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Abstract 

Background  Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health 
problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains 
some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded 
mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have 
not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG 
with CKD (and related traits), with a particular focus on diabetes.

Methods  We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes 
mellitus (T1DM) patients.

Results  Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. 
Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial 
haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial hap‑
logroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known 
NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum 
variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 
was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440–21.980; P = 2.0E-08). In UK-
ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 
with eGFR.

Conclusions  We identified novel variants both in mtDNA and NEMG which may explain some of the missing herit‑
ability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal 
disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, 
associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed 
potential roles for NEMG in T1DM.
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Introduction
Chronic kidney disease (CKD) is increasing in preva-
lence, especially in older populations, and is a major 
global health problem [1–4]. CKD is predicted to become 
the fifth leading cause of death by 2040 [5, 6]. The most 
severe form of CKD is known as CKD stage 5 or end-
stage kidney disease (ESKD), which can be managed 
by kidney replacement therapy (KRT), such as chronic 
dialysis and/or kidney transplantation. KRT is expensive, 
complex, and is often unavailable for persons with ESKD 
in low- and middle-income countries [7].

CKD is a complex heterogeneous disease whose causal-
ity is driven both by genetic and environmental factors. 
Diabetes and hypertension are major aetiologies contrib-
uting to CKD burden [3, 8]. Although CKD heritability 
can be up to 75% [9–11], molecular markers, identified 
mainly by meta-analyses of  genome-wide association 
studies (GWAS), do not account for all the inherited sus-
ceptibility to CKD [12, 13]. It is therefore plausible that 
other genetic factors, beyond single nucleotide changes 
identified from nuclear GWAS, may contribute to CKD 
[14, 15].

Mitochondria are double-membrane-bound organelles 
responsible for generating the necessary energy for cel-
lular metabolism [16–18]. Mitochondria contain several 
copies of their own genome, a circular DNA molecule of 
≈16.6 kb in humans including a total of 37 genes: 13 code 
for the subunits of respiratory complexes I, III, IV and V 
[19]; 22 code for transfer RNAs (tRNAs) for the 20 stand-
ard amino acids, plus an extra gene for leucine and serine 
[16, 20, 21], and two for ribosomal RNAs (rRNAs) [22]. 
The replication origin(s) and promoters for mitochon-
drial DNA (mtDNA) are contained in an additional dis-
placement loop (D-loop). The functions of mitochondria 
are also regulated by nuclear genes encoding proteins 
related to mtDNA transcription, replication, cell apopto-
sis and mitophagy, nucleotide biosynthesis, metabolism, 
and iron and calcium homeostasis [23, 24].

Mitochondrial dysfunction in kidney tissue can 
severely impact kidney health and has previously been 
implicated in CKD development [25–35]. Maintenance 
of mitochondrial integrity has been highlighted in limit-
ing the progression of acute kidney injury to CKD [36–
38]. Lower mtDNA copy number in peripheral blood 
has been associated with higher risk of diabetes and 
microalbuminuria, two important risk factors for CKD 
progression, and with a higher incidence of CKD [39, 
40]. Genetic variants in the mitochondrial D-loop have 

been proposed as predictors of kidney survival in CKD 
patients, helping to identify CKD patient subgroups at 
higher risk of poor outcomes [41–44]. Variants in MT-
ND5 have been implicated in adult-onset kidney disease 
[45]. Genetic variation in mtDNA may be inherited or 
acquired; human mtDNA is particularly susceptible to 
acquiring somatic mutations due to its close location 
to the generation of mutagenic reactive oxygen species 
through oxidative phosphorylation [46, 47], and the lim-
ited nucleic acid repair mechanisms. Higher mutational 
rates in mtDNA have been reported in tumours, which 
may correspond to the increased level of reactive oxi-
dative species in renal parenchymal cells in ESKD [48]. 
Despite the mitochondrial genome being minimally 
investigated in relation to CKD, some mitochondrial pro-
teins, encoded by nuclear-encoded mitochondrial genes 
(NEMG), and specific mtDNA variations in MT-HV2, 
MT-HV3, MT-ND5 and MT-RNR2 have been associated 
with kidney disease and/or well-established serum clini-
cal biomarkers of CKD, such as serum creatinine (SCr) 
levels, and estimated glomerular filtration rate (eGFR) 
[14, 25, 40, 49–51]. Among NEMG, NAT8, CPS1, GATM, 
SLC22A2, WDR72 and AGXT2 are known susceptibil-
ity loci for CKD, progression and/or kidney function 
[52–71].

Aim
The aim of this study was to investigate the role of genetic 
variants influencing mitochondrial function on CKD 
(and related traits). The investigations explore genetic 
variants in both mtDNA and NEMG. To gain insights 
into the impact of diabetes on the association of mtDNA 
and NEMG variants with CKD, we investigated renal 
phenotypes in a large population cohort (UK Biobank) 
stratified by diabetes and a collection of individuals with 
type 1 diabetes mellitus (T1DM) and known kidney func-
tion who were explicitly recruited to explore molecular 
associations with diabetic kidney disease (UK-ROI).

Methodology
Study design and populations
This cross-sectional study included only participants 
of European ethnicity with body-mass index (BMI) 
values within 18.5 and 40  kg/m2, corresponding to 
nutritional status between normal weight and obe-
sity class II, according to the World Health Organisa-
tion [72]. Two populations were included in the study 
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(Fig.  1): the UK Biobank (UKB), a population cohort, 
and the UK-ROI collection of individuals diagnosed 
with T1DM and known kidney status, as detailed in 
Supplementary Methods, within the Supplementary 
Material (Supplementary Methods, Populations). To 
ensure there was no overlap between these popula-
tions, only UK-ROI participants from the Republic of 
Ireland and Northern Ireland were included.

Phenotypic variables
Outcome variables included CKD, ESKD, kidney dam-
age (any pathology indicating kidney injury), serum 
variables, diabetic kidney disease (DKD), and kidney 
replacement therapy (KRT). Serum variables included 
serum creatinine (SCr), serum cystatin C (SCysC), 
eGFR based on SCr (eGFRCrea), SCysC (eGFRCysC) 
and SCr/SCysC combined equation (eGFRCreaCysC)). 
Detailed definitions are provided within the ‘Supple-
mentary Methods’ section of the Supplementary Mate-
rial. Not every variable could be considered for each 
population (Fig. 1 and Supplementary Table 1).

Analyses were adjusted for age, sex, genotyping 
batch, smoking habit (defined as ‘yes’ if the patient 
had ever smoked), hypertension and diabetes (in the 
analysis of the Overall Cohort for CKD). Data Fields 
from the UKB used to calculate variables can be 
found in Supplementary Table  2, along with detailed 

information on calculations in Supplementary Table 3 
and Supplementary Table 4.

Genotyping and quality control
UK Biobank
The Applied Biosystems™ UK Biobank Axiom™ and 
UK BiLEVE Axiom™ Affymetrix Arrays were used 
for genotyping by the UK Biobank. Genotypes were 
imputed by the UKB using a combination of the Hap-
lotype Reference Consortium and merged UK10K and 
1000 Genomes phase 3 reference panels [73]. PLINK 
1.90 beta and PLINK 2.00 alpha were used to perform 
quality control (QC) and association analysis [74, 75]. 
Before QC, the study was comprised of 488,377 par-
ticipants, 711,188 SNPs in NEMG and 265 mitochon-
drial directly genotyped variants. Individuals with 
high missingness rate or call rate lower than 95% were 
removed. Related individuals (identity by kinship coef-
ficient > 0.0884) and principal component analysis 
(PCA) outliers, as calculated by the UK Biobank, were 
also removed [73]. Variants with minor allele frequency 
(MAF) < 1%, minor allele count (MAC) < 20 or SNP call 
rate < 95% were removed from the analysis. Autoso-
mal SNPs not fulfilling Hardy–Weinberg equilibrium 
(HWE) (p < 1e-20) or imputation score under 0.3 were 
also excluded. After QC, 374,760 participants (Over-
all Cohort), 371,542 variants in 2,527 NEMG, along 
with 192 variants in 32 mitochondrial genes for the 

Fig. 1  Design of the study, showing final number of participants after quality control, mitochondrial and NEMG variants included, along with the 
kidney phenotypes studied in each cohort. Abbreviations: eGFR: estimated globular filtration rate. NEMG: nuclear-encoded mitochondrial genes. 
T1DM: type 1 diabetes mellitus
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combined arrays and 93 variants in 28 genes for the 
BiLEVE array remained.

