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Abstract
Background  The skeletal muscle growth rate and body size of Tibetan pigs (TIB) are lower than Large white 
pigs (LW). However, the underlying genetic basis attributing to these differences remains uncertain. To address 
this knowledge gap, the present study employed whole-genome sequencing of TIB (slow growth) and LW (fast 
growth) individuals, and integrated with existing NCBI sequencing datasets of TIB and LW individuals, enabling the 
identification of a comprehensive set of genetic variations for each breed. The specific and predominant SNPs in the 
TIB and LW populations were detected by using a cutoff value of 0.50 for SNP allele frequency and absolute allele 
frequency differences (△AF) between the TIB and LW populations.

Results  A total of 21,767,938 SNPs were retrieved from 44 TIB and 29 LW genomes. The analysis detected 2,893,106 
(13.29%) and 813,310 (3.74%) specific and predominant SNPs in the TIB and LW populations, and annotated to 24,560 
genes. Further GO analysis revealed 291 genes involved in biological processes related to striated and/or skeletal 
muscle differentiation, proliferation, hypertrophy, regulation of striated muscle cell differentiation and proliferation, 
and myoblast differentiation and fusion. These 291 genes included crucial regulators of muscle cell determination, 
proliferation, differentiation, and hypertrophy, such as members of the Myogenic regulatory factors (MRF) (MYOD, 
MYF5, MYOG, MYF6) and Myocyte enhancer factor 2 (MEF2) (MEF2A, MEF2C, MEF2D) families, as well as muscle growth 
inhibitors (MSTN, ACVR1, and SMAD1); KEGG pathway analysis revealed 106 and 20 genes were found in muscle 
growth related positive and negative regulatory signaling pathways. Notably, genes critical for protein synthesis, such 
as MTOR, IGF1, IGF1R, IRS1, INSR, and RPS6KA6, were implicated in these pathways.

Conclusion  This study employed an effective methodology to rigorously identify the potential genes associated with 
skeletal muscle development. A substantial number of SNPs and genes that potentially play roles in the divergence 
observed in skeletal muscle growth between the TIB and LW breeds were identified. These findings offer valuable 
insights into the genetic underpinnings of skeletal muscle development and present opportunities for enhancing 
meat production through pig breeding.
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Introduction
Tibetan pigs (TIB) are significant contributors to pork 
production in high-altitude regions, because they are 
adaptable to high altitudes, low hypoxia and cold envi-
ronments. They are primarily found on the Qinghai-
Tibet Plateau, Yunnan Diqing, Sichuan Aba and Ganzi, as 
well as Gansu Gannan. Compared with Large white pigs 
(LW), TIB exhibit a greater proportion of umami amino 
acids and essential fatty acids, as well as a lower n6:n3 
ratio [1]. These characteristics contribute to the superior 
meat quality, enhanced flavor, and popularity in the high-
end markets [2]. However, TIB exhibit comparatively 
slower growth rate and smaller body size in comparison 
to LW [3]. According to the Chinese National Animal 
and Poultry Genetic Resources Pig Chronicle, TIB typi-
cally weigh approximately 25 kg at the age of 12 months, 
whereas LW achieve this weight at a mere two months of 
age. Consequently, elucidating the genetic factors under-
lying the disparity in skeletal muscle growth between 
TIB and LW would prove advantageous in enhancing the 
pork production of TIB in the future.

The process of skeletal muscle growth is intricate and 
constantly changing, encompassing various stages such 
as the determination of embryonic mesodermal progeni-
tor cells to the myogenic lineage, their differentiation into 
myoblasts, the proliferation and fusion of myoblasts to 
form multinucleate myotubes, the development of myo-
tubes filled with myofibrils to create mature myofibers, 
and ultimately the hypertrophy of myofibers through the 
addition of extra myofibrils [4, 5]. In the process of func-
tional mature myofiber formation, multiple transcription 
factors are expressed in a coordinated manner. Notably, 
members of the Myogenic Regulatory Factors (MRFs) 
including MyoD, Myogenin, Myf5, MRF4, and Myocyte 
Enhancer Factor 2 (MEF2), specifically MEF2A, MEF2B, 
MEF2C and MEF2D play pivotal roles in these processes 
[6–9]. MyoD and Myf5 are involved in the specification 
of embryonic mesodermal progenitor cells into myo-
blasts, while myognenin (MyoG) and either MyoD or 
MRF4 (Myf6) are essential for the differentiation of myo-
blasts into myocytes. The cooperative action of MyoD 
and MEF2 family members is responsible for the acti-
vation of transcription of a majority of skeletal muscle 
genes, including M-creatine kinase (CKM), myosin heavy 
chain (MYH), and desmin (DEM) [6, 7, 9]. Muscle growth 
occurs through hypertrophy of existing myofibers, 
achieved by the addition of myofibrils to increase muscle 
mass, and the addition of sarcomeres to the ends of exist-
ing myofibrils to increase their length during the post-
natal stage [9, 10]. In both scenarios, the synthesis and 

deposition of new structural and contractile proteins, 
such as desmin, myosin, actin, troponin, and tropomyo-
sin are necessary within the myofibers [9, 10]. The mTOR 
signaling pathway and the myostatin-Smad2/3 pathway 
are two major signaling pathways that control protein 
synthesis, and they act as positive and negative regulator 
for muscle growth, respectively [11]. The mTOR signaling 
pathway is crucial for regulating protein synthesis, with 
upstream activators including growth factors such as 
IGF1 and insulin, acting through the PI3K-Akt cascade, 
as well as various amino acids acting via Rag GTPases 
[12]. Myostatin, a member of the transforming growth 
factor (TGF)-β family, is involved in inhibiting postnatal 
muscle fiber hypertrophy by suppressing Akt activation, 
and subsequently the mTORC1 signaling pathway in a 
Smad2/3-dependent manner [11, 13].

