optimal path. LoRDEC [17], Jabba [18], FMLRC [19], 
ParLECH [20] are based on this strategy.

Unfortunately, most of the algorithms mentioned 
above suffer from at least one of the following limitations: 
1) Different algorithm is designed based on the distinct 
error profile of the reads from different platforms, lead-
ing to a discounted performance when applied to the data 
from another platform. 2) The majority of algorithms 
ignore those fragments that cannot be aligned with any 

short read, which can compromise the continuity and the 
length of long reads. 3) There is some human preference 
setting in traversing the optimal path in DBG based algo-
rithms. Consequently, Canlkan et al. proposed the only 
completely data-driven machine learning-based hybrid 
correction algorithm, named Hercules [21]. It mod-
els each complete long read as a Hidden Markov Model 
(HMM), and refine the parameters automatically based 
on the error profiles of error-prone sequencing tech-
nologies. As the only machine learning-based approach, 
Hercules is adept at capturing short-term dependencies 
inherent in neighboring regions in a sequence. Neverthe-
less, HMMs exhibit limitations in capturing long-term 
dependencies due to their reliance on the assumption of 
a finite state space. Their performance is constrained by 
the finite number of orders and parameters of the model 
[22], which results in the unaligned regions that are dis-
tantly located from aligned regions in a long read losing 
opportunities for correction. In addition, the training 
phase of HMMs is quite time-consuming.

Fortunately, RNN [23] algorithms have been found 
to be able to effectively capture and process long-term 
dependencies between sequences for sequence labe-
ling, which creates the internal hidden state of the net-
work that allows it to exhibit dynamic temporal or spatial 
behavior and shines in biological sequence analysis [24]. 
DeepVariant [25] and Deepnano [26] both convert the 
problem of variant calling and base calling into classifi-
cation tasks in deep learning. However, the features and 
labels used for training to classify are manually speci-
fied, and the one-to-one correspondence between them 
is also specified based on subjective experience. Mean-
while, classification models often encounter the prob-
lem of imbalance classes, and the training data needs to 
be adjusted based on prior knowledge. The generative 
sequence-to-sequence(seq2seq) [27] model can auto-
matically solve the above limitations, enabling NMT to 
effectively translate text from one language to another. 
NMT model based on the seq2seq framework replaces 
the statistical machine translation (SMT) model based 
on HMM or SVM and becomes the latest underlying 
framework of Google Translate [28]. There are research-
ers who have begun to explore the possibility of analyz-
ing biological sequences with NLP ideas. ProLanGO [29] 
converts the prediction of protein functional regions into 
a language translation task for the first time and reaches 
a high accuracy.

Thus, a possible solution to the long-read correction 
problem has been conceived. In this work: 1) RNN is 
used to overcome the limitation of HMM in capturing 
long-term dependencies, allowing the method to ignore 
the different error profiles of sequencing platforms and 
correct errors by leveraging the contextual relationships 
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within long reads; 2) An NMT model is employed to 
identify differences between the aligned regions of long 
reads and the corresponding short reads for error correc-
tion; 3) A seq2seq-based generative framework is used 
to address the bottleneck of unequal input and output 
lengths in long-read error correction, a problem that can-
not be solved by traditional classification tasks requiring 
one-to-one correspondence between inputs and outputs.

Consequently: 1) This study is the first to apply a gen-
erative language model for hybrid error correction, not 
only learning the discrepancies between long reads and 
short reads to correct errors in aligned regions, but also 
effectively capturing bidirectional contextual relation-
ships to correct those often-overlooked unaligned bases; 
2) This approach improved sequence quality, includ-
ing alignment identity and the number of aligned bases, 
while maintaining length and continuity; 3) Compared 
to non-machine learning algorithms, it can enhance 
sequence quality without being platform-dependent, and 
compared to the only existing machine learning algo-
rithm, it breaks through the finite state space of HMMs 
and capture context to fix those unaligned regions. Ulti-
mately, it demonstrates better comprehensive perfor-
mance over all other non-machine learning and machine 
learning algorithms.

Methods
This part is structured into three main sections: First, 
long-read sequences need to be understood as natural 
language sequences by machine, with the original long-
reads serving as the sentences from the source language 
and the alignment information between the original long 
reads and short reads serving as the corpus of the target 
language for translation. Second, how to construct a gen-
erative translation model to facilitate translation from 
the source language to the target language is discussed. 
Third, several key implementation details crucial for suc-
cessful model fitting, including hyperparameter settings, 
data generator, zero-padding masking, and source sen-
tence reversal are outlined. As a result, the well-trained 
NMT model with alignment information is used for error 
correction.

Understanding a long read as a sentence by machine
Intuitively, there are many similarities between long-
read sequences and natural language sequences, both 
are time-series composed of characters. To accomplish 
translation tasks, long-read sequences need to be trans-
formed into a form that can be understood and processed 
by machines. “Understanding the alignment information” 
section describes how to understand the alignment infor-
mation. “Generation of corpus” section explains how to 
generate corpus of the source and target languages from 

the align information. “Encode tokens to one-hot arrays” 
section discusses how to convert the corpus into a vector 
stream format that can be used for model computation.

Understanding the alignment information
Imagine a scenario where a model is tasked with trans-
lating the source language sentence “Je veux manger une 
pomme.” into the target language sentence “Ich will Äpfel 
essen.”. To do this, the model must grasp two key pieces 
of information: First, the two sentences must be semanti-
cally aligned, meaning that they both represent the con-
cept of “I’d like to eat an apple.” Second, the elements in 
a sentence must be semantically correlated. Inspired by 
this translation mechanism, translating long reads into 
corrected long reads involves understanding the corre-
spondence between the original long-read and the cor-
rected long-read sequences, as well as the forward and 
backward correlations within each long-read sequence to 
generate a new target sequence. The former is provided 
by the alignment information between the long reads and 
homologous high-precision short reads, while the latter 
is derived from the long read itself.

When aligning short reads to a long read, it does not 
necessarily mean that every base in the short read per-
fectly corresponds to each base in the aligned region 
of the long read. There could be various insertions, 
deletions, and mismatches at any position within this 
region. The specific alignment pattern is represented by 
a CIGAR string. By parsing CIGAR strings from many 
aligned short reads, the coverage status of a long-read 
region can be determined. It is generally accepted that 
there is a specific correspondence between this region of 
the long read and these aligned short reads. Ultimately, 
the hybrid error correction process involves leveraging 
the alignment information to correct the corresponding 
regions on the long read, as illustrated in Fig. 1.