UK‑ROI
Genotyping of the UK-ROI data collection was per-
formed as described by Sandholm and colleagues [76]. 
Briefly, DNA samples collected from 1,804 white individ-
uals with T1DM were genotyped with the HumanOmni1-
Quad array and imputed to 1000 Genomes Phase 3 
reference panel. Before QC, the study was comprised of 
1,804 participants, 2,484,108 autosomal variants and 212 
mitochondrial DNA directly genotyped variants. Vari-
ants with MAF < 1%, MAC < 20 or SNP call rate < 90% 
were removed from the analysis. Autosomal SNPs not 
fulfilling HWE (p < 1e-20) or imputation score under 0.3 
were also excluded. After QC, 1,468 individuals, 423,906 
variants in 2,527 NEMG and 60 variants in 23 mitochon-
drial genes passed filters.

Mitochondrial haplogroups
Mitochondrial haplogroups were estimated using Hap-
loGrep2 [77], based on PhyloTree17 [78]. Only the major 
European haplogroups H, V, HV, J, T, U, K, Z, W, X, I and 
N were considered, grouping the remaining options in 
the “Other” category.

Selection of nuclear‑encoded mitochondrial genes
A total of 2,527 unique autosomal genes coding for 
22,713 transcripts were investigated. The selection pro-
cess produced 2,448 unique genes returned from data-
base searches with a further 180 genes identified from 
literature searches for genes influencing mitochondrial 
function [50]. Briefly, several online databases and lit-
erature resources were searched for NEMGs: Mitopro-
teome [79–82], MitoMiner [83], MitoMap [84], Ensembl 
[85] and UniProt [86]. Genes extracted from individual 
sources were reviewed and duplicates were excluded. 
Gene names were then screened to ensure there was 
no duplication between the database searches and lit-
erature searches. Genes were annotated with their offi-
cial HUGO Gene Nomenclature Committee (HGNC) 
gene symbol [87] using Ensembl BioMart release 67 
(May 2012) based on the February 2009 Homo sapi-
ens high coverage assembly GRCh37 from the Genome 
Reference Consortium [85]. Any genes not found in the 
BioMart [85] search were manually annotated according 
to their official HGNC gene symbol [87]. The list of genes 
was then checked again for duplicates based on HGNC 
symbols, known pseudonyms and gene positions. Only 
genes found in autosomes were included in the analysis. 
Any genes on sex chromosomes, non-human genes, or 

bacterial artificial chromosomes were excluded from the 
final list of genes encoding proteins required for mito-
chondrial function.

eQTL
Tissue data from kidney-cortex used for the analyses 
described in this manuscript were downloaded from the 
Portal of The Genotype-Tissue Expression (GTEx) pro-
ject (GTEx Analysis V8 release; dbGaP accession number 
phs000424.v8.p2) on 31/01/2022.

Statistical analysis
 Descriptive analyses were performed using R [88]. Qual-
itative variables were expressed as percentage (%) of their 
total. Non-normally distributed variables were expressed 
as the median and the interquartile range (Q3-Q1). Nor-
mality was assessed with Kolmogorov–Smirnov test. 

Association analysis
Association analysis for individual variants including sex, 
age, genotyping batch, smoking habit, hypertension, dia-
betes (Overall Cohort) and 10 PCAs as covariates was 
performed with PLINK 2.00 alpha, using the ‘–glm’ flag 
[74]. For binary phenotypes (CKD, ESKD and kidney 
damage) –glm fits a logistic or Firth regression model 
[74]. For quantitative phenotypes, –glm fits the linear 
model [74]. Quantitative outcome variables were natural 
logarithmic transformed and analysed using the addi-
tional ‘–pheno-quantile-normalize’ flag, to force quan-
titative phenotypes to a N(0, 1) distribution, preserving 
only the original rank orders [74]. The –glm flag per-
forms a multicollinearity check before each regression, 
which skips and reports ’NA’ results when it fails. Fixed 
effects meta-analysis was performed for associated vari-
ants in the UK-ROI collection showing consistent direc-
tion of effect for the same phenotype with UKB using 
METAL [89]. Between-study heterogeneity was assessed 
with the I2 statistic [90] and random effects meta-analy-
sis was performed if showing a significant heterogeneity 
(p > 0.05), calculating tau-square and the random effects 
parameters.

Multiple comparisons correction
To correct for multiple testing, a Bonferroni correction 
for the number of independent variants (estimated using 
a pruning procedure of our data; r2 < 0.2, window size 
50 bp, offset 5 bp) after QC was used [91]. The pruning 
estimated 47 independent variants for the mitochondrial 
chromosome for the combined arrays of the UK Biobank 
(35 when only the BiLEVE array was considered), yield-
ing a threshold of 1E-03, and 57,457 variants for NEMG, 
yielding a threshold of 9E-07. Our estimation for the 
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mitochondrial chromosome is similar to that calculated 
by Kraja et  al., obtained by permutation analysis, which 
concluded that 49 variants represented the number of 
independent genetic effects in the mitochondrial chro-
mosome [92]. For the UK-ROI collection, 60 variants in 
23 genes passed QC for the mitochondrial chromosome 
and 27 were estimated after pruning (0.05/27 = 1.9E-03), 
with 40,236 variants for NEMG (0.05/40,236 = 1.2E-06).

Clumping & annotation
Independent loci were identified using PLINK 1.90 beta 
clumping procedure (–clump-p1 5e-05 –clump-r2 0.1 
–clump-kb 500) [74]. A physical distance threshold for 
clumping of 1  kb was used for the mitochondrial chro-
mosome. The independent loci were annotated using the 
variant annotation tool TabAnno [93] complemented 
with NCBI dbSNP database [94] and SNPnexus [95–99].

Mitochondrial haplogroups
Association analysis for mitochondrial haplogroups was 
performed using logistic regression in R version 3.6.0 
(2019–04-26) [88], including as covariates duration of 
T1DM, sex, hypertension (UK-ROI); age, sex, genotyp-
ing batch, diabetes (Overall Cohort), smoking habit and 
hypertension (UK Biobank). Each haplogroup was ana-
lysed separately using all the other haplogroups as ref-
erence, after constructing dummy variables taking the 
values of 0 and 1, with the R package "fastDummies" 
[100]. Principal components were not used as covariates 
to account for ancestry because of their potential corre-
lation with haplogroups. The Bonferroni correction was 
applied to account for multiple comparisons, adjusting 
the p-value threshold, dividing by the number of haplo-
groups in each dataset (0.05/number of haplogroups).

Results
A descriptive analysis of the populations included in 
the study can be found in Table 1, showing the different 
strata for the UKB and the diabetic kidney disease (DKD) 
for the UK-ROI. UKB participants in the subgroup with 
diabetes were older than those without diabetes and 
there was a higher percentage of females. In the UK-ROI 
collection, those with DKD were older and more likely to 
be males.