Whole-genome sequences has been widely used to 
identify genetic basis attributing to divergent traits 
between breeds on a wide range of organisms, such as 
high and low fat deposition in sheep tail [14], small and 
large body size in chicken [15], dark and white pigmen-
tation in duck [16], slow and fast muslce growth [17] 
and high and low adipose depostion in pig [18]. Selec-
tive sweep analysis is the commonly employed method 
to reveal the genetic basis of extreme breeds based 
on whole-genome sequences. Several methods can be 
employed for detecting sweeps, such as site frequency 
spectrum based methods (Tajima’s D; Fay and Wu’s H sta-
tistic), linkage disequilibrium based methods (extended 
haplotype homozygosity, EHH; integrated haplotype 
score, iHS), methods based on reduced local variability 
(runs of homozygosity, ROH), single-site population dif-
ferentiation (Fixation index, FST), and haplotype-based 
differentiation methods (cross-population extended hap-
lotype homozygosity, XP-EHH; haplotype-based exten-
sion of the FLK statistic, hapFLK) [19]. Those methods 
use an empirical cutoff value, e.g. the top 1% or 5% of 
extreme high values, to determine the candidate genes. 
However, it’s challenging to determine which empirical 
value is a better or correct choice. The theory of animal 
genetics posits that the frequencies of alleles between 
specific breeds intrinsically determine the underlying 
cause of the phenotypic differences between them [20]. 
The formula µ = α (p-q) + 2pqd defines the relationship 
between the population phenotypic value and the allele 
frequency. In this equation, α represents the additive 
effect, p represents the allele frequency of the synergetic 
allele, q represents the allele frequency of the reduced 
allele, and d represents the deviation caused by the dom-
inant effect [20]. In the absence of allele interactions, it 
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can be inferred that when the allele frequency (p) of a 
causal variation exceeds 0.50 (d = 0) or 0.30 (d = α), the 
population phenotype value (µ) will surpass the average 
level.

Thus, in this study, we screened SNP allele frequency 
to detect specific and predomiant SNPs in the TIB (slow 
growth) and LW (fast growth) breeds to identify genes 
associated with skeletal muscle development. A total of 
291 genes were found involved in the biological process 
of skeletal muscle development, and 106 and 20 genes 
were identified in positive and negative regulatory path-
ways for skeletal muscle growth. This sduty comprehen-
sively detected the potential SNPs associated with muscle 
growth difference observed between TIB and LW popu-
lations and provided valuable insights into the genetic 
underpinnings of skeletal muscle development.

Materials and methods
Whole-genome sequence and SNP calling
Blood samples were collected from 5 Diqing TIB pigs 
and 15 LW pigs from Lanhua and Yongsheng Farms in 
Yunnan Province. Samples were obtained from the jug-
ular vein and rapidly frozen at − 20  °C. Blood DNA was 
extracted using a DP304 kit (TIANGEN). DNA purity 
(OD260/280 ratio) was assessed using a Nanodrop2000 
Spectrophotometer (Thermo Fisher Scientific); Qubit 
was used for precise quantification of DNA concentra-
tion; DNA samples with OD values between 1.8 and 
2.0 and a concentration of over 1  µg were utilized for 
library construction. After meeting the library prepara-
tion requirements, the DNA was fragmented via ultra-
sonication. Then, the fragmented DNA was subjected 
to fragment purification, end repair, A-tailing, sequenc-
ing adaptor ligation, and library construction. The con-
structed libraries were sequenced using a HiSeq X 
Ten (Illumina, CA, USA) with a read length of 150  bp. 
Sequencing was performed using an Illumina NovaSeq™ 
6000 platform in 150 bp paired-end sequencing mode. In 
addition, publicly shared raw sequencing data from the 
NCBI SRA database for 39 TIB pigs from Tibet, Gansu, 
Yunnan, and Sichuan provinces and 14 LW pigs were 
merged (Supplementary Table S1) to generate a more 
comprehensive dataset for comparison. The 39 TIB pigs 
from Tibet, Gansu, Yunnan, and Sichuan Province were 
confirmed to have little or no introgression from LW pigs 
based on population structure analysis in our previous 
study. The raw sequencing data were filtered to remove 
reads with adapters and low-quality reads (the num-
ber of bases with quality value Q < = 15 accounted for 
more than 40% of the entire read) and low quality bases 
(quality value Q < = 20). We downloaded the pig genome 
Sscrofa11.1 sequence from NCBI (https://www.ncbi.
nlm.nih.gov/data-hub/assembly/GCF_000003025.6/) for 
use as a reference genome for subsequent analysis. Next, 

Burrows-Wheeler alignment (BWA, v0.7.5a-r405) [21] 
was used to align the sequencing data to the reference 
genome. Picard software (http://broadinstitute.github.
io/picard/, v1.94) was used to remove reads derived from 
PCR duplicates, and uniquely aligned data were retained 
for subsequent genome variation detection. Finally, the 
HaplotypeCaller module in GATK was used for SNP 
detection [22]. High-quality SNPs were obtained with 
the following filtering parameters: QD < 2.0, MQ < 40.0, 
FS > 60.0, QUAL < 30.0, MQrankSum < − 12.5, ReadPos-
RankSum < − 8.0, -ClusterSize 2, -ClusterWindowSize 5, 
and biallelic SNPs with no more than a 10% missing rate. 
High-quality SNPs were further annotated using SNPeff 
(v4.3) with parameter ‘-ud 1000’ based on the gene anno-
tation of the pig Sscrofa11.1 reference genome [23].

Detecting TIB-specific and predominant SNPs
The relationship between the population phenotypic 
value and the allele frequency is defined by the following 
formula:

µ = α (p-q) + 2pqd,
where α is the additive effect, p is the allele frequency 

of the synergetic allele, q is the allele frequency of the 
reduced allele, and d is the deviation caused by the dom-
inant effect [20]. In the absence of allele interactions, it 
can be inferred that when the allele frequency (p) of a 
causal variation exceeds 0.50 (d = 0) or 0.30 (d = α), the 
population phenotype value (µ) will surpass the average 
level. Conversely, when the value of p is less than 0.50 
or 0.30, the population phenotypic value will be lower 
than the mean. The present study focused on identify-
ing the alleles associated with the smaller body size and 
slower growth rate observed in TIB populaiton. Assum-
ing that the causal allele for this phenotype is P, with an 
allele frequency of p in the TIB population greater than 
0.50 (d = 0) or greater than 0.30 (d = α), the mean value µ 
exceeded the average level. Consequently, the population 
phenotypic value for smaller body size and slower growth 
rate surpassed the mean level. In contrast, the population 
phenotypic value of smaller body size and slower growth 
rate in LW was smaller than the average level due to their 
larger body size and faster growth rate. This suggests that 
the allele frequency in LW would be less than 0.50 or 
0.30. Furthermore, if each individual carries at least one 
causal allele for breed-specific traits, the probability p 
would be equal to or greater than 0.50. Taking these fac-
tors collectively, 0.50 could serve as the allele frequency 
cutoff value for screening SNPs associated with breed 
traits.

