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Abstract
Background Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef 
cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses 
have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects 
of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus 
populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. 
Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing 
to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to 
differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of 
genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite 
breeds like Brangus.

Objective This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and 
BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus 
commercial herd.

Methods We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using 
LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted 
considering additive, dominance, and overdominance models.

Results The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB 
gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a 
dominance effect underscoring their importance in estimating heterosis.

Conclusions Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting 
economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying 
genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. 
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Background
Approximately 45% of beef cattle in the United States are 
located in subtropical regions, primarily spanning the 
southern and southeastern states. In these areas, cattle 
frequently face challenges posed by hot and humid cli-
mates [1]. These environmental conditions subject them 
to extreme heat stress, which can adversely impact their 
well-being, hinder growth, and reduce overall productiv-
ity. To mitigate such challenges, producers often resort 
to crossbreeding, integrating both taurine (Bos t. tau-
rus) and indicine (Bos t. indicus) breeds. This strategy is 
aimed at capitalizing on the strengths of both subspecies, 
harnessing the resilience of the second while maintaining 
the superior meat quality of the first [2]. Central to the 
effectiveness of this approach is the principle of hetero-
sis. Heterosis is the superior performance of the cross-
bred offsprings compared to their purebred parents. Key 
to this enhanced performance is the dominance effect, 
which allows for the advantageous combination of alleles 
from distinct breeds. As technology advances, the incor-
poration of genomic tools hold the promise of enhancing 
and refining the benefits of heterosis [2].

Genome wide-association studies (GWAS) using SNP 
data in multi-breed and crossbred beef cattle have pre-
viously identified heterotic QTL, genetic variants con-
tributing to the expression of traits that benefit from 
increased vigor observed in hybrids [3]. However, a criti-
cal factor that is frequently overlooked pertains to the 
breed of origin of alleles (BOA). The term “BOA” specifi-
cally denotes the breed from which a particular genetic 
marker is inherited [4, 5]. Understanding the breed of 
origin is essential because it sheds light on the genetic 
lineage and ancestry of specific alleles, providing valu-
able insights into the inheritance patterns and contribut-
ing factors to observed traits. In crossbred and composite 
cattle, such as Brangus, it is important to note that mark-
ers that appear identical may actually come from differ-
ent parent breeds (Angus or Brahman). The impact of 
a marker on traits can vary depending on its origin, as 
there are differences in linkage disequilibrium between 
the breeds. Hence, even though these alleles may seem 
alike, their impact on production traits can differ signifi-
cantly depending on their distinct breed origins. When 
combined with information of dominance effects, iden-
tifying the BOA provides a more precise representation 
of genomic heterosis given that the observed heterosis in 
admixed populations is a consequence of heterozygous 
BOA. This comprehensive understanding will not only 

highlight breed-specific advantages but will also out-
line potential avenues for trait improvement, formulat-
ing customized breeding strategies that are optimal for 
crossbred and composite breed scenarios. Studies using 
BOA information for genomic prediction in dairy cattle 
have shown that incorporation of such information is 
beneficial in multi-breed production schemes [6].

The objective of this study was to conduct GWAS on 
hot carcass weight (HCW) and marbling (MARB) and 
identify genetic variants with additive, dominance, and 
overdominance effects using SNP and BOA information 
within a Brangus commercial herd. This has the poten-
tial to provide a more holistic perspective on the com-
plex interplay of genetic factors shaping these traits of 
interest.

Materials and methods
Animals and phenotypic measurements
The research protocol was approved by the University 
of Florida Institutional Animal Care and Use Commit-
tee number 201,003,744. The study population included 
1,066 Brangus steers from the Seminole Tribe of Florida, 
Inc. born in 2014 and 2015. Harvest information, sample 
collection and trait measurement are described in detail 
by Rodriguez et al. [7]. Briefly, cattle were fed at Quincey 
Cattle Company, a commercial feedlot located in Chief-
land, Florida, where they received a conventional feed-
lot diet containing corn, protein, vitamins, and minerals 
until they attained a subcutaneous fat thickness over the 
ribeye of approximately 1.27  cm. Cattle were processed 
at a USDA-inspected inspected slaughtering facility (FPL 
Food LLC., Augusta, Georgia) facility following standard 
processing protocols by penetrating captive bolt followed 
by immediate exsanguination [8]. Hot carcass weight 
(HCW; kg) was recorded after harvest. Carcasses were 
ribbed between the 12th and 13th rib at 48 h postmortem 
and marbling score (MARB) was then evaluated accord-
ing to USDA standards outlined by Hale et al. [9].

Genotyping and quality control
Genomic DNA was extracted from either tissue or blood 
samples using the QIAamp DNA Mini DNA kit (Qiagen, 
Valencia, CA, United States) following the manufac-
turer’s protocol and stored at − 20  °C. Genotyping was 
conducted using the Bovine GGP F250 array (GeneSeek, 
Inc., Lincoln, NE) containing 221,115 SNPs enriched with 
functional variants including non-synonymous, frame-
shift, and stop mutations. Only autosomal SNP were 

By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to 
advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to 
optimize trait improvements in crossbred cattle populations.
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mapped to the ARS-UCD1.2 assembly and retained for 
further analysis. Quality control (QC) filtering was per-
formed with PLINK2 [10]. QC for the GWAS excluded 
animals with a genotype completion rate below 90% and 
markers with a minor allele frequency below 1% and a 
genotype call rate below 90%. This QC process resulted in 
127,912 SNPs and 1,024 cattle suitable for further analy-
sis. BOA was predicted using Local Ancestry in adMixed 
Populations using Linkage Disequilibrium (LAMP-LD) 
analysis [11, 12]. QC for LAMP-LD analysis used stricter 
criteria, with markers requiring a call rate over 99%. This 
stricter QC resulted in a set of 108,688 SNPs, and 1,024 
SNPs with an allele frequency difference (AFD) of at least 
5% between the purebred populations were retained, cul-
minating in 93,751 SNPs for the LAMP-LD analysis.