Mitochondrial Variants
UK Biobank
A higher risk of ESKD was associated with the G allele 
of the MT-ND5-rs41535848 variant in the Non-Diabetic 
Cohort of the UKB (OR: 4.971; CI95%: 1.990–12.415; 
P = 6.0E-04). No other mitochondrial variants were 
associated with CKD, ESKD or kidney damage in any 

cohort of the UKB after multiple comparisons correction 
(p < 1E-03).

Fourteen and fifteen mitochondrial variants were asso-
ciated with eGFRCrea (Supplementary Tables  5 and 10) 
and eGFRCreaCysC (Supplementary Tables  7 and 12) in 
the Overall and Non-Diabetic Cohorts, respectively. Ten 
mitochondrial variants were associated with eGFRCysC in 
both cohorts (Supplementary Tables 6 and 11).

Fourteen mitochondrial variants in ten genes were 
consistently associated with eGFR (any equation) both 
in the Overall and Non-Diabetic Cohorts; addition-
ally, MT-CO1-G6734A and MT-CO3-rs41482146 were 
associated with eGFRCrea and MT-ND4-rs2853493 with 
eGFRCreaCysC, in the Non-Diabetic Cohort (Supplemen-
tary Tables 5–7 and 10–12). None of the mitochondrial 
variants showed associations in the Diabetic Cohort. 
Fifteen mitochondrial variants were associated with SCr 
(Supplementary Tables  8 and 13) and ten with SCysC 
(Supplementary Tables 9 and 14) in the Overall and Non-
Diabetic Cohorts.

UK‑ROI
No mitochondrial variants were associated with CKD 
or serum variables after multiple comparisons correc-
tion (p < 1.9E-03); significant variants from the UKB 
array rs2854131, rs28359178, rs2853506 and rs2857290 
showed consistent directions of effect for eGFRCrea and 
SCr.

Mitochondrial haplogroups
UK Biobank
Six mitochondrial haplogroups were present in the UKB 
cohort with a frequency over 3% (H, U, J, T, K and I) 
(Supplementary Table  15). The mitochondrial haplo-
groups X, H, U, J and I were associated with a number 
of the phenotypes investigated at the corrected p-value 
of 0.05/13 = 0.003846 (Supplementary Table  16). Fig-
ure 2 shows the main results for mitochondrial variants 
and haplogroups associated with some phenotype in the 
UKB.

The mitochondrial haplogroup X, defined by the muta-
tions T6221C, C6371T, A13966G, T14470C, T16189C 
and C16278T, was associated with higher risk of ESKD in 
both the Overall and Non-Diabetic cohorts of the UKB, 
but not in the Diabetic Cohort (Supplementary Table 16), 
as consistently shown by the association of the A13966G 
mutation (rs41535848) with ESKD in the Non-Diabetic 
Cohort (OR: 4.971;CI95%: 1.990–12.415; P = 6.0E-04).

The mitochondrial haplogroup H, defined by the muta-
tions G2706A (rs2854128) and T7028C, was associated 
with all the serum variables across all cohorts (Supple-
mentary Table  16), as consistently shown by those two 
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mutations in the Overall and Non-Diabetic cohorts (Sup-
plementary Tables 6–14).

The mitochondrial haplogroup U, defined by the 
A11467G, A12308G and G12372A mutations, was asso-
ciated with all the serum variables in both the Overall 
and Non-Diabetic cohorts (Supplementary Table  16), 
as seen with the A11467G (rs2853493) for eGFRCreaCysC 
in the Non-Diabetic cohort (Supplementary Table  12) 
and G12372A (rs2853499) for all serum variables in 
the Overall and Non-Diabetic cohorts (Supplementary 
Tables 6–11;13;14).

The mitochondrial haplogroup J, defined by the 
C295T, T489C, A10398G, A12612G, G13708A and 
C16069T mutations, was associated with SCr, SCysC 
and eGFRCreaCysC in the Non-Diabetic Cohort, but only 
with the latter in the Overall Cohort (Supplementary 
Table  16). Consistent associations were found for the 
individual mutations C295T (rs41528348) and G13708A 
(rs28359178) (Supplementary Tables 6–14).

The mitochondrial haplogroup I, defined by the muta-
tions T10034C and G16129A, was associated with SCr in 
both the Overall and Non-Diabetic cohorts (Supplemen-
tary Table 16).

The category “Other”, encompassing all the mitochon-
drial haplogroups not common in Europeans, was associ-
ated with SCysC and its derived eGFR equation in both 
the Overall and Non-Diabetic cohorts (Supplementary 
Table 16).

UK‑ROI
The Z mitochondrial haplogroup was not present 
in the UK-ROI collection, leaving 12 categories to 
compare (corrected p-value of 0.05/12 = 0.004). The 
mitochondrial haplogroup J, defined by the C295T, 
T489C, A10398G, A12612G, G13708A and C16069T 
mutations, showed a trend to higher risk of kidney 
replacement therapy (OR: 1.957; CI95%: 1.188–3.178; 
P = 0.00727), lower eGFR (BETA: -0.115; CI95%: -0.211-
(-0.019); P = 0.0186) and higher SCr levels (BETA: 
0.098; CI95%: 0.015–0.181; P = 0.0201) although not sig-
nificant after multiple comparisons correction.

NEMG
UK Biobank
Up to 360 NEMG variants were associated with any 
serum variable in the UKB dataset (Supplementary 
Table  17). Among them, only the intronic variant in 
the NADH:ubiquinone oxidoreductase subunit B10, 
NDUFB10-rs338788C, associated with higher eGFRCrea 
in the Non-Diabetic Cohort, is a known expression 
quantitative trait locus (eQTL) in kidney cortex, in 
particular, increasing the expression of the ribosomal 
protein L26 (RPL26) pseudogene, according to GTEx 
(Supplementary Table  18). Three SNPs (SLC39A13-
rs2293576, LMNA-rs4641 and TRMT1-rs35601737), 
associated with different kidney phenotypes, are known 
splicing quantitative trait loci (sQTL) in kidney cortex 
(Supplementary Table  18). The SLC39A13-rs10742802 
variant, in strong LD with SLC39A13-rs2293576 

Fig. 2  Main results for mitochondrial variants and haplogroups associated with some phenotype in the UK Biobank (Expressed as odds ratio (95% 
confidence interval) for qualitative variables and betas ± standard error for quantitative variables; Colour code: green increases and red decreases 
the beta estimate; NA: Not Associated). eGFRCrea: eGFR based on serum creatinine. eGFRCreaCysC: eGFR based on both serum creatinine and cystatin 
C. eGFRCysC: eGFR based on serum cystatin C. SCr: serum creatinine. SCysC: serum cystatin C. Mitochondrial variants are described as Gene | Base 
Position (GRCh37) | rs identifier | Effect Allele | Alternative Allele
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(R2 = 0.7632) was also associated with Kidney Damage 
and the serum variables eGFRCrea, eGFRCreaCysC, SCr 
and SCysC (Supplementary Table 18).

Overall cohort  Five index SNPs were associated with 
higher risk of CKD with a p-value < 9E-07 in 373,164 
participants of the Overall Cohort of the UKB (NAT8-
rs13538A, CPS1-rs1047891A, SLC22A2-rs3127573G, 
GATM-rs58764877C, WDR72-rs72747347C) (Supple-
mentary Table  19). NAT8-rs13538 and CPS1-rs1047891 
were also associated with all the serum variables in the 
Overall and Non-Diabetic Cohort, along with GATM-
rs58764877 for some of the variables. They were also 
associated with at least one of the serum variables in the 
Non-Diabetic Cohort. RAB24-rs80237806, associated 
with all the serum variables in the Overall and Non-Dia-
betic Cohorts, had a p-value for CKD of 2.3E-06.

Two clusters were associated with higher risk of ESKD 
with a p-value < 9E-07 (NUP210-rs144856263T and 
SLC4A1-rs116844389A) for the index SNP in the Overall 
Cohort of the UKB (Supplementary Table 19).