Thus, to investigate the potential causal relationship 
between SNPs and the lower growth rate of TIB, the allele 
frequencies of all SNPs in the TIB and LW populations 
were calculated separately using VCFtools(v4.2) [24], 
and SNPs with allele frequencies equal to or greater than 

https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_000003025.6/
https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_000003025.6/
http://broadinstitute.github.io/picard/
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0.50 in the TIB population and simultaneously less than 
0.50 in the LW population were initially extracted using 
a self-compiled Python program. Subsequently, we fur-
ther identified TIB-specific SNPs by extracting SNPs with 
allele frequencies equal to zero in the LW population, and 
TIB-predominant SNPs by extracting SNPs with absolute 
allele frequency differences (△AF) between TIB and 
LW equal to or greater than 0.50 using a self-compiled 
Python program. The △AF values were determined by 
subtracting the allele frequency of each SNP in the TIB 
population from that in the LW population. All the TIB-
specific and predominant SNPs were annotated to their 
corresponding genes using a Python program developed 
in-house. The density of TIB-specific SNPs was visual-
ized using the R package CMplot. The percentage of TIB-
specific SNPs on each chromosome, the distribution of 
TIB-specific SNPs based on allele frequency, the allele 
frequency distribution of TIB-predominant SNPs, and 
the location and functional classification of TIB-specific 
SNPs were visualized using OmicShare tools (www.omic-
share.com/tools).

Detecting LW-specific and predominant SNPs
Alternatively, if we consider a larger body size and faster 
growth rate as the desired phenotypes in LW, and assume 
that the causal allele for this phenotype is P, the allele fre-
quency of p in LW would be greater than 0.50 (d = 0) or 
0.30 (d = α). In contrast, the allele frequency in the TIB 
population would be less than 0.50 or 0.30. Therefore, to 
investigate the SNPs that contribute to faster growth in 
LW pigs, SNPs with allele frequencies equal to or greater 
than 0.50 in the LW population and simultaneously less 
than 0.50 in the TIB population were extracted using a 
self-compiled Python program. Subsequently, we fur-
ther identified LW-specific SNPs by extracting SNPs 
with allele frequencies equal to zero in the TIB popula-
tion, and LW-predominant SNPs by extracting SNPs with 
△AF between LW and TIB equal to or greater than 0.50 
using a self-compiled Python program. The △AF val-
ues were determined by subtracting the allele frequency 
of each SNP in the LW population from that in the TIB 
population. All LW-specific and predominant SNPs were 
annotated to their corresponding genes using a Python 
program developed in-house. The density of LW-specific 
SNPs was visualized using the R package CMplot. The 
percentage of LW-specific SNPs on each chromosome, 
the distribution of LW-specific SNPs based on allele fre-
quency, the allele frequency distribution of LW-predom-
inant SNPs, and the location and functional classification 
of LW-specific SNPs were visualized using OmicShare 
tools (www.omicshare.com/tools).

GO and KEGG pathway enrichment analysis of candidate 
genes
First, genes harboring TIB, LW-specific and predominant 
SNPs were defined as candidate genes. Due to the large 
number of candidate genes, GO (Gene Ontology) term 
and KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway enrichment analysis were performed using the 
R package of gProfiler2 tools [25]with the parameters 
organism = “sscrofa”, ordered_query = FALSE, multi_
query = FALSE, significant = TRUE, exclude_iea = FALSE, 
measure_underrepresentation = FALSE, evcodes = TRUE, 
user_threshold = 0.05, correction_method = “fdr”, 
domain_scope = “annotated”, custom_bg = NULL, 
numeric_ns = “”, sources = “GO: BP”, and as_short_
link = FALSE. For the GO terms “cell component and 
molecular function” and “KEGG analysis”, the param-
eters used were as follows: sources = “GO: BP” modified 
as sources = “GO: CC”, sources = “GO: MF” and sources 
= “KEGG”. The genes enriched in GO terms and KEGG 
pathways related to skeletal muscle development were 
retained as potential genes involved in skeletal muscle 
development. The allele frequencies of SNPs in these 
potential genes were extracted from files of TIB- and 
LW-specific and predominant SNPs using a self-com-
piled Python program. Muscle related GO terms and the 
allele frequency of skeletal muscle development related 
genes in the TIB and LW populations were visualized 
using OmicShare tools (www.omicshare.com/tools). The 
haplotype blocks of skeletal muscle development-related 
genes were revealed using Haploview 4.2 [26].

Selective sweep analysis
We calculated the genome-wide distributions of FST val-
ues and π-ratios (πLW/πTIB) between 44 TIB individuals 
and 29 LW individuals to assess the genomic regions with 
high genetic divergence and high differences in genetic 
diversity with a 50  kb sliding window size and a 10  kb 
step size using VCFtools (v4.2) [24]. The windows with 
the top 5% of FST values and π-ratios (πLW/πTIB) were 
considered to be candidate regions under strong selec-
tive sweeps and visualized using the R package ggPlot2. 
All candidate regions were then assigned to correspond-
ing genes using in-house scripts. KEGG pathway and GO 
term analysis were performed using the online software 
g: Profiler [27]. The parameters of the g: Profiler tool 
(https://biit.cs.ut.ee/gprofiler/orth) were set as follows: 
organism set to “sus scrofa”, statistical domain scope set 
to “only annotated genes”, significance threshold set to 
“Benjamini-Hochberg FDR”, and user threshold set to 
“0.05”. Venn diagram was generated using the OmicStu-
dio tools athttps://www.omicstudio.cn/tool.

http://www.omicshare.com/tools
http://www.omicshare.com/tools
http://www.omicshare.com/tools
http://www.omicshare.com/tools
https://biit.cs.ut.ee/gprofiler/orth
https://www.omicstudio.cn/tool
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Results
Genome sequencing and variations
In total, 73 whole-genome sequencing data were used in 
this study; These data consisted of 44 TIB pigs from Tibet, 
Sichuan, Gansu, and Yunnan Provinces, as well as 29 LW 
pigs. This dataset produced 16.47 billion raw reads, with 
a mean depth of 9.13× per individual and average genome 
coverage of 98.96% (Supplementary Table S1). Following 
variant calling and filtration, 21,594,848 and 15,210,134 
SNPs were identified for TIB and LW, respectively. In 
total, 21,767,938 SNPs were obtained from the 73 indi-
viduals for subsequent analysis. These SNPs were cat-
egorized into 28 types, the large majority of which were 
intergenic region (51.62%) and intronic (43.70%) variants 
(Supplementary Table S2).

