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Abstract
Background  The field of bee genomics has considerably advanced in recent years, however, the most diverse group 
of honey producers on the planet, the stingless bees, are still largely neglected. In fact, only eleven of the ~ 600 
described stingless bee species have been sequenced, and only three using a long-read (LR) sequencing technology. 
Here, we sequenced the nuclear and mitochondrial genomes of the most common, widespread and broadly reared 
stingless bee in Brazil and other neotropical countries—Tetragonisca angustula (popularly known in Brazil as jataí).

Results  A total of 48.01 Gb of DNA data were generated, including 2.31 Gb of Pacific Bioscience HiFi reads and 45.70 
Gb of Illumina short reads (SRs). Our preferred assembly comprised 683 contigs encompassing 284.49 Mb, 62.84 Mb 
of which (22.09%) corresponded to 445,793 repetitive elements. N50, L50 and complete BUSCOs reached 1.02 Mb, 
91 contigs and 97.1%, respectively. We predicted that the genome of T. angustula comprises 17,459 protein-coding 
genes and 4,108 non-coding RNAs. The mitogenome consisted of 17,410 bp, and all 37 genes were found to be on 
the positive strand, an unusual feature among bees. A phylogenomic analysis of 26 hymenopteran species revealed 
that six odorant receptor orthogroups of T. angustula were found to be experiencing rapid evolution, four of them 
undergoing significant contractions.

Conclusions  Here, we provided the first nuclear and mitochondrial genome assemblies for the ecologically and 
economically important T. angustula, the fourth stingless bee species to be sequenced with LR technology thus far. 
We demonstrated that even relatively small amounts of LR data in combination with sufficient SR data can yield high-
quality genome assemblies for bees.
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Background
In the midst of the current biodiversity crisis, it has 
become critical to improve our knowledge about bees, 
the main pollinating agents of the angiosperms [1, 2]. 
Bees play a paramount role in plant reproduction in 
natural and cultivated ecosystems and thus are piv-
otal for environmental conservation, sustainable devel-
opment and global food security [3–5]. The group of 
highly-eusocial stingless bees (Apidae: Meliponini), in 
particular, are of great relevance for comprising more 
than 600 described species [6]. Stingless bees are distrib-
uted across tropical and southern subtropical regions 
of the globe and are remarkably diverse in tropical rain-
forests, where 15–1,500 active colonies can be found 
within a single square kilometer, each housing up to tens 
of thousands of workers that routinely forage for floral 
resources [7–9]. It is therefore safe to assume that they 
are prime pollination providers for the highest tree diver-
sity found on the planet [10, 11]. Moreover, many species 
are also well adapted to a varied range of environments, 
including dry forests and savannahs [12, 13].

The practice of rational rearing of stingless bees (i.e., 
meliponiculture) for honey harvesting has been per-
formed since their independent domestication in vari-
ous parts of the world during precolonial times [14]. 
Furthermore, their use for pollination has been shown 
to increase crop yields when adequately managed [15], 
leading many species to play a crucial role in crop pro-
duction, including coffee, mango, and açai palm, among 
many others [16].

Recent advances in nucleic acid sequencing tech-
nologies and big data analyses have made it possible 
to sequence the genomes of bees, using only fractions 
of the human and financial resources employed in the 
sequencing of Apis mellifera Linnaeus nearly 20 years 
ago [17]. Today, genomic data can be used to investigate 
the genetic basis of key aspects in bee biology, includ-
ing social behavior, pollen diet, and brood parasitism 
[18–20]. Genomic data have also been used to under-
stand how past environmental and population dynamics 
may have shaped the contemporary genetic diversity of 
broadly distributed bees, leading to practical conserva-
tion guidelines [21–23]. The majority of these important 
studies, however, have focused on either honeybees or 
bumblebees, while comparatively little attention has been 
given to stingless bees [but see 18, 24].

The use of genomic data has revolutionized our under-
standing of the natural world. In particular, understand-
ing genomic phenomena such as the expansion and 
contraction of gene families, which comprise a set of 
genes that tend to exhibit functional similarity [25, 26], 
can provide relevant insights into functional aspects 
of organisms [27, 28]. For example, it has been demon-
strated that the genomes of the German cockroach and 

house fly, among all sequenced insects, have the largest 
repertoires of sensory receptors within the insect pick-
pocket gene family, which are responsible for detect-
ing certain environmental stimuli such as water and salt 
[29]. Today we also know that gene family changes have 
had major implications in the evolution of herbivory 
within Drosophilidae [30]. More recently, an interest-
ing research on gene families in megachilid bees showed 
that the species of the tribes Osmiini and Dioxyni have 
certains CYP9Q-related P450 enzymes that are able to 
detoxify the neonicotinoid insecticide thiacoprid, unlike 
their close relatives of the tribe Megachilini [31].

