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Abstract
Background  The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction 
norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to 
map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in 
reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients 
through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing 
on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For 
this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight 
gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed 
to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M 
SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC.

Results  Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for 
AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for 
YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. 
The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with 
growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to 
lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and 
phosphate metabolism.
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Background
Nellore cattle are raised under different production sys-
tems that are predominantly characterized by extensive 
pastures, with animals being influenced by a wide range 
of climatic conditions. These environmental variations 
introduce disparities in forage availability and quality, as 
well as challenges related to heat stress, among other fac-
tors. In this context, differences between the production 
systems of the selected herds and commercial herds can 
result in differences in productive performance, which 
has significant economic implications for the livestock 
industry [1, 2]. These heterogeneous environmental 
conditions can decrease the accuracy of breeding values 
when genotype-by-environment (GxE) interactions are 
not accounted for during genetic evaluation [3, 4].

GxE interactions may affect the reranking of animals 
across different environments [5] and have been identi-
fied as an important source of variation in the produc-
tive and reproductive performance of beef cattle [3, 4, 
6, 7]. The evaluation of GxE interactions in beef cattle is 
routinely performed using reaction norm models [8, 9] 
to predict breeding values under different environmen-
tal conditions and to assess environmental sensitivity 
[1]. Traditionally, environmental gradients (EG) used to 
evaluate GxE interactions have been derived from con-
temporary group (CG) solutions based on phenotypic 
information [3, 7, 10]. This is because the CG encom-
passes the differences in nutritional and climatic factors, 
as well as the management in which the animals were 
raised over a determined period, representing a key factor 
in phenotypic variability [11]. Integrating genetic mark-
ers into reaction norm models allows the identification of 
candidate genes along environmental gradients through 
genome-wide association studies (GWAS) [12]. More-
over, the advent of whole-genome sequencing (WGS) 
technology has made it possible to refine the identifica-
tion of genomic regions that affect the traits of interest 
by providing greater chances of identifying causal muta-
tions when compared to marker panels with medium or 
high density [13]. Therefore, the combination of GWAS 
with WGS enables the unraveling of important regions of 
the genome, as well as candidate genes, thereby enabling 
the development of more informative marker panels and 
conducting more accurate genomic evaluations [13].

Implementing the reaction norm model with GWAS 
analysis could lead to a greater understanding of the 
genetic and physiological mechanisms regulating 

economically important traits. This approach also facili-
tates the identification of candidate genes associated with 
these traits across diverse environmental conditions. 
Thus, the overarching aim of this study was to perform 
GWAS utilizing sequencing data, focusing on mapping 
candidate genes associated with the expression of repro-
ductive and growth traits in Nellore cattle, employing the 
reaction norm approach.

Materials and methods
Phenotypic data
Phenotypic information was obtained from 138,706 
females and 942,577 Nellore males born between 1984 
and 2019 and belonging to three commercial breeding 
programs (DeltaGen, Cia do Melhoramento, and Paint 
– CRV Lagoa) in Brazil and Paraguay that integrate the 
Nellore Alliance dataset (www.gensys.com.br).

The traits used in the present study were age at first 
calving (AFC), scrotal circumference (SC), post-wean-
ing weight gain (PWG), and yearling weight (YW). In 
reproductive management, some herds exposed heifer 
to reproduction in two breeding seasons: (1) heifers aged 
16 months are exposed to reproduction for 60 days in 
an anticipated breeding season from February to April 
to identify sexually precocious heifers and (2) heifers 
that were not pregnant during the anticipated breeding 
season were given another opportunity during the regu-
lar breeding season (October and January), usually at 
approximately 24 months. During the mating season, the 
heifers were either artificially inseminated or naturally 
mated (∼ 50%). When a fixed-time AI protocol was used, 
the entire contemporary group received the same proto-
col, and pregnancy was diagnosed approximately 60 days 
after the end of the breeding season. Non-conceiving 
females are discarded from the herd. The AFC was com-
puted in days, which is the difference between the first 
calving date and the heifers’ birth date. SC was measured 
in centimeters (cm) at yearling, and PWG was calculated 
in kilograms (kg) to determine the difference between the 
YW and weaning weight.

For the analysis, only animals with known sires and 
dams and from contemporary groups (CG) with a mini-
mum of 20 animals were considered. The CG for the 
evaluated traits considered animals from the same year 
and season of birth, herd (at birth, weaning, and year-
ling), and management group (at birth, weaning, and 
yearling). The management group includes information 

Conclusions  GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune 
response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different 
environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive 
performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation 
of growth and reproductive traits in Nellore cattle raised under different environmental conditions.

http://www.gensys.com.br
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about nutritional and sanitary treatment at each growth 
stage. For YW and PWG, sex was also added to the CG. 
Descriptive statistics of the dataset used for each trait 
after data editing are shown in Table 1.

The pedigree dataset considered genealogical informa-
tion of 1,578,503 individuals form 9946 sires and 628,231 
dams encompassing 95,606 populations. The pedigree 
data set had an average inbreeding of 0.16% in the whole 
population, and the proportion of inbreeding animals 
was 2.66% (42,026 animals) over the total inbreeding 
population, showing an inbreeding average of 2.56% (0.01 
– 27.10%).