Breed of origin
LAMP-LD was used to infer percentages of local ancestry 
of each animal [11, 12]. LAMP-LD uses hidden Markov 
models of haplotype diversity of the ancestral/purebred 
populations within a window-based framework to trace 
the origin of alleles in the admixed population [11, 12]. 
Purebred Angus and Brahman cattle from the University 
of Florida’s Multibreed Angus x Brahman herd were used 
to represent the purebred populations for the LAMP-
LD analysis. A total of 123 purebred Angus cattle and 
406 purebred Brahman cattle were used as the reference 
population. Only markers with an AFD ≥ 5% between 
purebred population were used, to ensure sufficient dif-
ferentiation between breeds. The local ancestry results 
from LAMP-LD were then used to infer the BOA. The 
BOA of the resulting 93,751 SNPs were then converted 
into a pseudo-genotype format using in-house scripts, 
where 0 represented homozygous Angus (AA), 1 repre-
sented the heterozygote state (AB/BA) and 2 represented 
homozygous Brahman (BB).

Estimation of genetic parameters
Average information restricted maximum likelihood 
(AIREML) variance components were estimated using 
single-trait animal linear mixed models with alternative 
genomic kinship matrices (G). Our approach involved 
fitting distinct models for both SNP and BOA data, 
explicitly considering additive, dominance, or over-
dominance genetic effects. In this study we conducted a 
principal component analysis (PCA) on SNP genotypes 
using PLINK [10], and incorporated the first two prin-
cipal components (PC1 and PC2) across all models as 
fixed effects. The top two PCs were included to account 
for some variation that would be otherwise explained by 
genotypes, such as subtle breed composition differences 
in Brangus cattle as well as some pedigree differences. 
Additionally, to maintain methodological consistency, 
PC1 and PC2 were also included in the additive genetic 

model. Concerns about the principal components poten-
tially overshadowing the additive model’s variance led 
us to validate our approach by examining the estimated 
variance components with and without including the 
principal components in the model (Additional file 2 
Table S1). Given the minimal differences observed in 
variance estimates and to facilitate model comparison, 
PC1 and PC2 were also retained in the additive models. 
All analyses were executed with the `airemlf90` package, 
which is part of the BLUPF90 software suite [13].

The employed mixed model is represented by:

 y = Xb+ Zu + e

Where:

  • y denotes a vector of phenotypic records.
  • X and Z are incidence matrices, connecting 

phenotypic records to fixed effects and genetic 
effects, respectively.

  • b is a vector of the fixed effects. This includes a 
categorical contemporary group, which is composed 
of feedlot pen nested within ranch location. 
Specifically, the contemporary group comprises 36 
distinct levels, each containing a minimum of five 
individuals, ensuring adequate representation across 
the dataset. Additionally, the first two principal 
components (PC1 and PC2) from the PCA on SNP 
were incorporated as covariates.

  • e is a random residual vector, distributed 
e ∼ N(0, Iσ2

e), with σ2
e  signifying residual variance I 

the identity matrix.
  • u  indicates a vector of random animal additive, 

dominance or overdominance genetic effects 
depending how the effects were calibrated for G. 
These effects are distributed as u ∼ N(0,Gσ2

u), 
where σ2

u  is the modeled genetic variance.

The genomic relationship matrix G was constructed 
based on the method proposed by VanRaden (2008). It 
was computed as:

 
G =

ZZ′

2
∑

pi(1− pi)

In this equation, Z is a centered genotype incidence 
matrix. We employed alternate calibrations of the genetic 
relationship matrix (G) to model different genetic effects 
within the population. The structure for the additive 
model is calibrated to represent genotype covariates as 
0, 1, 2 where 0 = mm, 1 = Mm and 2 = MM (m = minor 
allele, M = major allele). For the dominance models, we 
adjust the calibration to reflect dominance effects. This 
structure is represented as 0, 1, 1 where 0 = mm, and 



Page 4 of 16Zayas et al. BMC Genomics          (2024) 25:654 

1 = Mm/MM, assuming dominance from the major allele. 
Alternatively, we assumed cases where the minor allele 
is dominant, represented by 1, 1, 0 where 1 = mm/Mm, 
0 = MM. These calibrations were designed to capture 
complete dominance, where the heterozygote performs 
similarly to one of the homozygotes. The overdominance 
model is calibrated as 0, 1, 0 where 0 = mm/MM, 1 = Mm. 
This calibration is specifically designed to capture the 
heterozygote advantage, where the heterozygous geno-
type is assumed to have a superior phenotype compared 
to either homozygous form. In all calibrations, the major 
allele is denoted as the allele with the highest frequency 
in the population, and the minor allele is the alternative/
least frequent allele in the population.

In the BOA GWAS, the Z matrix acts as a centered 
incidence matrix for BOA covariates. Therefore, BB 
denotes homozygous Brahman, AB stands for heterozy-
gous variants, and AA represents homozygous Angus. 
For the additive model we calibrate G as 0 = BB, 1 = AB, 
2 = AA. For the Angus dominance model the code is 
0 = BB, 1 = AB, 1 = AA; for the Brahman dominance model 
the code is 1 = BB, 1 = AB, 0 = AA. Lastly, for the overdom-
inance model, the code is 0 = BB, 1 = AB, 0 = AA.

Genome-wide association studies
Single-trait GWAS were performed for HCW and MARB 
with SNP and BOA data using the weighted GBLUP 
(WGBLUP) [14]. The SNP/BOA effects and weights for 
additive, dominance, and overdominance effects were 
estimated with the WGBLUP method using `blupf90` 
and ‘postgsf90’ functions, which underwent three itera-
tive processes. Under this approach, the influence of 
SNPs/BOA with greater effects becomes amplified, 
whereas the influence of markers with lesser effects 
diminishes.

Briefly, SNP effects and weights for the GWAS were 
derived as in Wang et al. [14] as follows:

1. Set the diagonal matrix of SNP variance or weights 
as identity, D = I .

2. Construct the G matrix: G = ZDZ ′λ , where 
λ = 1/2

∑
pi(1− pi).

3. Predict GEBVs using GBLUP with blupf90 package.
4. Convert GEBVs to SNP effects ( â ) with postGSf90 

package: â = kDZ ′G−1û,  where û  is the GEBV of 
genotyped animals.

5. Compute the weight for each SNP (di ) using a 
nonlinearA variance method: di = CT

|âi|
σ(â)

−2, where 
CT is a constant for departure from normality equal 
to 1.05, |âi|  is the estimated absolute SNP effect, 
and σ (â) is the standard deviation of the vector of 
estimated SNP effects, with the maximum change in 
SNP variance limited to 10 [15, 16].