Tetragonisca angustula (Latreille), commonly known 
in Brazil by the Tupi-Guarani name “jataí” (= little bee), 
is the most commonly reared stingless bee species in Bra-
zil. This is relevant because the country houses over 40% 
(~ 250 spp.) of all known stingless bees worldwide [32]. 
Tetragonisca angustula ranges from Rio Grande do Sul in 
southern Brazil to as far north as Chiapas in México [33], 
occupying a myriad of environments—from large forest 
fragments to major urban centers [34, 35]. The species 
can build natural nests in virtually any small cavity and 
collect resources from a broad range of plant groups [9, 
36], which likely explains (at least partially) its remark-
able adaptive success. Tetragonisca angustula has been 
a favorite among Brazilian stingless beekeepers because 
its management is relatively straightforward, workers 
are docile and its honey has a comparatively high mar-
ket value [37, 38]. Today, many households across Brazil 
rely on the commercialization of honey and colonies of T. 
angustula as an important source of income [39, 40].

Despite its ecological and economic relevance, T. 
angustula has never been studied at the genomic level. 
Herein, we provide the first genome assembly for this 
small yet remarkable neotropical stingless bee. This 
genome sequence might provide scientific, economic, 
and ecological benefits. For instance, it might contrib-
ute to the advancement of the fields of bee sociogenom-
ics and evolution [41], to the elaboration of population 
genetics-based conservation strategies [42], and to devel-
opment of genomic tools that could potentially be used 
to identify genotypes susceptible to stressors (e.g., pes-
ticides), allowing selection of colonies with improved 
health [43].

Materials and methods
DNA short-read sequencing and processing
We captured 34 males of T. angustula from an aggre-
gation (close to a recently colonized trap nest) using a 
hand net within the municipality of Porto Seguro, Bahia 
state, Brazil (-16.4208, -39.0999). The individuals were 
transferred to a Styrofoam box covered with a fine mesh, 
transported alive to the laboratory, and placed in a -20 °C 
freezer for approximately 5  min. After this period, we 
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removed their metasoma (to avoid possible contamina-
tion by gut microbiota) using flame-sterilized forceps, 
and finally stored the remaining body parts in a -80  °C 
freezer until further processing.

High molecular weight DNA was extracted using a 
Promega Wizard Genomic DNA Purification Kit. First, 
the males were divided into two 1.5 mL microtubes and 
ground with prechilled polypropylene pestles. We pro-
ceeded by following the manufacturer’s protocol, except 
that DNA was diluted in 50 µL of DNA Rehydration 
Solution for higher concentration. The library was pre-
pared with an Illumina DNA Prep Kit using 1 µg of puri-
fied DNA. The library preparation, containing inserts of 
~ 350 bp in size, was then sequenced through two differ-
ent reactions, both on Illumina NextSeq 2000 platforms 
at Centro de Genômica Funcional (ESALQ/USP). The 
first was performed using an Illumina NextSeq 2000 P2 
Reagents v3 Kit over 200 cycles, generating paired-end 
reads of ~ 101 bp in length (henceforth SR1). The second 
was performed with an Illumina NextSeq 2000 P2 300 M 
Reagents Kit over 600 cycles and produced paired-end 
reads of ~ 301  bp in length (henceforth SR3). The qual-
ity of both sequencings (SR1 and SR3) was assessed with 
FastQC v.0.11.9 [44].

Using the newly sequenced reads of SR3, we generated 
a separate single-end read dataset (henceforth SR2) with 
PEAR v.0.9.11 [45]. This software overlaps paired-end 
reads from a target fragment and merge them to increase 
the overall read length. Further, it allows for correc-
tion of the last bases, which are typically of lower qual-
ity than the first bases (especially in 301-pb reads). The 
input reads with an overlap < 10 bp and/or phred quality 
score < 20 were filtered out during the process of generat-
ing SR2.

DNA long-read sequencing
Two females of T. angustula were used for PacBio HiFi 
long-read (LR) sequencing. They were sampled from the 
same natural nest located at the Instituto de Biociências, 
Universidade de São Paulo, Brazil (-23.5661, -46.7303). 
Both were captured while leaving the nest with a collec-
tion tube, which was then kept at -20ºC until subsequent 
procedures. High molecular weight DNA extraction was 
performed with a Promega Wizard® HMW DNA Extrac-
tion Kit. The entire bodies of the sampled females were 
macerated to ensure maximum yield. The DNA extrac-
tion followed the manufacturer’s protocol, but with two 
adaptations: we used both ethanol and isopropanol at 
-20ºC and stored the tubes also at -20ºC for the DNA 
precipitation. These adaptations improved the extrac-
tion yield, resulting in a higher DNA concentration at the 
end. The DNA extract was analyzed with a NanoDrop 
and then shipped to Macrogen (South Korea) for library 
preparation and sequencing.

The library was constructed using the protocol of 
SMRTbell™ Template Preparation, containing inserts 
from ~ 250 to 20,000 + bp. The sequencing was performed 
on a Pacific Biosciences (PacBio) Sequel II platform and 
its quality was assessed with LongQC v.1.2 [46].

Transcriptome assembly
We obtained nine publicly available RNA sequencing 
(RNAseq) datasets of T. angustula from NCBI/Gen-
Bank (Supplementary Table S1) to be used as expressed 
sequence tag evidence in the later gene prediction anal-
ysis. They consisted of three triplets of RNAseq, each 
generated from individuals in one of the following devel-
opmental stages: larva, nurse, and forager.