For example, the CIGAR string for the aligned SR1 
to the long read is “5:4M2S3D6M4I1M”, indicating 
that starting from position 5 of the long read, there 
are 4 matches, 2 substitutions, 3 deletions, 6 matches, 
4 insertions, and 1 match. Figure 1 is used to illustrate 
such correspondence between the bases of these two 
sequences. Similar correspondences for SR2 and SR3 
are also illustrated in the figure. From the visualized 
alignment of the three short reads, the target long read 
corresponding to the original long read is generated, 
labeled as Target LR. When the short reads (SR1, SR2, 
SR3) are aligned to the long read (LR), two substitu-
tions occur at positions 9 and 10 twice for SR1 and SR2, 
resulting in the bases GT in the long read to be replaced 
with the target bases AC. Three deletions occur at posi-
tions 11, 12 and 13 for all short reads, indicating that 
these positions should not contain any base, thus, the 
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original long-read bases ATC should be removed. Four 
insertions occur between positions 19 and 20 for all 
short reads, suggesting that the bases AACA are missing 
in this region, and AACA should be added here to the 
target sequence. These changes are identified by analyz-
ing the discrepancies within the alignment information 
of long-read and short-read sequences. Whereas the 
modification at position 1 is influenced by the forward 
and backward relationships among bases at positions 
16, 17, 18 and 19. Because a well-trained bidirectional 
RNN suggests that the probability of observing CTTT 
in the context of AAC is higher than that of observ-
ing GTTT. The arrow in Fig.  1 indicates how the for-
ward and reverse relationship inherent in the long-read 
sequence impact the correction of unaligned regions.

Since the locations and the numbers of indels are 
irregular, the insertion or deletion of bases disrupts 
the alignment of subsequent k-mers, making it difficult 
to fit a machine translation model. Thus, it is neces-
sary to apply simple filling of placeholders to both the 
source long-read sequences and the target long-read 
sequences. When several insertions occur in a short 
read aligned long-read fragment, the same number of 
“$” placeholders are used to fill the corresponding posi-
tions in the target read, the filled target read is referred 
to as the target sequence. When some deletions occur 
in a long-read fragment, the same number of “$” place-
holders are used to fill the corresponding positions in 
the long read, the filled long read is referred to as the 
long sequence. The filling process is illustrated in Fig. 2.

Generation of corpus
To capture the differences and relationships required 
for the afore-mentioned machine translation, the model 

must be trained carefully with a corpus. The training pro-
cess involves using the model to capture the maximum 
conditional probability of a given sequence of tokens 
occurring. In seq2seq models, conditional probabil-
ity is typically expressed as the probability of predicting 
the target sequence from a given source sequence. This 
probability is used to predict the tokens in the target 
sequence, one by one, based on the individual tokens in 
the source sequence [30]. Therefore, the source and tar-
get sequences should be tokenized first. In the current 
task, tokenization refers to the segmentation of source 
and target sequences generated in the previous subsec-
tion. First, each sequence is segmented into adjacent but 
non-overlapping k-mers according to a fixed length k. 
All these k-mers with the specific order form the corpus. 
Although overlapping k-mers are often used in DBG-
based error correction algorithms to preserve the contex-
tual correlation between sequences, overlapping k-mers 
will increase the size of the corpus, which will consume 
more computing resource. Meanwhile, when the model 
achieves high enough accuracy by training, the model 
will be able to automatically capture the contextual corre-
lation between k-mers, thus there is no need to use over-
lapping k-mers. Figure 3 is a simple segmentation process 
of a long read with 3-mers. Since the sequence contains 
5 kinds of characters {ATGC$}, the maximum size of the 
vocabulary is 5^k, and the target sequences are processed 
in the same way to get the target vocabulary.

In Fig. 3, the green unaligned region and the transpar-
ent aligned region are segmented into tokens of length 
3 respectively. The objective of model training is that: 
given the known token AAC, the model assigns the high-
est probability to the token GAC as the next token. Then, 
given both tokens AAC and GAC, the model estimates 

Fig. 1 Relationship between the original long read, the aligned short reads and the target long read

Fig. 2 The placeholder filling process for the source and target sequences
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that the most likely token to occur next is $$$, and this 
process continues until the entire target sequence is 
generated.

It is worth noting that the length of each long sequence 
is unequal, the number of tokens of each sequence 
obtained after tokenization is also unequal. However, 
during seq2seq training, it is required that each batch has 
the same data shape, meaning that the number of tokens 
in each sentence must be consistent. Otherwise, the 
generation for the current batch will stop upon encoun-
tering the earliest ‘end-of-sequence’ character ‘ < /s > ’ 
in that batch. The specific operation is as follows, 1) all 
sequences are traversed to get the maximum number 
of tokens, and then all sequences that do not reach the 
maximum length are padded with a token ‘ < UNK > ’. 2) 
The start token ‘ < s > ’ is added at the beginning of each 
sequence, 3) and the end token ‘ < /s > ’ are added at the 
end of each sequence. The start token ‘ < s > ’ is used to 
inform the model to start prediction, and the end token 
‘ < /s > ’ is used to inform the model that the prediction 
should be terminated. It is worth noting that, during the 
model training process, the calculation of the loss of the 
padded tokens needs to go through a special zero-value 
mask to remove irrelevant predictions. The specific cal-
culation method will be discussed in detail in the next 
section. Assuming that the maximum length of long-read 
sentences is 13, the padding process is shown in Fig. 4.

Encode tokens to one‑hot arrays
To enable machines to learn from the generated corpus, 
the input of the neural network must be a vector or matrix 

of numerical type, a common operation is one-hot encod-
ing. For a given vocabulary, each token is represented as 
a unique vector whose dimension is equal to the vocabu-
lary size. The component in the vector is 1 at the index 
position of the corresponding token and 0 at other posi-
tions. For example, assuming a vocabulary size of 10,000, 
the word “apple” is located in the 1000th position in the 
vocabulary, it can be represented as a 10,000-dimen-
sional vector with only the 1,000th position being 1 and 
the other positions being 0. This kind of vector is called a 
one-hot vector. In neural machine translation, the source 
sequence and target sequence are usually composed of 
multiple tokens. Therefore, each token in the sequence 
needs to be represented as a unique one-hot vector, and 
the entire sequence is represented as a matrix where each 
row contains a one-hot vector of a token. The advantage 
of using a one-hot matrix is that it can completely repre-
sent the discrete relationship between tokens and can be 
directly used for calculations in neural networks. A sim-
ple one-hot matrix generation is shown in Fig.  5. In the 
same way, the target vocabulary belonging to the target 
“sequences” is generated, and the one-hot matrix of each 
“target sentence” is obtained in the same way.

Although the one-hot matrix is sparse, it can retain 
all important information in the sequence. The entire 
sequence can be restored by searching the one-hot index 
in the vocabulary. The dimensionality reduction tech-
niques used in natural language to save space are not 
applicable in our scenario, such as word2vec and embed-
ding [31]. The reason is that dimensionality reduction 
based on the attention of semantics and grammars. In the 
corpus of long “sentences”, there is no obvious semantic 

Fig. 3 The tokenization of the long sequence and the target sequence

Fig. 4 Padding process. There are 13 tokens in the padded sequences

Fig. 5 The generation of one-hot matrix. In the matrix, each row of the matrix corresponds to an array of a “word”
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or grammar founded so that the vectors obtained after 
embedding tend to be uniformly distributed. This kind 
of vectors will increase the number of iterations during 
training, and the complex embedding process also con-
sumes the running time and computing resource with-
out any performance improvement. In addition, any 
dimensionality reduction technique would discard some 
information of original data. Therefore, no embedding 
is needed here. So far, the long reads are converted into 
numerical values that can be understood by the machine.