6. Normalize SNP weights to maintain the genetic 
variance constant.

7. Iterate from step 2, using the obtained weights to 
compute the G-matrix.

GWAS results are presented as the percentage of genetic 
variance explained by a sliding 10  kb window. The per-
centage of the direct genetic variance explained by a 
given SNP window was calculated according to [14]:

 

V ar (wi)

σ2
µ

× 100 =
V ar

(∑B
j Zjâj

)

σ2
µ

where wi  is the genetic value of the ith 10  kb genomic 
window, B is the number of SNP within the ith window, 
Zj  is the vector of genotypes in the jth SNP for all individ-
uals, and âj  is the estimated genetic effect for the jth SNP 
within the ith window. Genomic windows explaining over 
1% of the genetic variance were deemed associated with 
the traits in question. We visualized our findings using 
manhattan plots, constructed with the R software [17]. 
For mapping SNPs to specific genes, we utilized Ensembl 
version 107 [18] and the UCSC ARS-UCD 1.2 genome 
assembly [19].

Certain markers explained over 1% of the genetic varia-
tion in both the additive and dominance GWAS analyses 
in either the SNP or BOA GWAS. To further refine our 
approach, we fit a linear model in base “stats” package in 
R [17] that incorporated both additive and dominance 
effects concurrently to mitigate potential confounding:

 Trait = µ + CG + PC1 + PC2 +Additive +Dominance + e

Where:

  • Trait is the phenotype of interest (HCW or MARB).
  • µ  represents the overall mean across all 

observations.
  • PC1 and PC2 represent continuous fixed effects of 

the first two principal components, adjusting for 
population structure and genetic background.

  • Additive effect is modeled by categorizing genotype 
covariates linearly as 0, 1, 2, where, for the SNP 
GWAS, ‘0’ corresponds to homozygous for the minor 
allele (mm), ‘1’ to heterozygous (Mm), and ‘2’ to 
homozygous for the major allele (MM). Similarly, for 
the BOA GWAS, ‘0’ = BB, ‘1’ = AB, and ‘2’ = AA.

  • Dominance effect is coded as 0, 1, 0, uniquely 
capturing the middle genotype’s effect by assigning 
‘1’ to heterozygotes and ‘0’ to both homozygotes.

  • e denotes the random error term.
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Coding dominance in this manner is typically termed 
as “biological dominant” and is commonly used when 
accounting for additive and dominance effects simulta-
neously in genetic studies [20–23]. Using this methodol-
ogy, we attempt to separate and estimate the additive and 
dominance effects of these markers explaining over 1% of 
the genetic variation in both the additive and dominance 
GWAS. Markers (SNP or BOA) that explained over 1% of 
the genetic variation in both the additive and dominance 
GWAS analyses were individually analyzed using this 
model. This allowed to discern that marker’s gene action 
on the trait of interest.

To ensure the findings from the BOA GWAS were 
intrinsic to the BOA genotypes and not confounded by 
SNP information, an analysis of variance (ANOVA) was 
conducted for each BOA marker that explained over 1% 
of the genetic variation. Models were ran with the base 
“stats” and “car” [24] packages in R [17]. To precisely 
attribute the observed genetic variation in the traits of 
interest to specific BOA genotypes, the following linear 
model was applied:

 
Trait = µ + CG + PC1 + PC2+

BOAGenotype + SNP Genotype + e

Where:

  • Trait is the phenotype of interest (HCW or MARB).
  • µ  represents the overall mean across all 

observations.
  • PC1 and PC2 represent continuous fixed effects of 

the first two principal components, adjusting for 
population structure and genetic background.

  • BOA Genotype is the fixed effect of the breed-origin 
allele genotype, considered categorical with three 
levels.

  • SNP Genotype is the fixed effect of the SNP 
genotype, considered categorical with three levels.

  • e denotes the random error term.

Subsequently, least square means (LSMeans) between 
BOA genotypic groups were obtained using the 
“emmeans” package [25] in R [17], aiming to isolate the 
impact of BOA genotypes while controlling for potential 
confounding SNP genotype effects.

Results & discussion
Phenotypes & genetic parameters
Table  1 presents the summary statistics for HCW and 
MARB in the Brangus cattle in this study. The dataset 
includes measurements from 1,043 animals for HCW 
and 1,050 animals for MARB. The average HCW was 
373.05 kg with a standard deviation of 36.17 kg which is 
slightly below the national average of 390 kg documented 
in the 2016 National Beef Quality Audit [26]. The mar-
bling scores varied from 210 to 850, with an average of 
436. This aligns with previous studies by Lonergan et al. 
[27] who reported an average of 423, Phelps et al. [28] 
who reported an average of 445 in Brangus cattle, and the 
2016 National Beef Quality Audit [26] which reported a 
national average of 475. Table 2 presents the genetic and 
residual variance components estimated using AIREML 
for SNP and BOA markers data. The variance explained 
by the additive model using SNP data showed substan-
tial contribution of additive genetic variance for HCW 
and MARB, accounting for 34% and 52% of the pheno-
typic variation in HCW and MARB, respectively. These 
results corroborate previous moderate heritability esti-
mates for HCW (0.57) and MARB (0.50) reported by 
Elzo et al. [29] from a multibreed Brahman-Angus cattle. 
When modeling dominance in HCW and MARB, there 
was an increase in the proportion of variance explained 
(Table  2). This indicates that when only additive effects 
were fit, non-additive components which were captured 
when modeling dominance were assigned to the resid-
ual. These estimates of genetic variance from SNP-based 
dominance models suggest that non-additive effects 
may also play a crucial role in determining these traits. 
Despite the smaller magnitude of BOA-based additive 
genetic variance estimates compared to SNP-based esti-
mates, the percentage of phenotypic variation explained 
for HCW (0.14) and MARB (0.13) underscores the 
importance of the breed-specific additive component 
underlying these traits. Variance estimates from BOA-
based dominance models showed breed-specific domi-
nance effects only for the Brahman allele in MARB, as 
demonstrated by the increase in genetic variance esti-
mate compared to the BOA-based additive model.