Twenty-one index SNPs were associated with kidney 
damage with a p-value < 9E-07 in 352,722 participants of 
the Overall Cohort of the UKB (Supplementary Table 19), 
three in common with serum variables.

CFL1-rs117624356, NOS3-rs3918226 and SLC39A13-
rs10742802 were associated with all the serum variables in 
the Overall Cohort; ACP2-rs75393320, ATP5G1-rs1800632 
with SCysC-related variables and SQOR-rs629024 with 
SCr-related variables.

Non‑diabetic cohort  Four index SNPs were associated 
with CKD with a p-value < 9E-07 in 340,185 participants 
of the Non-Diabetic Cohort of the UKB (Supplemen-
tary Table 20), three in common with the Overall Cohort 
(NAT8-rs13538, GATM-rs58764877 and WDR72-
rs72747347). NAT8-rs13538 was also associated with all 
the serum variables in the Non-Diabetic Cohort. GATM-
rs58764877 was associated with some of the serum vari-
ables in the Non-Diabetic Cohort.

Two index SNPs (NUP210-rs144856263T and MYH14-
rs148695576T) were associated with higher risk of ESKD 
with a p-value < 9E-07 in 340,185 participants of the Non-
Diabetic Cohort of the UKB (Supplementary Table  20), 
the first one in common with the Overall Cohort, none in 
common with serum variables.

Eleven index SNPs were associated with kidney damage 
with a p-value < 9E-07 in 320,718 participants of the Non-
Diabetic Cohort of the UKB (Supplementary Table  20), 

all in common with the Overall Cohort. Among them, 
SLC39A13-rs10742802 was associated with all serum 
variables and NOS3-rs3918226 and SQOR-rs629024 with 
the SCr-related variables in the Non-Diabetic Cohort.

Diabetic cohort  No variants were found to be associ-
ated with CKD or kidney damage with a p-value < 9E-07 
in 32,979 participants of the Diabetic Cohort of the UK 
Biobank. Patients with diabetes carrying the G allele of 
TBC1D32-rs113987180 variant (MAF 3%) were at a 
much higher risk of developing ESKD than patients with-
out diabetes (OR: 9.879; SE: 0.408; P = 2.0E-08), whereas 
the effect in the other UKB cohorts was weaker and non-
statistically significant, indicating a potential interaction 
with the presence of diabetes (Non-Diabetic: OR: 1.226; 
SE:0.456; P = 6.6E-01 and Overall: OR: 2.653; SE: 0.288; 
P = 7.16E-04).

Eleven variants were in common among the different 
serum variables within the Diabetic Cohort (Supplemen-
tary Table 21). In particular, RBKS-rs13023003C, ERBB4-
rs10168303A and GATM-15:45672447_GAA_GG (vari-
ant included the GATM-rs58764877 LD block, associated 
with CKD in the Overall and Non-Diabetic Cohorts) 
were associated with most of the variables derived from 
SCr. These three genotyped variants were associated 
with higher SCr levels and consequently lower values 
of eGFRCrea. Directions of effects across cohorts were 
consistent.

UK‑ROI
Three NEMG variants were associated with at least 
one phenotype in the UK-ROI collection with a 
p-value < 1.2e-6 (Supplementary Table  22). The G-allele 
of AGXT2-rs71615838 was associated with lower risk of 
DKD, SURF1-rs183853102A increased the risk of ESKD 
and TFB1M-rs71575026C increased eGFRCrea (Supple-
mentary Table 22).

The AGXT2-rs71615838G variant, associated with 
lower risk of DKD in the UK-ROI collection, showed a dif-
ferent effect in the Diabetic Cohort of the UKB (increased 
ESKD risk and SCysC levels, decreased eGFRCysC and 
eGFRCreaCysC), but this was not significant after multiple 
comparisons correction (Table 2).

The SURF1-rs183853102A variant, associated with 
higher risk of ESKD in the UK-ROI collection, showed 
consistent effects in the Diabetic Cohort of the UKB 
(increased CKD risk and SCr levels, decreased eGFRCrea 
and eGFRCreaCysC), but not significant after multiple com-
parisons correction (Table  2). Combined OR for ran-
dom effects meta-analysis for ESKD was 4.656 (SE:3.139; 
P = 0.1378; Supplementary Table 23).
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The TFB1M-rs71575026C variant, associated with 
higher eGFRCrea in the UK-ROI collection, showed the 
opposite effect in the UKB cohorts (non-statistically 
significant).

Discussion
CKD is a complex heterogeneous disease with a strong 
genetic component [9–11]. However, CKD heritability 
is not fully accounted for by current GWAS data [12, 

13], indicating that additional genetic factors may be 
responsible for CKD susceptibility [14, 15]. Mitochon-
dria are crucial to kidney health [25–40], but genetic 
variation in mtDNA [41–45] and in NEMG [52–70] 
has not been explored fully [14]. This paper assessed 
NEMG and mtDNA variants for their association with 
CKD and kidney phenotypes in individuals with and 
without diabetes, the most important global risk factor 
for CKD. Main results are depicted in Fig. 3.

Table 2  Comparison of the values for variants in nuclear-encoded mitochondrial genes associated with any variable in the UK-ROI 
collection with those in the UKB Cohort (only for associations with p < 0.05)

A1 counted allele in regression, ALT alternative allele, BETA regression coefficient (for A1 allele), CHR chromosome, CI confidence interval, DKD diabetic kidney disease, 
eGFRCys eGFR based on serum cystatin C, FREQ Frequency, N number of individuals in the regression, OR Odds Ratio (for A1 allele), P asymptotic p-value (or -log10(p)) 
for Z/chisq-stat (Qualitative variables) or for T/chisq-stat (Quantitative variables), POS base position, REF reference allele, RS rs identifier, SCysC serum cystatin C, SE 
standard error, T1DM type 1 diabetes mellitus, UKB UK Biobank

GENE 
CHR:POS 
ID
Consequence

Population Phenotype Cohort REF ALT A1 FREQ
(A1)