TIB-specific and predominant SNPs
In this study, SNPs exhibiting allele frequencies equal 
to or greater than 0.50 in the TIB population, but with 
an allele frequency of zero in the LW population were 
designated as TIB-specific SNPs, and SNPs wih an allele 
frequency equal to or greater than 0.50 and simulta-
neously displaying a △AF between the TIB and LW 
populations equal to or exceeding 0.50 were classified 
as TIB-predominant SNPs. A total of 2,893,106 SNPs 
were detected, comprising 1,114,731 TIB-specific and 
1,778,375 predominant SNPs. These TIB-specific SNPs 
accounted for 5.12% (1,114,731/21,767,938) of the total 
SNPs detected in this study and were found across all 
chromosomes (Fig.  1A). Intriguingly, the X chromo-
some (Chr19) exhibited the highest proportion of these 
SNPs (23.53%, 262,265/1,114,731) (Fig.  1B). The allele 

Fig. 1  Summary of TIB-specific and predominant SNP metrics. (A) TIB specific SNP density for each chromosome; (B) Percentage of TIB-specific SNPs on 
each chromosome; (C) Allele frequency distribution of TIB-specific SNPs; (D) Location and functional classification of TIB-specific SNPs; (E) Distribution of 
TIB-predominant SNP △AF between TIB and LW
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frequency of TIB-specific SNPs ranged from 0.50 to 1.0, 
with a greater proportion falling within the ranges of 
0.50-0.60 (29.31%) and 0.90-1.0 (23.87%) (Fig. 1C). Fur-
thermore, a total of 33,933 SNPs, accounting for 3.04% 
of the TIB-specific SNPs, exhibited an allele frequency 
of 1.0, indicating complete fixation in the TIB popula-
tion. These specific SNPs were predominantly located 
in intergenic (46.78%) and intronic (49.01%) regions, 
with 3,059 synonymous and 1,655 missense variations 
observed (Fig. 1D). All the TIB-specific SNPs could be 
annotated to 18,697 genes. A total of 1,778,375 TIB-
predominant SNPs were identified, which accounted for 
8.17% (1,778,375/21,767,938) of the total SNPs identi-
fied in this study. The △AF of these TIB-predominant 
SNPs ranged from 0.50 to 1.0, with the majority falling 
within the range of 0.50-0.60 (Fig.  1E). Furthermore, 
these TIB-predominant SNPs could be annotated to 
22,482 genes.

LW-specific and predominant SNPs
In addition to investigate TIB-specific and predominant 
SNPs, we also examined LW-specific and predominant 
SNPs. SNPs exhibiting allele frequencies equal to or 
greater than 0.50 in the LW population, while having an 
allele frequency of zero in the TIB population, were des-
ignated as LW-specific SNPs, and SNPs having an allele 
frequency equal to or greater than 0.50, and simultane-
ously displaying a △AF between the LW and TIB popu-
lations equal to or exceeding 0.50 were classified as 
LW-predominant SNPs. A total of 813,310 SNPs were 
detected in the LW population, containing 53,491 LW-
specific SNPs and 759,819 predominant SNPs. The LW-
specific SNPs accounted for 0.25% (53,491/21,767,938) 
of the total SNPs in this study and were found on all 
chromosomes (Fig. 2A), with chromosome 8 having the 
highest proportion (9,465 SNPs, 17.69%) (Fig.  2B). The 
allele frequencies of these LW-specific SNPs ranged from 
0.50 to 1.0, with a greater proportion falling within the 
ranges of 0.50-0.60 (48.96%) (Fig.  2C). Furthermore, 
1.61% of the LW-specific SNPs (860) were found to 
have an allele frequency of 1.0 and completely fixed in 
the LW population. These specific SNPs were predomi-
nantly intronic (47.81%, n = 25,576) and intergenic region 
variations(47.05%, n = 25,169), with a smaller propor-
tion of synonymous (225) and missense (142) variations 
(Fig.  2D). All LW-specific SNPs could be annotated to 
6,834 genes. A total of 759,819 LW-predominant SNPs 
were detected, representing 3.49% (759,819/21,767,938) 
of the total SNPs in this study. The △AF of the LW-pre-
dominant SNPs ranged from 0.50 to 1.0, with most of the 
numbers falling within the range of 0.50-0.60 (Fig.  2E). 
Furthermore, these LW-predominant SNPs could be 
annotated to 16,444 genes.

GO enrichment analysis of candidate genes to identify 
skeletal muscle development-related genes
We aggregated the genes containing TIB, LW-specific 
and predominant SNPs and designated them candidate 
genes. A total of 24,560 candidate genes were obtained. 
GO enrichment analysis of the candidate genes revealed 
that 2,925 biological process, 313 molecular function and 
324 cell component terms were overrepresented. The 
overrepresented biological process terms were related 
to reproduction, immune system, neuron system devel-
opment, lung development, heart system, pigmenta-
tion, lipid metabolic, and responsive to UV radiation, 
as detailed in Supplementary Table S3; the molecular 
function terms included ion binding, ATP binding, lipid 
binding, protein domain-specific binding, actin bind-
ing, ubiquitin-like protein ligase binding, and insulin-like 
growth factor binding (Supplementary Table S4); the cell 
component terms were related to the nucleoplasm, endo-
membrane system, cell projection, cytoskeleton, extra-
cellular matrix, actin cytoskeleton, and several others 
(Supplementary Table S5).