Genome-wide association studies using SNP data
Figure 1 presents the genetic variance explained by SNP 
effects for HCW in Brangus cattle, using a sliding 10 kb 
window across additive, dominance, and overdomi-
nance genetic models. A total of eight quantitative trait 
loci (QTLs) explaining more than 1% of the variance 
were identified across all four GWAS. Table  3 shows 
each QTL’s location, overlapping genes and variance 
explained, in addition p-values are reported in Additional 
file 2 Table S2.

Table 1 Phenotypic data (number of animals, average, standard 
deviation, minimum and maximum value) for hot carcass weight 
(HCW) and marbling (MARB)
Trait N Mean SD Min Max
HCW, kg 1043 373.05 36.17 253.56 505.30
MARB 1050 436.13 84.22 210.00 850.00
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The most prominent QTL was on BTA17 (70,993,296–
71,003,296), accounting for 4.96%, 9.74%, and 6.94% 
of the genetic variation under additive, dominance 
(minor allele), and overdominance models, respec-
tively. This region has been previously reported to be 
associated with body weight and ribeye area in Angus 
beef cattle [30]. This QTL overlaps with the Zinc Fin-
ger Protein 280  A (ZNF280A) and Zinc Finger Protein 
280B (ZNF280B) gene. ZNF280A is a transcription fac-
tor that has been associated with beef production and 
carcass quality traits in Hanwoo Korean cattle [31] and 
ZNF280B has been associated with carcass weight in 
Simmental beef cattle [32]. A notable QTL on BTA19 
(30,435,635 − 30,445,635  bp) accounted for 1.95% and 
3.29% of the genetic variation in the additive and domi-
nance (minor allele) models, respectively. This region 
has been previously associated to body weight traits in 
Angus [30]. This QTL overlaps with the dynein axone-
mal heavy chain 9 (DNAH9) gene, which encodes for the 
heavy chain subunit of axonemal dynein which attaches 
to microtubules and hydrolyzes ATP to mediate cilia and 
flagella movement. DNAH9 has been previously linked to 
body measurement traits in pigs [33]. A peak on BTA10 
(100,204,212 − 100,214,212  bp) explained 1.30% and 
1.03% of the genetic variance under dominance (minor 
allele) and overdominance models, respectively. This 
region has been previously associated to carcass weight in 
Angus [30]. This region overlaps with the Protein tyrosine 
phosphatase (PTPN21) gene, a regulator of cell growth, 
differentiation, mitotic cycle, and oncogenic transforma-
tion, indicating its possible involvement in mechanisms 
influencing HCW. PTPN21 is upregulated in pig breeds 
known for higher growth and muscling [34]. Research in 
humans has illustrated the role of PTPN21 in growth and 

development. PTPN21 activates the Src gene, which then 
interacts with a variety of signaling pathways, includ-
ing the insulin-like growth factor (IGF-1) pathway [35, 
36]. These pathways are essential for muscle growth and 
development and can potentially impact HCW. The peak 
on BTA15 explained 1.10% and 0.89% of the genetic vari-
ance under dominance (minor allele) and overdominance 
models, respectively. Previously in Angus this region has 
been associated to body height, body weight and longis-
simus muscle area [30]. This region overlaps the olfactory 
receptor 4C1J (OR4C1J) gene. OR4C1J is expressed in the 
olfactory epithelium, the nasal tissue responsible for odor 
detection. Recent research has revealed that olfactory 
receptors, despite their primary function in smell per-
ception, might have pleiotropic effects. Connor et al. [37] 
provided reasonable evidence for a link between olfac-
tory receptors and appetite regulation. If olfactory recep-
tors influence metabolic processes or appetite regulation, 
they could indirectly impact an animal’s food intake and 
energy utilization, subsequently affecting body weight 
and carcass traits.

Figure 2 shows the genetic variance explained by SNPs 
effects for MARB using a sliding 10  kb window across 
additive, dominance, and overdominance genetic mod-
els. Table 3 displays the location of each QTL, the over-
lapping genes, and the explained variance. Additionally, 
Additional file 2 Table S3 contains the reported p-val-
ues associated with these findings. The QTL on BTA5 
(40,358,402 − 40,368,402  bp) accounts for 4.5% of the 
variance under the dominance model (minor allele). This 
region has been previously associated to yield grade in 
cattle [38], which is primarily driven by marbling. This 
QTL is downstream from the Leucine Rich Repeat Kinase 
2 (LRRK2) gene, which has been previously associated 

Table 2 Variance Components estimated using AIREML for hot carcass weight (HCW) and marbling score (MARB) for SNP and BOA 
models
Trait Model Marker information Genetic variance (σµ

2) Residual variance (σe
2) Proportion of variance

(σµ
2 / σµ

2 + σe
2)

HCW Additive SNP 356.38 697.77 0.34
HCW Dominance Major allele SNP 499.46 548.83 0.48
HCW Dominance Minor allele SNP 445.15 609.13 0.42
HCW Overdominance SNP 552.76 496.68 0.53
HCW Additive BOA 147.50 908.10 0.14
HCW Dominance Brahman BOA 133.47 917.36 0.13
HCW Dominance Angus BOA 134.98 915.39 0.13
HCW Overdominance BOA 78.38 964.88 0.08
MARB Additive SNP 3421.30 3169.80 0.52
MARB Dominance Major allele SNP 6125.80 419.54 0.94
MARB Dominance Minor allele SNP 3813.50 2749.30 0.58
MARB Overdominance SNP 4527.10 1986.20 0.70
MARB Additive BOA 845.51 5727.60 0.13
MARB Dominance Brahman BOA 915.27 5617.50 0.14
MARB Dominance Angus BOA 728.84 5836.20 0.11
MARB Overdominance BOA 275.20 6239.00 0.04
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with marbling in a multi-breed Angus and Brahman herd 
[39] and intramuscular fat content in hybrid pigs [40]. 
Another QTL on BTA18 (60,965,880 − 60,975,880  bp) 
was prominent in both the additive and dominance 
assuming the major allele GWAS. This QTL is located 
downstream of the NLRP12 gene, which plays an impor-
tant role in adipose tissue regulation, where diminished 
expression has been linked with obesity and increased 
fat accumulation in humans [41]. The QTL on BTA2 
(16,581,032 − 16,591,032  bp) explains 1.68% of the vari-
ance under the dominance (major allele) model is 
downstream from the CWC22 gene. CWC22 has been 

associated to thicker backfat and better meat quality val-
ues in pig [42].