The construction of neural machine translation model
Once the long reads are converted into vectors under-
standable by machines, the next task is to build a model 
that can learn the required information. To overcome 
the inconsistency in length between before- and post-
corrected long reads, an end-to-end translation model 
that can ignore the length disparities in input and output 
is constructed, namely, seq2seq model. Seq2seq mod-
els allow the model to map between source and target 
sequences without requiring handcrafted rules. They can 
also handle variable-length sequences, both on the input 
and output sides. This flexibility is crucial for the current 
error correction task, where the input long reads have 
varying lengths with their corresponding corrected reads.

Furthermore, RNN is considered as a general technique 
that can effectively capture long-term dependencies 
within long sequences. As an efficient variant of RNN, Bi-
LSTM is used here as the core layer of the model. Finally, 
to ensure that the model does not overfit during the 
training process, reasonable data segmentation for the 
input datasets is implemented here.

The architecture of seq2seq
In the seq2seq framework, the encoder can transform the 
input long sequence of variable length to a fixed-length 
context vector C. RNN layers, such as Gated Recurrent 
Unit (GRU) [32], LSTM, are usually used within the 
encoder. To continuously generate tokens of the output 
sequence, another recurrent neural network predicts the 
next token according to both the encoded information of 
the input sequence and the tokens and states generated 
from the output sequence previously.

Suppose that there is an input sequence x1, . . . , xT , 
where xt is the tth word. At time step t, the Bi-LSTM will 
save the token xt and the hidden state of the last time step 
ht-1. Next, the encoder captures information of hidden states 
and tokens from all of the time steps and encodes them into 
the context vector C. Suppose that the given outputs in the 
training set are Y1′ , . . . ,YT ′ . At each time step t′ , the con-
ditional probability of output Yt ′ , P Yt′ Y1′ , . . . ,Yt−1′ ,C  , 

will depend on the previous output sequence Y1′ , . . . ,Yt−1′ 
and the context vector C . To model this conditional prob-
ability, another Bi-LSTM network is used as the decoder. 
At time step t ′ , the decoder will update its hidden state 
according three inputs: the feature vector from last time 
step Yt−1′ , the context vector C, and the hidden state of 
last time step ht−1′ After obtaining the hidden state ht ′ by 
the decoder, the softmax function of the output layer is 
used to calculate the conditional probability distribution of 
the output at time step t ′ , and then solve the output token 
of time step t ′ . It is worth noting that when implementing 
the decoder, the hidden state of the encoder in the final time 
step is used directly as the initial hidden state of the decoder. 
This requires that the encoder and decoder Bi-LSTM layer 
have the same number of hidden units. The only difference 
between encoder and decoder is that a dense layer after the 
Bi-LSTM layer is needed in the decoder to predict the maxi-
mum probability for each token, and the number of units in 
the dense layer is the same as the target vocabulary size. The 
flow chart for sequence prediction of the proposed frame-
work is shown in Fig. 6.

As described in the figure, the encoder and decoder 
are built with a Bi-LSTM layer. The input long sequence 
is decomposed into tokens x1, x2, x3, x4, x5 and fed to the 
encoder, whose sole purpose is to create the context vec-
tor C0 and return the hidden state vector H0 . The output 
of the encoder [C0,H0] is regarded as the initial state of 
the decoder and the specific start token ‘ < s > ’ is sent to 
the decoder to start predicting the output token. Thereaf-
ter, the token generated at the current time step and the 
updated hidden state vector become the input of the next 
time step, prompting the decoder to predict the output 
token of the next time step. Once the model generates 
end token ‘ < /s > ’, the model will stop prediction.

The selection of encoding and decoding layer
The following section will further explain why the afore-
mentioned seq2seq model chooses Bi-LSTM as its core 
layer and how it works. LSTMs are designed to handle long-
range dependencies and remember information over time 
due to their unique cell structure with memory cells and 
gating mechanisms. Bi-LSTMs process input sequences 
from both forward and backward directions. This is valu-
able in seq2seq models because the context in a sequence 
does not always flow in one direction. By processing in both 
directions, Bi-LSTMs can capture context and dependen-
cies more comprehensively. As a result, Bi-LSTMs are used 
in the encoding phase to ensure that the encoder captures 
the full context of the input sequence. This context is then 
passed to the decoder, which generates the output sequence. 
The accuracy of LSTM and bi-LSTM changes with the 
number of epochs as shown in Fig. 7.
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When LSTM is used as the encoding layer, the loss 
starts to converge to 0 when the training iterates about 
200 times, and the accuracy starts to converge to 1 when 
the iterates about 125 times. While, when Bi-LSTM is 
used as the encoding layer, the loss starts to converge to 
0 when the training iterates 120 times, and the accuracy 
starts to converge to 1 when the training iterates about 
100 times. The model with Bi-LSTM fits more quickly 
during training.

Dataset segmentation
Data segmentation involves splitting a dataset into 
training, validation, and testing sets distinctively. The 
training set is used to train the model, the validation 
set helps tune hyperparameters and prevent overfit-
ting, and the test set is used to evaluate the final per-
formance of the model. Suitable segmentation can 
improve training efficiency and generalization. In the 
current application scenario, the hash algorithm that 
hashes sequence names is employed to randomly shuf-
fle the long-read sequences when creating the cor-
pus, ensuring that each dataset has randomness and 
representativeness. Given that the long-read datasets 
are relatively large, the proportion of the training set 
is increased, Hence, the 80% is the training set, 10% 
is the validation set, and 10% is the test set. Through 
observation, the model converged effectively on the 
training set without overfitting, and it performed well 
on the test set, indicating that this data segmentation 
is reasonable and effective.

Implementation details
So far, the network has been built and the long-read 
sequences are transformed into a format that can be fed 

Fig. 6 Flow chart of sequence prediction by the proposed framework

Fig. 7 The change of loss and accuracy with epoch for LSTM 
and Bi-LSTM. a The change of loss of LSTM with epoch. b The change 
of loss of Bi-LSTM with epoch
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into the network. However, several key details are cru-
cial for rapid and effective model convergence, including 
hyperparameter settings, data generators, zero-padding 
masking, and source sentence reversal.