All RNAseq data were used in combination to assem-
ble a single wide-spectrum transcriptome with Trinity 
v.2.15.1 [47]. The function ‘-trimmomatic’ was activated 
to remove multiplexing tags and adaptor sequences 
aiming at improving assembly performance [48]. We 
assessed the quality of the assembled transcriptome 
employing two statistics: Contig Nx and Contig ExN50. 
The former was calculated with the perl script TrinityS-
tats.pl. For the latter, we first estimated transcript abun-
dance with align_and_estimate_abundance.pl using the 
alignment-free method Salmon [49], then generated a 
matrix of expression values with abundance_estimates_
to_matrix.pl and finally calculated Contig ExN50 with 
contig_ExN50_statistic.pl. We also performed BUSCO v. 
5.4.6 [50] to assess transcriptome completeness using the 
hymenoptera_odb10 database, which comprises 5,991 
single-copy orthologs. Finally, we filtered the transcrip-
tome to retain only the transcripts with at least a minimal 
expression across samples (‘--min_expr_any 1’), based on 
the matrix previously generated.

Cross-species contamination and genome size estimation
All DNA reads were aligned against the human (NCBI 
accession GCF_000001405.40) and prokaryote genomes 
(NCBI RefSeq v.220) with Magic-BLAST v.1.7 [51] to 
eliminate possible sequencing contaminants. Filter-
passed SAM reads were BAM-sorted and then FASTQ-
converted with SAMtools v1.13 [52] for subsequent 
procedures. Filter-retained reads were manually blasted 
against the NCBI database for identification. The list of 
contaminant species/groups and their sequences were 
analyzed with the R [53] tools DECIPHER [54] and rent-
rez [55] to translate sequences and perform blast searches 
against the NCBI databases, respectively.

After the elimination of contaminants, we calculated 
the k-mer frequency distribution with Jellyfish v.2.3 [56] 
using SR1. Then, we estimated the size, heterozygosity 
rate and repetitive content of the genome of T. angus-
tula by analyzing the produced histogram with the 



Page 4 of 15Ferrari et al. BMC Genomics          (2024) 25:587 

GenomeScope v.2.0 online tool [57], based on k-mer size 
and maximum coverage of 21 and 1,000, respectively.

Genome and mitogenome assemblies
We followed a comprehensive data exploration approach 
aiming at finding an optimal de novo genome assem-
bly for T. angustula. In all strategies, we used SR1 plus 
either SR2 or SR3 in combination with the LRs (Table 1). 
First, we executed MEGAHIT v.1.2.9 [58] with default 
parameters. We then conducted a series of analyses with 
MaSuRCA v.4.1.0 [59] testing its various built-in assem-
bly algorithms, namely, Celera Assembler [60], Flye [61] 
and SOAPdenovo [62]. We also attempted to perform 
the widely used program SPAdes v3.15.5 [63], but analy-
ses failed repeatedly due to computational resource limi-
tations. Basic metrics (e.g., N50 and L50) and genome 
completeness of all preliminary assemblies were assessed 
with the perl script scaffolds_stats.pl [64] and BUSCO, 
respectively. Next, the best assemblies were polished 
with NextPolish v1.4.1 [65], and subsequently scaffolded 
by first using the LRs with the MaSuRCA built-in tool 
SAMBA [66] and then using SR1 with SSPACE v.3.0 [67]. 
Both programs were combined to fill the existing gaps 
and increase the contiguity of the assemblies. Finally, 
we performed scaffolds_stats.pl and BUSCO with the 
final assemblies to check the efficiency of the various 
strategies.

The mitogenome of T. angustula was assembled 
through a two-step process. First, a preliminary de novo 
assembly was performed with GetOrganelle v.1.7.7.0 
toolkit [68] using SR2. We then used the de novo assem-
bly as reference to produce a final assembly with the 
MitoHifi v.3.0.0 pipeline [69] using the LRs. The final 
assembly was annotated on the MITOS2 web server [70], 

using the invertebrate genetic code (code 5) and RefSeq 
89 Metazoa as reference. Manual verification and refine-
ment of gene positions were carried out with BLAST+. 
The final assembly and coverage plots from both analyses 
were visualized on the Proksee web server [71].

Repetitive element masking and gene prediction
First, we employed the program RepeatModeler v.2.0.2 
[72] to generate a species-specific repetitive library for 
T. angustula based on both the Dfam v.3.6 [73] and Rep-
Base v.20,181,026 [74] databases. The identified elements 
were then masked in the assembled genome with Repeat-
Masker v.4.1.2 [75].

Protein-coding genes in the repeat-masked genome 
were predicted with the program BRAKER3 [76] using 
both the GeneMark-ETP [77] and Augustus [78] pre-
dictors. First, the RNAseq data were aligned against the 
genome assembly with StringTie v2.2.1 [79] and then the 
bam files were used as evidence in the predictions.