Results from the linear model analysis incorporating 
simultaneously additive and dominance effects are found 
in Additional file 2 Table S4A. The QTL on BTA17 over-
lapping the gene ZNF280B which explained the largest 
variation in the additive, dominance and overdominance 
models, showed a significant additive and dominance 
effect. The dominance effect resulted in a 10.47 kg reduc-
tion in HCW, and the additive effect had a 12.11  kg 
increase in HCW. All other overlapping QLTs for HCW 
showed significant additive effects. For MARB, the peak 

Fig. 1 Manhattan plots for SNP GWAS on HCW. SNP GWAS modeling markers with additive, dominance from the major allele, dominance from the minor 
allele and overdominance effects on hot carcass weight, with significance thresholds indicating 1% of the genetic variance (grey dashed line). The vari-
ance explained by 10 kb genomic windows was estimated using single-trait WGBLUP using SNP information
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on BTA18 overlapping NLRP12 showed a significant 
additive effect increasing MARB by 13.86 and a signifi-
cant dominance effect resulting in an increase of 12.74. In 
both HCW and MARB overlapping peaks that explained 
a larger percent of the genetic variances in the additive 
models tended to exhibit an additive effect as expected.

GWAS breed of origin allele
Figure 3 displays the results from the BOA GWAS con-
ducted on HCW using additive, dominance (Angus 
and Brahman) and overdominance models. Addition-
ally, Additional file 2 Table S5 provides p-values for the 
BOA GWAS on HCW. Across all four GWAS models, a 
total of 13 QTLs were identified, each explaining more 
than 1% of the genetic variation in HCW. Notably, QTLs 
appear to be unique to the BOA GWAS and do not coin-
cide with the SNP GWAS findings. Table 4 presents the 
details of these QTLs, including the genomic location, 
explained variance, associated genes, and least squares 
means adjusted for fixed effects and SNP genotype 
effects when significant. ANOVA results indicate only 
one notable effect from the SNP genotype on the QTL 
located on BTA8 (Additional file 2 Table S6). This sug-
gests that the inheritance patterns captured by the BOA 
analysis provide additional insights into the variation in 
HCW, beyond what is explained by SNP genetic mark-
ers alone. Table 4 outlines the LSMeans of HCW for each 
BOA genotype across the studied QTLs, obtained from 
the ANOVA analysis.

The most pronounced effect was on BTA 9 
(32,192,860 − 32,202,860 bp) and accounted for 6.4% and 
6.7% of the genetic variation in HCW in the additive and 
Angus dominance GWAS models. The QTL overlaps 
with the Minichromosome Maintenance 9 Homologous 

Recombination Repair Factor (MCM9) gene. Mutations 
in MCM9 are associated to a variety of diseases, where 
one of the symptoms is short stature [43], indicating this 
gene’s variations could lead to alterations in an animal’s 
height, potentially affecting carcass weights as a result. 
Contrary to expectation, the inheritance of the Angus 
BOA was associated with a decrease in HCW. Table  4 
shows the LSMeans for HCW with the heterozygotes 
AB having an average HCW of 379.59 kg, homozygotes 
AA averaging 370.98  kg, and BB homozygotes averag-
ing 374.15  kg, showing a partial dominance effect. Fur-
ther analysis incorporating both additive and dominance 
simultaneously (Additional file 2 Table S4B) for MCM9 
indicated a trend towards significance resulting in a 6 kg 
decrease in HCW.

Another noteworthy peak was identified on BTA6 
(67,879,766 − 67,889,766  bp), which contributed to 4.4% 
and 2.6% of the genetic variation in the additive and dom-
inance Angus GWAS models. This QTL contains the Sar-
coglycan Beta gene (SGCB). SGCB, a component of the 
sarcoglycan complex, is crucial for muscle integrity and 
contraction efficiency, and has been associated to growth 
traits in broiler chickens [44] and was also implicated in 
limb-girdle muscular dystrophy in humans [45]. Beta-
sarcoglycan-deficient mice display progressive muscular 
dystrophy and muscular hypertrophy [46]. These results 
show the biological significance of SGCB related to mus-
cling, indicating that variations within this gene might 
contribute to differences in an animal’s muscling. This, 
in turn, suggests that variations in SGCB could poten-
tially influence the ultimate HCW of the animal due to 
its role in muscle-related processes. When incorporating 
both additive and dominance in the linear model, solely 
a significant additive effect was observed, indicating this 

Table 3 Genomic windows explaining more than 1% of the genetic variances from the SNP GWAS for HCW and MARB
Trait Window Variance Explained %

BTA Start End Genes Additive Dom Major Dom Minor Overdominance
HCW 6 25,176,278 25,186,278 ADH7 - 2.10% - -
HCW 10 37,986,657 37,996,657 STARD9 1.82% - - -
HCW 10 100,204,212 100,214,212 PTPN21 - - 1.30% 1.03%
HCW 12 78,965,942 78,975,942 CCDC168 1.96 - 1.32% -
HCW 15 78,377,630 78,387,630 OR4C1J - - 1.10% 0.89%
HCW 17 70,993,296 71,003,296 ZNF280A, ZNF280B 4.96 - 9.74% 6.94%
HCW 18 52,173,675 52,183,675 ZNF227 - - 1.20% 1.56%
HCW 19 30,435,635 30,445,635 DNAH9 1.95 - 3.29% -
MARB 1 20,716,311 20,726,311 ENSBTAG00000053883 - 1.17% - -
MARB 2 16,581,032 16,591,032 - 1.68% - -
MARB 5 40,358,402 40,368,402 MUC19/BSM1, LRRK2 - 4.51% - -
MARB 18 60,965,880 60,975,880 LOC615600, NLRP12 1.48% 2.13% - -
MARB 18 55,496,930 55,506,930 NUCB1 2.77% 1.00% - -
MARB 27 1,355,462 1,365,462 ARHGEF10 - - 1.09% -
MARB 28 5,870,881 5,880,881 NTPCR, PCNX2 1.52% - - -
Columns show the trait, chromosome (BTA), the start and end location of the window in base pairs, overlapping genes (Genes) and the variances explained in the 
additive dominance (major and minor allele), and overdominance model
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region’s gene action is additive in nature (Additional file 2 
Table S4B). This is somewhat expected since the variance 
explained in the additive model is larger than that from 
the dominance model for Angus.

