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Abstract
Background Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression 
and spatial locations of cells from the same tissue. Computational tools and approaches for integration of 
transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying 
structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and 
spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates 
downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain 
structure and GO enrichment analysis.

Results Extensive experiments are implemented on four real datasets from different tissues (including human 
dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish 
melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different 
spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good 
domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides 
a flexible framework to analyze spatial transcriptomics data with high geometric complexity.

Conclusions HyperGCN is an unsupervised method based on hypergraph induced graph convolutional network, 
where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic 
relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise 
in spatial transcriptomics data.
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Background
The development of spatial transcriptomics technolo-
gies enables genome-wide profiling of transcriptional 
expressions in captured relative locations at a resolu-
tion of several cells or even individual cell level, such as 
10X Visium [1], 10X Xenium, Slide-seq [2, 3], Stereo-
seq [4], osmFISH [5], PIXEL-seq [6], SeqFISH+ [7], and 
Seq-Scope [8]. Compared with nonspatial single-cell 
RNA-sequencing technologies, spatial transcriptomics 
can capture cellular heterogeneity coupled with its spa-
tial coordinates in the same tissue, which provide the 
rich biological insights of cell functions and their cross-
talk [9, 10]. Integrating gene expression and spatial 
coordinate information to learn a good representation 
for spatial transcriptomic data analysis is crucial. Com-
putational tools and approaches are urgently needed to 
dissect spatial organization domains and functions of 
individual cells.

Increasing evidences have shown that some cell types, 
such as neurons and endothelia cells have high hetero-
geneities and specific spatial expression patterns [5, 11, 
12]. Even for cells with the same type, such as ependy-
mal cells, high spatial self-affinity was also observed. In 
addition, spatial self-evasion was measured in microglia 
and astrocytes inhibitory neurons [5]. Therefore, spatial 
neighbors of each cell may provide valuable informa-
tion for understanding cell heterogeneity and annotating 
tissue domains. However, some single-cell integration 
methods which are initially designed for nonspatial sin-
gle-cell multi-omics data [13–16] cannot employ spatial 
information to enhance their analytical ability. This situ-
ation poses significant challenges in spatial data analysis.

Recently, several new computational approaches have 
been developed for spatial transcriptomics data analysis 
[9, 17–24]. SpaGCN integrates gene expression, spatial 
coordinates, and histological information into an undi-
rected weighted graph, and then employs graph convolu-
tion to cluster theses spots into different spatial domains 
[18]. stLearn utilizes a deep neural network (CNN) on 
the morphological data to extract low-dimensional mor-
phological features, on which the morphological simi-
larities between neighboring spots are computed [19]. 
Then, the normalization of gene expression matrix is 
established based on the morphological similarities and 
spatial neighbors of each spot, followed by dimension-
ality reduction with PCA and UMAP [25]. BayesSpace 
assumes that the spots containing the same cell type 
should be closer to each other in space, and trains the 
models with Bayesian statistical approach [21]. Space-
Flow uses the deep graph infomax (DGI) framework 
where contrastive learning strategy is used to train the 
graph encoder. Simultaneously, a spatial regularization 
term is added into the objective function of DGI to pre-
serve the spatial consistency of the low-dimensional spot 

embeddings [20]. SEDR uses a deep autoencoder network 
and a variational graph autoencoder network to learn the 
low-dimension representation of transcriptomic profile 
matrix, where spatial information is used to construct 
neighborhood graph [9]. Notably, these approaches that 
employ GCNs (including SpaGCN, SEDR and Space-
Flow) mainly rely on similarity graph calculated based on 
the k-nearest neighbors (kNN) of each spot, and ignore 
high-order structure information in disjoint tissues with 
high geometric complexity, which limits their applica-
tion to unknown and complicated data. Compared with 
SpaGCN and SpaceFlow, one drawback of stLearn is that 
linear PCA is used to conduct dimension reduction for 
the normalized gene expression matrix, and it cannot 
model complex non-linear relationships among cells. The 
disadvantage of BayesSpace is the interpretability: it does 
not generate jointly embeddings of gene expression and 
spatial coordinates, hindering its application into some 
downstream analysis tasks.