Gene functional annotation
The predicted protein-coding genes were functionally 
annotated based on sequence homology using Diamond 
v.2.0.14 [80], eggNOG-mapper v.2.1.12 [81] and InterPro-
Scan v.5.63-95 [82]. First, we aligned the protein-coding 
sequence data against the UniProtKB/Swiss-Prot [83] 
with Diamond/BlastX. Next, we produced a separate 
FASTA with the sequences that did not match Swiss-Prot 
with SeqKit v.2.2 [84] and aligned them against the Uni-
ProtKB/TrEMBL database [83] through another round of 
Diamond/BlastX. Both Diamond outputs were manually 
filtered (‘sort -k1,1 -k12,12nr -k11,11n | sort -k1,1 -u’) to 
retain only the best hits for downstream annotation anal-
yses. Finally, we performed InterProScan with the protein 

Table 1  Quality metrics of the various genome assemblies. The asterisk (*) indicates the preferred assembly. BUSCO refers to the 
percentage of complete orthologs found
Strategy
(preliminary)

Reads1 Assembly
algorithm

Contig
count

Genome
length (Mb)

Longest
contig (Mb)

N50
(kb)

L50 GC
(%)

BUSCO2

Megahit1 SR2 MEGAHIT 14,520 282.71 0.44 57.59 1,403 37.2% 94.8%
Megahit2 SR3 MEGAHIT 18,028 284.16 0.32 38.39 2,043 37.8% 93.9%
Masurca12 SR2 Celera Assembler 945 280.17 3.98 648.39 128 37.6% 96.8%
Masurca2 SR2 SOAPdenovo 28,748 279.79 0.17 16.99 4,542 37.6% 90.5%
Masurca3 SR3 Flye 2,220 279.62 1.07 194.57 447 37.6% 95.3%
Masurca42 SR3 Celera Assembler 967 284.17 2.50 720.47 118 37.6% 97.1%
Strategy
(final)

Reads Scaffolding
algorithm

Contig
count

Genome
length (Mb)

Longest
contig (Mb)

N50
(kb)

L50 GC
(%)

BUSCO2

Masurca1 945 280.17 3.98 648.39 128 37.6% 96.8%
  Samba
  Sspace

LRs
SR1

SAMBA
SSPACE

790
675

280.58
280.60

3.98
4.97

817.18
902.84

106
100

37.6%
37.6%

96.8%
96.8%

Masurca4 967 284.17 2.50 720.47 118 37.6% 97.1%
  Samba
  Sspace*

LRs
SR1

SAMBA
SSPACE

829
683

284.45
284.49

2.75
3.47

951.11
1,021.56

100
91

37.6%
37.6%

97.1%
97.1%

1SR1 and LRs were also used in all preliminary strategies (see text)
2Best preliminary strategies
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sequences as queries to identify protein domains (15 
databases), gene ontology (GO database), and biological 
pathways (MetaCyc and Reactome databases).

In addition to protein-coding genes, we also identi-
fied non-coding RNA elements (ncRNAs) with Infernal 
v.1.1.5 [85] based on the Rfam v.14.9 database [86]; trans-
fer RNAs (tRNAs), in particular, were identified with 
tRNAscan-SE v. 2.0.9 [87].

Orthogroup evolution and phylogenomic analyses
We followed a homology-based comparative genomic 
approach to infer changes (gains and losses) in ortho-
groups within an evolutionary framework. For this analy-
sis, we included T. angustula plus 25 other hymenopteran 
species, whose protein sequence data were obtained from 
NCBI/GenBank (Supplementary Table S2). First, we per-
formed OrthoFinder v.2.5.5 [88] with default parameters 
for ortholog identification and clustering. We carried out 
BUSCO to extract single-copy orthologs, which were 
subsequently aligned separately with MUSCLE v.3.8.1551 
[89], end-trimmed with trimAL v.1.4.1 [90], and then 
amalgamated into a 90% completeness matrix, using the 
pipeline BUSCO Phylogenomics [91]. Next, we inferred 
a maximum likelihood (ML) tree with IQ-TREE v. 2.1.3 
[92] through 1,000 ultrafast bootstrap replicates [93]. We 
invoked the ‘--symtest-remove-bad’ option to exclude the 
single-copy orthologs violating stationarity, reversibility 
and homogeneity assumptions to avoid inference biases. 
ModelFinder was used to select the best partitioning 
scheme and substitution models based on a greedy strat-
egy [94]; however, only the top 33% merging schemes 
were assessed to save computational time. The resulting 
phylogram was subsequently converted to a time-cali-
brated ultrametric tree with r8s v.1.81 [95], using four 
calibration points obtained from TimeTree 5 [96]: root, 
240  million years ago (Mya); Apocrita, 179 Mya; bees, 
110 Mya; and corbiculates, 82 Mya. Finally, we used Fig-
Tree v.1.4.4 [97] for visual inspection and final annotation 
of trees.

We inferred the number of orthogroup changes (con-
tractions and expansions) for each node and tip of our 
ML tree using CAFE v. 4.2.1 [98]. This was achieved by 
estimating a mean birth-death parameter (lambda), 
which represents the likelihood that any ortholog will 
be gained or lost based on orthogroup counts and dated 
cladogenetic events. We estimated lambda with cafe.
py, summarized the computes with cafetutorial_report_
analysis.py, and finally plotted them onto the phylogeny 
with cafetutorial_draw_tree.py.