Hyperparameter settings
The choice of hyperparameters directly affects the per-
formance and generalization ability of the model. An 
overly complex model may lead to overfitting, while an 
overly simple model might result in underfitting. Dif-
ferent hyperparameter combinations are tested and set 
manually as follows:

1) Neurons in Bi-LSTM: Too few neurons may not be 
able to extract sufficient information, while more 
neurons can better capture complex correlations. 
However, too many neurons increase training time 
and risk overfitting. The model with Bi-LSTM for 
both the encoding and decoding layers with 256*2 
neurons converges the fastest without causing 
GPU overflow. Additionally, the dense layer in the 
decoder is used for classification, with the num-
ber of categories corresponding to the size of the 
target vocabulary. Thus, the number of neurons 
in the dense layer is set to the size of the target 
vocabulary.

2) Learning Rate and Optimizer: The initial learning 
rate is set to 0.1, combined with the Adam optimizer, 
which can adjust the learning rate according to the 
gradient descent.

3) Batch Size: Given the model’s fitting condition and 
hardware constraints, the batch size is set to 64.

4) Early Stopping: Instead of a fixed number of train-
ing epochs, we use early stopping to prevent overfit-
ting. The training will stop early if the model does not 
improve within 5 iterations (patience = 5).

Data generator
Since there are too many “long sentences” to be pro-
cessed by the model at one time, the datasets should 
be split to facilitate the processing of the model, thus, 
a data generator is used to split the dataset into small 
batches to feed into the model, reducing the memory 
usage and preventing GPU overflow. For the proposed 
scheme, the goal is to predict the next token in the 
target sequence based on the tokens observed so far 
in the source sequence, the label is the next token in 
the target sequence. Therefore, using the method of 
sequential partitioning to load data in small batches 
can preserve the correlation between sequences as 
much as possible and improve the performance of 
the model. The order of split subsequences should be 

preserved during iteration, ensuring that the subse-
quences from two adjacent small batches are also adja-
cent in the original sequence.

Actually, the weights of the model will be updated 
for each batch of data during the training. It is also 
necessary to predict the output values for a batch of 
data. Since, if the model trained in batches is used for 
the prediction of an entire sequence, there will be pre-
diction bias. It should be noted that the hidden states 
of each time step should be updated and fed into the 
next time step for prediction. For example, if the batch 
size of the data is 64, the model will predict one token 
for each of the 64 sequences at the same time and 
update 64 hidden states accordingly. These 64 hidden 
states should be used during the prediction of the next 
time step.

Zero‑padding masking
Since the Keras library requires the tokenized source 
sequences in a batch should be the same length, the 
token ‘ < UNK > ’ is used to pad the shorter sequences, 
ensuring that all sequences in a batch have the same 
length. Note that the tokenized target sentences are 
also padded to make them have the same length, but 
there is no need to compute the loss on the padded 
symbols. An operation referred to as “Sequence Mask” 
is adopted to remove the token ‘ < UNK > ’ in the cal-
culation of the loss. Specifically, the masks of all the 
actual tokens are set to 1 and the masks of the token 
‘ < UNK > ’ are set to 0, and the loss matrix is multi-
plied by this mask matrix to get the actual loss. In this 
way, the model has filtered out irrelevant predictions 
produced by the padding tokens. The padded token 
including ‘ < s > ’ and ‘ < UNK > ’ should be removed 
after prediction.

Source sentence reversal
To establish better communication between the “source 
sentences” and the “target sentences”, the order of 
the tokens in the input sequence is reversed, which is 
referred to as source sentence reversal. The main intui-
tion behind reversion is that by reversing the order of 
the input sequence, the model receives the final tokens 
first. The hidden state Ht of the last time step output by 
the encoder is sent to the decoder to become the initial 
hidden state h′0 , which is used, together with the con-
text vector c from the encoder, to predict the output of 
the first token. At this point, the source sentence rever-
sal technique can fully correlate the last token of the 
encoder with the first token of the decoder. Specifically, 
instead of using the sequence a, b, c to predict α,β , x , 
where α,β , x is the translation of a, b, c , we use c, b, a to 
predict α,β , x . In this way, the last hidden state from 
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the encoder (for a) is sent to the decoder and used as 
the initial hidden state for predicting α . After that, the 
previous hidden state (for b) is received by the decoder 
to predict β . Such a simple trick of reversing the order 
of the input tokens in the “long sentences” can effec-
tively make the model converge. Another benefit of 
source sequence reversal is that the “source sentence” 
ends with the token ‘ < s > ’ which is the same as the 
token that the “target sentence” starts with, thus, there 
is no need to perform another processing to build the 
connection between the end of the “source sentence” 
and the start of “target sentence”. After generating 
“long sentences”, the order of each token in a “long sen-
tence” is reversed before this sequence is fed into the 
network. Figure  8 shows the convergence of the loss 
with or without source sentence reversal.

As shown in Fig. 8a, the model stops training when 
the loss reaches around 5.5 and not decreases any-
more. The excessive loss means that the model train-
ing has failed. As shown in Fig. 8b, the loss converges 
to 0 after training, indicating that source sentence 
reversal can greatly boost the performance of the pro-
posed scheme.

Transfer learning
As of now, the model described previously can correct 
a small long-read dataset. 17 sequences are sampled 
from the E.coli data set randomly and used the above 
NMT model to conduct correction. The result shows 
that the number of bases and alignment identity cor-
rected by NmTHC are prominent to other mainstream 
methods. However, the generative sequence model 

Fig. 8 The convergence of loss with or without source sentence 
reversal. a The convergence of loss without reversal. b The 
convergence of loss with reversal

Fig. 9 The change of loss and accuracy during the transfer 
learning process. a Model convergence in the pre-training 
stage. b Convergence of the model in the fine-tuning stage
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is quite time-consuming. It takes more than 20  min 
to correct a small dataset of only 150KiB. Extrapolat-
ing this, it would take 70  days to correct a complete 
E.  coli long-read dataset using a single GPU, which 
is intolerable. Fortunately, there are many obvious 
similarities among long-read sequences and within 
an individual sequence, which is also can be seen in 
the high-frequency tokens. In previous training pro-
cesses of generative models, the features of the entire 
long-read data were divided into batches of the size 
‘batch_size’ and sequentially fed into the network for 
training, with each batch serving as the smallest unit 
for parameter updates. This means when a new set of 
data is input into the network, the network will begin 
updating parameters from the start. Such a train-
ing strategy neglects the similarity between long-read 
sequences and results in a high learning cost. At this 
point, transferring the learned parameters from simi-
lar structures to the entire training process of long 
reads would greatly reduce learning time. Thus, a 
model-based transfer learning strategy is employed to 
learn and transfer these similar regions to address the 
time-consuming issue of the correction model. Spe-
cifically, a pre-trained model is used to extract these 
similar structures from the source domain and share 
them through parameter transfer. Then, the obtained 
model is fine-tuned, such as reducing the learning rate 
or changing the loss function. Finally, conduct supple-
mentary training with target domain data that is simi-
lar to the source domain, which allows a fast fitting for 
a higher-precision model.