Genomic data
A total of 51,485 animals were genotyped with the Illu-
mina BovineHD (HD) chip (∼ 778 K SNPs; 4,559 samples) 
or with a lower and medium density assay (from ∼ 26 K 
to ∼ 74 K SNPs; 46,926 samples). Animals genotyped at 
lower and medium densities were imputed to HD pan-
els using the software FImpute v.3 [14] considering the 
ARS-UCD1.2 map. Additionally, 151 influential Nellore 
sires were whole genome sequenced (WGS) using the 
Illumina HiSeq X™ Ten (n = 51) and Illumina NovaSeq 
6000 (n = 100) platforms at an average sequence cover-
age of 14.5x (from 7.8 to 26.3x). Quality control, align-
ment, and variant calling were carried out following the 
guidelines provided by the 1000 Bull Genomes Project 
and described by Fernandes Júnior et al. [15]. A total of 
30,394,484 autosomal SNP markers remained after qual-
ity control. Animals genotyped with 700k were imputed 
for WGS using the software FImpute v.3 [14], consider-
ing as a reference population 151 sires with the highest 
number of genotyped animals. The imputation accuracy 
of 0.94 was previously evaluated; for more details see Fer-
nandes Júnior et al. [15].

Due to computational limitations, we selected 20,000 
genotypes for SC, PWG, and YW and 7,159 genotypes for 
AFC with GEBV accuracy higher than 0.70. The GEBVs 
accuracy was calculated based on prediction error vari-
ance (PEV) and the genetic variance for each trait (σ2

a ) 
using the following equation [16]: Acc = 1−

√
PEV/σ2

a
. The GEBV was estimated using the following animal 
model:

	 y = Xb + Za + e

,where y is the vector of observations;b is the vector 
of fixed effects of CG and age of the animal at the mea-
surement as linear and quadratic covariates for YW and 
PWG; a is the vector of genetic additive effects, and e  is 
the vector of random residual effects. The X and Z  are 
the incidence matrices related to fixed (b) and random 
effects (a), respectively. The model was fitted considering 
the random effects of animals and residuals as normally 
distributed: a ∼ N(0,Aσ2

a and e ∼ N(0, Iσ2
e ), where A 

is the numerator relationship matrix between animals, I 
is the identity matrix;σ2

a  is the additive genetic variance 
and σ2

e  is the residual variance. The parameters were esti-
mated using the restricted maximum likelihood method 
considering the average information algorithm imple-
mented in blupf90+ software [17].

Considering the number of animals genotyped for 
each trait and a large number of markers (30,394,484), 
markers with linkage disequilibrium values (r2) greater 
than 0.75 for SC, PWG, and YW and greater than 0.95 
for AFC were pruned using PLINK 2.0 [18]. This strategy 
was used to adjust the number of genotyped animals and 
genetic markers to the computational capacity. Addition-
ally, quality control (QC) of the genomic information was 
performed by removing autosomal markers with a minor 
allele frequency (MAF) lower than 0.05, Hardy–Wein-
berg equilibrium (P ≤ 10− 5), and a call rate of markers 
and samples lower than 0.90. After quality control and 
removing markers for LD, a total of ∼ 2.41  M SNPs for 
SC, PWG, and YW and ∼ 5.06 M SNPs for AFC remained 
for the GWAS analyses via reaction norm models.

Genotype by environment interaction (GxE)
Environmental gradient descriptor
The dataset used to evaluate the sensitivity of sexual pre-
cocity indicators (AFC and SC) and growth traits (YW 
and PWG) was assessed through the reaction norm 
model in two steps [3, 4]. In the first step, the environ-
mental gradients (EG) for AFC, SC, and YW were based 
on the best linear unbiased estimates (BLUE) solutions 
of CG for YW. We focused on YW because differences in 
production environments affecting YBW have a signifi-
cant impact on heifers’ early sexual maturity [3, 12, 19]. 
The EG for PWG was based on its CG solutions. The EG 
was obtained with an animal model as follows:

Table 1  Descriptive statistics of phenotypic information for age at first calving (AFC), scrotal circumference (SC), post-weaning gain 
(PWG), and yearling weight (YW)
Traits N N Female N Male Mean Min Max SD CG
AFC (days) 138,706 138,706 - 1,012 544 1,220 132 3,861
SC (cm) 438,592 - 438,592 26.7 15 45 3.8 9,988
PWG (kg) 920,981 470,732 450,249 100.8 30 250 36 20,926
YW (kg) 942,577 483,691 458,886 287.9 200 542 48.5 21,317
N: number of observations; Min and Max: minimum and maximum values; SD: standard deviation and GC: number of contemporary groups
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	 y = Xb + Za + e

where y is the vector of observations for YW or PWG;b 
is the vector of fixed effects of CG and age of the ani-
mal at the measurement as linear and quadratic covari-
ates; a is the vector of genetic additive effects assumed 
to follow a normal distribution given by N(0,Aσ2

a ) and e  
is the vector of random residual effects considered nor-
mally distributed as N(0, Iσ2

e ),. The X and Z  are the inci-
dence matrices related to fixed (b) and random effects 
(a), respectively. The model was performed using the 
blupf90 + software [17].

The EG descriptors obtained by CG solutions were 
standardized to a mean value of 0 and standard deviation 
(SD) equal to 1, with values ranging from − 3 to + 3 SD, to 
keep the environmental gradients on the same scale. The 
CG solutions of YW for AFC ranged from 228.98 (low 
EG; -3 SD) to 342.09 (high EG, 3 SD). The CG solutions 
of YW for young bulls with SC information varied from 
244.17 (low EG; -3 SD) to 388.23 (high EG, 3 SD), and 
for animals with YW varied from 227.46 (low EG; -3 SD) 
to 390.22 (high EG, 3 SD). The CG solutions of PWG for 
PWG ranged from 55.55 (low EG; -3 SD) to 177.43 (high 
EG, 3 SD).