In this work, we proposed HyperGCN for the inte-
grative analysis of spatial transcriptomics data, where 
both gene expression and spatial locations of spots are 
simultaneous measured. HyperGCN is a versatile tool 
that enables accurate clustering of spots/cells and data 
visualization, and it facilitates the downstream analysis, 
including the identification of layer structures, the char-
acterization of domain-specific marker genes, and bio-
logical processes and functional pathways enrichment 
analysis. HyperGCN is a novel computational frame-
work, referring to Hypergraph induced Graph Convolu-
tional Network. Unlike SpaGCN and SEDR which utilize 
nearest neighbor information to encode spatial proxim-
ity between spots, HyperGCN assumes that there existed 
disjoint tissues with high geometric complexity, and 
models the semantic relationship of cells through hyper-
graph convolution and spatial regularization, which bet-
ter tackles the high-order interaction of cells and levels 
of noise in spatial transcriptomics data. HyperGCN not 
only integrates the complementary information from 
transcriptomic data and spatial coordinates, but also pre-
serves the geometric structures in original high dimen-
sional space. We applied HyperGCN to four real spatial 
transcriptomics datasets from different tissues tissues 
(including human dorsolateral prefrontal cortex, human 
positive breast tumors, mouse brain, mouse olfactory 
bulb tissue and Zabrafish melanoma) and technolo-
gies (including 10X visium, osmFISH, seqFISH+, 10X 
Xenium and Stereo-seq), the results show that Hyper-
GCN is effective in spatial transcriptomics data analysis: 
HyperGCN achieves superior performance in clustering 
and domain segmentation, and it captures and enhances 
domain structures that were not easily identified by 
other methods. The clustering assignments obtained 
from HyperGCN have latent biological application and 
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meaning: the top domain-specific genes for each layer 
show spatial specific expression patterns with high 
expression level in this domain and low expression out-
side this domain. Moreover, it also provided rich infor-
mation on the biological interpretation of the markers. 
Gene Ontology (GO) enrichment analysis indicates that 
enriched biological processes (BPs) are directly related 
to the biological functions of the underlying struc-
tured domains. An overview of HyperGCN is shown in 
Fig. 1a-f.

Materials and methods
Datasets and data preprocessing
Four real spatial transcriptomics data were analyzed in 
this study and can be downloaded from their original 
publications. Specifically, (1) The LIBD human dorso-
lateral prefrontal cortex (DLPFC) data was sequenced 
by the 10x Genomics Visium technique [26]. It con-
tains 12 spatially resolved RNA-seq data sets, and it was 
downloaded from the website (http://research.libd.org/
spatialLIBD/); (2) The osmFISH dataset of the somato-
sensory cortex sequenced with osmFISH technique [5] 
was downloaded from the website (http://linnarssonlab.
org/osmFISH/); (3) The 10X Visium mouse brain sagit-
tal data was downloaded from 10X genomics website 

Fig. 1 Overview of HyperGCN. (a) The inputs of HyperGCN are a gene expression matrix and spatial coordinates of spots/cells. (b) A hypergraph is 
constructed based on the spatial information and is used as input of hypergraph convolutional network. (c) A deep autoencoder network encodes the 
gene expression into a low-dimensional representation space. Simultaneously, a two-layer variational hypergraph convolutional network is utilized to 
generate a spatial embedding. The generated spatial embedding is then concatenated with the low-dimensional representation to form the jointly latent 
embedding that is used to reconstruct the original gene expression. (d) The joint embedding is regularized to preserve spatial consistency. Clustering is 
implemented on the joint embedding. Reconstruction loss for gene expression matrix, deep embedding clustering (DEC) loss and regularization loss are 
optimized simultaneously until convergence. (e) The joint embedding obtained from the trained encoder. (f) The output of HyperGCN can be applied for 
domain segmentation, UMAP visualization, exploring spatial gene expression pattern and GO enrichment analysis
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(https://www.10xgenomics.com/spatial-gene-expression/
datasets). (4) The Stereo-seq data from mouse olfactory 
bulb tissue was downloaded from SEDR website (https://
github.com/JinmiaoChenLab/SEDR_analyses).

The raw gene expression data were preprocessed 
with the SCANPY package [27]. Firstly, the genes that 
expressed in less than 5 spots/cells are filtered out. Sec-
ondly, the counts are normalized such that the total 
counts of all genes in each spot/cell equal to 1. To allevi-
ate the effect of extreme values, the entries in the matrix 
were log-transformed with a pseudo-count of 1, and 
scaled to have unit variances and zero means. Finally, we 
used PCA with 200 principal components to implement 
dimension reduction on the normalized expression data. 
For osmFISH data with only 33 genes, we do not conduct 
PCA as the low dimension of features.

The detailed statistics of these datasets is presented in 
Additional file 1: Supplementary Table S1.

Hypergraph construction for spatial transcriptomics data
The previous studies assumed that there existed pairwise 
relationships among the spots/cells [9]. A simple graph is 
generally used to describe the pairwise relationships. In 
this graph, two spots/cells are connected by an edge if 
they are adjacent in space. However, in many real prob-
lems, it may cause information loss to represent a group 
of complex objects only by using simple graph [28]. For 
example, to group members within one club into dif-
ferent communities, we first construct a simple graph 
where two members are connected if they share the 
same coach. Then, clustering methods based on spectral 
graph are applied [29, 30]. However, this approach men-
tioned above may lose some useful information in the 
scenario where the same coach jointly teaches more than 
two members. Such unexpected information loss may 
result in the performance degradation of downstream 

clustering algorithms. Because these members taught by 
the same coach likely belong to the same community.

A natural way to deal with the information loss issue 
mentioned above is to represent the high-order relation-
ships by using hypergraph (Fig. 2a-b).