The little similarity is likely to result in the negative 
transfer, which means the model would not fit in the 
target domain. On the other hand, too much similarity 
may lead to a low a generalization performance of the 
model. Therefore, how to divide the long-read dataset 
with reasonable similarity has become the key to the 
current transfer task. Fortunately, the long reads with 
similar name generally come from DNA fragments 
close to each other, and these long reads usually have 
high degree of similarity. Therefore, each sequence 
name is hashed first, and sequences with the same 
hash value are placed in the same chunk. The entire 
dataset is randomly divided into N chunks. N-1 is the 
number of times the model needs to be transferred in 
the future. N can be adjusted according to the size of 
the dataset and the change of the loss after transfer. 
N = 500 or 1000 is recommended here. There should 
be noted that if the chunks are too small, it is not pos-
sible to capture the global structural similarities to get 
a satisfied loss and accuracy in the fine-tuning stage. 
On the other hand, if the chunks are too large, it would 
result in an over-sized vocabulary for the dense layers 

to predict, the efficiency of transfer learning would be 
affected.

After dividing step, there are two steps for trans-
fer: 1) Pre-training and saving the parameters: choose 
any chunk for pre-training and save the weights of 
each layer when loss and accuracy are high enough; 
2) Unfreezing and fine-tuning: Unfreezing is mak-
ing the previously frozen neural network layers train-
able so that the model can update the parameters of 
these layers on a new task to adapt to the target data. 
In the current work, a lower learning rate is applied 
for the fine-tuning of the model. We divide the fruit 
fly long-read dataset according to N = 10,000. There 
are 48 sequences in the first chunk, and the number 
of bases is 540955 bp. The loss and accuracy curves of 

Fig. 10 The changes of loss with the number of epochs 
when different optimizers are used. a Loss gradient when Adam 
is used as the optimizer. b Loss gradient when RMSProp is used 
as the optimizer
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pre-training and fine-tuning after successful transfer 
are shown in Fig. 9a and b. The results show that the 
model requires 175 epochs to obtain satisfactory loss 
in the pre-training stage, but when the pre-trained 
model is used as the initial weights after transfer, it can 
be fitted in only 35 epochs to get the low enough loss 
for error correction.

Results
Performance of model training
During the training process, the cross-entropy clas-
sification function is used to calculate the loss of the 
model, and accuracy is used to evaluate the model. 
Increasing the batch size can accelerate training as it 
reduces the number of time-consuming computational 
backpropagations [33]. However, the excessively large 
batch size would not only cause GPU overflow but also 
increase the possibility of the model stopping at a local 

minimum. Meanwhile, too many neurons in the Bi-
LSTM network also makes GPU overflow. Therefore, 
the batch size is set to 64, and the number of Bi-LSTM 
neurons is set to 512. Adaptive moment estimation 
optimizer (Adam) [34] and root mean square prop 
optimizer (RMSProp) [35] are tested under the same 
conditions. The results from Fig.  10 show that Adam 
can make the loss converge more smoothly. Thus, 
the Adam algorithm is chosen as the optimizer. The 
maximum number of epochs for model training is set 
to 200, and the early stop mechanism with patience 
5 is set to cut off the training when the loss does not 
decrease within 5 iterations. In this way, the model can 
be effectively prevented from overfitting. The results 
of the model training show that the loss of the model 
converges to 0 and the accuracy converges to 1 after 
about 130 iterations, indicating that the training of the 
model is successful.

Table 1 Information on the selected datasets

a Downloaded from Illumina at ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz and 
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz with browser or wget command in a 
Linux environment
b Downloaded from PacBio at https:// github. com/ Pacif cBio scien ces/ DevNet/ wiki/ E.- coli- Bacte rial- Assem bly
c Downloaded from Loman Labs at https:// s3. climb. ac. uk/ nanop ore/E_ coli_ K12_ 1D_ R9.2_ SpotON_ 2. pass. fasta

Sequencing specification Sequencing 
NCBI accession

Number of reads Reference genome Genome 
length(Mbp)

Reference NCBI accession

Illumina Miseq _a 2 × 5729470 E. coli K-12 MG1655 4.6 NC_000913.3

PacBio P6C4 _b 87217

MinION R9 1D _c 164472

Illumina Miseq ERR1938683 2 × 3318467 S. cerevisiae S288c 12.2 GCF_000146045.2

PacBio P6C4 PRJEB7245 239408

MinION R9 2D ERP016443 119955

Illumina Nextseq SRX3676782 2 × 20 619 401 Drosophila melanogaster ISO1 143.7 GCF_000001215.4

Pacbio P5C3 SRX499318 6864972

MinION R9.5 1D SRX3676783 663784

Table 2 The command line parameters of each algorithm

Method Command line parameters

LoRDEC LoRDEC-correct -2 short_reads.fasta -k 29 -s 3 -i long_reads.fasta -o long_reads_LoRDEC.fasta

Jabba karect -correct -matchtype = hamming -celltype = haploid -inputfile = short_reads.fasta
Jabba -o Jabba_output -k 75 -t 64 -g brownie_output/DBGraph.fasta -fasta long_reads.fasta

FMLRC time gunzip -c short_reads.fq.gz | awk ’NR % 4 = = 2’ | sort | tr NT TN | ropebwt2 -LR | tr NT TN | 
fmlrc-convert -f./output/comp_msbwt.npy
fmlrc -k 21 -K 59 -p 1./output/comp_msbwt.npy long_reads.fasta fmlrc_long_reads.fasta

ColorMap runCorr.sh long_reads.fasta short_reads.fasta ont pre 16

HALC ABYSS short_reads.fasta -k 21 -o output
python runHALC.py long_reads.fasta contigs.fa -t 64 -o short_reads.fasta

Proovread Proovread -l long_reads.fasta -s short_reads.fasta --pre Proovread

Hercules Hercules -2 -li long_reads.fasta -ai sorted.bam -si short_reads.fasta -t 30 -o hercuels_corrected.fa

https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta
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Datasets and experiment setup
The six datasets used in our experiments are from three 
species, Escherichia coli K-12 MG1655 (E. coli), Sac-
charomyces cerevisiae S288C (yeast), and Drosophila 
melanogaster ISO1 (fruit fly), from three platforms, 
Pacific bioscience (PacBio), Oxford Nanopore (ONT) 
technologies, and Illumina. For each dataset, the long 
reads to be corrected are from the PacBio or Nanop-
ore platforms, and the high-quality short reads that are 

used to correct long reads are from the Illumina plat-
form. However, the availability of reference genomes of 
these strains enables us to evaluate the correction qual-
ity in a reliable manner, and they are sequenced and 
assembled carefully by Sanger and other institutions. 
The details of the datasets are listed in Table 1.

