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Background
Complexities of splicing regulations
RNA splicing is a fundamental cellular process respon-
sible for connecting exons for translation and remov-
ing introns for nucleic acid recycling. It facilitates RNA 
export and translation, and is highly regulated in a tem-
poral and spatial manner, contributing to the complex-
ity of an organism’s transcriptome [1]. Splicing signals, 
including the 5’ splice site (5’ss), branch site, and 3’ splice 
site (3’ss), play crucial roles in orchestrating this intricate 
process. Additional elements, such as a polypyrimidine 
tract downstream of the branch site and an AG dinucleo-
tide exclusion zone, aid in the recognition of the 3’ss [2]. 

BMC Genomics

†Ang-Chu Huang, Jia-Ying Su, Yu-Jen Hung and Hung-Lun Chiang 
contributed equally to this work.

*Correspondence:
Hsin-Nan Lin
arith@gate.sinica.edu.tw
Chien-Ling Lin
mbcllin@gate.sinica.edu.tw
1Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia 
Road, Nangang District, Taipei City 115014, Taiwan
2Genome and Systems Biology Degree Program, Academia Sinica and 
National Taiwan University, Taipei, Taiwan
3Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
4Bioinformatics Program, International Graduate Program, Academia 
Sinica, Taipei, Taiwan
5Institute of Biomedical Informatics, National Yang Ming Chiao Tung 
University, Taipei, Taiwan

Abstract
Background  Splicing variants are a major class of pathogenic mutations, with their severity equivalent to nonsense 
mutations. However, redundant and degenerate splicing signals hinder functional assessments of sequence variations 
within introns, particularly at branch sites. We have established a massively parallel splicing assay to assess the impact 
on splicing of 11,191 disease-relevant variants. Based on the experimental results, we then applied regression-based 
methods to identify factors determining splicing decisions and their respective weights.

Results  Our statistical modeling is highly sensitive, accurately annotating the splicing defects of near-exon intronic 
variants, outperforming state-of-the-art predictive tools. We have incorporated the algorithm and branchpoint 
information into a web-based tool, SpliceAPP, to provide an interactive application. This user-friendly website allows 
users to upload any genetic variants with genome coordinates (e.g., chr15 74,687,208 A G), and the tool will output 
predictions for splicing error scores and evaluate the impact on nearby splice sites. Additionally, users can query 
branch site information within the region of interest.

Conclusions  In summary, SpliceAPP represents a pioneering approach to screening pathogenic intronic variants, 
contributing to the development of precision medicine. It also facilitates the annotation of splicing motifs. SpliceAPP 
is freely accessible using the link https://bc.imb.sinica.edu.tw/SpliceAPP. Source code can be downloaded at https://
github.com/hsinnan75/SpliceAPP.
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Mechanistically, the 5’ss base pairs with U1 small nuclear 
RNA (snRNA), and the branch site pairs with the rec-
ognition sequence of U2 snRNA [3]. The stabilization of 
U2 small nucleoproteins (snRNPs) on the branch site is 
facilitated by the interplay of U2 auxiliary factor 2 and U2 
auxiliary factor 1 with the polypyrimidine tract and the 
3’ss during 3’ss recognition. This interaction positions the 
branchpoint for nucleophilic attack on the 5’ss, marking 
the initial catalytic event of splicing.

Challenges in splicing variant prediction
The costs of whole-genome sequencing are declining 
as sequencing technology advances, and the library of 
human genetic variants is expanding dramatically every 
day. It is estimated that 10–30% of disease-associated 
genetic variants affect splicing [4, 5]. Splicing variants 
may generate deleteriously altered gene products and 
become potential therapeutic targets. However, predict-
ing redundant and degenerate splicing signals is a major 
challenge for the functional evaluation of intronic vari-
ants. While the 5’ss and 3’ss are well-defined, branch 
sites, polypyrimidine tracts and many splicing regulatory 
elements exhibits greater variability in sequence motif 
and position in higher organisms. Large-scale mapping 
studies have identified multiple branch sites detected 
within a given intron [6, 7]. This variability in the splicing 
motifs poses challenges in interpreting intronic sequence 
variations near intron-exon boundaries.