Let V  denotes the set of spots/cells and E  be a fam-
ily of subset of V . For any hyperedge e , 

⋃
e∈E = V . The 

weight corresponding to each hyperedge e  are denotes 
as w (e). A weighted hypergraph is represented as 
G = (V, E,W ). The incidence matrix P ∈ R|V |×|E|  cor-
responding to G  is defined as the following.

 
p (v, e) =

{
1, ifv ∈ e,

0, ifv /∈ e.
 (1)

|V |  indicates the number of vertices. |E|  is the number 
of hyperedges. Given spot v ∈ V  and hyperedge e ∈ E
, their degrees are defined as d (v) =

∑
e∈Ew (e) p (v, e) 

and δ (e) = |e| , respectively. Let Dv  and De  denote 
degree matrices for spots and hyperedges, We  denote 
the weight matrix of hyperedges. Then, the normalized 
hypergraph Laplacian matrix can be formulated as:

 Lhp = I −Dv
−1

2PWeDe
−1PTDv

−1
2 (2)

The normalized adjacency matrix of hypergraph can be 
formulated as the follows, and is used to the inputs of 
HyperGCN together with spatial transcriptomics data.

 Ahp = Dv
−1

2PWeDe
−1PTDv

−1
2 .  (3)

where, PT  denotes the transposition of incidence matrix 
P . In contrast to the previous study [31], we add self-sim-
ilarity to each node to maintain the numerical stability.

Note that we first use the spatial coordinates of spots 
to construct the kNN graph, and then a hypergraph 

Fig. 2 An illustrative example of hypergraph. (a) In hypergraph, a hyperedge e can connect more than two nodes. The hypergraph is constructed based 
on these hyperedges. (b) The incidence matrix of hypergraph, where the entry (vi , ej ) equals to be 1 when vi  belongs to ej , and 0 otherwise

 

https://www.10xgenomics.com/spatial-gene-expression/datasets
https://www.10xgenomics.com/spatial-gene-expression/datasets
https://github.com/JinmiaoChenLab/SEDR_analyses
https://github.com/JinmiaoChenLab/SEDR_analyses
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is constructed based on the kNN graph with the above 
methodology. In the whole experiments, we set k = 20 
for all the datasets and We  as identity matrix.

The sensitivity analysis of the hyperparameter k  are 
presented in Additional file 1.

Deep autoencoder for low-dimensional representation 
learning
The low-dimensional representation of spots/cells is 
learned by using a deep autoencoder. In the encoder part, 
two fully connected linear layers with Elu activation func-
tion are stacked together, and produces a low-dimen-
sional spot/cell embedding matrix Hf ∈ RN×Df  from the 
preprocessed transcript profile matrix X ∈ RN×M . In 
the decoder part, one fully connected linear layer is used 
to reconstruct the transcript matrixX ′ ∈ RN×M  from 
the latent spot/cell representation matrixH ∈ RN×D  
which is generated by concatenating the low-dimen-
sional spot/cell embedding Hf  and spatial embedding 
Hg ∈ RN×Dg  (obtained from hypergraph convolutional 
network). Here, N  is the number of spots/cells, M  is 
the number of features, and Df , Dg  are dimensions 
of features for autoencoder and spatial embedding, 
respectively.D = Df +Dg  is the final feature dimension 
learned from HyperGCN.H ∈ RN×D  is applied into vari-
ous downstream analysis tasks.

The deep autoencoder aims to minimize the loss 
between the input transcript profile matrix X  and the 
reconstructed matrix X ′ . The objection function is 
defined as the following.

 Lossrec = MSE(X,X ′) (4)

where MSE (∗) denotes the mean squared error loss 
function.

Hypergraph convolution for high-order spatial embedding 
of spots/cells
In contrast to simple graph, hypergraph encodes the 
high-order spatial relationships among spots/cells, and is 
able to identify the latent spatial domain. In terms of the 
good performance of graph convolutional network [18, 
32], we use hypergraph convolution to embed the spatial 
information of neighboring spots/cells.

Given the normalized adjacency matrix of hypergraph 
Ahp  and corresponding weight matrix Wi , the two-layer 
hypergraph convolutional networks is defined as the 
following.

 HGCN(Ahp,Hf) = AhpReLU (AhpHfW1)W2 (5)

whereHf  is a low-dimensional representation of spots/
cells obtained from the deep autoencoder. To enhance 
the representation ability of Hg , we introduce the 

variational graph autoencoder(VGAE) [33] framework. 
The VGAE utilizes latent variables and learns an inter-
pretable and meaningful embedding with the following 
function: g : (Ahp,Hf) → Hg . The inference model of 
VGAE parameterized by (5) is defined as:

 
g (Hg|Ahp,Hf) =

∏N

i=1
g (hi|Ahp,Hf) (6)

 g (hi|Ahp,Hf) = N (hi|µi, diag
(
σ2
i

)
) (7)

Here, µ = HGCNµ(Ahp,Hf)  is the matrix of mean vec-
tors hi , and logσ = HGCNσ(Ahp,Hf) .