The analysis revealed that the GO terms associated 
with biological processes pertaining to skeletal muscle 
development provided more comprehensive information. 
Specifically, a total of 67 biological process terms related 
to various types of muscle tissue, such as striated, skel-
etal, smooth, and cardiac tissue, were identified (Fig. 3A). 
Given that skeletal muscle falls under the category of stri-
ated muscle, our attention was directed toward the bio-
logical process GO terms specifically related to skeletal 
and striated muscle. Notably, eight out of the 67 terms 
were found to be involved in the biological processes 
of skeletal and striated muscle development (striated 
muscle cell differentiation, striated muscle hypertrophy, 
regulation of striated muscle cell differentiation, striated 
muscle cell proliferation, positive regulation of striated 
muscle cell differentiation, skeletal muscle cell differen-
tiation, striated muscle tissue development, and skeletal 
muscle tissue development). In addition, myoblast dif-
ferentiation and fusion were also significantly overrepre-
sented in the biological process related GO terms. A total 
of 291 genes were identified to be involved in the 8 bio-
logical processes related to skeletal and striated muscle, 
as well as myoblast differentiation and fusion related bio-
logical processes.

These 291 genes contained a total of 82,349 SNPs, 
including 17,286 TIB-specific and 40,864 predomi-
nant SNPs and 1,497 LW-specific and 22,702 predomi-
nant SNPs (Supplementary Table S6). Moreover, 53 
missense SNPs were detected in 32 genes, including 
FOS, MYOM2, MYOCD, MYOC, and TANC1, and 249 
synonymous SNPs were observed in 97 genes, such 
as MYOM2, MYOF, YAP1, MYH9, MTOR, MYH7, 
MYOCD, TANC1, MYOC, and MYF5. Relatedly, 1566 
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SNPs were found within the regulatory regions (includ-
ing upstream region, downstream region, 5’ UTR, and 
3’ UTR) of 211 genes, such as MSTN, MYOZ1, MYF6, 
MYOD1, SMAD1, MYF5, SMAD4, MYH9, MYOC, 
MTOR, MYOG, MYOM2, and MEF2D. Furthermore, 
there were 259 TIB-specific SNPs with allele frequencies 

equal to or greater than 0.95; these SNPs could be anno-
tated to 15 genes (MSTN, SMAD1, ERBB4, DOCK2, 
PLEKHM3, TANC1, ACVR1, PDGFRA, SGCB, ZFPM2, 
EPAS1, SMYD3, CACNA1S, NEBL, and PAXBP1). 
In addition, 5 LW-specific SNPs with allele frequen-
cies equal to or greater than 0.95 were identified in the 

Fig. 2  Summary of LW-specific and predominant SNP metrics. (A) LW-specific SNP density on each chromosome; (B) Percentage of LW-specific SNPs on 
each chromosome; (C) Allele frequency distribution of LW-specific SNPs; (D) Location and functional classification of LW-specific SNPs; (E) Distribution of 
LW-predominant SNP △AF between LW and TIB
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Fig. 3  Muscle-related GO terms and genes identified by GO analysis. Muscle development related GO terms for candidate genes (A), and SNP allele 
frequency of MSTN (B), ACVR1 (C) and SMAD1 (D) genes in TIB and LW populations
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intergenic regions of MTPN and TCF7L2. Among these 
genes, several were found to play crucial roles in skeletal 
muscle development. These included all four members 
of the MRF family (MYOD, MYF5, MYOG, and MYF6), 
as well as three members of the MEF2 family (MEF2A, 
MEF2C, and MEF2D). Additionally, genes involved 
in muscle growth inhibition, namely MSTN, SMAD1, 
and ACVR1, as well as the gene responsible for protein 
synthesis, MTOR, were implicated. Notably, MSTN, 
SMAD1, and ACVR1 exhibited significant differences 
in allele frequency between our TIB and LW popula-
tions (Fig.  3B, C, D). Furthermore, MYF5 exhibited a 
TIB-specific synonymous SNP with an allele frequency 
of 0.84, along with six upstream region SNPs; Similarly, 
the MYOD, MYOG, and MYF6 genes also exhibited 
several upstream region SNPs. Further investigation of 
haplotype blocks revealed that MYOD, MYF5, MYOG, 
MEF2A, MEF2C, MEF2D, MSTN, and MTOR exhibited 
different haplotype blocks between the TIB and LW 
populations (Fig. 4).

KEGG pathway analysis of candidate genes to identify 
skeletal muscle development-related genes
The KEGG pathway analysis revealed that a total of 
36 KEGG pathways were over-represented, including 
the PI3K-Akt signaling pathway, protein digestion and 
absorption, the TGF-beta signaling pathway, the calcium 
signaling pathway, the Wnt signaling pathway, the mTOR 
signaling pathway, and others (Supplementary Table S7). 
Several signaling pathways, including the PI3K-Akt sig-
naling pathway [28, 29], the TGF-beta signaling pathway 
[30], the calcium signaling pathway [31, 32], the Wnt sig-
naling pathway [33] and the mTOR signaling pathway, 
are involved in skeletal muscle development. Among 
these pathways, the mTOR and TGFβ/myostatin/activin/
BMP signaling pathways play significant roles in regu-
lating protein synthesis, with mTOR acting as a positive 
regulator and TGFβ/myostatin/activin/BMP acting as a 
negative regulator [11]. Therefore, our study focused on 
the genes involved in the mTOR signaling pathway [34] 
(Fig. 5A) and the TGFβ/myostatin/activin/BMP signaling 
pathway [35] (Fig. 5B), which are partial segments of the 
TGF-beta signaling pathway.