NmTHC and 7 other typical hybrid error correc-
tion algorithms, including LoRDEC, Jabba, FMLRC, 
ColorMap, HALC, Proovread and Hercules, are used 

Table 3 Experimental results for the E.coli PacBio dataset

“PR-trim” represents the results provided by Proovread default, the long read after correction is in fact high-precision long-read fragments when the low-quality 
regions are trimmed. “PR-untrim” stands for the results recovered by the third-party tool “seqtk”. “HALC” and “HALC-trim” are both results provided by HALC default

Method Total bases Aligned bases Alignment 
identity

Average 
length (bp)

Maximum 
length (bp)

N50 (bp) Usr time (m:s) Memory 
usage 
(GiB)

Original 748009625 729784022 0.9756 8752 44113 13990 -- --

Short-read-DBG-based methods

 LoRDEC 716893126 702098565 0.9793 8402 44133 13491 1332:56 4.8

 Jabba 611947598 611947598 1 7880 41342 12352 161:55 2.1

 FMLRC 748004466 719532482 0.9619 8752 44117 13400 225:45 19.5

Short-read-alignment-based methods

 ColorMap 730726602 715441895 0.9790 8529 44113 13641 1728:22 24.5

 PR-trim 537183316 537132179 0.9990 4971 39836 9435 2804:4 7.5

 PR-untrim 607114493 593125,625 0.9769 9786 44113 14559 2804:4 7.5

Short-read-assembly-based methods

 HALC 711074601 698299377 0.9820 8340 44136 13400 27357:4 4.0

 HALC-trim 689081519 683004708 0.9911 8250 44066 13222 27357:4 4.0

HMM-based method

 Hercules 742217998 723994674 0.9754 8691 44113 13887 95964:55 4.8

Deep learning-based method

 NmTHC 743904487 743534260 0.9995 8723 44113 13941 2656:5 3.0

Table 4 Experimental results for the E.coli ONT dataset

There is no HALC correction result for the ONT dataset in Table 4, 6 and 8 because HALC is designed for PacBio SMRT long reads

Method Total bases Aligned bases Alignment 
identity

Average 
length (bp)

Maximum 
length (bp)

N50 (bp) Usr time (m:s) Memory 
usage 
(GiB)

Original 1481511788 1479176967 0.9984 9047 131969 14895 -- --

Short-read-DBG-based methods

 LoRDEC 1555452836 1555128350 0.9997 9493 137887 15664 3044:28 4.8

 Jabba 1258239439 1258239439 1 7709 93396 12436 137:49 2.1

 FMLRC 1481511784 1480251346 0.9991 9047 131969 14895 363:48 19.5

Short-read-alignment-based methods

 ColorMap 1518333301 1516962292 0.9990 9253 134311 15180 1811:59 22.7

 PR-trim 979107621 979107621 1 1378 28387 1662 9765:59 7.0

 PR-untrim 1533953584 1532903029 0.9993 9361 137377 15419 9765:59 7.0

HMM-based method

 Hercules 1488092513 1485766466 0.9984 9087 132948 14974 136645:53 4.8

Deep learning-based method

 NmTHC 1483084718 1482913949 0.9998 9057 132122 14913 2423:46 3.0



Page 13 of 21Wang and Chen  BMC Genomics          (2024) 25:573  

to correct the obtained datasets, and their results are 
compared. The command line parameters of each algo-
rithm are based on the manual provided by respec-
tive author, and the details are recorded in Table  2. 
All experiments in this work are run on a server with 
2 CPU (Intel Xeon Gold 6240 @ 2.60  GHz 72 cores), 
256  GB memory, and 2 GPUs (Quadro RTX 6000, 
Compute Capability 7.5). For NmTHC, the process 
of alignment and tokenization is implemented on the 
CPU, the training and prediction of the model are 

implemented on the GPU. All source codes are based 
on Python 3.6 and TensorFlow-gpu 2.3.

Performance evaluation indicators and results
As described by LRECE [36], the biggest of the error 
correction algorithm is absence of ground truth (i.e., 
perfectly corrected reads). Fortunately, the reference 
genomes can evaluate these algorithms reliably. Essen-
tially, the differences between the corrected long reads 
and the reference genome mean uncorrected errors. In 

Table 5 Experimental results for the yeast PacBio dataset

There is no Proovread results in Tables 5 since the dataset of yeast PacBio is pair-ended sequencing data, and the long-read names are repeated, which is not allowed 
during the processing of Proovread

Method Total bases Aligned bases Alignment 
identity

Average 
length (bp)

Maximum 
length (bp)

N50 (bp) Usr time (m:s) Memory 
usage 
(GiB)

Original 5499119594 4853379662 0.8825 9108 94868 18406 -- --

Short-read-DBG-based methods

 LoRDEC 5350446756 4885916448 0.9131 8867 94872 17925 7783:21 4.8

 Jabba 2192986588 2183714060 0.9957 8501 46975 12780 990:47 2.1

 FMLRC 5499317944 4834874374 0.8791 9107 94868 18406 665:48 19.5

Short-read-alignment-based methods

 ColorMap 5506697225 4860976804 0.8837 9120 94868 18434 3450:20 6.5

 Proovread -- -- -- -- -- -- -- --

Short-read-assembly-based methods

 HALC 5328432720 5027096412 0.9434 8759 94877 17840 72872:35 4.0

 HALC-trim 4443811376 4300960212 0.9678 8460 57580 15662 72872:35 4.0

HMM-based method

 Hercules 5494486747 4848765700 0.8824 9102 94868 18392 202667:27 5.0

Deep learning-based method

 NmTHC 5466924180 5286441779 0.9669 9025 94868 18355 5501:5 3.0

Table 6 Experimental results for the yeast ONT dataset

Method Total bases Aligned bases Alignment 
identity

Average 
length (bp)

Maximum 
length (bp)

N50 (bp) Usr time (m:s) Memory 
usage 
(GiB)

Original 382389287 376989685 0.9858 9186 56477 11696 -- --

Short-read-DBG-based methods

 LoRDEC 390792227 386323262 0.9885 9387 58298 11966 374:2 4.8

 Jabba 288736216 288726754 0.9996 7993 47266 10719 115:3 2.1

 FMLRC 382297060 376708825 0.9853 9184 56477 11694 232:11 19.5

Short-read-alignment-based methods

 ColorMap 385129056 379728102 0.9859 9245 56785 11775 1461:6 2.4

 PR-trim 100640 90149 0.8957 602 1102 599 513:27 7.5

 PR-untrim 380864789 376072021 0.9874 9188 55897 11656 513:27 7.5

HMM-based method

 Hercules 383933798 378533253 0.9859 9223 57481 11748 64005:15 3.2

Deep learning-based method

 NmTHC 381328904 380822709 0.9986 9192 56783 11708 1738:14 3.0
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this way, the quality of error correction can be obtained 
by evaluating the quality of the alignment of the cor-
rected sequence to the reference genome. In practice, 
Minimap2 [37] is used to align both the original and the 
corrected long reads to their reference genome with the 
command line “minimap2 -x map-pb/ont -t 30”. Finally, 
various performance indicators of these alignments are 
calculated to evaluate the error correction performance 
of the algorithms. The experimental results are calculated 
by LRECE. The results on sampled E. coli datasets from 

two platforms are shown in Tables 3 and 4, the results on 
sampled yeast from two platforms are shown in Tables 5 
and 6, and the results on sampled fruit fly from two plat-
forms are shown in Tables 7 and 8.