SpliceAPP: transparent splicing variant prediction 
with LASSO regression
Deep-learning has been widely deployed to develop 
splicing predictive tools capable of interpreting intronic 
mutations [4, 8, 9]. Nevertheless, those models trained 
on specifying canonical splice sites from intergenic splice 
site-like sequence (GT or AG) or alternative splice sites 
based on flanking sequence perform moderately in terms 
of detecting splice-altering intronic mutations. This limi-
tation arises from the fact that disease-related mutations 
often occur within sequences resembling wild-type coun-
terparts, leading to minimal alterations in gene structure 
scores. Additionally, some predictive models are con-
strained by their focus solely on predicting splice site and 
exonic splicing variants [10–12]. Moreover, the inherent 
limitations of deep learning prevent the establishment 
of the significance of each input factor, which hampers 
further model refinement and advancement. Therefore, 
we established a LASSO regression model from a mas-
sively parallel splicing assay on 11,191 human disease-
relevant intronic mutations. In this assay, both reference 
and alternative alleles spanning the splice sites were 
synthesized in bulk into DNA oligos and then ligated 
into three exon-containing splicing minigenes. These 
minigenes, equipped with CMV promoters and polyad-
enylation signals, were transfected into HEK293T cells 
for expression and splicing. Subsequently, the splicing 
outcomes were resolved by amplicon sequencing using 
primers on the flanking common exons. The difference of 
splicing efficiency between the reference and alternative 

Fig. 1  Development of the splicing error predictive model, SpliceAPP, from experimental splicing assays. A total of 11,191 pairs of oligos containing 
human disease-relevant mutations were synthesized in bulk and ligated into 3-exon splicing minigenes. By contrasting variants with and without a 
splicing defect, we developed an explanatory and predictive model, SpliceAPP, that classifies splicing variants with high sensitivity and specificity. The 
algorithm not only explains the mechanism of splicing decisions but is also useful in annotating defects of non-coding variants that may potentially af-
fect human health
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allele pairs was determined by Fisher’s exact test (Fig. 1). By comparing variants with or without a splicing effect, 

Fig. 2  The workflow of SpliceAPP. The tool accepts variant descriptions in Variant Call Format (VCF) and filters out variants not in the splice region and 
indels. Based on the variants’ position, it is directed to either 5’ splice site (5’ss) or 3’ splice site (3’ss) models. The 3’ss models further categorize variants that 
generate a novel AG (3’ss) into a separate model. Utilizing pre-trained factors, three models assess the impact of the variant. PhasCons100: evolutionary 
conservation level, mt: mutation or variant, alt: the alternative allele, MFE: minimum free energy, indicating the pairing energy between the wildtype in-
trons and U2 snRNA, dG: folding energy, Py track: polypyrimidine track, SNP: single nucleotide polymorphism. The output includes basic characterization 
of the variant and its associated gene and intron, along with the classification of splicing variant
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we identified factors that influence the splicing decision. 
The LASSO penalty was selected by tuning toward the 
minimal deviance for regression. Hence, we used the fol-
lowing formula to determine the coefficient of influential 
features in splicing decisions:

	
Log

P(Yi = 1)

1− P(Yi = 1)
= β0 +

p∑

j=1

βjXji

where Yi=1 is the ith alternative sequence that signifi-
cantly affects splicing, and Xji is the feature j in the ith 
sequence.Our method not only incorporates primary 
sequences, but also combines our knowledge of RNA 
splicing and genomics, converting this knowledge into 
parameters for statistical learning (Fig.  2). For example, 
we consider evolutionary conservation, structural open-
ness and sequence folding efficiency, all of which are fea-
tures that cannot be gleaned from primary sequences. 
These and other features are selected and weighted by 
LASSO regression as a formula to predict splicing errors. 
Given that the mechanisms of 3’ and 5’ splice site (ss) 
recognition are distinct—involving two distinct spliceo-
somal complexes, i.e., U2 and U1 snRNPs, respectively—
we have trained the models of splicing errors separately. 
Furthermore, the 3’ss is sensitive to competition from 
intronic 3’ss created by mutations, so variants that gen-
erate intronic 3’ss AG dinucleotides are assessed using a 
unique competition model. Overall, the final predictive 
models include three modules: 5’ ss, 3’ ss novel-AG, and 
3’ ss non-AG [13].