Fig. 4  Haplotype blocks of  MEF2A, MEF2C, MEF2D, MSTN, MYF5, MYOD, MYOG, MTOR genes in TIB and LW populations
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Fig. 5  Genes involved in the mTOR and TGFβ/myostatin/activin/BMP signaling pathways. (A) Ten genes involved in the mTOR signaling pathway har-
bored missense variations (green box) and 19 genes harbored TIB-specific SNPs with allele frequency > = 0.95 (red box); (B) Genes involved in TGFβ/myo-
statin/activin/BMP signaling pathway harbored TIB-specific SNPs with allele frequency > = 0.95(red box); (C) SNP allele frequency of RPS6KA6 genes in TIB 
and LW populations. The mTOR signaling pathway map were downloaded from https://www.kegg.jp/kegg/pathway.html [34], and the TGFβ/myostatin/
activin/BMP signaling diagram was adapted from [35]

 

https://www.kegg.jp/kegg/pathway.html
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A total of 106 genes were implicated in the mTOR 
signaling pathway, encompassing 23,925 SNPs. Among 
these SNPs, 9,319 TIB-specific and 10,040 predominant 
SNPs, as well as 556 LW-specific and 4010 predominant 
SNPs, were present (Supplementary Table S8). Moreover, 
15 missense variations were found in 10 genes, includ-
ing RPS6KA6, RPS6KA1, STRADB, ATP6V1E2, PRR5, 
FNIP2, TTI1, IRS1, LRP5, and PIK3R1; their locations 
in the mTOR signaling pathway are depicted in Fig.  5A 
with a green box. Notably, three TIB-specific SNPs 
were observed in the RPS6KA6 gene, with an average 
allele frequency of 0.99. Ninety synonymous SNPs were 
observed in 45 genes, namely PRS6KA6, IGF1, IGF1R, 
IRS1, MTOR, and GRB10. Relatedly, 828 variations in 
regulatory regions were observed in 84 genes, includ-
ing IGF1, RPS6KA6, GRB10, MTOR, IRS1, and GRB2. 
Furthermore, 24 SNPs were found in the splice-regions 
of 17 genes, specifically RPS6KA6, MTOR, INSR, and 
IGF1R. Importantly, 3,804 TIB-specific SNPs with allele 
frequencies equal to or greater than 0.95 were detected 
locating in 19 genes, including FNIP2, GRB10, RPS6KA6, 
RPS6KA3, RRAGB, GSK3B, IGF1, IGF1R, MAPKAP1, 
PIK3R1, PRR5, DVL3, CAB39L, CAB39, ATP6V1E2, 
ATP6V1B2, ATP6V1G3, and PDPK1, the positions of 
which are in the mTOR signaling pathway, as depicted in 
Fig. 5A with a red box. Additionally, 4 LW-specific SNPs 
with allele frequencies equal to or greater than 0.95 were 
identified and annotated to the MAPKAP1 and FNIP2 
genes. We further observed 1,858 TIB-specific SNPs 
within a 182  kb region of the RPS6KA6 gene, with an 
average allele frequency of 0.98, indicating significant dis-
parity in allele frequencies between the TIB and LW pop-
ulations (Fig. 5C). The 1,858 TIB-specific SNPs included 
upstream, 3’ UTR, 5’ UTR, missense, synonymous, and 
intron varirants.

The TGFβ/myostatin/activin/BMP signaling pathway 
was referenced from study by Sartori et al. [35]. The path-
way includes 22 genes of BMP7, Follistatin (FST), Myo-
statin (MSTN), ActivinA (INHBA), ALK4 (AVCR1B), 
ActRIIB (AVCR2B), BMPR2, GDF11, ALK5 (TGFBR1), 
ALK2 (ACVR1), ALK3 (BMPR1A), SMAD1, SMAD2, 
SMAD3, SMAD4, SMAD5, SMAD6, SMAD7, SMAD9 
(SMAD8), Noggin (NOG), BMP13, and BMP14. Except 
for BMP13 and BMP14, the other 20 genes were found 
to be included in the candidate genes (Fig. 5B). These 20 
genes contained 4,850 SNPs, which included intergenic 
(2,785), intron (1,874), synonymous (7), splice-region (1) 
and regulatory region varirants (183). Notably, the genes 
MSTN, SMAD1 and ACVR1 exhibited TIB-specific SNPs 
with allele frequencies equal to or greater than 0.95; their 
positions in the pathway was shown in Fig. 5B with a red 
box.

Skeletal muscle development-related genes identified by 
selective sweep analysis
To examine genes associated with skeletal muscle devel-
opment identified through the selective sweep analy-
sis method, we conducted a search of the genome for 
regions exhibiting high allele frequency differentiation 
and nucleotide diversity. This was achieved by calculat-
ing the FST and π-ratio values between our TIB and LW 
populations using a window size of 50 kb and a step size 
of 10 kb. A total of 435 genes, representing the top 5% of 
regions in terms of both the FST value and π-ratios (πLW/
πTIB), were identified as putatively selected genes (PSGs) 
(Supplementary Table S9) (Fig. 6A and B). All the PSGs 
were subjected to KEGG and GO enrichment analysis, 
leading to the identification of a total of 10 overrepre-
sented GO terms of biological processes; however, no 
terms showed direct relation to skeletal muscle develop-
ment. Therefore, to ascertain the links of PSGs to skeletal 
muscle development, we conducted an overlap analysis 
to identify the genes common to both PSGs and genes 
implicated in muscle development-related biological pro-
cesses GO terms (67 terms), as well as in the mTOR and 
TGFβ/myostatin/activin/BMP signaling pathways. The 
results of this analysis revealed an overlap of six genes 
(MSTN, FNIP2, GSK3A, CTNNA3, RYR2, and IGFBP5) 
as depicted in Fig. 6C).

Discussion
In this study, we detected specific and predominant 
SNPs in the TIB and LW populations by screening allele 
frequency for each SNP at the whole-genome level to 
identify genes potentially related to skeletal muscle 
development. Our analysis revealed a total of 2,893,106 
(13.29%) specific and predominant SNPs were detected 
in the TIB population and 813,310 (3.74%) in the LW 
population. These SNPs accounted for 17.03% of all SNPs 
identified in this study. Specifically, 1,114,731 (5.12%) 
TIB-specific SNPs and 53,491 (0.25%) LW-specific SNPs 
were detected, which may contribute to the unique traits 
of each breed and the divergent phenotypes observed 
between the TIB and LW populations. All the TIB- and 
LW-specific and predominant SNPs could be annotated 
to 24,560 genes in total, far more than the 435 genes 
identified through selective sweep analysis using empiri-
cal distributions of cutoff points at the 95th percentile, a 
commonly used empirical cutoff value. The set of 24,560 
candidate genes exhibited significant enrichment in 2,925 
biological processes-related GO terms, encompassing 
not only skeletal muscle development but also various 
other biological processes, such as pigmentation, immu-
nity, reproductive capacity, and fat deposition. This result 
aligns with the observed phenotypic disparities between 
TIB and LW pigs, which extend beyond growth and body 
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size to encompass coat color, disease resistance, fertility, 
and subcutaneous and intramuscular fat deposition.