In the proposed HyperGCN model, we only train the 
autoencoder with reconstruction loss of the input gene 
expression matrix X , and do not consider the VGAE 
loss.

Hypergraph induced deep autoencoder clustering 
framework
HyperGCN implements an unsupervised deep embed-
ded clustering on the low-dimensional embedding H  of 
the autoencoder [34]. To enhance the initialization step 
of clustering, k-means is employed to generate the cen-
troids. The number of centroids in HyperGCN is set as 
10 for all datasets.

i. Deep embedding clustering.
Deep embedding clustering (DEC) employs the Kull-

back–Leibler (KL) divergence to measure the cluster-
ing consistence between the soft assignment Q  and the 
auxiliary target distribution T . The objective function is 
defined as the following.

 
Lossclu = KL (T ?Q) =

∑

i

∑

k

tiklog
tik
qik

,  (8)

where the soft assignment qik  indicates the distance 
between spot/cell hi  and cluster center µk , and is calcu-
lated by Student’s t-distribution [35]:

 
qik =

(
1 + ?hi − µk?

2
)−1

∑
k′
(
1 + ?hi − µkk′?

2
)−1 . (9)

The auxiliary target distribution T  refines the clusters 
by emphasizing the higher confidence assignments. For-
mally, tik  is defined as the following.

 

tik =

q2ik∑
iqik

∑
k′

(
q2
ik′∑
iqik′

). (10)
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HyperGCN iteratively refines the clusters with the clus-
tering loss (8) and improves the initial estimate of cen-
troids from k-means. Thus, a high confident spot/cell 
assignments are learned.

ii. Enhancing spatial consistency with spatially 
regularization.

The closeness in the embedding space not only reflects 
the transcript similarity between spots/cells, but also 
their spatial proximity [20]. To enhance the spatial con-
sistency among spots/cell, a spatial regularization term is 
defined as follows.

 
Lossspa =

∑N

i=1

∑N

j=1

D
(s)
ij ∗

(
1−D

(h)
ij

)

N2
, (11)

whereD(s)
ij  is the Euclidean spatial distance between 

spot/cell i  and j ,D(h)
ij  denotes the embedding distance 

between i  and j . Obviously, the spots or cells that are 
spatially distant, are also pushed further from each other 
in the generated embedding space by imposing the spa-
tial regularization term (11). Strong spatial regulariza-
tion makes the embeddings more smooth, which may not 
accord with more complicated biological heterogeneity. 
To address the problem mentioned above, regulariza-
tion parameter γ  is introduced into Eq. 11 to control the 
strength of spatial regularization. Over-smoothing or 
undersmoothing issues may have an significant influence 
on the performance of domain segmentation and cluster-
ing, so tuning of the parameter γ  is rigamarole. In the 
whole experiments, we experientially set γ = 1 to sim-
plify analysis.

Combining the reconstruction loss, clustering loss and 
spatial regularization, the final object of HyperGCN is 
defined as follows.

 L = Lossrec + λLossclu + γLossspa,  (12)

where λ , γ  are parameters for the clustering loss and 
spatial regularization term, respectively. In the whole 
experiments, we set λ = 0.1, γ = 1 across all datasets.

Training procedure
We use the Adam optimizer with a default learning rate 
lr = 0.01  to train HyperGCN. The number of epochs 
is set as 200. The kNN graph is obtained via “kneigh-
bors_graph” function from scikit-learn package. We use 
Elu activation function in the autoencoder, in view of its 
advantages compared other activation functions (Addi-
tional file 1). We pretrain the autoencoders without DEC 
loss for 200 epochs. In the beginning of the DEC stage, 
we utilize k-means to enhance the initialization step of 
cluster centroids. The number of centroids in k-means 
is empirically set as 10 for all datasets. For hypergraph 

convolution layers, the dimensions of hidden layers are 
set to be 32 and 8, respectively. For autoencoder layers, 
the dimensions of hidden layers are set to be 100 and 
20, respectively. During the clustering stage, the cluster-
ing loss, reconstruction loss are optimized together with 
spatial regularization loss. A GeForce RTX 3060 Laptop 
GPU with 6G memory is used for training the Hyper-
GCN model.

Competing methods
We compare HyperGCN with several recently published 
methods on spatial transcriptomics data, including 
SpaGCN [18], BayesSpace [21], SEDR [9] and SpaceFlow 
[20]. In the experiments, the numbers of clusters are 
set as the numbers of annotated layers for DLFPC data 
and osmFISH data. For 10X Visium data and Stereo-seq 
data, we set the numbers of cluster equal to 12 and 7, 
respectively.

When benchmarking with SpaGCN, the recommended 
parameter setting described in their online publishment, 
such as s = 1 , b = 49  andp = 0.5  are used across all 
datasets.

For BayesSpace benchmarking, the getTopHVGs 
method is used to select the highly variable genes (HVGs, 
top 2000 exclude osmFISH data), the spatialPreprocess 
method is used to log-normalize the count matrix and 
runPCA method is used for dimension reduction. Then, 
the spatialCluster function is used to cluster spots/cells 
with 5000 MCMC iterations, and defaulted gamma for 
different sequencing platforms.