Identification of RNA splicing errors for precise genetic 
diagnosis
Our statistical modeling proved highly sensitive and 
accurate in annotating the splicing defects of near-exon 
intronic variants, outperforming the predictive abil-
ity of benchmarking predictive tools (Fig.  3). In addi-
tion, unlike AI (Artificial Intelligence)-based black box 

models, our factor-based model provides information 
explaining changes in RNA splicing, and our transpar-
ent model can be further refined by experts in all fields. 
The model established by our lab, which we have named 
SpliceAPP, is freely available as an interactive web server 
(https://bc.imb.sinica.edu.tw/SpliceAPP/), providing a 
platform for precise diagnosis and precision medicine of 
RNA splicing errors.

Implementation
Here, we introduce a web application, SpliceAPP (Splice 
Alternative Profile-based Predictor), which we built to 
deploy our predictive models for splicing alterations of 
human intronic variants. SpliceAPP provides a user-
friendly interface for querying unknown genetic variants 
for prediction and searching for the previously predicted 
variants in the SpliceAPP database. The back-end predic-
tion module of SpliceAPP was developed using C++, and 
the front-end user interface (UI) has been designed using 
PHP, HTML, CSS, and JavaScript. SpliceAPP also fea-
tures a progress bar and an email notification function. 
Moreover, it facilitates retrieval of information about 
branchpoints within specific regions. SpliceAPP offers 
a genome browser equipped with ‘IGV.js’, an interactive 
genome visualization component. This tool enables users 
to easily navigate through both predicted and experi-
mental branch site data with the genome features, such 
as genes and exons. The application is compatible with 
major web browsers, including Google Chrome, Firefox, 
Safari, and Internet Explorer. We also provide a stand-
alone version for running SpliceAPP on a local server.

Results
SpliceAPP ignores genetic variants that are located out-
side gene regions. If a genetic variant is located between 
− 3 and + 30 basepairs (bp) from the 5’ end of an intron, 
it is considered a 5’ variant. If it is located between − 78 
and − 4  bp from the 3’ end of an intron, it is a 3’ vari-
ant. If a 3’ variant produces a novel AG dinucleotide, it 

Fig. 3  The comparative performance of SpliceAPP and SpliceAI in predicting splicing errors. Sensitivity and specificity measures the algorithm’s ability to 
correctly classify true positives and negatives [14, 15], respectively. The F-measure, also referred to as F-score, provides an overall assessment of accuracy of 
an algorithm considering both precision and recall. It is calculated as 2 times the product of precision and recall divided by the sum of precision and recall
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is predicted with the 3’ ss novel-AG model; otherwise, it 
is 3’ ss non-AG, with predictions performed accordingly. 
Variants outside of these regions are triaged before pre-
diction analysis but remain in the output table with only 
the basic gene information.

The model built by our team is highly accurate, outper-
forming the predictive ability of currently available tools. 
Specifically, in a validation dataset of 107 intronic 3’ vari-
ants (31 splice-altering and 76 with no effect) [14], our 

model achieved 90.3% sensitivity in terms of detecting 
splicing variants (90.8% specificity and 90.7% accuracy), 
outperforming the 9.7% sensitivity of SpliceAI, a splicing 
prediction tool developed by Illumina. In a separate vali-
dation dataset of 314 5’ variants (17 splice-altering and 
297 with no effect) [15], our model achieved 100% sen-
sitivity (92.6% specificity and 93.0% accuracy), compared 
to the 70.1% sensitivity of SpliceAI (Fig. 3). The strength 
of the validation is limited by the size of the available 

Fig. 5  SpliceAPP offers the Branch Point Query function. The Integrative Genomics Viewer (IGV) features predicted branch points identified through SVM-
BPfinder, complemented by experimentally derived branch points sourced from prior studies

 

Fig. 4  A user-friendly web interface of SpliceAPP. (A) SpliceAPP is an interactive web tool that only requires inputs of Variant Call Format (VCF). (B) The 
output will be gene location, genomic coordinates of the closest intron, transcript strand, 3’ or 5’ end predictive model used, distance between the variant 
to the closest splice site, predicted branchpoint, predicted splice variant score and its effect on splicing of the nearby splice sites
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datasets. Nonetheless, SpliceAPP achieves highest accu-
racy among the tools tested (https://bc.imb.sinica.edu.
tw/SpliceAPP/evaluation.html).