Reaction norm (RN) model
In the second step, a single-step genomic reaction norm 
(ssGRN) model was used to assess GxE. The model 
assumed a heterogeneous residual variance across EG, 
using linear regression on EGi , with the intercept and 
slope coefficients being modeled using the log-residual 
function [20].

	 yij = Xb + φEGi +Z0a0j +Z1a1j + eij

where: yij is the phenotypic information (AFC, SC, YW, 
and PWG) of animal j on the environment i; b is the vec-
tor of fixed effects of CG for all traits and age at measure-
ment as linear and quadratic covariates for SC, YW, and 
PWG; φ  is the fixed regression coefficient of yij on EGi
; a0j  is the additive genetic effect for the intercept of ani-
mal j, a1j  is the additive effect of the slope of the animal j 
and eijis residual effects. The X, Z0 and Z1 are the inci-
dence matrix relating the fixed effects (b), intercept (a0) 
and slope (a1) to y. The ssGRNM model was fitted con-
sidering the following assumptions:

	

[
a0
a1

]
∼ N

(
0,H⊗

[
σ2

a0 σa0a1
σa0a1 σ2

a1

])
and eij ∼ N(0, I⊗R)

where H is a combined pedigree-genomic relationship 
matrix, σ2

a0 and σ2
a1 are the genetic variances for intercept 

and slope, respectively, σa0a1 is the genetic covariance 

between the reaction norm parameters (intercept and 
slope), ⊗ is the Kronecker product; I is an identity matrix, 
and R is the residual variance matrix considering hetero-
geneous classes. In the ssGRN methodology, the inverse 
of the H matrix (H−1) is given as follows:

	
H−1 = A−1 +

[
0 0

0 G−1 −A−1
22

]

where A− 1 is the inverse of the pedigree-based relation-
ship matrix for all animals, A−1

22  is the inverse of the 
pedigree-based relationship matrix for the genotyped 
animals, and G− 1 is the inverse of the genomic relation-
ship matrix (G), obtained according to VanRaden [21]:

	
G =

WW ′
∑w

i=1 2pi(1− pi)

where W  is the genotype matrix with codes 0, 1, and 
2 for AA, AB, and BB, adjusted for allele frequency 
expressed as 2pi, and pi is the frequency of the second 
allele. These analyses were performed using the software 
blupf90 + from the BLUPF90 [17].

The p-values associated with the SNP effects were 
obtained from the postGSf90 program within the 
BLUPF90 software suite [17]. The p-values for the SNP 
effects were obtained by Aguilar et al. [22]:

	
p − value = 2

(
1−ϕ

(
|αi|

SD (αi)

))

where αi is the allele substitution effect of the ith 
marker, SD (αi) is the standard deviation of the ith SNP 
marker (αi) and ϕ is cumulative function of the normal 
distribution.

Multiple testing correction and significance testing
The Bonferroni correction test was performed con-
sidering a significance threshold for the marker of 
0.05 divided by the number of independent BTA seg-
ments (Me). The Me considered the effective popula-
tion size (Ne) and the BTA length [L, in centimorgans 
(cM)] and was calculated as proposed by Goddard et 
al. [23]: Me = 2NeL/(log(NeL )) , where Ne was equal 
to 100 [24], and L equal to 2,750  cM for the autoso-
mal chromosome of Nellore cattle (https://ncbi.
nlm.nih.gov/datasets/genome/GCF_000247795.1/). 
As a result, SNP were deemed statistically signifi-
cant if their−log10 (p − value) was greater than 5.45. 
The inflation/deflation factor (λ) were calculated as 
λ = median (−log10 (p − value)) /0.456, and λ values 
varied from 0.95 to 1.18 were considered acceptable in 
GWAS [25].

https://ncbi.nlm.nih.gov/datasets/genome/GCF_000247795.1/
https://ncbi.nlm.nih.gov/datasets/genome/GCF_000247795.1/
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Functional analysis
After GWAS analyses, all SNPs were ranked based 
on their p-values. The average distance in bases pair 
between SNPs in each BTA was closer to 1 kb (see addi-
tional File 1 Table S1). Due to the short distance between 
genetic markers, a region of ± 5  kb around each signifi-
cant SNP marker was used to map the genes using the 
Ensembl Variant Effect Predictor (VEP) [26] consider-
ing the ARS-UCD1.2 assembly as the reference genome 
(GCA_002263795.2).

A “training list” containing the top 100 genes associ-
ated with relevant keywords for each trait (see Additional 
file 1 Table S2) and for GxE (resilience, resistance, robust-
ness, fitness, plasticity, and adaptability) was created 
using Guildify [27]. The gene list from VEP and training 
list from Guildify were used as a test list in the ToppGene 
Suite [28]. The prioritized significant genes were selected 
based on a multiple correction false discovery rate (FDR) 
of 5% (p-value ≤ 10 − 3), indicating that the test genes have 
the same functional profile as the genes on the “trained” 
list [28]. The R packages ClusterProfiler [29] and enrich-
plot [30] were used for enrichment analysis and func-
tional clustering of GO terms for the list of “test” genes. 
Genes and GO terms were considered enriched when the 
FDR was lower than 5%.

Results
Significant markers
Significant SNPs associated with both the AFC inter-
cept and slope on EG coefficients were identified on 

practically all BTAs except for BTA12 (Fig. 1). Significant 
SNPs were found on BTAs 2, 3, 6, 10, 14, 16, 21, and 23 
for both SC coefficients (Fig.  2). For PWG, significant 
SNPs were identified on BTA 6, 25, and 29 for intercept 
and on BTA 6, 13, 25, and 29 for the slope coefficient 
(Fig. 3). For YW, significant markers were found on BTA 
6, 10, 14, and 29 for the intercept coefficient and on BTA 
6, 10, 14, 23, 25, and 29 for the slope (Fig. 4). Consider-
ing a region of ± 5  kb of the significant SNPs, a total of 
56, 9, and 24 positional candidate genes were identified 
for intercept coefficient affecting AFC (see Additional file 
1 Table S3), SC (see Additional File 1 Table S4) and YW 
(see Additional file 1 Table S6), respectively, while for 
PWG (see Additional file 1 Table S5) no gene was found 
for the intercept. For the slope coefficient, a total of 50, 
10, 3, and 29 genes were identified as affecting the AFC, 
SC, PWG, and YW, respectively (see Additional File 1 
Table S3–S6).