A peak on BTA14 (54,968,142 − 54,978,142  bp) 
explained 1.6% and 1.79% of the variation in the domi-
nant Brahman and overdominance GWAS models. This 
peak aligns with the PKHD1L1 gene, exhibiting a positive 
and partial dominant influence on HCW when inherited 
from Brahman. However, no overdominance effect was 
observed, possibly due to a low number of homozygous 
BB individuals in this population.

A QTL on BTA19 (38,984,113 − 38,994,113  bp) 
explained 2.91% and 3.73% of the genetic variance in the 
additive and dominance Brahman GWAS. This region 
overlaps with the GPR179 and MRPL45 genes, showcas-
ing a positive and complete dominant effect on HCW 
when inherited from Brahman. However, when incorpo-
rating both additive and dominance effects, there was no 
significant dominance effect (Additional file 2 Table S4B). 
A prominent peak on BTA12 (23,443,683 − 23,453,683 bp) 
accounted for 2.56% of the variance in the dominance 
Angus GWAS. This region overlaps with the FREM2 
gene, previously identified as a candidate gene for carcass 

Fig. 2 : Manhattan plots for SNP GWAS on marbling. SNP GWAS modeling markers with additive, dominance from the major allele, dominance from the 
minor allele and overdominance effects on marbling, with significance thresholds indicating 1% of the genetic variance (grey dashed line). The variance 
explained by 10 kb genomic windows was estimated using single-trait WGBLUP using SNP information
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traits in pigs [47]. Intriguingly, the heterozygote in this 
region seems to outperform both homozygotes, indicat-
ing a possible overdominance effect. Lastly, a peak on 
BTA23 (28,308,401 − 28,318,401  bp) explained 3.07% 
of the variation in the overdominance GWAS. This 
region harbors the mediator of DNA damage checkpoint 
1 (MDC1) gene, which has been associated with car-
cass traits in pigs [48]. In this case, the heterozygotes 
(AB) appear to underperform in comparison to both 
homozygotes.

Figure  4 illustrates the results from the BOA GWAS 
conducted on MARB using an additive, dominance 

(Angus and Brahman) and overdominance. Addition-
ally, Additional file 2 Table S7 provides p-values for the 
BOA GWAS on MARB. A total of 18 QTLs were iden-
tified across all four GWAS, each explaining more than 
1% of the genetic variation in MARB. These peaks do 
not coincide with the peaks from the SNP GWAS on 
MARB, indicating potentially different underlying 
genetic mechanisms. Table  5 shows the QTLs location, 
variation explained, overlapping genes and least square 
means for the BOA genotypes when adjusted for fixed 
effects and SNP genotype effects if significant. Results 
from our ANOVA analysis indicate no significant SNP 

Fig. 3 Manhattan plots for BOA GWAS on HCW. BOA GWAS modeling markers with additive, dominance from Angus, dominance from Brahman and 
overdominance effects on hot carcass weight, with significance thresholds indicating 1% of the genetic variance (grey dashed line). The variance ex-
plained by 10 kb genomic windows was estimated using single-trait WGBLUP using BOA information
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effect for the BOA QTLs of interest, except for the BOA 
QTL on BTA12 (21,552,338–21,562,338 bp) which had a 
significant SNP effect (Additional file 2 Table S8). Table 5 
outlines the least square means of MARB for each BOA 
genotype across the studied QTLs, obtained from the 
ANOVA analysis. It is noteworthy that certain QTLs 
lacked significant differences between BOA genotypic 
combinations in the ANOVA, likely due to substantial 
standard errors associated with one or more of the geno-
types. However, the mean differences were still consider-
able, which contributed to their detection in the GWAS 
analysis.

The peak on BTA3 (120,425,644–120,435,644  bp) 
explains 1.65% and 2.22% of the genetic variation in the 
additive and Brahman dominance GWAS. This region 
overlaps the gene encoding for the high density lipo-
protein binding protein (HDLBP), which is a candidate 
gene for intramuscular fat in pigs [49]. HDLBP was 
seen to be upregulated in tender meat in Nellore cattle 
[50]. Interestingly this region saw an increase in mar-
bling with the inheritance of the Brahman BOA, exhib-
iting a complete dominance effect. The peak on BTA9 
(70,865,195 − 70,875,195 bp) explained 2.04% of the vari-
ance explained in the Angus dominance GWAS. This 
region overlaps three vanin genes (VNN1,VNN2,VNN3), 
mutations in VNN1 have been linked to fatty acid com-
position changes in Japanese cattle [51]. VNN1 is known 
to encode an enzyme critical for pantetheine break-
down, a precursor necessary for fatty acid synthesis [52]. 
This QTL has a complete dominant effect or overdomi-
nance effect where an increase in marbling was associ-
ated with the inheritance of Angus BOA. The QTL on 
BTA29 explains 1.35% and 3.62% of the genetic variance 

in the Brahman dominance and overdominance models. 
This QTL coincides with the Synaptotagmin-like pro-
tein 2 (SYTL2) gene, noted for differential expression in 
Nellore cattle with varying marbling score [53], indicat-
ing its potential role in marbling traits. This gene has a 
seemingly overdominance effect where the heterozygote 
underperformed compared to both homozygotes. Lastly, 
the peak on BTA21 (49,193,212 − 49,203,212  bp), which 
explains 2.80% of the genetic variation in the overdomi-
nance GWAS model, is located near the MIA2 gene. 
MIA2 is implicated in regulating cholesterol metabolism 
and thus may influence cellular fat storage [54]. In this 
region, an overdominance effect is observed where the 
heterozygote BOA genotype appears to be less favorable 
compared to the homozygous genotypes.

Several markers overlapped in either the additive and 
dominance for Angus or Brahman GWAS, these mark-
ers were further investigated by fitting a linear model 
simultaneously modelling both additive and dominance 
effects. All of these overlapping QTLs had a significant 
additive effect, and no significant dominance effects 
(Additional file 2 Table S4B). In general, many of these 
QTLs had large dominance effects but they also had large 
standard deviations leading to a lack of significance.