N OR or
BETA

CI95%
or SE

P

AGXT2
5:35036203
rs71615838
Intron

UKB ESKD Diabetic G T G 0.119 28,344 2.336 4.522—1.207 2.4E-02

eGFRCreaCysC 32,948 -0.029 0.010 4.8E-03

eGFRCysC 32,948 -0.036 0.010 6.2E-04

SCysC 32,948 0.037 0.011 7.4E-04

UK-ROI DKD T1DM T G G 0.050 1377 0.190 0.100—0.360 3.8E-07

SURF1
9:136219062
rs183853102
Intron

UKB CKD Overall A T A 0.049 373,164 1.076 1.002—1.155 4.1E-02

Kidney Damage Non-Diabetic 0.049 320,718 0.963 0.930—0.998 4.1E-02

eGFRCrea 340,185 0.010 0.005 4.1E-02

CKD Diabetic 0.048 32,979 1.264 1.070—1.493 6.0E-03

eGFRCrea 32,979 -0.039 0.016 1.6E-02

eGFRCreaCysC 32,948 -0.035 0.016 3.0E-02

SCr 32,979 0.042 0.016 7.3E-03

UK-ROI ESKD T1DM T A A 0.026 999 7.776 3.516—17.199 4.0E-07

Fig. 3  Genes with the associations most consistently shown across cohorts and phenotypes
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Mitochondrial variants
MT-ND5 codes for the mitochondrially encoded 
NADH:Ubiquinone Oxidoreductase Core Subunit 5, 
essential for the catalytic activity and assembly of com-
plex I, which catalyses electron transfer from NADH 
through the respiratory chain, using ubiquinone as an 
electron acceptor [101]. This gene has been associ-
ated with eye diseases as Leber Hereditary Optic Neu-
ropathy (LHON) [102]. Another variant in this gene, 
rs267606894A (12770A > G), has also been associated 
with age-related macular degeneration (AMD) in 17,832 
controls and 16,144 advanced AMD cases of European 
ancestry from the International AMD Genomics Con-
sortium (IAMDGC) dataset [103]. In kidney, two MT-
ND5 pathogenic variants, the m.13513G > A and the 
m.13514A > G, have been involved in adult-onset kidney 
disease in three unrelated patients [45]. In our study, four 
polymorphisms in MT-ND5 (rs2853499, rs28359172, 
rs2853503 and rs28359178) were associated with eGFR 
both in the Overall and Non-Diabetic Cohorts. A recent 
analysis in the UKB by Yonova-Doing et  al. showed 16 
mitochondrial variants associated with parameters of 
renal function (SCr, SCysC and eGFR) [51], 10 of them 
confirmed by our results (MT-HV2-rs869183622, MT-
RNR2-rs2854128, MT-RNR2-rs3928306, MT-RNR2-rs2854131, 
MT-CO1-7028C, MT-ND5-rs2853499, MT-ND5-rs2853503, 
MT-CYB-rs2853506, MT-5-rs2857290 and MT-ND4-
rs2853493). Interestingly, our analysis, not only confirms 
the association of rs2853499 and rs2853503 variants in 
MT-ND5 with serum variables, but also newly identi-
fies the MT-ND5-rs41535848G variant, along with the 
mitochondrial haplogroup X, associated with higher risk 
of ESKD in the Overall/Non-Diabetic Cohorts, empha-
sising the role of this gene in kidney disease. Two vari-
ants in MT-ND5, G12372A (rs2853499) and G13708A 
(rs28359178) were associated with practically all serum 
variables in the Overall and Non-Diabetic cohorts, along 
with mitochondrial haplogroup U, in line with the study 
by Yonova-Doing et  al. [51]. Another defining muta-
tion for haplogroup U, MT-ND4-G11467A (rs2853493), 
was associated with eGFRCreaCysC in the Non-Diabetic 
Cohort. MT-ND4 codes the core subunit 4 of the mito-
chondrial membrane respiratory chain NADH dehydro-
genase (Complex I), which catalyses electron transfer 
from NADH through the respiratory chain, using ubiqui-
none as an electron acceptor, essential for the catalytic 
activity and assembly of complex I [101, 104, 105].

In our study, mitochondrial haplogroup H, along with 
its defining mutations MT-RNR2-G2706A (rs2854128) 
and MT-CO1-T7028C, were associated with all the serum 
variables across all cohorts, confirming the results by 
Yonova-Doing et al. for eGFR, SCr and SCysC [51]. The 
study by Yonova-Doing et al. provided a comprehensive 

atlas of mitochondrial associations, for a set of 877 com-
plex traits, including kidney phenotypes, but mostly 
related to kidney function, such as SCr, SCysC and related 
eGFR [51]. Our study, with a focus on kidney diseases, 
adds new and specific evidence on CKD, DKD and ESKD 
and those kidney conditions that may cause injury in the 
kidneys through the ‘kidney damage’ composite variable. 
Therefore, our analyses provide more precise evidence on 
the susceptibility of individuals to kidney disease in dif-
ferent stages and also in a more comprehensive context, 
as we stratified by diabetes to account for the influence 
of this condition and identify markers of susceptibility in 
this specific group of patients.

SNPs in the D-loop were previously identified as poten-
tial predictors of kidney survival and poor disease out-
comes in 119 CKD patients and 159 controls [41–43]. 
Among the D-loop mitochondrial variants proposed, the 
MT-HV2-rs869183622A-allele increased CKD suscep-
tibility (99.1% vs 0%; p < 0.001) [41], while the analysis 
in the UKB by Yonova-Doing et  al. showed association 
with SCr and eGFRCreaCysC (p < 5·10–5) [51]. Our analysis 
showed a consistent effect of MT-HV2-rs869183622A 
increasing SCr and SCysC levels and decreasing their 
corresponding eGFR equations.

NEMG variants
Among the NEMG investigated in our study, NAT8-
rs13538 and CPS1-rs1047891 stood out not only as pre-
dictors of CKD, but also showing associations with all 
the serum variables in the Overall and Non-Diabetic 
cohorts. The influence of CPS1-rs1047891A variant on 
lower SCr levels and consequently higher scores of eGFR 
equations based on SCr across was consistent among 
all cohorts. NAT8 codes for the N-acetyltransferase 8 
(NAT8) enzyme, which catalyses the last step of mercap-
turic acid formation by acetylating cysteine S-conjugates 
to mercapturic acids [106] and plays an important role in 
the development and maintenance of normal kidney and 
liver structure and function [107], where is abundantly 
and specifically expressed [107], in particular by tubular 
cells of the renal cortex [108]. NAT8 (rs13538) is a known 
susceptibility locus for CKD and kidney function [13, 52, 
54–56, 108–110]. The variant rs10206899 (close to NAT8 
and in LD with rs13538, R2 = 0.988) was associated with 
SCr, eGFR, SCysC and CKD in a GWAS meta-analysis of 
nine studies encompassing 23,812 European white par-
ticipants, by Chambers et al. [108]. NAT8-rs13538 results 
in a non-conservative amino acid change (F143S) within 
the acetyl-coenzyme A binding site, an effect predicted 
to influence acetylation by NAT8 [108], a key meta-
bolic pathway for the detoxification of nephrotoxic sub-
stances [111, 112]. Association with serum metabolites 
was reported for NAT8-rs13538 (N-acetylornithine) and 
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GATM-rs2433610 (located in 15:45,686,091, relatively 
close to GATM-15:45672447_GAA_GG) and CPS1-
rs1047891 (glycine) in 1,260 African Americans from 
the Atherosclerosis Risk in Communities (ARIC) study 
[113]. These SNP-metabolite associations had also been 
seen in Europeans, in participants of the German KORA 
F4 study (n = 1,768) and the British TwinsUK study 
(n = 1,052) [114]. The fact that the risk allele associated 
here with higher serum levels of N-acetylornithine that is 
also associated with higher risk of CKD has pinpointed 
a role for ornithine acetylation in the aetiology of CKD 
[114]. In support of this, the circulating and urinary lev-
els of 14 N-acetylated amino acids were associated with 
NAT8-rs13538 variant in 962 participants of the Afri-
can American Study of Kidney Disease and Hyperten-
sion, 1050 from the Atherosclerosis Risk in Communities 
study and 680 from the electronic health record-linked 
biorepository BioMe [115, 116]. Higher circulating levels 
of five of these N-acetylated amino acids predicted kid-
ney failure in the combined meta-analysis [115]. How-
ever, none of the urinary levels of these N-acetylated 
amino acids were associated with kidney failure in 1624 
participants from the German CKD study [115].