Skeletal muscle growth-related genes identified by GO 
enrichment analysis
The process of skeletal muscle development implicates 
an increase in both the number and size of muscle cells; 
this process is known as muscle fiber hyperplasia and 
hypertrophy. Previous research has demonstrated that, 
compared with miniature pigs, LW pigs contain a 173% 
greater quantity of muscle fibers in the M. semitendino-
sus [36]. Additionally, fast-growing lean pigs have more 
myofibers and larger myofibers than slow-growing fat 
pigs [5]. Therefore, our investigation focused on genes 
implicated in the biological mechanisms of myoblast dif-
ferentiation, and fusion, as well as skeletal and striated 
muscle differentiation, proliferation, and hypertrophy. 
The MRFs (MyoD, Myogenin, Myf5, Myf6) and MEF2 
(MEF2A, MEF2B, MEF2C, MEF2D) protein families have 
been identified to play significant roles in these processes 
[6–9]. Specifically, MyoD and Myf5 are involved in the 
specification of embryonic mesodermal progenitor cells, 
facilitating their differentiation into myoblasts. On the 
other hand, MyoG and either MyoD or Myf6 are needed 
for the differentiation of myoblasts into myocytes. Fur-
thermore, the collaboration between MyoD and mem-
bers of the MEF2 family is essential for the transcription 

activation of the majority of skeletal muscle genes [6, 7, 
9]. The findings of our study indicate that all four mem-
bers of the MRFs and three members of the MEF2 family 
(MEF2A, MEF2C, and MEF2D) exhibited marked differ-
ences in allele frequency and haplotype blocks between 
TIB and LW. The protein MSTN is known to play a crucial 
role in the inhibitory regulation of postnatal muscle fiber 
hypertrophy through its interaction with its receptor and 
subsequent activation of signaling pathways that impede 
protein synthesis [11, 35]. For example, transgenic Meis-
han pigs exhibit increased skeletal muscle mass associ-
ated with a loss-of-function mutation in the MSTN gene 
[37]. Two upstream region SNPs and different haplotype 
blocks were found between the TIB and LW populations 
in the MSTN gene and its upstream intergenic region 
in this study. Furthermore, the mTOR gene, which is 
responsible for encoding the kinase mTOR, a pivotal gene 
involved in protein synthesis and degradation, was found 
to harbor seven synonymous, five upstream, three splice 
region intronic and 225 intronic SNPs. The kinase mTOR 
plays a crucial role in two distinct complexes, namely 
mTORC1, which governs protein synthesis, cell growth 
and proliferation, and mTORC2, which acts as a regula-
tor of the actin cytoskeleton, promoting cell survival and 
cell cycle progression. Previous studies have reported 
that the conditional deletion of mTOR, accompanied by 

Fig. 6  Identifying skeletal muscle development related genes by selective sweep analysis. (A) Distribution of FST values calculated in 50 kb sliding win-
dow size with 10 kb step size between TIB and LW; (B) π-ratio (πLW/πTIB) was calculated by π value in LW / π value in TIB in 50 kb window size with 10 kb 
step size; (C) Overlap genes between PSGs and muscle related genes enriched in 67 muscle related biological process by GO analysis for candidate genes 
was showed by Venn diagram. Each dot represented 50 kb sliding window size and 10 kb step size, within which the average FST value and π-ratio (πLW/
πTIB) were calculated. The blue line was the top 5% of FST (0.58) and π-ratio (πLW/πTIB) (1.20) line. Genes visualized in (A) and (B) were the overlap genes

 



Page 13 of 15Xiong et al. BMC Genomics          (2024) 25:588 

the expression of catalytically inactive mTOR, leads to a 
decrease in growth rate beginning 1 week after birth [35].

Furthermore, we observed many other genes covering 
multiple missense, synonymous, and regulatory region 
SNPs. These genes included SGCB, MYOM2, MYOCD, 
MYOC, MYOF, YAP1, MYH9, MYH7, SMAD1, and 
SMAD4, which have been reported to be related to skel-
etal muscle development. SGCB is responsible for encod-
ing the beta subunit of the sarcoglycan protein complex, 
a collection of transmembrane proteins that play a crucial 
role in stabilizing muscle fiber membranes and connect-
ing the muscle cytoskeleton to the extracellular matrix; 
deficiencies or mutations in SGCB can result in a specific 
form of muscular dystrophy called limb girdle muscular 
dystrophy type 2E, which is characterized by progressive 
muscle weakness and degeneration [38]. MYOM2, a mem-
ber of the MYOM gene family, is predominantly expressed 
in fast-twitch muscle fibers; the MYOM protein family 
functions as an integral constituent of the M-band, facili-
tating the crosslinking of myosin filaments to confer stabil-
ity to the sarcomere [39]. MYOCD is transiently expressed 
in skeletal muscle progenitor cells located in somites, and 
a significant portion of skeletal muscle originates from 
cell lineages that express Myocd; nevertheless, instead of 
inducing the expression of genes specific to skeletal mus-
cle, Myocd acts as a transcriptional repressor of Myog, 
thereby impeding the process of skeletal muscle differen-
tiation [40]. YAP1 is a downstream nuclear effector of the 
Hippo signaling pathway and is implicated in various phys-
iological processes, such as development, growth, repair, 
and homeostasis; additionally, YAP1 is involved in the pro-
motion of muscle hypertrophy through its overexpression, 
which results in increased protein synthesis; conversely, 
depletion of YAP1 can induce muscle atrophy by diminish-
ing protein synthesis [12].

Breed-specific SNPs with nearly fixed or fixed allele 
frequencies have been found to be associated with breed-
specific traits [41]. A total of 259 TIB-specific SNPs were 
identified in the TIB population, with allele frequencies 
equal to or greater than 0.95. These SNPs were annotated 
to genes related to skeletal muscle development, including 
MSTN, SMAD1, ERBB4, DOCK2, PLEKHM3, TANC1, 
ACVR1, PDGFRA, SGCB, ZFPM2, EPAS1, SMYD3, CAC-
NA1S, NEBL, and PAXBP1. Therefore, these genes may 
play significant roles in the smaller body size and slower 
growth rates observed in TIB pigs compared to LW pigs.