For SEDR benchmarking, we used the default param-
eters described in their online tutorial (https://github.
com/JinmiaoChenLab/SEDR/), including epochs = 200 , 
lr = 0.01 , k = 50.

For SpaceFlow benchmarking, we used the default 
parameters setting and data preprocessing method 
provided in their online tutorial (https://github.com/
hongleir/SpaceFlow).

Evaluation metrics
The clustering performances of different models are eval-
uated with Adjusted Rand Index(ARI) [36], Normalized 
Mutual Information (NMI) [37] and Moran’s Index [38].

Let G  denote the ground truth spot/cell labels, and P  
denote the predicted clustering assignments. ARI is com-
puted as:

https://github.com/JinmiaoChenLab/SEDR/
https://github.com/JinmiaoChenLab/SEDR/
https://github.com/hongleir/SpaceFlow
https://github.com/hongleir/SpaceFlow
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where N  is the number of spots/cells and Nij  is the num-
ber of spots/cells of class label C∗

j ∈ G  assigned to clus-
ter Ci  in partition P . Ni  is the number of spots/cells in 
cluster Ci  of partition P , and Nj  is the number of spots/
cells in class C∗ . NMI is computed as the following:

 
NMI (G, P ) =

MI (G, P )√
H (G)H (P )

, (14)

where MI (G, P )denotes the mutual information 
between G  and P , H (G) and H (P )denote the informa-
tion entropy of G  and P , respectively.

ARI and NMI measure the consistency between two 
sets. Generally, high ARI and NMI values indicate good 
performance. Acknowledge that the spot/cell annotated 
in the original publications may not be fully accurate, we 
also used a variant of Moran’s Index to evaluate the clus-
tering performance [39]. Moran’s Index does not require 
true labels and is defined as:

 
Ilabel =

N
∑N

i=1

∑N
j=1A

∑N
i=1

∑N
j=1AijBij

N
, (15)

 
Bij =

{
1, ifyi = yj
0, otherwise

, (16)

where N  is the number of spots/cells, A  is the kNN 
graph (k = 20) calculated using spatial coordinate infor-
mation of spots.Ilabel  measures the cell-type spatial con-
centration. In other words, spots that are close in physical 
space should also be assigned the same label. A high Ilabel  
score indicates good performance. The values of ARI, 
NMI and Ilabel  range from 0 to 1.

Results and discussion
HyperGCN leads to improved clustering performance on 
four real spatial transcriptomics data from different tissues 
and technologies
We first assessed the clustering performance of Hyper-
GCN on four spatial transcriptomics datasets. These 
datasets include human DLPFC data and mouse brain 
sagittal data that are sequenced by 10X Visium tech-
nique; the somatosensory cortex data with osmFISH 

technique and the Stereo-seq data from mouse olfactory 
bulb tissue.

We compared HyperGCN with four existing meth-
ods for spatial transcriptomic data analysis, including 
SpaGCN [18], BayesSpace [21], SEDR [9] and SpaceFlow 
[20]. For SpaGCN and BayesSpace, we implemented its 
default data preprocessing and clustering methods with 
the recommended parameters. For SpaceFlow and SEDR, 
we implement Leiden clustering [40] on the generated 
embeddings. For HyperGCN, we first constructed hyper-
graph with kNN (k = 20) using the spatial information of 
spots/cells, and then trained the model and implemented 
Leiden clustering algorithm on the embeddings.

The clustering performance evaluated by ARI, NMI 
and Moran’s Index is shown in Fig.  3a-b. ARI and NMI 
are calculated based on the annotated layers in the origi-
nal publishments, and Moran’s Index is calculated based 
on the generated clustering assignments and does not 
require the true labels.

As shown in Fig.  3, we can see that the proposed 
HyperGCN algorithm performs well on four datasets in 
terms of ARI, NMI and Moran’s Index. For the DLPFC 
data, BayesSpace also performs well in terms of ARI and 
NMI. For the clustering performance evaluated by the 
Moran’s Index, HyperGCN is the best among all meth-
ods. For the osmFISH dataset, HyperGCN significantly 
outperforms other methods on three clustering metrics. 
For the 10Xmbs data and the Stereo-seq data, which do 
not have the ground truth labels, HyperGCN also per-
forms well in Moran’s Index. The numeric values of the 
clustering metrics are also provided in Additional file 1: 
Supplementary Table S2.

To further demonstrate the effectiveness and effi-
ciency of our proposed HyperGCN, we also imple-
mented extensive experiments on four datasets from 
different sequencing techniques and tissues, including 
seqFISH+(mouse brain cortex) [7], ST(human positive 
breast tumors) [41], 10X Xenium(human colon cancer) 
and 10X Visium(Zabrafish melanoma). In addition, we 
have also benchmarked with other state-of-the-art meth-
ods, including SOTIP [24], STAGATE [23], GraphST [22] 
and DR_SC [17] on different datasets. The experimental 
results showed that HyperGCN achieved the consistently 
superior performance on most cases. The results are pre-
sented in Additional file 1: Supplementary Table S3 and 
S4.