The significant SNP markers (− log10 (p-value) > 5.45) 
for productive and reproductive traits in Nellore cattle 
were environmentally dependent, with reranking of 
their effects across EG levels (Fig.  5). The SNP mak-
ers effects in the low EG (-3.0) were different from 
those in the high EG (3.0, Fig. 5). This strong effect of 
SNPxE interaction indicates that genomic regions have 
a striking effect on the Nellore sexual precocity indica-
tor (Fig. 5a and b) and weight traits (Fig. 5c and d) at a 
determined EG level, with changes not only in magni-
tude but also in direction. A greater dispersion of SNP 

Fig. 1  Manhattan plots of −log10(p − value) for the intercept (a) and slope (b) coefficients of the reaction norm model for age at first calving (AFC). 
The horizontal line represents the significance threshold −log10 (p − valued) > 5.45 used to identify the significant SNPs
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marker effects was observed for SC (Fig. 5b) and YW 
(Fig. 5d) when the EG level became less restrictive.

After gene prioritization by ToppGene, 32, 6, and 
2 positional candidate genes were retained for AFC, 
SC, and YW intercept coefficient, respectively. For 
the slope, there were 31, 6, 1, and 3 genes for AFC 
(Table  2), SC, PWG, and YW (Table  3), respectively. 

In the functional analysis, enriched clusters represent-
ing the relationships between prioritized genes and 
GO terms for intercept and slope common genes were 
found for the studied traits, and the complete table 
with all enrichment analysis results can be found in 
the supplementary material (Tables S7 to S9).

Fig. 3  Manhattan plots of −log10(p − value) for the intercept (a) and slope (b) coefficients of the reaction norm model for post-weaning weight 
gain (PWG). The horizontal line represents the significance threshold −log10 (p − valued) > 5.45 used to identify the significant SNPs

 

Fig. 2  Manhattan plots of −log10(p − value) for the intercept (a) and slope (b) coefficients of the reaction norm model for scrotal circumference 
(SC). The horizontal line represents the significance threshold −log10 (p − valued) > 5.45 used to identify the significant SNPs
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Fig. 5  Single nucleotide polymorphism (SNP) effect estimates significantly associated (−log10 (p − valued) > 5.45) with age at first calving (AFC, 
a), scrotal circumference (SC, b), post-weaning weight gain (PWG, c) and for yearling weight (YW, d) across environmental conditions. Different colors 
represent the chromosome where the SNP marker was identified

 

Fig. 4  Manhattan plots of −log10(p − value) for the intercept (a) and slope (b) coefficients of the reaction norm model for yearling weight (YW). The 
horizontal line represents the significance threshold −log10 (p − valued) > 5.45 used to identify the significant SNPs
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Coefficient SNP BTA1 Position2 MAF3 P-value4 Gene Adjusted
P-value5

Intercept rs43230433 1 44,063,185 0.035 0.00000113 COL8A1 0.016
rs381434568 1 150,106,131 0.516 0.00000265 KCNJ6 < 0.0000001
rs110470442 3 8,634,391 0.756 0.00000056 ITLN2 0.009
rs379055283 5 9,003,285 0.653 0.00000167 SYT1 < 0.0000001
rs720484023 5 9,385,330 0.278 0.00000167 PPP1R12A 0.005
rs715728654 7 55,339,011 0.424 0.00000145 KCTD16 0.048
rs517426012 8 69,530,246 0.335 0.00000267 BMP1 0.012
rs445538954 10 77,658,449 0.537 0.00000233 FUT8 0.014
rs519493432 11 12,923,464 0.034 0.00000111 DYSF 0.014
rs136849909 13 1,263,836 0.878 0.00000136 PLCB1 0.003
rs523777757 13 59,836,380 0.334 0.00000147 SNPH 0.011
rs208954324 14 19,491,973 0.825 0.00000238 PRKDC 0.009
rs520454646 14 29,257,049 0.388 0.00000085 CYP7B1 0.014
rs723811441 14 31,027,180 0.777 0.00000256 SGK3 0.009
rs43195263 14 32,141,429 0.863 0.00000259 PREX2 0.019
rs133920327 14 76,084,780 0.177 0.00000182 CNGB3 0.014
rs521155455 18 10,690,957 0.243 0.00000163 MEAK7 0.026
rs134265088 19 38,330,461 0.856 0.00000002 SKAP1 0.011
rs456261266 20 30,542,035 0.050 0.00000138 FGF10 < 0.0000001
rs720222086 20 37,304,855 0.823 0.00000313 NIPBL 0.011
rs380578567 21 25,211,390 0.046 0.00000030 CTSH 0.002
rs210224020 21 26,556,144 0.821 0.00000025 ABHD17C 0.014
rs475843527 21 26,731,693 0.546 0.00000025 CEMIP 0.014
rs519423782 24 57,664,815 0.063 0.00000283 ALPK2 0.014
rs464263309 25 33,683,982 0.366 0.00000014 BAZ1B 0.014
rs42102555 26 46,691,693 0.132 0.00000332 DOCK1 0.009
rs714730097 27 7,469,393 0.170 0.00000350 GPM6A 0.005
rs453588982 27 40,147,406 0.836 0.00000197 TOP2B 0.048
rs382211336 27 40,216,810 0.147 0.00000337 RARB 0.003
rs715500178 28 29,695,289 0.474 0.00000168 NDST2 0.048
rs720113004 29 34,597,655 0.039 0.00000050 NTM 0.048
rs520498826 29 49,201,864 0.894 0.00000259 CD81 0.009

Table 2  Prioritized candidate gene list for age at first calving (AFC) identified by Guildify and ToppGene analysis
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Discussion
We performed a GWAS via ssGRN to detect candi-
date genomic regions associated with sexual precocity 
indicators (AFC and SC) and growth traits (YW and 
PWG) (Figs.  1, 2, 3 and 4). Some identified genomic 
regions are common between slopes and inter-
cepts and between traits. The SNP markers detected 
(− log10(p-value) > 5.45) showed reranking across EG 
levels, in which the effects on the Low EG levels were 
different from those on the High EG levels (Fig.  5). 
The SNP effects changed in magnitude and direction 
according to the EG level. Several studies of reproduc-
tive traits in dairy cattle [31] and beef cattle [3, 12] and 
reproduction, body composition, and growth traits 
in pigs [32] have shown that different environmental 
conditions can cause substantial changes in SNP effect 
estimates.