Results
Raw data from the LR and SR sequencings and respective 
coverages
With the PacBio DNA sequencing, we generated 366,533 
LRs comprising 2.31 Gb (8-fold coverage); mean size and 
N50 were 10.66  kb and 11.74  kb, respectively (Supple-
mentary Fig. S1). With the Illumina DNA sequencings, 
we generated 345,692,872 SRs consisting of 45.70 Gb 
(161-fold coverage), including 276,666,288 reads (27.62 
Gb) from SR1 and 69,026,584 reads (18.07 Gb) from SR3 
(Supplementary Figs S2–S5). To generate SR2, 1,061,968 
paired-end reads (0.25 Gb) were discarded from SR3, and 
the filter-passed reads were merged into 33,982,308 sin-
gle-end reads (9.70 Gb).

Transcriptomic evidence for protein-coding gene 
annotation
The nine RNAseq datasets for T. angustula analyzed by 
us included 577,856,230 reads, comprising 47.32 Gb 
(Supplementary Table S1). Read count and dataset size 
ranged from 27,737,128 to 41,105,492 reads (mean of 
32,103,123 ± 5,237,347 reads) and from 1.62 to 3.27 Gb 
(mean of 2.62 ± 0.45 Gb), respectively, across datasets.

After filtering out the transcripts that did not achieve 
the expression threshold (--min_expr_any 1, n = 55,910), 
the de novo transcriptome of T. angustula comprised 
138,341 assembled transcripts (GC 37.4%), totaling 
221.88  Mb. The longest transcript, N50, and L50 were, 
respectively, 38.04  kb, 4.02  kb and 15,657 (Supplemen-
tary Fig. S6 and Supplementary Table S3). Our BUSCO 
assessment of the transcriptome returned 5,906 complete 
single-copy orthologs, thus yielding a completeness ratio 
of 97.2%.

A 284-Mb genome with nearly 17,500 protein-coding 
genes
Based on the k-mer frequency distribution of reads, we 
estimated the genome of T. angustula to be 317.60–
317.92  Mb in size, of which 256.01–256.26  Mb (80.6%) 
and 61.59–61.65 Mb (19.4%) corresponded to the unique 
and repetitive regions, respectively (Supplementary Table 
S4). The estimated overall heterozygosity rate was 0.27%, 
with a distinct peak occurring at the k-mer coverage of 
13.3 (Supplementary Fig. S7).

In total, ten genome assemblies were produced, and 
all of which were considerably smaller than previously 
estimated (Table  1). They were nonetheless fairly simi-
lar in size, ranging from 279.62 to 284.49  Mb (mean of 
282.09 ± 1.99  Mb). Similarly, the calculated GC content 
was consistently around 37% irrespective of the strategy 
used. However, the number of contigs greater than 1 kb 
and the length of the longest contig varied substantially 
across strategies, ranging from 675 to 28,748 (mean 
of 572.04 ± 404.58) and from 0.17 to 4.97  Mb (mean of 
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2.51 ± 1.58 Mb), respectively. The N50 varied from 16.99 
to 1,021.56  kb (mean 519.67 ± 348.86  kb), the L50 var-
ied from 91 to 4,542 contigs (mean of 111.99 ± 111.59 
contigs) and BUSCO completeness reached between 
90.5 and 97.1% (mean of 95.84 ± 1.90%). Based on the 
assessed parameters, MaSuRCA yielded better prelimi-
nary assemblies than MEGAHIT, except when SOAP-
denovo was employed within the former. The two best 
strategies used either SR2 (Masurca1) or SR3 (Masurca4), 
and both were carried out with Celera Assembler. Our 
preferred assembly strategy (i.e., Masurca4 + NextPol-
ish + Samba + SSPACE) resulted in 683 contigs compris-
ing 284.49  Mb (GC 37.6%), with N50 of 1,021  Mb, L50 
of 91 contigs and BUSCO completeness reaching 97.1%.

Prior to gene prediction, we identified and masked 
445,793 repetitive elements, which together comprised 
62.84  Mb and corresponded to 22.09% of the genome 
of T. angustula (Supplementary Table S5). Most repeti-
tive elements were interspersed (n = 215,530 or 52.11 Mb, 
48.34%), followed by simple (n = 196,861 or 8.97  Mb, 
44.16%) and low-complexity repeats (n = 33,402 or 
1.74 Mb, 7.5%).

We predicted that the genome of T. angustula com-
prises 17,458 protein-coding genes totaling 33.94  Mb, 
which corresponded to 11.9% of the complete genome. 
We annotated the biological function of 16,032 pro-
tein-coding genes (91.8% of the total), including 10,913 
annotations (68.1%) based on Swiss-Prot and the other 
5,119 (31.9%) based on TrEMBL (Supplementary Table 
S6). Using InterProScan, we also functionally annotated 
16,581 protein-coding genes (94.9% of the total) by asso-
ciating them with 94,059 protein domains, 22,975 biolog-
ical pathways and 10,973 GO terms previously identified. 
Also, 15,693 protein-coding gene sequences matched the 
eggNOG database. Finally, we identified 4,108 ncRNA 
genes (Supplementary Tables S7 and S8), most of which 
were micro RNAs (n = 1,535, 37.3%), followed by small 
nuclear RNAs (n = 812, 19.8%), small RNAs (n = 764, 
18.6%), cis-regulatory RNA elements (n = 519, 12.6%), 
and transport RNAs (n = 178, 9.4%).