In the construction of hypergraph, we used the kNN 
graph to generate hypergraph. In the whole experiments, 
we set k = 20 for all the datasets. Sensitivity analysis of 
hyperparameter k  showed that the different values of 
k  led to the change of performance of the model. Espe-
cially, when the number of cells is small (< 5000), the 
performance of HyperGCN seems less stable. However, 
when the scale of dataset is large, the performance of 



Page 8 of 14Ma et al. BMC Genomics          (2024) 25:566 

HyperGCN is relatively stable with k  varies (Stereo-seq 
data, 19,527) (Additional file 1). In the experiments, for 
hyperparameters selection, we set λ = 0.1, γ = 1 for 
all datasets, for other values of these two parameters, 
HyperGCN still has stable performance(Additional 
file 1: Supplementary Table S5-S6). We also tested the 
robustness of HyperGCN on the number of centroids in 
k-means, the experimental results showed that the per-
formance of HyperGCN was robust to the number of 
centroids in most cases (Additional file 1). The numbers 
of clusters are set as the numbers of annotated layers for 
DLFPC data and osmFISH data, respectively. For 10X 
Visium data and Stereo-seq data, we empirically set the 
numbers of cluster equal to 12 and 7, respectively. We 
also implemented experiments to validate the robustness 
of HyperGCN by varying the numbers of clusters, the 
results showed that HyperGCN is stable in most cases 
(Additional file 1: Supplementary Table S7). For a dataset 
with unknown number of clusters, we suggest that using 

unsupervised Moran Index to select the number of clus-
ters by implementing grid research.

To further test the performance of HyperGCN, we also 
implemented two simplified variants of model (12): (1) 
in the first variant, we only include spatial regularization 
loss in the model by letting λ to be 0; (2) in the second 
variant, only the clustering loss is included in the model 
by letting γ to be 0. The experimental results show that 
HyperGCN outperforms its two simplified variants in 
most of datasets (Additional file 1: Supplementary Table 
S8), which indicates that introducing DEC and spatial 
regularization into hypergraph autoencoder clustering 
framework is an effective strategy in spatial transcrip-
tomics data analysis.

HyperGCN improves the identification of layer structures 
in the DLPFC tissue
To further evaluate the clustering performance of 
HyperGCN embeddings, we first compute the domain 

Fig. 3 Assessment of clustering performance. (a) Comparison of clustering results with ARI, NMI and Moran’s Index on DLPFC data with 12 spatially re-
solved RNA-seq data sets. Boxplots of these metrics are presented. (b) Comparison of clustering results on osmFISH, 10Xmbs and Stereo-seq datasets. In 
computing ARI and NMI, the annotated layers of spots/cells in the original publications are used as the true labels. The Moran’s Index quantifies the spatial 
correlation of spots/cells, and does not require the ground truth spot/cell labels. All methods implement either the default clustering or Leiden clustering
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segmentation for each competitive method and visualize 
the outputs on Sect. 151,671 of DLPFC data (Fig. 4a). The 
manually annotated layers and white matter (WM) are 
used as the ground truth [42]. It can be seen that Hyper-
GCN captures the best layer structures. Both SpaGCN 
and HyperGCN can identify Layer 5, Layer 6 and WM 
domains observed in the annotation, but SpaGCN shows 
noisy boundaries between domains. SEDR identifies 
Layer 6 and WM domain, but is unable to capture other 
remaining structures (Layer 3, Layer 4, Layer 5 and Layer 
6). SpaceFlow captures the WM structure, but shows 
irregular and non-contiguous domain structures. Inter-
estingly, HyperGCN found a subdomain at the top right 
of Layer 3 (labeled in gray). This result is also consistent 
with the domain observed in SpaceFlow.

We next compared SpaGCN, SEDR, SpaceFlow and 
HyperGCN (BayesSpace does not produce the embed-
dings) by implementing UMAP visualization [25]. The 
spots are colored based on the annotation provided in 
the original publishment of the data. As Fig.  4b shown, 

HyperGCN can well separate the spots by layers com-
pared to other methods. For other datasets of DLPFC, 
HyperGCN still have good performance (Additional file 
1: Supplementary Figure S1). The results indicate that 
HyperGCN achieves better visualization embeddings and 
can be used to implement some downstream analysis.

A domain-specific gene expression analysis was also 
performed to check the effectiveness of the identified 
domains from HyperGCN(Fig.  4c). Using the cluster-
ing assignments of HyperGCN, the top-1 domain-spe-
cific genes for each layer are detected. For example, the 
domain-specific gene Saa1 for gray domain (top right, 
Fig .4a) shows spatial specific expression pattern with 
high expression level in this domain and low expression 
outside this domain. For domain-specific gene Tsmb10, 
it has also high expression values in identified domains 
(layer 5).