In the experimental results, “Total bases” is the 
total number of bases of the long read after corrected. 
“Aligned bases” is the number of corrected bases that can 
be aligned to the reference genome. “Alignment iden-
tity” represents the consistency of the segments in the 
long reads and the corresponding aligned fragments in 

Table 7 Experimental results for the fruit fly PacBio dataset

Method Total bases Aligned bases Alignment 
identity

Average 
length (bp)

Maximum 
length (bp)

N50 (bp) Usr time (m:s) Memory 
usage 
(GiB)

Original 277577924 163084772 0.5875 2371 54186 12627 -- --

Short-read-DBG-based methods

 LoRDEC 274218615 190615200 0.6951 2345 54151 12355 1111:13 4.8

 Jabba 68570230 68562572 0.9998 4980 31567 7700 2142:49 2.1

 FMLRC 277373140 161807007 0.5833 2369 54184 12597 245:2 19.5

Short-read-alignment-based methods

 ColorMap 275086625 168238015 0.6115 2349 53985 12369 6139:10 2.4

 PR-trim 132095964 132095964 1 4600 30412 8617 4102:13 7.5

 PR-untrim 271685285 169539136 0.6440 2324 53681 12182 4102:13 7.5

Short-read-assembly-based methods

 HALC 272524283 230432806 0.8455 2331 54196 12204 2444:7 4.0

 HALC-trim 221794779 202071143 0.9110 2817 52030 13237 2444:7 4.0

HMM-based method

 Hercules 275620916 162943476 0.5911 2354 54186 12420 21157:17 3.2

Deep learning-based method

 NmTHC 275927399 189503829 0.6867 2361 53282 12522 1800:59 3.0

Table 8 Experimental results for the fruit fly ONT dataset

There is no Proovread results in Tables 8. Proovread produces no result after 15 days of computation on our experiment platform with 72 cores, thus the process is 
terminated

Method Total bases Aligned bases Alignment 
identity

Average 
length (bp)

Maximum 
length (bp)

N50 (bp) Usr time (m:s) Memory 
usage 
(GiB)

Original 4609479994 4193853794 0.9098 7177 446050 11956 -- --

Short-read-DBG-based methods

 LoRDEC 4656943723 4336450357 0.9311 7243 447498 12082 15516:57 4.8

 Jabba 2277474552 2277352751 0.9999 3962 47190 6081 11999:4 2.1

 FMLRC 4606352370 4110500003 0.8923 7172 444617 11949 3097:5 19.5

Short-read-alignment-based methods

 ColorMap 4685641775 4290298819 0.9156 7226 444791 12046 5338:54 2.4

 Proovread -- -- -- -- -- -- -- --

HMM-based method

 Hercules 4615570873 4202349986 0.9104 7185 446013 11974 198745:30 3.2

Deep learning-based method

 NmTHC 4605772604 4559772769 0.9900 7178 445920 11962 18943:10 3.0
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the reference genome, which is defined as the number of 
aligned bases divided by the total number of bases and 
usually inversely proportional to “Total bases”. In terms 
of DNA data processing, if the read is long enough, there 
is no need for polymerase chain reaction (PCR) amplifi-
cation, which can avoid base bias and simplify genome 
assembly. Thus, we also compared the length of long 
reads after correction. “Average length (bp)” and “Maxi-
mum length (bp)” are the average and maximum lengths 
of regions where long reads can be aligned to the refer-
ence genome respectively. “N50” is used for assessing 
the quality and continuity of a sequence assembly, rep-
resenting the length at which half of the entire assembly 
consists of sequences of this length or longer. “Memory 
usage (GiB)” is the peak CPU memory occupied by each 
algorithm during the correction.

The evaluation metrics for error correction tasks 
encompass multiple aspects, often requiring considera-
tions of trade-offs and compromises. As a result, provid-
ing a straightforward judgment regarding the superiority 
or inferiority of a specific method is frequently challeng-
ing. To visually illustrate the performance of each method 
on a unified chart, we have utilized Min–Max Normali-
zation to standardize the metrics, excluding time and 

memory requirements. This normalization process aims 
to mitigate scale differences among different indicators. 
The formula for this normalization process is outlined as 
follows:

Where, Xnormalized is the normalized value, X  is the 
original data value, Xmin is the minimum value of the 
original data, Xmax is the maximum value of the origi-
nal data. In a normalized graph, when metrics derived 
from a specific algorithm are densely clustered near 
1, it indicates that this algorithm may offer better 
overall performance compared to other algorithms 
whose metrics are more sparsely distributed and devi-
ate significantly from 1, without major trade-offs or 
compromises.

Analysis of the results
While enhancing the alignment identity of long reads 
with the reference genome is a crucial objective in error 
correction, it is imperative to consider a comprehensive 
set of metrics. Figures  11, 12, 13, 14, 15 and 16 depict 
the normalized metrics for each benchmark dataset. 

(1)Xnormalized =

X − Xmin

Xmax − Xmin

Fig. 11 Legend of normalized metrics on E.coli PacBio dataset
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From the graph, it can be observed that for five of the six 
datasets, except for the fruit fly PacBio dataset, the indi-
cators for NmTHC are more closely clustered around 
1, indicating that it performs better with no significant 
weaknesses.

Trimming consideration
In Tables  3, 4, 5, 6, 7 and 8, Jabba appears to achieve 
an impressive alignment identity metric ranging from 
0.99 to 1.00 in most cases, primarily due to its trim-
ming strategy. Specifically, when long reads extend 
beyond the paths in the constructed De Bruijn graph, 
Jabba trims the extended extremities. While this trim-
ming strategy elevates identity metrics, it results in 
significantly smaller values for metrics such as lengths 
and N50 compared to other algorithms. Consequently, 
this leads to the loss of global information and the 
length advantages inherent in long reads. Addition-
ally, the long-read file corrected by Jabba is only one-
third of its original size, a pattern similarly observed 
with Proovread. In Figs.  11, 12, 13, 14, 15 and 16, it 
is apparent that Jabba and Proovread occasionally 

show increased alignment identity. However, there are 
noticeable trade-offs in other metrics, such as total 
bases and the maximum read length. As a result, the 
markers representing these two methods in the figures 
display greater dispersion. When researchers are per-
forming subsequent analyses, they should be careful of 
the utilization of both methods.