The mitochondrial genome with the longest A + T region 
among stingless bees
The mitogenome of T. angustula, a circular double-
stranded DNA molecule spanning 17,410  bp, encodes 
a set of 37 genes, including 2 rRNAs, 22 tRNAs and 13 
protein-coding genes (Fig.  1). All genes were identified 
on the putative plus strand, as in F. varia. Moreover, the 
organizational pattern of both mitogenomes are identical 
and seemingly unique among corbiculate bees (Fig. 2).

The mitogenome of T. angustula includes the lon-
gest A + T-rich region among all stingless bee species 
sequenced to date, encompassing 2,276  bp. Putative 
replication origin stems, accompanied by flanking TA 

dinucleotide repeats, were identified. A significant 
decrease in coverage from LRs and, especially, from SRs, 
was observed for this region, with the latter also show-
ing low coverage uniformity. Conserved motifs like T(n) 
(polyT stretch) and putative stop signals, previously 
reported for other bee species [99, 100], were not found.

Contaminants are mostly bee gut bacteria
Our search for contaminants found ten bacteria species 
often associated with bees (Supplementary Table S9). The 
most abundant was Gilliamela apis, a common bacteria 
of bee guts. A gene of the bacteria Pantoea agglomerans 
was also identified; this species is usually associated with 
A. mellifera, typically in honey sacs. The set of species 
included gram-positive and gram-negative bacteria that 
are usually implied in bee intestinal functions.

Late-miocene divergence between Tetragonisca angustula 
and Frieseomelitta varia
Our final data matrix included 310 single-copy orthologs 
comprising a total of 109,967 sites (354.7 sites/ortholog 
on average). These consisted of 39,990 parsimony-infor-
mative sites (36.4%), 19,905 singletons (18.1%) and 50,072 
non-variable sites (45.5%%).

The ML analysis yielded a fully resolved phylogenomic 
tree (Fig. 3) in which all nodes were maximally supported. 
The inferred high-level relationships were fully consistent 
with those from previous phylogenomic studies, includ-
ing the following: (1) short- and long-tongued bees were 
recovered as reciprocally monophyletic in the absence 
of Melittidae; (2) Colletidae and Halictidae appeared as 
sister taxa, and together they comprised the sister group 
to Andrenidae; and (3) corbiculate bees formed a mono-
phyletic clade within Apidae. Stingless bees and bumble-
bees, which were recovered as reciprocally monophyletic, 
likely diverged from each other 49.3 Mya in the mid-
Eocene, according to our dating analysis. Tetragonisca 
angustula would have diverged from its closest relative, 
F. varia, 7.1 Mya during the late-Miocene, a relatively late 
divergence when compared to that of the congeneric spe-
cies B. affinis and B. vancouverensis Cresson (8.8 Mya).

Odorant receptor orthogroups show significant 
contractions
OrthoFinder identified 590,881 orthologs and assigned 
569,733 (96.4%) of them to 21,462 orthogroups, yielding 
an average of 26.54 orthologs per orthogroup (Supple-
mentary Table S10). Of these, 5,612 orthogroups (26.1%) 
were shared by all species, while 3,530 (16.4%) were spe-
cies specific; the latter comprised 2.7% (n = 16,199) of the 
assigned orthologs. Tetragonisca angustula, in particu-
lar, had 16,712 of its 17,519 orthologs (95.4%) assigned 
to 10,193 orthogroups (1.64 ortholog/orthogroup), 
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including 26 orthogroups and 62 orthologs that were 
found to be specific to the species.

We inferred 247,680 events in which an orthogroup 
underwent a change in size, including 178,891 contrac-
tions and 68,789 expansions (Supplementary Table S11), 
based on the lambda value (0.00882247) calculated by 
CAFE. However, 5,364 of the identified orthogroups 
(25%) did not change significantly in terms of gene com-
position (p > 0.05). Tetragonisca angustula accounted 
for 2,878 of the 247,680 change events, 1,712 of which 
(59.5%) represented contraction events. Overall, the 

number of contractions was significantly higher than 
that of expansions (F = 13.6004, p = 0.0003712) among 
the sampled hymenopterans. Neither the mean num-
ber of contractions (F = 0.8342, p = 0.5553) nor of expan-
sions (F = 3.8036, p = 0.06292) was significantly different 
between bees and non-bees. The same was found when 
stingless bees and the other bees were compared with 
each other: contractions (F = 0.8247, p = 0.3765) and 
expansions (F = 0.6478, p = 0.4320).

CAFE also identified 41,802 events of rapid evolution 
spanning 14,010 different orthogroups, 1,485 of which 

Fig. 1  Circular schematic representation of the complete mitogenome of Tetragonisca angustula. From the outer to inner circle: the arrows indicate gene 
directions, coverage plot of the Illumina SR alignment, coverage plot of PacBio HiFi LR alignment and GC skew plot. Photo of T. angustula by Cristiano 
Menezes
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were found in T. angustula, including 843 (56.8%) in 
expansion and 642 (43.2%) in contraction. At least six of 
these rapidly-evolving orthogroups comprised odorant 
receptors (ORs)—which are found in the membranes of 
olfactory neurons in insects—including two orthogroups 
in expansion and four in contraction (Supplementary 
Table S12). Overall, seven OR orthologs were gained and 
22 were lost by T. angustula, leaving a negative balance 
of 15 OR orthologs. In contrast, ten rapidly evolving OR 
orthogroups were predicted for F. varia, eight of them in 
expansion (+ 37) and only two in contraction (-4), result-
ing in a balance of 33 more OR orthologs. Both M. bicolor 
(+ 7) and M. quadrifasciata (+ 1) as well as the inferred 
ancestors of Meliponini (+ 2) and T. angustula plus F. 
varia (+ 8) gained more OR orthologs than lost.