CPS1 codes for the carbamoyl phosphate synthetase I, 
the rate-limiting enzyme catalysing the first committed 
step of the hepatic urea cycle by synthesizing carbamoyl 
phosphate from ammonia, bicarbonate, and 2 molecules 
of ATP [117]. CPS1-rs1047891, previously associated 
with eGFRCrea [71, 109], was associated with glycine levels 
among African Americans from the Atherosclerosis Risk 
in Communities (ARIC) Study (P = 4E-12) [113]. Gly-
cine is metabolically related to carbamoyl phosphate, the 
product of CPS1 and the entry point of ammonia into the 
urea cycle. Other SNPs in this gene were also associated 
with glycine concentrations in 2,820 individuals from 
two large population-based European cohorts, as KORA 
F4 (rs2371015; P = 3E-09; R2 = 0.276) and TwinsUK 
(rs4673553: P = 2E-23; R2 = 0.461; rs4673558: P = 4.3E-11; 
R2 = 0.256) [114]. In the meta-analysis, CPS1-rs2216405 
variant (LD with rs1047891: R2 = 0.385) was also associ-
ated with serum levels of glycine, along with serum levels 
of creatine, produced from glycine, probably indicating 
an altered ammonia metabolism [114]. Another SNP, 
located in the 3′ untranslated region of the  CPS1  gene, 
rs715 (in LD with rs1047891: R2 = 0.907), previously 
associated with CKD [109], also showed an association 
with glycine levels in 1,004 nondiabetic individuals from 
the RISC study (P = 3.3E-50) [118]. The influence of this 
SNP on glycine can be seen not only in serum. In urine 
samples from 3,861 participants of the SHIP-0 cohort 
and 1,691 subjects of the KORA F4 cohort, CPS1-rs715C 
was associated with higher glycine/threonine ratio (Beta: 
0.141; P = 8.5E-31; SHIP-0 dataset) [119]. In the same 

study, AGXT2-rs37369T predicted higher urinary levels 
of 3-aminoisobutyrate in 3,828 individuals of the SHIP-0 
dataset (Beta: 1.277; P = 7.5E-26) [119], confirming pre-
vious results in urine [120–122] and serum [123]. Other 
studies had also related this variant with increased serum 
levels of symmetric/asymmetric dimethylarginine [124] 
and decreased homoarginine [125]. In our study, a differ-
ent variant in the same gene, AGXT2-rs71615838, pre-
dicted higher risk of DKD in T1DM patients from the 
UK-ROI dataset; however, the effect was not seen in the 
Diabetic Cohort of the UK Biobank.

In our study, GATM-rs58764877 was associated with 
CKD in the Overall and Non-Diabetic Cohorts, and 
GATM-15:45672447_GAA_GG (in LD with rs58764877) 
with most of the variables derived from SCr in the Dia-
betic Cohort. In addition to the GATM variant discussed 
above (rs2433610), another variant in SPATA5L1, close to 
GATM, was associated with eGFRCrea in 2,388 CKD cases 
included among the participants of four different popu-
lation-based cohorts of European-ancestry (Beta: -0.013; 
SE: 0.002; P = 6.2E-14) [54]. GATM encodes the enzyme 
L-arginine:glycine amidinotransferase, involved in cre-
atine biosynthesis. Although SNPs at this locus have been 
proposed to affect levels of SCr without influencing sus-
ceptibility to kidney disease [54], our results show GATM 
variants can predict both SCr levels and CKD.

In our participants, two variants in SLC22A2 showed an 
influence on kidney phenotypes. In particular, SLC22A2-
rs3127573G increased CKD risk in the Overall Cohort, 
and SLC22A2-rs1554261092(delT) lowered SCr levels, 
with consequently higher eGFRCrea. SLC22A2 has been 
previously associated with kidney traits. The SLC22A2-
rs3127573 variant (located in 6:160,681,393) was associ-
ated with SCr and eGFR in the GWAS meta-analysis by 
Chambers et al. [108]. Other variants as have been asso-
ciated with eGFRCrea and/or CKD [57, 109]. SLC22A2 
codes for the solute carrier family 22 member 2, that are 
polyspecific organic cation transporters expressed in the 
liver, kidney, intestine, and other organs and are critical 
for elimination of many endogenous small organic cati-
ons as well as a wide array of drugs and environmental 
toxins [126].

Genes like SLC22A2 [57, 108, 109, 127, 128], CPS1 
[109], WDR72 and WDR37 [57, 109, 127–129] have 
shown specific association with eGFRCrea, therefore have 
been proposed to be involved in creatinine secretion, 
rather than kidney function, and consequently may not 
be representative of CKD. Functional analysis and other 
measures of eGFR, such as SCysC, may throw some light 
on this, to elucidate whether variants associated with 
creatinine biosynthesis or secretion are really relevant 
to predict CKD [12]. In our patients, polymorphisms 
in these three genes were associated with kidney traits 
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not only derived from SCr, but also from SCysC, such 
as eGFRCreaCysC, eGFRCysC and SCysC, along with CKD, 
showing that their relationship may be indicative of kid-
ney disease and function, not only creatinine production 
or secretion.

In our study, one of the loci predictive of CKD in both 
the Overall and Non-Diabetic Cohorts was WDR72-
rs72747347. Variants in WDR72 (rs491567; R2 = 0.202 
with rs72747347) have been previously associated with 
eGFRCrea (P = 2.7E-13) although not with eGFRCysC [109]. 
In 14,700 Japanese individuals, WDR72-rs10518733 
(R2 = 0.193 with rs72747347) was associated with SCr lev-
els (Beta: -0.068; SE: 0.012; P = 1.7E-08) [58]. The intronic 
WDR72-rs491567A variant (R2 = 0.202 with rs72747347) 
decreased eGFRCrea levels in up to 3,282 American Indian 
individuals from the Strong Heart Family Study (Beta: 
-0.09; SE: 0.03; P = 4.5E-04) [59]. WDR72-rs17730436 
(R2 = 0.193 with rs72747347) was associated with both 
SCr (Beta: 0.0005; SE: 0.0007; P = 1.2E-13) and eGFRCrea 
(Beta: -0.0057; SE: 0.0009; P = 6E-13) and WDR72-
rs17730281 (R2 = 0.201 with rs72747347 but R2 = 0.915 
with rs17730436) with blood urea nitrogen (BUN) (Beta: 
0.0051; SE: 0.0008; P = 3E-11) in a GWAS meta-analysis 
including up to 71,149 East Asian subjects to investigate 
kidney function-related traits [60]. In 490 unrelated Emi-
rati nationals with type 2 diabetes mellitus (T2DM), vari-
ants in WDR72 showed a trend to association with SCr 
(rs1031755) or eGFRCrea (rs4776168 and rs10518733), but 
it was not significant after correction for multiple com-
parisons (R2 < 0.2 with rs72747347) [61]. The fact that 
multiple associations within WDR72 have been shown 
across different ethnicities suggest that this gene may 
have relevance for kidney function across multiple ances-
tries. A recent transethnic GWAS meta-analysis, includ-
ing participants from the UK and Japan Biobanks, to 
understand the common genetic factors contributing to 
nephrolithiasis, identified a potential role of the intronic 
rs578595 variant in WDR72 in calcium-sensing receptor 
(CaSR) signalling [130]. WDR72, WD repeat-containing 
protein 72, encodes a protein with eight WD-40 repeats, 
highly expressed in kidney [58], which plays an important 
role in enamel mineralization, possibly due to endocytic 
vesicle trafficking [131, 132] and is thought to play a role 
in clathrin-mediated endocytosis, a central process to 
sustained intracellular CaSR signaling [132]. WDR72 is 
also causative of hereditary distal renal tubular acidosis 
(dRTA), a rare genetic disease, in an autosomal reces-
sive manner [133–135]. One of the genes strongly impli-
cated in the pathogenesis of dRTA is SLC4A1 [133, 136], 
encoding for the solute carrier family 4 member 1, part of 
the anion exchanger family and expressed in the eryth-
rocyte plasma membrane, where it functions as a chlo-
ride/bicarbonate exchanger involved in carbon dioxide 

transport from tissues to lungs. In participants from the 
Overall Cohort, SLC4A1-rs116844389A was associated 
with ESKD, but not with serum variables. Renal compli-
cations of dRTA include nephrocalcinosis, nephrolithia-
sis, medullary cysts, and impaired kidney function, and it 
is common to develop moderate to severe CKD over time 
[137, 138]. WDR72-rs77593734T (OR:1.102; P = 1.4E-11; 
R2 = 0.251 with rs72747347) and rs690428A (OR:1.078; 
P = 1.5E-5; R2 = 0.279 with rs72747347) variants were 
recently identified to increase rapid eGFRCrea decline in 
a GWAS meta-analysis including 42 studies [139]. In the 
same study, WDR72-rs77593734 was also associated with 
eGFRSCysC (P = 1.9E-16) and BUN in UKB participants 
[139], confirming previous results in BUN for 416,076 
participants from the Chronic Kidney Disease Genetics 
(CKDGen) Consortium (P = 8.5E-17) [71]. In Africans, 
rs12906891 (R2 = 0.209 with rs72747347) and rs11070992 
(R2 = 0.210 with rs72747347) variants in WDR72 have 
been associated with proliferative diabetic retinopathy 
(PDR), a sight-threatening complication of diabetes that 
is associated with longer duration of diabetes and poor 
glycemic control (P = 9.7E-10; OR:1.46 and P = 4.2E-
08; OR:1.28, respectively) [140]. WDR72-rs551225A 
(R2 = 0.747 with rs72747347) was associated with low 
urine pH (Beta: -0.03; CI95%: -0.03-(-0.02); P = 2.6E-15) 
and increased risk of kidney stones in a set of 150,274 
Icelanders (OR:1.09; CI95%: 1.06–1.12; P = 4.8E-08) [141].