SpliceAPP is a user-friendly website that allows users 
to upload any variants with chromosomal coordinates 
and altered allele type information or bulk variants in 
Variant Call Format (VCF) using human genome assem-
bly GRCh38 (hg38) (Fig. 4A). Variants not aligning with 
the hg38 reference genome or situated outside the com-
putable regions are automatically disregarded from the 

prediction. The output of SpliceAPP includes the gene 
where the variant is located, the genomic coordinates of 
the closest intron, the transcript strand, the 3’ or 5’ end 
predictive model used, the distance between the vari-
ant to the closest splice site, the predicted splice variant 
score, and its effect on splicing of the nearby splice sites 
(Fig. 4B). The score (0 ~ 1) represents the likelihood of the 
variant disrupting canonical splicing, and the effect indi-
cates the significance of a splicing error. It is determined 
by identifying the optimal cutoff point that maximizes 

Fig. 6  SpliceAPP prediction correlates with population health outcomes. (A) A quantile-quantile plot (Q-Q plot) shows an inflated distribution of p-
values between SpliceAPP significant variants and population biomarkers in the Taiwan Biobank. Note that the variants collected by Taiwan Biobank have 
health-related implications, as evidenced by the skewed p-value distribution (both red and blue) from the theoretical p-value distribution (dashed lines). 
(B) Variants associated with more than five aberrant biochemical test values (p < 0.01) are predicted with higher splice variant scores by SpliceAPP. (C) 
Prediction outcome of known disease-related splicing mutations with SpliceAPP (19, 20 and the references therein)
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both sensitivity and specificity for each independent 
model. The cutoffs are 0.13 for the 5’ss model, 0.1837238 
for the 3’ss AG model, and 0.07784796 for the 3’ss non-
AG model. The results can be viewed directly on the 
webpage or downloaded and then opened in Microsoft 
Excel. In addition, users can choose to save the predicted 
results into a SpliceAPP database, serving as a search-
able database of collected intronic variants and their pre-
dicted splicing effects.

To provide insights into functional regions in introns, 
we have compiled information on branchpoint loca-
tions discovered in previous studies [6, 7, 16, 17] and 
integrated the highest-scoring predicted branchpoint 
sites from SVM-BPfinder [18], presenting them in an 
Interactive Genomics Viewer (IGV) (Fig.  5). Users can 
input regions of interest and gene names to query if spe-
cific areas contain branchpoint information. This user-
friendly feature provides accessible and comprehensive 
information about the functionality of intronic regions.

Discussion
We employed SpliceAPP to classify splicing variants 
within the Taiwan Biobank dataset, which comprises over 
105 genetic polymorphisms from 68,978 community sam-
ples featuring various health-related biochemical mea-
surements and self-reported disease information. Among 
3,341 single nucleotide polymorphisms (SNPs) with a fre-
quency above 0.01 that were assessed by SpliceAPP, 335 
were identified as splicing variants. To demonstrate the 
significance of these predictions, we evaluated the asso-
ciation of the 3,341 variants with 24 biochemical test val-
ues. Linear regression was used to assess the association 
between each SNP and continuous biochemical indices, 
while logistic regression was implemented to test the 
association between each marker and categorical traits. 
For comparability, we selected 335 variants predicted 
to be neutral with the lowest scores by SpliceAPP and 
minor allele frequencies (MAF) similar to those of the 
significant variants (± 0.01). The p-values calculated from 
these associations were used to generate a quantile-quan-
tile plot (Q-Q plot) for both the 335 neutral variants and 
the 335 significant variants. By comparing the correlation 
between aberrant biochemical indices of significant splic-
ing variants or neutral variants predicted by SpliceAPP, 
we observed a significant deviation in association p-val-
ues (indicated by inflation from the background in the 
Q-Q plot) for the SpliceAPP splicing variants (Fig.  6A). 
Moreover, variants associated with more than five aber-
rant health indices showed higher splice variant scores 
as calculated by SpliceAPP (Fig.  6B). These results sug-
gest that SpliceAPP effectively identifies splicing defects 
relevant to health outcomes in the population. Addi-
tionally, we used SpliceAPP to predict reported splic-
ing mutations and demonstrated that these mutations 

significantly impact splicing outcomes (Fig.  6C), consis-
tent with clinical reports [19, 20]. This consistency rein-
forces SpliceAPP’s effectiveness in evaluating the impact 
of genetic variants on splicing and their associated health 
outcomes, confirming its potential as a robust method 
for clinical and population health research.