Implications
This study expands the catalog of known QTLs for 
HCW and MARB, reaffirming the roles of genes such 
as ZNF280B and LRRK2, while also highlighting novel 
associations with the DNAH9, ADH7 and CWC22 
genes, which accounted for a substantial proportion of 
the genetic variation. Results from both SNP and BOA 
GWAS on HCW and MARB illustrated how the additive 

Table 4 Genomic windows explaining more than 1% of the genetic variances from the BOA GWAS for HCW and corrected means for 
BOA genotypes
Window Lsmeans (kg) Variance Explained %
BTA Start End Genes HCW - BB HCW - AB HCW - AA Additive Dom AN Dom BRH Overdominance
1 143,587,998 143,597,998 SIK1 a385 ± 3.63 375 ± 2.73 372 ± 2.29 1.37% 1.35% - -
2 89,088,722 89,098,722 SG02 386 ± 5.14 379 ± 2.66 a372 ± 1.99 - - 1.64% -
5 57,153,042 57,163,042 SMARCC2,MYL6 a370 ± 2.42 376 ± 2.77 378 ± 1.96 - 2.45% - -
6 67,879,766 67,889,766 SGCB a369 ± 2.77 376 ± 3.6 376 ± 2.45 4.39% 2.57% - -
8 66,103,904 66,113,904 CNTNAP3 a371 ± 2.59 b381 ± 3.35 ab376 ± 1.81 - 1.94% - -
9 32,192,860 32,202,860 MCM9 a383 ± 3.65 367 ± 5.46 369 ± 5.82 6.42% 6.71% - -
11 9,261,903 9,271,903 C11H2orf49,FHL2 a381 ± 2.84 ab377 ± 3.27 b373 ± 2.87 2.05% 1.81% - -
12 12,438,276 12,448,276 AKAP11 373 ± 2.59 369 ± 3.26 a378 ± 2.54 - 2.23% -
12 23,443,683 23,453,683 FREM2 a364 ± 4.58 b381 ± 4.78 c373 ± 3.39 - 2.57% - -
14 54,968,142 54,978,142 PKHD1L1 378 ± 11.9 374 ± 11.5 a366 ± 11.5 - - 1.60% 1.79%
16 76,034,889 76,044,889 ASPM 372.79 ± 4.07 371.88 ± 2.37 *377.32 ± 1.73 - - 1.08% 1.88%
19 38,984,113 38,994,113 MRPL45,GPR179 383 ± 3.82 383 ± 2.9 a372 ± 1.89 2.92% - 3.72% -
23 28,308,401 28,318,401 MDC1 374 ± 5.04 371 ± 3.41 375 ± 3.06 - - 1.11% 3.07%
abc superscripts indicate groups that are significantly different at 0.05

Columns show the chromosome (BTA), the start and end location of the window in base pairs, overlapping genes (Genes), Lsmeans for hot carcass weight(HCW) in 
lb for the genotypic BOA combinations, where AA is homozygous Angus, AB is the heterozygote and BB is homozygote Brahman, and the variances explained in the 
additive, dominance AN (Angus) dominance BRH(Brahman) and overdominance models
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models captured many dominance-influenced QTLs, and 
the dominance models captured many additive-influ-
enced QTLs, seen in Additional file 2 Table S4A and S4B. 
These results align with previous research and theory on 
additive and dominance variation, where modeling either 
additive or dominance gene actions can capture vari-
ance explained by the each other [55]. The modeling of 
dominance in this study has unveiled certain QTLs not 
identified by the additive model alone, underscoring the 
necessity of considering non-additive genetic effects. The 
QTL on BTA6 overlapping the ADH7 gene was solely 
seen when modeling for a dominance effect for HCW 

and the QTL overlapping BTA18 for the LRKKS2 gene 
was solely seen when modeling for a dominance effect 
for MARB. These QTLs underscore the importance of 
considering non-additive genetic effects in genetic analy-
ses of composite breeds, where additive models can fail 
to identify certain QTLs exhibiting dominance. This 
may explain why the estimated genetic variances from 
the dominance models explained a higher proportion 
of the variance compared to the additive models in the 
SNP GWAS for MARB and HCW seen in Table 2. Cer-
tain QTLs showing a significant dominance effect also 
explained a large percentage of the genetic variation such 

Fig. 4 Manhattan plots for BOA GWAS on MARB. BOA GWAS modeling markers with additive, dominance from Angus, dominance from Brahman and 
overdominance effects on marbling, with significance thresholds indicating 1% of the genetic variance (grey dashed line). The variance explained by 
10 kb genomic windows was estimated using single-trait WGBLUP using BOA information
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as the QTL overlapping ZNF280B and NLRP12, leading 
credence to the importance of non-additive effects for 
MARB and HCW.

Integrating BOA into genomic evaluations aims to 
enhance the accuracy of estimating SNP effects, espe-
cially in composites and crossbred cattle characterized 
by diverse genomic structure. The LD between genomic 
markers and QTLs can differ in the purebred parents, 
integrating BOA allows for differences in estimated SNP 
effects depending on the BOA of the marker. Previous 
studies across multiple species testing BOA inclusion in 
genomic prediction of crossbreed animals have shown 
varying resulting, showing small increases in accuracy or 
no increases in accuracy [4–6, 56]. However, several stud-
ies have shown that employing BOA methods can miti-
gate bias in genomic prediction estimates and improve 
the accuracy of estimating specific SNP effects [57, 58]. 
In this study we further attempted to identify key QTLs 
effect MARB and HCW using solely BOA information.

By employing a BOA GWAS approach several QTLs 
associated with MARB and HCW in Brangus cattle were 
identified. Significantly, the QTLs identified do not over-
lap with those in SNP GWAS, indicating that BOA may 
harbor genomic information that goes beyond what is 
captured by SNPs alone. These discrepancies could stem 
from the challenge of precisely assessing SNP effects 
in composite populations. Variation in LD patterns 
and allele frequencies between parental breeds could 

potentially mask the effects of specific QTLs. Another 
potential factor could be inherited differences in gene 
expression stemming from the distinct purebred back-
grounds, consequently impacting the traits under inves-
tigation. The BOA GWAS may be particularly sensitive to 
detecting heritable gene expression differences as it is a 
better indicator of breed inheritance compared to SNPs. 
This is highlighted by the QTLs overlapping the HDLBP 
and SYTL2 genes which are known to influence mar-
bling at the gene expression level in Nellore cattle [49, 
53], another Bos taurus indicus breed. This suggests that 
these genes have a similar role in the Brahman breed and 
contribute to the phenotypic variations in Brangus cat-
tle. The dominance effects identified in BOA QTLs offer 
an avenue for targeted mating plans within the Bran-
gus breed, aiming to optimize heterosis and maintain 
genetic diversity. By carefully selecting mates based on 
these BOA QTLs, breeders can enhance beneficial traits 
while preserving the breed’s genetic variability. Such an 
approach not only contributes to the sustainability of the 
herd but also supports the development of a more pro-
ductive and resilient Brangus population.