Fig. 4 HyperGCN improves the identification of spatial domains and generates the consistent embeddings on the human dorsolateral prefrontal cortex 
(DLPFC) data. (a) Domain segmentations generated by annotated labels (top left panel) and SpaGCN, SEDR, SpaceFlow and HyperGCN using Sect. 151,671 
of DLPFC data. (b) UMAP visualization on DLPFC data secion 151,671 by using the low-dimensional embeddings from SpaGCN, SEDR, SpaceFlow and 
HyperGCN. Spots are colored based on their annotated layer labels provided in the original publishment of the data. (c) Spatial gene expression heatmaps 
of HyperGCN for the top-1 markers for the identified domains
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HyperGCN reveals spatial domains of the mouse 
somatosensory cortex profiled by osmFISH
Next, we test whether HyperGCN could provide insights 
in different tissues profiled by other techniques. We 
applied HyperGCN onto an osmFISH dataset which 
contains the gene expressions profiles of the mouse 
somatosensory cortex section accompanied by spatial 
information. We found SpaGCN and SEDR identified the 
roughly domain structures but showed noisy boundaries 
between layers (Fig. 5a). SpaceFlow captured Pia Layer 1, 
Layer 6, Layer 2–3 lateral, Ventricle and Internal capsule 
caudoputamen structures, but also showed an vague and 
noisy boundaries between domains (Fig. 5a). In contrast, 
the results of HyperGCN shows a smoother, denoised 
domain segmentation boundaries and outlines for some 
layers. Specifically, in hippocampus and Layer 6 region, 
HyperGCN clearly captured the domain structures which 
is consistent with the annotation.

We further compare SpaGCN, SEDR, SpaceFlow 
and HyperGCN by implementing UMAP visualization 

(Fig. 5b). Spots are colored based on their annotated layer 
labels provided in the original publishment of the data. 
We observed that the embeddings of SpaceFlow and 
HyperGCN could identify the domain spots from differ-
ent layers. In addition, HyperGCN clearly separated the 
ventricle and WM domains. This indicates that spatial 
regularization and hypergraph can encode spatial infor-
mation and preserve the local and global spatial structure 
of this data.

We also evaluated the performance of HyperGCN for 
domain-specific marker gene detection. These struc-
ture domains revealed by HyperGCN were clearly sup-
ported by the top marker genes of the identified domains 
(Fig.  5c). We can observed that the top-1 marker genes 
of the identified domains show spatial specific expression 
pattern, such as Gfab, Syt6, Lamp5, Plp1 and Rorb. This 
result is consistent with the original publishment of this 
data (http://linnarssonlab.org/osmFISH/expression/). 
This indicates our proposed HyperGCN is effective for 
the identification of domain structures.

Fig. 5 HyperGCN reveals spatial domains of the mouse somatosensory cortex and generates biologically meaningful embeddings on osmFISH data. (a) 
Domain segmentations generated by annotated labels (top left panel) and SpaGCN, SEDR, SpaceFlow and HyperGCN on osmFISH data. (b) UMAP visual-
ization using the low-dimensional embeddings from SpaGCN, SEDR, SpaceFlow and HyperGCN. Spots are colored based on their annotated layer labels 
provided in the original publishment of the data. (c) Spatial gene expression heatmap of HyperGCN for the top-1 marker genes of the identified domains
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We also implement experiments on 10X Visium and 
Stereo-seq datasets which have no ground truth labels 
provided in this original publishments. The results show 
HyperGCN achieves consistent good performance in 
terms of domain segmentation and data visualization 
(Fig. 6; Additional file 1: Supplementary Figure S2).

HyperGCN provides rich biological insights on the 
identified domain structure of the 10X visium mouse brain 
sagittal data
HyperGCN could uncover spatial gene expressions and 
provide rich biological insights. We applied HyperGCN 
in the 10X Visium mouse brain sagittal data to bet-
ter show the domain structures and spatial expression 
pattern of genes. We compared the domain segmen-
tation results of SpaGCN, SEDR and SpaceFlow with 

HyperGCN in the mouse brain sagittal data (Fig.  6a). 
As expected, HyperGCN exhibited denoised and clean 
domain structures. Similarly, we also implemented 
the spatial gene expression analysis of marker genes. 
More specifically, for the mouse brain sagittal data, we 
first used Scanpy package [27] to obtain differentially 
expressed marker genes for each clusters of HyperGCN, 
and then plotted the spatial gene expression heatmaps 
using top-1 marker genes of the identified domains. As 
shown in Fig. 6b, Pcp2, Ppp1r1b, Fabp7, Cbln1 have high 
expression scores and show the distinct regional expres-
sion patterns in the identified tissue domains. The results 
are also in accord with SpaGCN and SEDR, which dem-
onstrates that our proposed HyperGCN method can 
detect the biologically meaningful structure domains on 

Fig. 6 HyperGCN reveals the spatial expression patterns of domain-marker genes on 10X Visium mouse brain sagittal data. (a) Domain segmentations 
generated by SpaGCN, SEDR, SpaceFlow and HyperGCN on 10X Visium mouse brain sagittal data (No annotated labels are provided in the original pub-
lishment). (b) Spatial gene expression heatmap of HyperGCN for the top marker genes of the identified domains. (c) GO enrichment analysis for the do-
main-specific genes (Top 200) generated from the HyperGCN clustering result with t-test. Enriched terms are showed as -log10(p-value) using Enrichr tool

 



Page 12 of 14Ma et al. BMC Genomics          (2024) 25:566 

the mouse brain sagittal data profiled with 10X Visium 
technology.