DBG‑based algorithms
It is undeniable that the DBG-based algorithm LoR-
DEC is indeed an outstanding algorithm, and sub-
sequent algorithms like HALC are derived from it. 
Admittedly, NmTHC is also quite comparable to it. 
Specifically, as shown in Tables  4 and 6, LoRDEC 
excels in metrics related to the number of aligned 
bases, alignment identity, as well as length indicators 
and N50. However, Tables  3, 5, 7 and 8 shows that 
NmTHC surpasses LoRDEC in these metrics. Overall, 
in 4 out of the 6 data sets, NmTHC outperforms LoR-
DEC in terms of performance. The difference in each 
indicator between these two methods is within 5%, 
indicating a comparable error correction performance. 

Fig. 12 Legend of normalized metrics on E.coli ONT dataset
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The same conclusions can also be demonstrated in 
Figs. 11, 13, 15, and 16. Notably, Tables 8 and 9 high-
light NmTHC’s remarkable performance in terms of 
the number of aligned bases and alignment identity, 
suggesting its capability to handle complex structures 
in fruit fly data. Despite the complexity of the struc-
ture, alignment information is the key for generating 
feature vectors and labels. As for another DBG-based 
algorithm, FMLRC demonstrates exceptionally high 
error-correction throughput and saves computa-
tion time. However, based on results from six sets of 
data, its error-correction performance is somewhat 
disappointing.

The only machine learning‑based algorithm
The effectiveness of NmTHC is evident in Tables  3, 4, 
5, 6, 7 and 8, where it enhances the count of aligned 
bases, improves alignment identity, and maintains a 
read length nearly equivalent to that of Hercules. This 
observation substantiates the assertions made in the 
introduction for the following reasons: 1) both meth-
ods report post-corrected long read sequences without 

trimming. 2) uncovered regions in short reads are 
effectively corrected leveraging the RNN’s capacity 
to capture long-term dependencies from the adjacent 
covered areas. 3) the approach is adaptable to diverse 
error profiles, making it suitable for various mainstream 
sequencing platforms. In conclusion, NmTHC surpasses 
the state-of-the-art machine learning-based method 
Hercules across all metrics while significantly reducing 
user time requirements.

Preassembly‑based algorithm
For the fruit fly dataset obtained from the PacBio plat-
form, as illustrated in Table  7 and Fig.  15, a noticeable 
dissimilarity exists between the original long-read data 
and the reference genome, leading to a low alignment 
identity. In the results of Jabba and Proovread, there is 
a peculiar doubling of the average length accompanied 
by a significant reduction in total bases and maximum 
length. This is because these two methods exclude many 
long-read fragments that cannot be aligned to the high-
precision short reads or the DBG constructed from these 
short reads.

Fig. 13 Legend of normalized metrics on Yeast PacBio dataset
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For such sequencing data with significant noise, 
HALC offers a solution by initially using a third-party 
assembler, Abyss [38], to preassemble the short-read 
data to contigs. During this preassembly phase, con-
taminants are removed with the ‘–chastity’ option, 
low-quality bases at the end of sequences are trimmed 
with ‘–trim-masked’, and dangling edges are pruned 
with the ‘-t’ parameter. The obtained clean contigs 
and short reads are then used to construct a DBG, 
followed by further refinement of the long reads with 
LoRDEC. In the case of the fruit fly PacBio dataset, 
this strategy has proven to be quite effective. However, 
the complex assembly process consumes considerable 
time and computational resources, and the preassem-
bly approach is not suitable for other tested datasets. 
In addition, HALC is designed only for SMRT PacBio 
long reads.

Unlike the previous trimming or pre-assembly strat-
egies, the other algorithms retained these regions, 
which results in a suboptimal alignment identity. 
Nevertheless, NmTHC still reports higher alignment 
identity and a greater number of aligned bases on this 
dataset.

Resource consumption statistics
In terms of computing resource consumption, the 
tokenization process of “long sentences” and “tar-
get sentences” and the generation of vocabularies of 
NmTHC method are executed on the CPU, and a total 
of 3.0GiB of main memory is costed. Then, the training 
and prediction of the model are deployed onto the GPU, 
and a total of 23181MiB of GPU memory is consumed. 
The data generator is used to load “long sentences” in 
batches for training and prediction, only the current 
batch of data and the parameters of the model are saved 
in the GPU. Thus, the GPU memory consumed is fixed 
regardless of the size of long reads such as fruit fly and 
the only concern is the running time. Other compared 
algorithms only consume main memory, and their 
memory consumption is shown in the “Memory usage” 
column in the above tables.

In terms of running time, it is well established that 
generative models are time-consuming and computa-
tionally resource-intensive. To evaluate the time effi-
ciency of the algorithms, the Unix “time” command 
is used to record the running time of each method, 
then the command line will output three values, “real 

Fig. 14 Legend of normalized metrics on Yeast ONT dataset
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time” is the elapsed real (wall clock) time used by the 
process, “user time” is the CPU-seconds used by pro-
cess directly in user mode. It is worth noting that when 
multiple cores in the CPU are called, the “real time” 
may be smaller than “user time”. The number of CPU 
cores specified by each method is different, “user time” 
is used here to measure the time consumption. The 
machine learning-based method Hercules is obviously 
time-consuming.

In recent years, there has been rapid develop-
ment in hardware GPUs and the cloud GPU arrays. 
As a machine learning-based hybrid error correc-
tion method running on GPUs, NmtHC can further 
enhance its time efficiency with the advancement of 
GPU resources. To validate this, the training process is 
distributed in parallel across two GPUs with the inter-
face “tensorflow.config” in Keras library. It is necessary 
to double the “batch_size” and specify that no regu-
larization is performed between GPUs. The results 
are shown in Table  9. The process of alignment takes 
170 min of user time. Thus, the actual user time spent 

on 2 GPUs is almost half that of 1 GPU. The corrected 
long-read quality obtained from a model trained by 
parallel GPUs is comparable to that of a single GPU-
trained model. This shows that if there are sufficient 
GPUs or cloud GPU arrays, our algorithm can achieve 
faster high-precision error correction.

Conclusions
This work employs the idea of NLP to realize an NMT-
based Hybrid Correction (NmTHC) method which 
adopts a RNN to build a seq2seq framework, treating the 
long reads to be corrected as the sentences in the source 
language and the corrected long reads as the sentences 
in the target language, realizing the error correction with 
the help of the special corpus generated from the align-
ment information between long and the high precision 
short reads.

The proposed method can automatically capture 
longer-term dependencies among sequences and identify 
the discrepancies between long and short reads for error 
correction. This benefits an improvement in alignment 

Fig. 15 Legend of normalized metrics on Fruit fly PacBio dataset
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identity while maintaining a high count of total bases 
and aligned bases. NmTHC avoids trimming any uncov-
ered bases and leverages long-term correlation to cor-
rect them. As a result, NmTHC performs better than 
other mainstream error correction algorithms, including 
efficient LoRDEC and autonomous learning Hercules. 
NmTHC offers a fresh perspective for machine learning-
based error correction tasks.
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Table 9 Parallel GPU time consumption test on E.coli PacBio dataset

“NmTHC-1” means there is 1 GPU working alone. “NmTHC-2” means there are 2 GPUs working in parallel
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