Genomic regions for RN coefficients affecting AFC
The GWAS analysis for AFC has identified 33 and 32 sig-
nificant SNP markers associated with the intercept and 
slope, respectively. These markers map 29 genes that are 
shared between them (Table 2), which explains the high 
correlation between the coefficients of the reaction norm, 
which was rg = 0.93 [4]. Candidate genes with significant 
effect (−log10 (p − value) > 5.45) on the AFC intercept 
and slope were related to lipid metabolism. The PLCB1 
on BTA13 encodes a phospholipase and is related to 
the hydrolysis of phospholipids into fatty acids [33] and 
to the energy metabolism process [34]. In addition, it 
was associated with carcass fat deposition in cattle [35]. 
This gene is essential for fertilization in mammals since 
it is widely distributed on the oocyte plasma membrane 
and, independently, is involved in sperm–oocyte fusion 
as an extracellular component in mouse oocytes [36]. 

Coefficient SNP BTA1 Position2 MAF3 P-value4 Gene Adjusted
P-value5

Slope rs43230433 1 44,063,185 0.035 0.00000127 COL8A1 0.016
rs381434568 1 150,106,131 0.516 0.00000314 KCNJ6 < 0.0000001
rs110470442 3 8,634,391 0.756 0.00000064 ITLN2 0.009
rs379055283 5 9,003,285 0.653 0.00000181 SYT1 < 0.0000001
rs720484023 5 9,385,330 0.278 0.00000219 PPP1R12A 0.005
rs715728654 7 55,339,011 0.424 0.00000182 KCTD16 0.044
rs517426012 8 69,530,246 0.335 0.00000262 BMP1 0.013
rs445538954 10 77,658,449 0.537 0.00000266 FUT8 0.014
rs519493432 11 12,923,464 0.034 0.00000112 DYSF 0.015
rs136849909 13 1,263,836 0.978 0.00000137 PLCB1 0.003
rs523777757 13 59,836,380 0.334 0.00000142 SNPH 0.011
rs208954324 14 19,491,973 0.825 0.00000244 PRKDC 0.009
rs520454646 14 29,257,049 0.388 0.00000109 CYP7B1 0.014
rs723811441 14 31,027,180 0.777 0.00000264 SGK3 0.009
rs43195263 14 32,141,429 0.863 0.00000267 PREX2 0.018
rs133920327 14 76,084,780 0.177 0.00000219 CNGB3 0.014
rs521155455 18 10,690,957 0.243 0.00000160 MEAK7 0.026
rs134265088 19 38,330,461 0.856 0.00000002 SKAP1 0.011
rs456261266 20 30,542,035 0.050 0.00000175 FGF10 < 0.0000001
rs380578567 21 25,211,390 0.046 0.00000032 CTSH 0.002
rs210224020 21 26,556,144 0.821 0.00000028 ABHD17C 0.014
rs475843527 21 26,731,693 0.546 0.00000027 CEMIP 0.014
rs110296566 24 19,710,489 0.026 0.00000081 CELF4 0.048
rs519423782 24 57,664,815 0.063 0.00000305 ALPK2 0.014
rs464263309 25 33,683,982 0.366 0.00000015 BAZ1B 0.014
rs453588982 27 40,147,406 0.836 0.00000202 TOP2B 0.044
rs382211336 27 40,216,810 0.147 0.00000337 RARB 0.003
rs715500178 28 29,695,289 0.474 0.00000165 NDST2 0.044
rs715500178 28 29,695,289 0.474 0.00000165 ZSWIM8 0.048
rs720113004 29 34,597,655 0.039 0.00000049 NTM 0.045
rs520498826 29 49,201,864 0.894 0.00000250 CD81 0.009

BTA1 – Bos taurus autosome, Position2 – basis pair location of the signicant genetic marker; MAF3 – minor frequency allele; P-value4 – significance value obtained in 
GWAS analysis; Adjusted p-value5 – adjusted p-value obtained by gene prioritization

Table 2  (continued) 
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Additionally, it is expressed in bovine oocytes during 
early growth and meiotic maturation and appears to be 
required for successful sperm–oocyte interactions dur-
ing fertilization [37, 38]. The PLCB1 gene has previously 
been associated with heat stress in sheep and goats [39], 
cattle [40, 41], and catfish [34], suggesting that it can be 
an indicator of the GxE interaction response. The CTSH 
(BTA21) is a gene belonging to the cathepsin family and 
is involved in adipocyte differentiation [42]. The age at 
first calving, a trait related to female sexual precocity, 
can be affected by the level of subcutaneous fat in cattle 
[43]. These findings indicate that both genes (PLCB1 and 
CTSH) have pleiotropic properties, supporting the occur-
rence of a favorable effect on subcutaneous fat deposition 
and precocity/fertility traits in bovine females [44–46].