Our study also reveals a positive impact of specific 
Brahman haplotypes on HCW on BTA11, and BTA18 
and MARB on BTA3 and BTA18, suggesting that the 
introgression of Brahman QTLs can impart advanta-
geous traits for beef production contrary to popular 
belief. These findings highlight the potential of exploiting 

Table 5 Genomic windows explaining more than 1% of the genetic variances from the BOA GWAS for MARB and corrected means for 
BOA genotypes
Window Lsmeans Variance Explained %
BTA Start End Genes MARB - BB MARB - AB MARB - AA Additive Dom AN Dom BRH Overdominance
1 42,125,147 42,135,147 CRYBG3 437 ± 6.53 449 ± 7.42 437 ± 7.93 - - - 1.59%
1 116,639,978 116,649,978 IGSF10 443 ± 20.30 414 ± 89.9 417 ± 38.90 1.58% - - -
3 120,425,644 120,435,644 HDLBP 447 ± 7.78 449 ± 6.19 a434 ± 5.08 1.65% - 2.22% -
4 7,520,343 7,530,343 ABCA13 446 ± 5.18 431 ± 10.99 436 ± 4.55 1.08% 1.36% - -
5 100,711,417 100,721,417 OVOS2 a452 ± 6.35 435 ± 7.21 434 ± 9.11 - 2.18% - -
8 101,136,885 101,146,885 443 ± 20.30 414 ± 89.90 417 ± 38.90 1.88% - - -
9 70,865,195 70,875,195 VNN1,VNN2,VNN3 a422 ± 7.31 447 ± 7.60 437 ± 6.86 - 2.04% - -
12 12,438,276 12,448,276 AKAP11 428 ± 6.48 428 ± 8.13 a444 ± 6.37 - - 3.69% -
12 21,552,338 21,562,338 NEK3 406 ± 13.30 423 ± 22.6 417 ± 14.0 2.56% 2.45% - -
16 30,575,226 30,585,226 KIF28 437 ± 6.62 a454 ± 6.90 435 ± 8.15 - - - 1.77%
18 56,335,937 56,345,937 ZNF473 427 ± 10.94 447 ± 8.04 437 ± 9.42 - - - 1.23%
18 63,418,581 63,428,581 NLRP13 a441 ± 20.10 424 ± 20.50 422 ± 20.40 1.21% 2.13% - -
20 55,278,018 55,288,018 436 ± 10.58 a456 ± 7.12 436 ± 6.01 - - - 1.55%
21 49,193,212 49,203,212 MIA2 ab442 ± 8.66 b432 ± 5.62 a446 ± 5.14 - - - 2.80%
21 19,644,859 19,654,859 a431 ± 5.78 447 ± 7.69 445 ± 5.42 1.38% - - -
25 36,972,814 36,982,814 PTCD1 a463 ± 10.01 ab449 ± 11.50 b433 ± 9.64 1.52% 1.33% 1.10% -
25 36,530,556 36,540,556 CYP3A28 439 ± 6.89 427 ± 8.94 442 ± 6.12 - 2.45% - -
29 9,824,574 9,834,574 SYTL2 ab441 ± 13.99 a428 ± 8.04 b449 ± 6.60 - - 1.35% 3.62%
abc superscripts indicate groups that are significantly different at 0.05

Columns show the chromosome (BTA), the start and end location of the window in base pairs, overlapping genes (Genes), Lsmeans for marbling (MARB) for the 
genotypic BOA combinations, where AA is homozygous Angus, AB is the heterozygote and BB is homozygote Brahman, and the variances explained in the additive, 
dominance AN (Angus) dominance BRG(Brahman) and overdominance models
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breed-specific genetic variation to improve produc-
tion traits. The identification of these QTLs opens new 
avenues for selective breeding, enabling new selection 
opportunities for enhanced meat quality and desirable 
carcass characteristics in Brangus cattle. Utilizing BOA 
appears to be a more effective method for identifying 
regions that contribute to heterosis, as these regions 
originate from different breeds. This is supported by 
the diverse number of QTLs exhibiting a spectrum of 
dominance effects, including partial, complete, and over-
dominance identified with the use of BOA GWAS. These 
findings highlight the potential for genetic improvement 
within composite breeds by exploiting dominance to 
retain and capitalize on the production benefits derived 
from heterosis. This study lays the groundwork for fur-
ther research aimed at validating the identified QTLs 
across diverse Brangus populations and investigating the 
biological mechanisms underlying the effects on MARB 
and HCW. However, despite the identification of several 
QTLs through BOA GWAS, there remains sparse lit-
erature on the functional implications of these genes for 
the traits of interest in beef cattle. This gap signifies an 
opportunity for future studies to explore the molecular 
pathways and gene networks impacted by these QTLs, 
thereby providing a more detailed understanding of their 
role in carcass and meat quality traits.

Conclusion
The insights gained from this research not only advances 
our understanding of Brangus cattle genetics but also 
reinforce the importance of acknowledging and harness-
ing the genetic complexity inherent in composite breeds. 
This understanding is pivotal for designing genetic 
improvement strategies that capitalize on the unique 
genetic resources embedded in breed combinations. 
With the use of BOA, we enhance our ability to estimate 
SNP effects for achieving additive genetic gain. Moreover, 
we can more effectively identify regions that contribute 
to heterosis by evaluating the dominance value. Allow-
ing for better mating decisions to increase productivity 
whilst maintaining genetic diversity for a more profit-
able and healthier herd. Moving forward, there is a criti-
cal need for integrated research approaches that combine 
genomic analyses with functional studies to elucidate the 
contribution of these QTLs to the phenotypic variability 
in cattle.
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