In our study, ERBB4-rs10168303A, an intronic variant 
located between introns 1–2 of human ERBB4, was asso-
ciated with most of the variables derived from SCr in the 
Diabetic Cohort of the UKB, showing higher SCr levels 
and consequently lower values of eGFR. The ERBB4 gene 
is a member of the type I receptor tyrosine kinase sub-
family, encoding a receptor for NDF/heregulin (NRG1) 
[142]. Recently, Erbb4-IR, a lncRNA located within 
the intron region between the first and second exons 
of ERBB4 on chromosome 1 of the mouse genome, has 
been found to induce renal fibrosis [143] and to promote 
diabetic kidney Injury in  db/db  Mice by targeting miR-
29b [144]. This is not the first time that a variant in this 
gene has been associated with kidney disease in patients 
with diabetes. The top SNP associated with the primary 
DKD phenotype identified in a combined GWAS meta-
analysis of discovery and second stages in DKD individu-
als (6, 691) was rs7588550 (R2 < 0.1 with rs10168303), an 
intronic SNP in the ERBB4 gene, which demonstrated 
consistent protective effects in the replication samples 
(OR = 0.66; CI95%: 0.56–0.77; P = 2.1E-07) [76].

We also investigated potential eQTLs among our find-
ings. The SLC39A13-rs10742802 variant was associated 
with kidney damage and the serum variables eGFRCrea, 
eGFRCreaCysC, SCr and SCysC in both the Overall and 
Non-Diabetic Cohorts. The SLC39A13-rs2293576 variant, 
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in strong LD with SLC39A13-rs10742802 (R2 = 0.763) 
is a known sQTL in kidney cortex. SLC39A13, a mem-
ber of the SLC39A family of zinc transporters, respon-
sible for zinc influx [145], is over-expressed in kidney 
during dietary zinc deficiency in Wistar rats, playing a 
role in transporting zinc into cells to avoid zinc deple-
tion [146]. Kidneys contribute to zinc homeostasis in 
the body by reabsorbing the portion of zinc entering the 
glomerular filtrate in the nephron [147]. In nonpathologi-
cal conditions, zinc urinary loss is minimised; however, 
abnormal kidney function and diabetes, among other 
conditions, result in reduced serum zinc concentrations 
and increased urinary excretion [148].

Two other SNPs (LMNA-rs4641 and TRMT1-
rs35601737) associated with different kidney phenotypes 
in our study, were also found to be sQTL in kidney cor-
tex. The LMNA gene encodes the structural protein com-
ponents of the nuclear lamina, lamin A and lamin C a 
protein network underlying the inner nuclear membrane 
that determines nuclear shape and size. Pathogenic vari-
ants in LMNA are highly pleiotropic and are responsible 
for many laminopathies [149] but have also been linked 
to other unrelated phenotypes, such as CKD (P = 1.13E-
06), even independently of primary cardiomyopathy 
(P = 1.33E-03) in 11,451 unselected individuals from the 
Penn Medicine Biobank (Pennsylvania, US), suggesting 
an independent pathophysiological mechanism for renal 
failure in the context of loss of function in LMNA [150]. 
Germline LMNA mutations carried across generations 
in focal segmental glomerulosclerosis (FSGS) patients 
also points to a physiological role of LMNA in the main-
tenance of glomerular structure and function [151]. 
TRMT1 has been recently validated as part of a 5-gene 
prognostic signature for kidney renal clear cell carci-
noma (KIRC) in The Cancer Genome Atlas (TCGA) and 
E-MTAB-1980 cohorts [152, 153].

Among the novel potential associations of NEMG with 
kidney traits found in our study, the PTPN11-rs11614544 
variant was consistently associated with SCysC levels 
and consequently eGFRSCysC. Interestingly, MYH14-
rs148695576T and NUP210-rs144856263T were mark-
ers associated with a higher risk of ESKD. We also had a 
particular interest in variants that could identify kidney 
damage. Among the NEMG predictive of kidney dam-
age along with serum phenotypes in our patients (NOS3, 
ACP2 and SLC39A13), some of them have previously 
been linked to kidney disease. The transancestry meta-
analysis of GWAS for eGFR performed Wuttke et  al. 
[71], using nearly a million individuals, identified 147 loci 
relevant for kidney function based on associations with 
the alternative kidney function marker BUN, which sub-
sequently were tested as a GRS in clinically diagnosed 
CKD and CKD-related outcomes in the UKB. None of 

the novel signals in our study made it to the GRS in the 
UKB, but interestingly, SQOR-rs629024 and SLC239A13-
rs10742802 were associated with eGFRSCr (P = 7.5E-31 
and 1. 9E-10, respectively). Furthermore, when these 
results were later meta-analysed joining data from 
the UKB (n = 1,201,909) [154], among their results for 
eGFRSCys, ATP5G1-rs1800632 and PTPN11-rs11614544 
showed p-values of 5.6E-11 and 2.3E-23 respectively, 
whereas SQOR-rs629024 and SLC239A13-rs10742802 
were confirmed for eGFRSCr (P = 7.4E-34 and 1.4E-12, 
respectively), although these associations were not dis-
cussed in the article. The meta-analysis also revealed 
NOS3-rs3918226 associated with eGFRSCr (P = 5.4E-09) 
and SLC239A13-rs10742802 with eGFRSCys (P = 3.4E-15) 
[154]. For other variants in our study, there was not infor-
mation available from previous studies, despite some 
of the GWAS analysis having been performed on UKB 
data. There are several reasons why the novel associa-
tions identified in our study may not have been seen in 
previous GWAS of kidney traits. Different study designs, 
outcome measures and/or different ancestries may have 
generated different results to our study. The candidate-
gene design of our study, including a lower number of 
variants than a GWAS, has allowed us to use a threshold 
of 9E-07 to identify associations, lower than the widely 
accepted GWAS-significant threshold of 5E-08. This 
may have caused these associations to have been deemed 
non-significant in such studies. For instance, Kintu et al. 
recently performed a GWAS meta-analysis to identify 
susceptibility loci associated with eGFRcrea in 80,027 
individuals of African-ancestry from the UKB, Million 
Veteran Program, and CKDGen consortia [155]. Despite 
the different ancestry, this study identified 8 lead SNPs, 
7 previously associated with eGFRCrea in other popula-
tions. However, the authors use a threshold for signifi-
cance of 5E-08, that may have missed potential variants 
in common with our study. The summary statistics for 
these analyses are not available, therefore we cannot con-
firm whether our associations may have p-values close to 
the threshold in this case.