The FUT8 gene on BTA10 encodes an enzyme that 
transfers fucose from GDP-fucose to glycoconjugates 
such as glycoproteins [47]. This gene was also associated 
with AFC [48] and sire conception rate [49]. Deletion of 
this gene in mice induced severe growth retardation and 
death during postnatal development [50]. Furthermore, 
FUT8 is an essential gene for maintaining normal physi-
ological homeostasis [47, 50, 51], suggesting its role in 
adapting to environmental variations. The PPP1R12A 
gene (BTA5) is involved in insulin signaling regula-
tion [52] and is associated with Nellore female sexual 
precocity [12]. This gene is promising since metabolic 

homeostasis mediated by insulin and glucose has an 
important role in the nervous system and ovary [53]. 
FGF10 (BTA20) is a member of the fibroblast growth fac-
tor family and is of particular interest for livestock repro-
duction because it is expressed in theca cells, luteal cells, 
and oocytes [54, 55] in addition to playing an important 
role in oocyte maturation in bovines [56–58].

The functional enrichment analysis identified the major 
biological processes related to the positive regulation of 
cell communication (GO:0010647), neuropeptide cata-
bolic process (GO:0010813), positive regulation of sig-
naling (GO:0023056), MAPK cascade (GO:0000165), 
myoblast fusion involved in skeletal muscle regeneration 
(GO:0014905) and molecular function in lipid binding 
(GO:0008289, Table 4). These biological processes affect 
AFC by improving signaling pathways that involve hor-
mones like estrogen and testosterone (GO:0010647 and 
GO:0023056), but also by hormones that affect cellular 
processes, such as growth, differentiation, and hormonal 
activities (GO:0000165) and early muscle development 
(GO:0014905, Table 4) in response to hormonal changes 
associated with early puberty [46, 59].

The MAPK signaling pathway interacts with different 
intracellular signaling pathways, such as steroid recep-
tors that influence uterine cell proliferation [60], and 
plays a key role in embryonic and yolk sac angiogenesis 
during fetal-placental development [61]. Furthermore, 

Table 3  Prioritized candidate gene for scrotal circumference, post-weight gain, and yearling weight identified by Guildify and 
ToppGene analysis
Coefficient SNP BTA1 Position2 MAF3 P-value4 Gene Adjusted

P-value5

Scrotal circumference
Intercept rs461649851 2 31,692,781 0.551 0.00000008 GRB14 0.008

rs444130700 3 30,792,574 0.357 0.00000149 WNT2B 0.048
rs439617979 10 49,596,492 0.144 0.00000256 RORA 0.006
rs133204123 10 59,132,956 0.226 0.00000021 CYP19A1 < 0.0000001
rs473452904 14 23,216,603 0.803 0.0000005 LYN < 0.0000001
rs211490057 16 57,727,044 0.491 0.00000098 PAPPA2 0.016

Slope rs461649851 2 31,692,781 0.551 0.00000323 GRB14 0.008
rs717748518 10 51,018,655 0.089 0.0000027 MYO1E 0.037
rs133204123 10 59,132,956 0.226 0.00000287 CYP19A1 < 0.0000001
rs473452904 14 23,216,603 0.803 0.00000004 LYN < 0.0000001
rs524764569 16 57,807,034 0.720 0.000001 PAPPA2 0.016
rs471174155 23 17,123,734 0.801 0.00000088 POLH 0.008

Post-weaning weight gain
Slope rs520046194 13 71,535,726 0.177 4.50E-07 PTPRT 0.008
Yearling weight
Intercept rs210000614 14 19,427,775 0.100 0.0000000 PRKDC 0.009

rs521230847 14 23,140,778 0.502 0.0000001 LYN 0.001
Slope rs210000614 14 19,427,775 0.100 0.0000001 PRKDC 0.008

rs521230847 14 23,140,778 0.502 0.0000008 LYN 0.002
rs211065097 23 9,306,293 0.155 0.0000020 PPARD 0.008

BTA1 – Bos taurus autosome, Position2 – basis pair location of the signicant genetic marker; MAF3 – minor frequency allele; P-value4 – significance value obtained in 
GWAS analysis; Adjusted p-value5 – adjusted p-value obtained by gene prioritization
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evidence shows that MAPK cascades are involved in 
several male reproductive processes such as spermato-
genesis, sperm maturation, sperm capacitation, and 
acrosome reaction before oocyte fertilization [62]. In 
livestock species, Gonçalves et al. [63] found differen-
tially expressed genes involved in the MAPK pathway 
in the cervix at different stages of the estrous cycle in 
sheep and cattle. The enriched genes were also involved 
in several immune system processes (see additional Table 
S7), such as the regulation of adaptive immune memory 
response (GO:0090716; GO:1,905,674; GO:1,905,676), 
processes associated with T cells (GO:0002456; 
GO:0035783; GO:2,001,188; GO:2,001,190; GO:0035739; 
GO:2,000,561; GO:2,000,563), regulation of B cell 
receptor (GO:0050855; GO:0050861), and interleukins 
(GO:0035722; GO:0070498; GO:0071349). The immune 
and reproductive systems closely interact due to the shar-
ing of certain cytokines and their receptors, which can 
affect neuroendocrine events, ovarian function, placenta, 
and embryo development and may play a role in immu-
nological reproductive failure [64]. In Holstein cattle, 
Thompson-Crispi et al. [65] reported favorable genetic 

associations between the adaptive immune response and 
reproductive traits, suggesting that selection for overall 
immune responsiveness may lead to a positive response 
in reproductive traits in cattle.