Notably, transcripts harboring splicing variants were 
predicted with a significant loss of the gene product, 
potentially attributed to the nonsense-mediated mRNA 
decay mechanism. In instances where truncated proteins 
or proteins with missing domains were produced, we 
observed alterations in signaling transduction, leading to 
abnormal downstream regulation. These findings under-
score the detrimental impact of splicing variants, empha-
sizing the importance of identifying and understanding 
their effects.

We acknowledge the significance of tissue-specific 
regulation in splicing, which may play a crucial role in 
splicing decisions in the context of intronic mutations. 
However, SpliceAPP has not identified tissue-specific 
factors underlying splicing decisions. All the features 
considered are characteristics of the pre-mRNA, such 
as evolutionary conservation, the distance between the 
variant and the splice site, and the strength of the splice 
sites. Consequently, SpliceAPP’s predictions are not 
tissue-specific.

Conclusions
SpliceAPP focuses on predicting splicing errors of near-
exon intronic sequence variations, aiming to fill a gap in 
intronic variant interpretation, given that several other 
efforts focus on exonic splicing variant prediction [10–
12]. While SpliceAPP diagnoses variants in near-exon 
regions, where splicing variants are enriched, it does not 
predict deep intronic mutations. Overall, we demon-
strated superior accuracy in splicing variant prediction 
over benchmarking tools and showcased its association 
with aberrant health phenotypes in the population. By 
annotating splicing errors and intronic splicing signals, 
we anticipate that SpliceAPP can accelerate the func-
tional interpretation of genome variations.

Availability and requirements
Project name: SpliceAPP.

Project home page: https://bc.imb.sinica.edu.tw/
SpliceAPP/.

Operating system(s): platform independent.
Programming language: C++, PHP, HTML, CSS, and 

JavaScript.
Other requirements: web browsers, internet 

connectivity.
License: none.
Any restrictions to use by non-academics: none.

https://bc.imb.sinica.edu.tw/SpliceAPP/
https://bc.imb.sinica.edu.tw/SpliceAPP/
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5’ss	� 5’ splice site
3’ss	� 3’ splice site
snRNA	� small nuclear RNA
snRNP	� small nucleoproteins
AI	� Artificial intelligence
bp	� Basepairs
VCF	� Variant Call Format
IGV	� Interactive Genomics Viewer

Acknowledgements
Special thanks to the Eyras group who developed SVM-BPfinder that 
significantly aided the development of SpliceAPP. We thank all members of 
IMB for tremendous help and support.

Author contributions
A-C H and Y-T C collected data. Y-T H and C-L L built the models. H-L C and J-Y 
S designed the web server. Y-J H, CA Y and H-N L built the web server. A-C H, 
J-Y S, H-N L and C-L L wrote the manuscript.

Funding
support for this work was provided by Career Development Award and 
Multidisciplinary Health Cloud Research Program of Academia Sinica (AS-CDA-
108-M03 and AS-PH-109-01-3), Career Development Award of National 
Health Research Institutes, Taiwan (NHRI-EX112-10908BC), and Excellent 
Young Scholar Research Grants and Ta-You Wu Memorial Award of National 
Science and Technology Council, Taiwan (MOST 111-2628-B-001-003 and 
108-2118-M-001-013-MY5).

Data availability
The datasets analyzed during the current study are available at the NCBI GEO: 
GSE179892 and GSE120695.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 1 March 2024 / Accepted: 7 June 2024

References
1.	 Baralle FE, Giudice J. Alternative splicing as a regulator of development and 

tissue identity. Nat Rev Mol Cell Bio. 2017;18:437–51.
2.	 Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CWJ. 

(2006) A class of human exons with predicted distant branch points revealed 
by analysis of AG dinucleotide exclusion zones. Genome Biol, 7.

3.	 Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome. Annu 
Rev Biochem. 2020;89:89, 359–88.