It is remarkable that CFL1-rs117624356 was associated 
with all the serum variables in our Overall Cohort, espe-
cially given that cofilin-1, encoded by CFL1, has been 
proposed to be integral to the development of proteinu-
ria, being necessary for modulating actin dynamics in 
podocytes [156, 157]. Podocyte alterations in actin archi-
tecture may initiate or aid the progression of glomerular 
diseases [158]. Cofilin1 has also been involved in hyper-
tensive nephropathy by modulating the nuclear translo-
cation of NF-κB and the expression of its downstream 
inflammatory factors in renal tubular epithelial cells 
[159]. Up-regulation of cofilin-1 in HK-2 cells treated 
with calcium oxalate monohydrate, the major crystalline 
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composition of most kidney stones, suggests it may play a 
key role in response to the COM crystals adhesion [160]. 
Animals with mutations in CFL1 usually display abnor-
malities including ureter duplication, renal hypoplasia, 
and abnormal kidney shape [161].

Two variants in NOS3 (rs3918226 and rs891511) were 
associated with kidney damage in the UKB cohort. 
NOS3-rs3918226 was also associated with some serum 
traits. NOS3 encodes the nitric oxide synthase 3, involved 
in endothelin pathways and the EGF/EGFR signalling 
pathway, whose inhibition protects against the develop-
ment of DKD [162]. There is a clear link between NOS3 
gene variation and ESKD [62, 63], CKD [64] and CKD 
progression [65]. A recent meta-analysis of 13 studies 
found that two NOS3 gene polymorphisms (rs1799983, 
R2 = 0.189 with rs3918226 and the intron 4 VNTR a/b 
polymorphism) significantly increased ESKD risk in 
autosomal dominant polycystic kidney disease (ADPKD) 
patients [62]. The rs1799983 variant has also showed 
a role in development of CKD in a recent meta-anal-
ysis [64]. The NOS3-rs2070744 gene polymorphism 
(R2 = 0.140 with rs3918226) increased risk of ESKD 
among 100 Egyptian patients compared to 100 healthy 
controls (P < 0.001) [63]. NOS3-rs7830 (R2 = 0.494 with 
rs891511) has been associated with the risk of DKD in 
T2DM patients of Greek Caucasian origin (OR: 1.598; 
CI95%: 1.152–2.217; 121 DKD/220 T2DM) [66]. SNPs in 
NOS3 have been proposed as potential molecular mark-
ers to predict the risk of T2DM and DKD in Chinese Han 
population [67]. In 490 T2DM patients and 485 healthy 
controls, NOS3-rs3918188 was associated to susceptibil-
ity to T2DM; the rs1800783 polymorphism (R2 = 0.1404 
with rs3918226) predicted DKD, and family history 
of diabetes was closely associated with rs11771443 
(R2 < 0.1 with rs3918226) polymorphism in DKD [67]. 
The ACP2 protein was included in a prognostic model of 
DKD including 35 DKD patients with good and 19 with 
poor prognosis [68]. On the other hand, associations in 
ATP5G1, the ATP Synthase Membrane Subunit C Locus 
1 represents one of the novel findings in our study [62].

One of the aims of our study was to explore the impact 
of diabetes on the association of mtDNA and NEMG 
variants with kidney phenotypes. Remarkably, our find-
ings have made evident that the risk of kidney outcomes 
may be exacerbated by the presence of diabetes. That is 
the case of TBC1D32, not previously linked to kidney 
traits, accentuating a high risk of ESKD and emerging as 
a potential predictor of worse outcome in patients with 
diabetes.

Our study also identified three NEMG predictive of 
DKD and ESKD among T1DM patients, two of them for 
the first time. In the UK-ROI collection, individuals car-
rying the AGXT2-rs71615838G variant had decreased 

DKD risk, whereas carrying the SURF1-rs183853102A 
allele was associated with an increased risk of ESKD. 
Also, individuals with the TFB1M-rs869120C allele had 
lower serum levels of eGFR. AGXT2 encodes the enzyme 
alanine:glyoxylate aminotransferase 2, expressed primar-
ily in the kidney, which converts L-homoarginine (hArg) 
into 6-guanidino-2-oxocaproic acid (GOCA) [163]. 
Decreased plasma concentrations of hArg have recently 
become an emerging marker for clinical status and prog-
nosis in kidney disease [164–166]. In 527 patients with 
different stages of CKD from the CARE FOR HOMe 
study confirmed this and found that a decreased ratio 
between hArg and GOCA predicted even more pro-
nounced risks for kidney events [69]. The mitochondrial 
aminotransferase encoded by AGXT2 also catalyses the 
reaction of β-aminoisobutyrate with pyruvate to form 
2-methyl-3-oxopropanoate and alanine.

Overall, our study has found many associations, both 
in mitochondrial and nuclear genes, with potential impli-
cations for the identification of patients with higher sus-
ceptibility to kidney diseases. In particular for ESKD, 
we have identified three genes that might help identify 
people with a higher risk of developing this more aggres-
sive form of kidney disease, both in the overall popula-
tion (NUP210 and SLC4A1) and in people with diabetes 
(SURF1). Their actual impact on risk stratification in kid-
ney disease needs further investigation. However, given 
that most of the effect sizes, especially for the mitochon-
drial genes, were small, their use in isolation may be 
limited. To improve kidney disease risk prediction may 
require carefully validated combinations of clinical risk 
factors and a variety of ‘-omics’ based predictors.

Limitations
This is a well-powered cross-sectional study exploring 
an extensive selection of kidney phenotypes in one of the 
largest populations cohorts available, the UKB cohort. 
However, it is not exempt of limitations. The UK-ROI 
collection and the Diabetic Cohort within the UKB are 
small compared to the overall UKB cohort and may have 
reduced the power to detect significant associations. Fur-
thermore, most individuals in the UKB Diabetic cohort 
had type 2 diabetes, whereas the UK-ROI collection is 
composed exclusively of T1DM individuals, which may 
partially explain why findings in T1DM from the UK-ROI 
collection were not replicated in the UKB.

The eGFR was calculated using the 2009 CKD-EPI 
creatinine equation, which uses coefficients for age, sex, 
and race in addition to SCr or SCysC, a premise that has 
recently come under scrutiny and criticism [167, 168], 
since race adjustment may have overestimated eGFR 
(≈16% higher) in Black patients, systematically resulting 
in an unfavourable bias that potentially may have reduced 
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their access to pre-emptive kidney transplantation. As 
our study only included participants of European ances-
try, no correction for race was applied in the eGFR equa-
tions or as covariate in the association analyses, therefore 
the ethnicity issue should not be a concern.

Conclusions
In summary, our study has brought to light the influ-
ence of variants both in mtDNA and NEMG which may 
explain some of the missing heritability in CKD. The con-
sistent effects on eGFR and serum variables observed for 
mitochondrial variants and haplogroups, in particular 
haplogroup H, associated with all serum variables across 
all cohorts, support a role of variation in mitochondrial 
genes for kidney disease (Fig. 3). Our results confirm pre-
viously identified associations of NEMG (NAT8, GATM, 
SLC22A2, WDR72, NOS3, AGXT2 and CPS1) with kidney 
disease and kidney function, providing new information 
that expands these associations to other kidney disease 
biomarkers. We also provide new evidence for associa-
tion of variants in SLC39A13, CFL1, ACP2, or ATP5G1, 
with serum phenotypes and kidney injury. We identified 
several associations with the most severe stage of CKD—
ESKD, both in nuclear (SLC4A1, NUP210 MYH14) and 
mitochondrial genes (MT-ND5, defining variant for hap-
logroup X).

Our findings also highlight variants in TBC1D32 and 
SURF1 that are associated with a higher risk of ESKD in 
individuals with diabetes.

Nevertheless, there are still many ‘gaps’ in our knowl-
edge, beyond SNP variations in nuclear and mitochon-
drial DNA, to fully understand the genetic predisposition 
to CKD.
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