Genomic regions for RN coefficients affecting SC
Multiple prioritized genes (GRB14, CYP19A1, LYN, 
and PAPPA2) were associated with both SC reaction 
norm coefficients (Table 3). The GRB14 gene, on BTA2, 
encodes a growth factor receptor-binding protein, and 
mRNA molecules of this gene have been found to be 
expressed at high levels in the mammalian ovary, liver, 
kidney, and skeletal muscle [66, 67]. In addition, Bohrer 
et al. [68] showed that GRB14 mRNA is expressed in 
granulosa and theca cells during different stages of fol-
licular development, suggesting that this gene may play a 
regulatory role during follicular divergence in cattle. The 
PAPPA2 gene, located on BTA16, affects reproduction 
and fertility and has important roles in pregnancy and 
postnatal growth [69]. SNP markers within the PAPPA2 
gene have been associated with calving ease and produc-
tive life in Holstein cattle, playing an important role in 

Table 4  Gene ontology enrichment analysis for biological process (BP) and molecular function (MF) of the genes identified for age at 
first calving (AFC), scrotal circumference (SC), and yearling weight (YW) [for more details, see Additional file 1: Table S7 to S9]
Trait Ontology ID Description p-value q-value Gene
AFC BP GO:0002456 T cell mediated immunity 0.00051 0.02905 CTSH/CD81

BP GO:0010647 positive regulation of cell communication 0.00106 0.02905 SYT1/CTSH/PLCB1/CD81
BP GO:0023056 positive regulation of signaling 0.00107 0.02905 SYT1/CTSH/PLCB1/CD81
BP GO:0000165 MAPK cascade 0.00167 0.02905 CTSH/PLCB1/CD81
BP GO:0010813 neuropeptide catabolic process 0.00177 0.02905 CTSH
BP GO:0014905 myoblast fusion involved in skeletal muscle regeneration 0.00354 0.03138 CD81
MF GO:0008289 lipid binding 0.00157 0.00565 PLCB1/CD81/DYSF

SC MF GO:0070330 aromatase activity 0.00206 0.00378 CYP19A1
MF GO:0016712 oxidoreductase activity, acting on paired donors, with incor-

poration or reduction of molecular oxygen, reduced flavin or 
flavoprotein as one donor, and incorporation of one atom of 
oxygen

0.0036 0.00378 CYP19A1

MF GO:0005506 iron ion binding 0.023 0.00692 CYP19A1
MF GO:0016705 oxidoreductase activity, acting on paired donors, with incorpo-

ration or reduction of molecular oxygen
0.023 0.00692 CYP19A1

YW BP GO:0046838 phosphorylated carbohydrate dephosphorylation 0.00354 0.02507 BPNT2
BP GO:0046855 inositol phosphate dephosphorylation 0.00354 0.02507 BPNT2
BP GO:0071545 inositol phosphate catabolic process 0.00442 0.02507 BPNT2
BP GO:0046854 phosphatidylinositol phosphate biosynthetic process 0.00706 0.02507 BPNT2
BP GO:0043647 inositol phosphate metabolic process 0.00794 0.02507 BPNT2
BP GO:0006334 nucleosome assembly 0.01583 0.0375 NAP1L5
BP GO:0006661 phosphatidylinositol biosynthetic process 0.0202 0.03779 BPNT2
BP GO:0034728 nucleosome organization 0.02194 0.03779 NAP1L5
BP GO:0046488 phosphatidylinositol metabolic process 0.02975 0.04026 BPNT2
BP GO:0008654 phospholipid biosynthetic process 0.04779 0.04765 BPNT2
BP GO:0045017 glycerolipid biosynthetic process 0.05204 0.04931 BPNT2
MF GO:0008252 nucleotidase activity 0.00308 0.00324 BPNT2
MF GO:0016791 phosphatase activity 0.04556 0.03414 BPNT2
MF GO:0042578 phosphoric ester hydrolase activity 0.06487 0.03414 BPNT2
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the breeding of first-calf heifers and affecting essential 
reproductive aspects such as calving interval, days to 
calving, and pregnancy rate [70]. These results suggest 
a pleiotropic effect of genes that influence both SC and 
female sexual performance traits, corroborating studies 
reporting favorable genetic correlation estimates between 
these traits [44, 71–73].

The RORA gene on BTA10, associated only with the 
SC intercept coefficient, encodes a nuclear receptor that 
is essential for the activation of myogenic-specific mark-
ers and regulates several genes involved in lipid metabo-
lism [74, 75]. Moreover, it is related to steroid hormone 
receptor activity and, when combined with this hormone, 
produces the signal within the cell to initiate a change in 
cell activity or function [76]. Additionally, associated only 
with SC intercept, the WNT2B gene encodes a member 
of the Wnt family of secreted and highly conserved sig-
naling factors that function in a variety of developmental 
processes, including the regulation of cell growth and dif-
ferentiation [77, 78]. Using RNA-seq technology, Zhang 
et al. [79] identified a cluster of transcripts, including 
WNT2B mRNA, that may have direct or indirect func-
tions in the initiation of puberty in sheep, which may 
provide new insights into the mechanisms that trig-
ger puberty in ruminant species. In cattle, Liu et al. [80] 
reported that the WNT2B gene was enriched in male 
gonad development, supporting the influence of this gene 
on scrotal circumference. The MYO1E gene (BTA10) was 
associated with slope and is a structural myofibrillar pro-
tein related to the response of plants to recovery growth. 
Myogenic factors are associated with endocrine factors, 
which play important roles in the regulation of muscle 
mass, fiber size, nutrient partitioning, and reproduction 
[81]. This gene is also associated with the rapid differen-
tiation of neonatal epithelial cells into mature intestinal 
epithelial cells (Benesh et al., 2010) and with feed effi-
ciency in chickens [82].

The GO terms for SC (see additional Table S8) indi-
cated that the CYP19A1 gene was associated with oxi-
doreductase activity (GO:0016712 and GO:0016705), 
aromatase activity (GO:0070330) and iron ion binding 
(GO:0005506). The CYP19A1 gene, enriched for aroma-
tase activity, is mainly expressed in Leydig and testicular 
germ cells [83, 84] and encodes a member of the cyto-
chrome P450 superfamily of enzymes. Cytochrome P450 
aromatase is an enzyme that catalyzes the conversion 
of androgens, such as testosterone, to estrogens, which 
act as sex steroid hormones but also function during 
growth and differentiation [85]. These enzymes are highly 
expressed in both the gonads and the brain in humans 
[86]. Variation in the CYP19A1 gene was associated with 
growth and reproduction in mice and humans [87]. Using 
RNA-seq to profile the testicular transcriptome in pre-
mature and mature sheep, Yang et al. [88] observed that 

CYP19A1 expression levels significantly increased with 
animals’ age, indicating that this gene may play an impor-
tant role in ruminants’ testicular development.