Skeletal muscle growth-related genes identified by KEGG 
pathway analysis
Muscle hypertrophy results from protein synthesis 
exceeding protein degradation [37]. The mammalian 
target of rapamycin (mTOR) and the TGFβ/myostatin/
activin/BMP are two major signaling pathways that con-
trol protein synthesis and act as a positive and negative 

regulator of muscle hypertrophy [11]. The map of mTOR 
signaling pathway shows that the insulin/IGF-PI3K-Akt-
mTORC1, insulin/IGF-RAS-MAPK-ERK-mTORC1, 
amino acids-mTORC1, AMPK-mTORC1, Wnt-mTORC1 
and insulin/IGF-PI3K-mTORC2 subpathways are 
included in this signaling pathway. This study detected 
106 genes harboring 9,319 TIB-specific and 10,040 pre-
dominant SNPs, and 556 LW-specific and 4,010 pre-
dominant SNPs involved in the mTOR signaling pathway. 
Muscle protein synthesis in piglets is highly sensitive to 
alterations in insulin and amino acid levels that occur 
after feeding, and the initiation of translation is facili-
tated by the activation of mTORC1 by insulin and amino 
acids [37]. In this study, we observed that genes harbor-
ing missense and specific SNPs with allele frequencies 
equal to or greater than 0.95 were associated mainly with 
pathways involving insulin and amino acids (insulin/IGF-
PI3K-Akt-mTORC1 and amino acids-mTORC1).

The interaction of insulin and/or insulin-like growth 
factor-1 (IGF1) with their respective receptors, INSR 
and IGF1R, which locate on the cell membrane, initiates 
the phosphorylation of insulin receptor substrate (IRS1). 
IRS1 serves as an adapter protein that activates phos-
phatidylinositol 3-kinase (PI3K), which in turn recruits 
3-phosphoinositide-dependent protein kinase 1 (PDK1) 
and phosphorylates protein kinase B or Akt. Downstream 
of Akt, the tuberous sclerosis complex (TSC1-TSC2) acts 
as a target and inhibits the small G protein Ras homolog 
enriched in the brain (RHEB), which serves as a regula-
tor of mTOR [37, 42]. IGF1, IGF1R, INSR, IRS1, PI3K 
(PIK3R1), and PKD1 (PDPK1) were found to harbor mis-
sense or specific SNPs with allele frequencies equal to or 
greater than 0.95, with PI3K harboring both types of SNPs.

Amino acids accumulate within the lysosomal lumen 
and serve as a signal to the vacuolar V-ATPase through an 
‘inside-out’ mechanism. This V-ATPase is responsible for 
controlling the binding of the RAG GTPase-Ragulator [43]. 
Additionally, GTPases are recruited to lysosomes by Ragu-
lator. Simultaneously, amino acids enhance Ragulator’s 
GEF activity toward GDP-bound Rag A/B as well as FLCN-
FNIP1/2 and LRS’s GAP activity towards GTP-bound Rag 
C/D. Active Rag GTPases can then recruit mTORC1 to the 
lysosome, where it interacts with GTP-bound RHEB, ini-
tiating mTORC1 signaling [44]. Three V-ATPase subunits 
(ATP6V1E2, ATP6V1B2, and ATP6V1G3), FNIP2, and 
RRAGB were observed to have missense or specific SNPs 
with allele frequencies equal to or greater than 0.95, and 
ATP6V1E2 was found to have both of these types of SNPs.

The mTORC1 complex interacts with its two primary 
substrates, eukaryotic initiation factor (eIF) 4E binding 
protein 1 (4E-BP1) and p70 ribosomal protein S6 kinase 1 
(S6K1), to initiate the process of protein synthesis. Notably, 
the phosphorylation of 4E-BP1 and S6K1 plays a significant 
role in regulating the rate-limiting step of protein synthesis 
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[37]. Our data revealed the presence of missense or specific 
SNPs with allele frequencies greater than or equal to 0.95 
in three S6K genes (RPS6KA6, RPS6KA5 and RPS6KA1). 
Specifically, we observed 1858 TIB-specific SNPs with an 
allele frequency of 0.98 in a 182 kb region encompassing the 
RPS6KA6 gene. These specific SNPs were observed in our 
dataset and exhibited various functional types, including 
upstream, 3’ UTR, 5’ UTR, missense, synonymous, intron, 
and synonymous variants. This observation suggested that 
RPS6KA6 may contribute to the disparity in muscle growth 
between the TIB and LW populations.

Conclusion
In this study, 2,893,106 (13.29%) specific and predomi-
nant SNPs in the TIB population, and 813,310 (3.74%) 
in the LW population were detected and annotated 
to 24,560 genes. A total of 291 genes were found to be 
involved in the biological processes related to skeletal 
muscle differentiation, proliferation, hypertrophy, and 
myoblast differentiation and fusion; 106 genes were 
involved in the mTOR signaling pathway, a critical posi-
tive signaling pathway for muscle growth, and 20 genes 
were included in the TGFβ/myostatin/activin/BMP sig-
naling pathway, a negative signaling pathway associated 
with muscle fiber hypertrophy. Among these genes, sev-
eral have been extensively studied and are considered 
crucial for skeletal muscle development; they included 
MRF and MEF2 family members; the muscle growth 
inhibitors MSTN, ACVR1, and SMAD1; and the pro-
tein synthesis genes IGF1, IGF1R, and mTOR. Addition-
ally, numerous other genes, such as RPS6KA6, MYOM2, 
MYOCD, YAP1, SGCB, ATP6V1E2, ATP6V1B2, and 
ATP6V1G3, contained missense, synonymous or specific 
SNPs fixed or nearly fixed. These genes may also play sig-
nificant roles in the differences observed in skeletal mus-
cle growth between TIB and LW populations. This study 
employed an effective methodology to rigorously identify 
the potential genes associated with skeletal muscle devel-
opment, and the findings offer valuable insights into the 
genetic underpinnings of skeletal muscle development 
and hold considerable implications for enhancing com-
mercial meat production through pig breeding.
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