Discussion
Stingless bees play a vital role for humankind. They are 
raised for honey production and provide crucial ecosys-
tem services by pollinating the natural flora and com-
mercial crops [101]. They also promote environmental 
friendly strategies and occupational therapy [102, 103]. 
Therefore, gaining knowledge on stingless bees and, in 
particular, understanding the importance of genomic 
structures and processes in their biology and behavior, 
as has been widely performed with A. mellifera [104–
106], has become increasingly important. Unfortunately, 
very few stingless bees have so far had their genomes 
sequenced [107]. As applied genomic research is totally 
reliant on genomic data, this current shortage becomes 
a pressing issue that demands attention. Therefore, pro-
viding the first genome assembly for T. angustula, a key 

species of the Brazilian bee fauna, was the main contribu-
tion of the present work to the incipient field of stingless 
bee genomics.

Besides its unparalleled ecological and economic rel-
evance, T. angustula also stands out among neotropi-
cal stingless bees for having a unique combination of 
biological features. First and foremost, T. angustula is 
extremely adaptable to varied habitats, including fully 
urbanized areas, likely due to its broad pollen diet and 
nesting substrate use, high reproduction rates and great 
ability to maintain vital procedures within the colony 
(e.g., brood cell construction and egg laying) even in 
unfavorable conditions [15, 34]. Second, T. angustula is 
one of the few stingless bee species whose queens are 
known to mate with multiple males during nuptial flight 
[108; but see 109]. In fact, multiple mating by females has 
been shown to be a relatively rare phenomenon among 
social hymenopterans, despite the fact that it is known to 
increase genetic diversity of the offspring [110]. Third, T. 
angustula is less aggressive than other stingless bees (e.g., 
Scaptotrigona) and its workers usually retreat back to the 
nest when disturbed by humans and other vertebrates, 
although they effectively defend the colony against robber 
bees of the genus Lestrimelitta [34]. In fact, the defense 
strategy of T. angustula against robber bees is perhaps 
one of the most distinguishing biological features of this 
bee as it likely led to the origin of a new caste of work-
ers with specialized morphology to guard the nest [111].
The genome assembly provided herein is an important 
step towards the understanding of the genomic mecha-
nisms behind these and other aspects of the intriguing 
biology of stingless bees.Tetragonisca angustula is the 

Fig. 2  Linear schematic representation of the mitogenomic organization in Tetragonisca angustula compared to other corbiculate bees. Colors indicate 
conserved blocks of protein-coding genes that maintain the same organization even after rearrangement events
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fourth stingless bee species to have its nuclear genome 
sequenced using an LR-based sequencing platform. 
Although SR-based technologies have transformed how 
we can investigate the natural world from a genomic 
perspective, they have nonetheless shown severe limi-
tations in detecting, for example, repetitive regions and 
gene duplications [112]. The use of LRs in the pres-
ent study exemplifies how this technology can result in 
higher assembly quality metrics, when compared to pre-
vious stingless bee genomes assembled based only on SRs 

(Supplementary Table S14). On the other hand, the same 
metrics were not as performant as the ones from the LR-
assembled genomes of M. bicolor and other eusocial bees 
[113–115]. One possible explanation for these results is 
that we could only generate 2.31 Gb worth of LRs, which 
resulted in a low sequencing coverage (8-fold). This 
nonetheless did not prevent us from achieving a high-
quality assembly when LRs and SRs were combined and 
thoroughly analyzed, thus demonstrating that even low-
coverage LR data can yield satisfactory results.

Fig. 3  Dated ML tree inferred from USCO data showing the phylogenetic placement of Tetragonisca angustula (bold) within Hymenoptera. Color-coded 
triangles depict the approximate number of orthogroups in expansion (shades of blue), contraction (shades of green) and rapid evolution (shades of red) 
for the corresponding internode or terminal species. The numbers inside the small black rectangles indicate the clade numbers attributed by CAFE. All 
clades were recovered with maximum support (omitted)
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The use of LRs also enabled us to assemble the mitoge-
nome of T. angustula with greater completeness com-
pared to when only SRs were employed. This can be 
primarily ascribed to the A + T-rich region, which is 
typically challenging to identify due to its repetitive 
and low complexity features [116]. However, a decrease 
in coverage was also observed for the LRs, potentially 
indicating the occurrence of intraindividual variation 
in the A + T-rich region (i.e., length heteroplasmy). This 
phenomenon has previously been reported for multiple 
species across the Animal Kingdom [117–121], includ-
ing bees [122], suggesting that it may be a widespread 
trait. We also found that the mitogenome of T. angustula 
shares the same gene organization with that of F. varia 
[24], which distinguishes both from the other sequenced 
species of stingless bees. Considerable rearrangements 
have been observed in stingless bees [123, 124], albeit 
with some gene blocks seemingly maintaining their con-
served organization—another phenomenon commonly 
observed in metazoans [125]. However, only T. angustula 
and F. varia, as far as the available data show, exhibit the 
peculiarity of having all mitochondrial genes encoded on 
the putative plus strand. With this regard, the emergence 
of LR sequencing methods may be a turning point for a 
better understanding of the evolutionary dynamics of 
stingless bee mitogenomes.