Other marker genes, the clustering assignment of 
HyperGCN provided rich information on the biological 
interpretation of the markers. We performed GO enrich-
ment analysis using Enrichr [43–45]. Top 200 genes with 
small p-values in each cluster are selected. The enriched 
terms are in accord with the biological function of the 
underlying structured domains (Fig.  6c; Additional file 
1: Supplementary Table S9). For cluster 7 (pink region 
in the right subplot of Fig. 6a), GO analysis showed that 
the marker genes encompassed a wide array of biological 
processes and pathways such as “Central Nervous System 
Development” (log10(p-value) = -7.56), “Nervous System 
Development” (log10(p-value) = -7.11), “Brain Develop-
ment” (log10(p-value) = -4.28) and “Learning”(log10(p-
value) = -4.17). For cluster 10, the enriched BPs “Nervous 
System Development”(log10(p-value) = -4.50), “Chemical 
Synaptic Transmission”(log10(p-value) = -5.41), “ Modu-
lation Of Excitatory Postsynaptic Potential”(log10(p-
value) = -3.61) are related to synaptic transmission, which 
may indicate some underlying biological activities.

To summarize, HyperGCN improves the identifica-
tion of domain structures. The enrichment analyses for 
the domain-specific marker genes provide consistent and 
rich biological insights on the detected tissue domains.

Comparison of computational time
We also compared the computational cost of SpaGCN, 
BayesSpace, SEDR, SpaceFlow and HyperGCN on four 
real datasets with different numbers of spots/cells (Fig. 7). 
For larger datasets (> 20,000 spots), it takes more time to 
implement BayesSpace. For the DLPFC datasets with 12 
spatially resolved RNA-seq data sets, it takes more than 
20  min to implement BayesSpace. The computational 
time for SpaGCN, SEDR, SpaceFlow and HyperGCN is 
comparable in most datasets. In practice, the run time of 
HyperGCN on spatial transcriptomics data with 7,000 
cells/spots (osmFISH, 10Xmbs) is usually less than 2 min 
on a GPU. For the whole DLPFC data with 12 spatially 
resolved RNA-seq datasets, it only takes less than 15 min 
to implement HyperGCN. For larger datasets (> 10,000 
cells/spots), HyperGCN may implement fast on a GPU 
with large memory.

Conclusions
Spatially resolved transcriptomics technologies provide 
an unparalleled opportunity to comprehensively explore 
transcriptomics data with spatial information. Here we 
proposed HyperGCN, which integrates the gene expres-
sion and spatial proximity information into a hyper-
graph learning framework. Graph-based methods such 
as SpaGCN, SEDR and SpaceFlow, utilize nearest neigh-
bors to encode spatial proximity between spots. Unlike 

Fig. 7 The comparison of runtime of different methods on four real datasets. Experiments on Stereo-seq dataset were run on an i7-11800 H CPU 16 Cores, 
and 32G RAM. The other experiments in this paper were run on the GeForce RTX 3060 Laptop GPU with 6GB memory

 



Page 13 of 14Ma et al. BMC Genomics          (2024) 25:566 

these methods, HyperGCN generates a low-dimensional 
embeddings of spots by hypergraph convolution, which 
encodes the high-order geometrical structure informa-
tion of original data into a deep autoencoder clustering 
framework. Extensive experiments have been conducted 
on four real spatial transcriptomics datasets. The experi-
mental results show that HyperGCN achieves better 
clustering performance and clearer domain segmenta-
tion, by introducing hypergraph (Fig.  3; Additional file 
1: Supplementary Table S2). In addition, HyperGCN 
facilitates downstream biological analysis, including the 
characterization of marker genes for the specific domain 
structure, and GO enrichment analysis. Studying on sev-
eral real spatial transcriptomics datasets demonstrates 
the potential of HyperGCN, providing an effective tool to 
study the difference and functions of domain structures.

The current HyperGCN methodology mainly handles 
with gene expression and spatial information, and does 
not consider of histological images [18, 46] and 3D spatial 
transcriptomics datasets. In the future, we will utilize his-
tological images as an additional modality, and integrate 
it into the HyperGCN framework to further improve 
the performance of domain segmentation. An intuitive 
way is to compute hypergraph by using histology image. 
Another future direction is to develop new regularization 
frameworks to adaptively model the spatial distribution 
patterns and dependencies of different tissues or loca-
tions with high geometric complexity [20]. Moreover, 
integrating single cell RNA data and corresponding spa-
tial information to dissect the mechanism of cell commu-
nication is also our future research direction.
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