4.	 Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, 
Kosmicki JA, Arbelaez J, Cui WW, Schwartz GB, et al. Predicting Splicing from 
primary sequence with deep learning. Cell. 2019;176:535–.

5.	 Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG. Using positional 
distribution to identify splicing elements and predict pre-mRNA processing 
defects in human genes. Proc Natl Acad Sci U S A. 2011;108:11093–8.

6.	 Taggart AJ, Lin CL, Shrestha B, Heintzelman C, Kim S, Fairbrother WG. Large-
scale analysis of branchpoint usage across species and cell lines. Genome 
Res. 2017;27:639–49.

7.	 Pineda JMB, Bradley RK. Most human introns are recognized via multiple and 
tissue-specific branchpoints. Gene Dev. 2018;32:577–91.

8.	 Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, Hua YM, 
Gueroussov S, Najafabadi HS, Hughes TR et al. (2015) The human splicing 
code reveals new insights into the genetic determinants of disease. Science, 
347.

9.	 Agathe JMD, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, Van Goethem C, 
Verebi C, Masingue M, Rendu J et al. (2023) SpliceAI-visual: a free online tool 
to improve SpliceAI splicing variant interpretation. Hum Genomics, 17.

10.	 Soemedi R, Cygan KJ, Rhine CL, Wang J, Bulacan C, Yang J, Bayrak-Toydemir 
P, McDonald J, Fairbrother WG. Pathogenic variants that alter protein code 
often disrupt splicing. Nat Genet. 2017;49:848–.

11.	 Rosenberg AB, Patwardhan RP, Shendure J, Seelig G. Learning the sequence 
determinants of alternative splicing from millions of Random sequences. Cell. 
2015;163:698–711.

12.	 Mort M, Sterne-Weiler T, Li B, Ball EV, Cooper DN, Radivojac P, Sanford JR, 
Mooney SD. (2014) MutPred Splice: machine learning-based prediction of 
exonic variants that disrupt splicing. Genome Biol, 15.

13.	 Chiang HL, Chen YT, Su JY, Lin HN, Yu CHA, Hung YJ, Wang YL, Huang YT, 
Lin CL. Mechanism and modeling of human disease-associated near-
exon intronic variants that perturb RNA splicing. Nat Struct Mol Biol. 
2022;29:1043–.

14.	 Leman R, Tubeuf H, Raad S, Tournier I, Derambure C, Lanos R, Gaildrat P, 
Castelain G, Hauchard J, Killian A et al. (2020) Assessment of branch point 
prediction tools to predict physiological branch points and their alteration by 
variants. BMC Genomics, 21.

15.	 Adamson SI, Zhan LJ, Graveley BR. (2018) Vex-seq: high-throughput identi-
fication of the impact of genetic variation on pre-mRNA splicing efficiency. 
Genome Biol, 19.

16.	 Mercer TR, Clark MB, Andersen SB, Brunck ME, Haerty W, Crawford J, Taft RJ, 
Nielsen LK, Dinger ME, Mattick JS. Genome-wide discovery of human splicing 
branchpoints. Genome Res. 2015;25:290–303.

17.	 Zeng Y, Fair BJ, Zeng HL, Krishnamohan A, Hou YC, Hall JM, Ruthenburg AJ, 
Li YI, Staley JP. Profiling lariat intermediates reveals genetic determinants of 
early and late co-transcriptional splicing. Mol Cell. 2022;82:4681–.

18.	 Corvelo A, Hallegger M, Smith CW, Eyras E. Genome-wide association 
between branch point properties and alternative splicing. PLoS Comput Biol. 
2010;6:e1001016.

19.	 Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 
2016;17:19–32.

20.	 Anna A, Monika G. Splicing mutations in human genetic disorders: examples, 
detection, and confirmation. J Appl Genet. 2018;59:253–68.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿SpliceAPP: an interactive web server to predict splicing errors arising from human mutations
	﻿Abstract
	﻿Background
	﻿Complexities of splicing regulations

	﻿Challenges in splicing variant prediction
	﻿SpliceAPP: transparent splicing variant prediction with LASSO regression
	﻿Identification of RNA splicing errors for precise genetic diagnosis

	﻿Implementation
	﻿Results
	﻿Discussion
	﻿Conclusions
	﻿Availability and requirements
	﻿References