Genomic regions for RN coefficients affecting PWG
For PWG, only the gene PTPRT gene on BTA13 (FDR-
corrected p-value < 0.05) was detected in the prioriti-
zation analysis for the slope coefficient (Table  3). The 
PTPRT gene on BTA13 encodes a protein from the tyro-
sine phosphatase (PTP) family, related to a variety of 
physiological processes, including cell growth, differen-
tiation, metabolism, cell cycle regulation, and cytoskel-
etal function [89]. In production animals, a relationship 
between the PTPRT gene polymorphisms and resistance 
to some bacterial and parasitic infections was observed, 
such as resistance to brucellosis in goats [90] and tuber-
culosis in cattle [91]. In this sense, the fact that this gene 
is associated with resistance to different infections lays 
the groundwork for potential GxE interaction. Further-
more, in a genomic association study, the PTPRT gene 
was shown to be associated with birth weight in ovine 
[92], elucidating the importance of this gene in growth 
traits.

Genomic regions for RN coefficients affecting YW
For YW, BTA14 had a major influence on this trait, and 
two prioritized genes (LYN and PRKDC) are associ-
ated with both reaction norm coefficients. The LYN 
gene encodes a Src family kinase that is involved in cell 
proliferation, survival, differentiation, migration, adhe-
sion, and apoptosis [41, 93]. In beef cattle, this gene has 
been associated with sexual precocity in heifers [12, 46], 
growth [94], feed intake [95], carcass [96], and meat qual-
ity traits [96]. In addition, this gene was also associated 
with SC in this study. It is important to mention that the 
LYN gene is located within a promising QTL on BTA14 
that harbors a variety of genes influencing a wide range of 
traits of economic interest in livestock [97, 98]. PRKDC, 
also known as XRCC7, is related to embryonic develop-
ment, interferon tau expression, and the trophoblast 
development rate in cattle [58]. In other farm species, 
this gene has been associated with body size in sheep 
[99] and feed conversion efficiency in pigs [100], sug-
gesting that this gene plays an important role in growth 
and development. Although Guildify did not identify 
the PLAG1 gene on BTA14 during gene prioritization, 
this gene has a striking effect on biological mechanisms 
that might help explain the variability in body weight and 
adaptability to environmental conditions. The SNP mark-
ers identified in the BTA14 region were 20.58–25.11 Mb 
(LYN, TMEM68, PLAG1, CHCHD7, and MOS), affecting 
the MAPK signaling pathway and affecting cell prolifera-
tion and growth by mediating IGF-1 and − 2, which con-
trol the energy metabolism linked to tissue development 
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[101]. In multiple breeds, Utsunomiya et al. [102] studied 
Nellore cattle, and Bouwman et al. [103] reported that 
specific haplotypes associated with the PLAG1 mutation 
have positive effects on weight and conformation traits.

The PPARD on BTA23, associated with the YW slope, 
encodes the peroxisome proliferator-activated receptor 
delta, a transcription factor predominantly expressed 
in skeletal muscle [104] involved in the development, 
lipid metabolism, energy expenditure, tissue repair 
and regeneration, and inflammation [105]. PPARD 
acts as a key regulator of energy metabolism in skel-
etal muscle, using lipids as the main energy substrate 
[106], thus allowing glucose to become more available 
for other physiological processes [105]. In dairy cows, 
this gene was implicated in muscle fatty acid transport 
and oxidation during early lactation [107] and influ-
ences factors such as lactation onset and lipid supply 
[108, 109]. The enrichment analysis for YW (see addi-
tional Table S9) identified potential candidate genes 
(BPNT2 and NAP1L5) involved in processes related 
to phosphorylated carbohydrate dephosphoryla-
tion (GO:0046838), inositol phosphate (GO:0046855, 
GO:0071545 and GO:0043647), phosphatidylinositol 
(GO:0046854, GO:0006661 and GO:0046488), nucleo-
some (GO:0006334 and GO:0034728), phospholipid 
(GO:0008654), glycerolipid (GO:0045017), nucleo-
tidase activity (GO:0008252), phosphatase activity 
(GO:0016791), phosphoric ester and hydrolase activ-
ity (GO:0042578). Most of the enriched GO terms 
are involved in phosphate metabolism. Phosphate 
plays essential roles in diverse cellular actions, such as 
energy metabolism, differentiation, proliferation, and 
specific functions of differentiated cells [110], all of 
which are crucial for the growth and development of 
organisms. In addition, inositol phosphates are related 
to energy homeostasis, antioxidant and anti-inflam-
matory activities, and play a role as neurotransmitters 
[111]. There is evidence that inositol mimics the insulin 
signaling pathway [112]. In this sense, Lee & Bedford 
[113] suggested that possibly inositol induces glucose 
uptake, leading to an increased energy supply in skel-
etal muscle to support growth, providing insights into 
potential inositol mechanisms in promoting the animal 
growth response.

Conclusions
GWAS via reaction norm detected candidate genes 
affecting both the intercept and slope on EG for sexual 
precocity indicator (AFC and SC) and growth (YW 
and PWG) traits related to several biological mecha-
nisms by which beef cattle respond to environmental 
changes. The genes found have been previously asso-
ciated with growth, adaptative and reproductive traits 
in cattle and other livestock species. In general, the 

potential candidate genes identified were involved in 
several biological mechanisms related to lipid metabo-
lism, immune response, MAPK signaling pathway, and 
energy and phosphate metabolism. The results of the 
GWAS analysis provide a better understanding of the 
underlying biological processes associated with growth 
and reproductive traits in Nellore cattle raised under 
different environmental conditions.
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