The genome of T. angustula (284.49 Mb) is larger than 
the observed average size (277.7  Mb) for stingless bees, 
when the highly fragmented genome of Lepidotrigona 
ventralis (127,582 contigs) is not considered. This may be 
due to an unusually large repetitive content—62.8 Mb or 
22.1% of the genome—even in comparison with that of F. 
varia (39.1 Mb or 14.2% of the genome) [24]. The number 
of protein-coding genes found in the genome of T. angus-
tula (17,458) is also higher than previously predicted 
for the stingless bee species sequenced so far, except M. 
bicolor (20,278 protein-coding genes), although this num-
ber may be overestimated [113]. Moreover, none of the 
other stingless bee genomes sequenced to date was anno-
tated using transcriptomic evidence from multiple life 
stages as in the present study. It is nevertheless important 
to ponder that the procedures adopted for repeat mask-
ing and gene prediction herein and previously differed 
considerably [18, 24, 113], meaning that direct compari-
sons must be interpreted with caution.

The bacteria profile found in the sequencing of 
T. angustula closely aligns with the ones previously 
reported for other corbiculate bees, such as (A) mellifera 
and (B) terrestris. Among the species identified, Gillia-
mella apis, primarily located in the bee midgut, plays a 
crucial role in the digestion of pollen and pectin [126]. 
Additionally, Snodgrassella comunis and S. alvi are asso-
ciated with the metabolism of various carbohydrates 
and also seem to have coevolved with honeybees and 

bumblebees [127]. These findings show that, despite the 
intrinsic and intricate biology of each bee species [128], 
similar bacterial profiles may emerge, particularly those 
linked to the digestion of macromolecules.

Our orthogroup analysis indicated that T. angustula 
has lost more orthologs than gained over the course of 
its evolutionary history. However, one must keep in mind 
that orthogroup identification and clustering is totally 
reliant on the premises that (1) the genome has been fully 
assembled, and that (2) all protein-coding genes have 
been correctly predicted, in upstream analyses. In other 
words, we simply cannot rule out the possibility that 
we may have failed in our attempt to identify a series of 
orthologs that are actually present in the genome of T. 
angustula. In fact, it is important to emphasize that 3% of 
the orthologs (n = 180) searched for in the BUSCO analy-
sis could not be found.

An ortholog may be lost, for example, when deleterious 
mutations are accumulated, without subsequent negative 
selection [129], after the positive pressure to retain it has 
ceased [130] or simply if it can be functionally replaced 
by another ortholog [131]. Perhaps the most notable find-
ing regarding ortholog loss in our study was that four of 
the orthogroups found to be experiencing rapid contrac-
tion included ORs, which are responsible for detecting 
volatile organic compounds in the environment [132]. In 
insects, ORs are predominantly found in sensory struc-
tures such as the proboscis, maxillary palpi and antennae 
[133], and mediates the search for food, oviposition sites, 
sexual mates, among other complex behaviors [134, 135]. 
These processes are so crucial for insect survival and 
reproduction that the origin of ORs has been shown to 
be a molecular synapomorphy of Insecta, likely emerging 
as an adaptation to terrestriality [136].

Therefore, the finding that OR orthogroups have been 
rapidly contracting in T. angustula is intriguing and 
raises important questions concerning its evolution. One 
could claim that eusociality may have played a role in the 
observed OR contraction, as previously shown regarding 
immunity [137] and regulatory orthologs [138]. However, 
our analyses actually revealed a rather opposite trend, i.e., 
a rapid expansion within Meliponini that was drastically 
reversed in T. angustula. It has been shown that the che-
moreception in T. angustula is characterized by a notable 
size reduction of the neurological structures responsible 
for processing the information conveyed by these recep-
tors [139]. Thus, we believe that the observed contraction 
may be ascribed to broad generalist lifestyle regarding 
flower hosts and nesting substrates. This hypotheses, 
however, can only be tested through a broader and more 
rigorous investigation, in terms of both data and taxa, 
which goes beyond the scope of the present paper.
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Conclusions
In this paper, we provided the first genome assembly for 
T. angustula, the most important stingless bee species in 
Brazil from an economic standpoint. Despite the enor-
mous relevance of this important group of pollinators for 
tropical ecosystems, this is only the fourth stingless bee 
to be fully sequenced using a LR-based technology, as far 
as we are aware. Relatively low coverage LR data did not 
prevent us from obtaining a high-quality genome assem-
bly, therefore validating its use in combination with high-
coverage SRs.

Our phylogeny-based, comparative genomic analyses 
revealed an overall pattern of orthogroup contraction 
in T. angustula, notably in ORs. As these receptors are 
of paramount importance for insect survival and adap-
tation, our findings provide novel insights into the evo-
lution of ORs within Meliponini and other groups of 
eusocial insects.
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