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Abstract 

Background  Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating 
and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely 
involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are 
largely unclear.

Results  Here, 185 GmWRKYs were characterized in soybean (Glycine max), among which 60 GmWRKY genes were dif-
ferentially expressed during SMV infection according to the transcriptome data. The transcriptome data and RT-qPCR 
results showed that the expression of GmWRKY164 decreased after imidazole treatment and had higher expression 
levels in the incompatible combination between soybean cultivar variety Jidou 7 and SMV strain N3. Remarkably, 
the silencing of GmWRKY164 reduced callose deposition and enhanced virus spread during SMV infection. In addition, 
the transcript levels of the GmGSL7c were dramatically lower upon the silencing of GmWRKY164. Furthermore, EMSA 
and ChIP-qPCR revealed that GmWRKY164 can directly bind to the promoter of GmGSL7c, which contains the W-box 
element.

Conclusion  Our findings suggest that GmWRKY164 plays a positive role in resistance to SMV infection by regulating 
the expression of GmGSL7c, resulting in the deposition of callose and the inhibition of viral movement, which pro-
vides guidance for future studies in understanding virus-resistance mechanisms in soybean.
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Background
Soybean mosaic disease caused by SMV is one of the 
most common viral diseases worldwide. SMV can cause 
severe soybean yield decline and seed quality deteriora-
tion [1]. Although several SMV strains and quantitative 
trait loci (QTLs) related to SMV resistance in soybean 
have been identified, mechanistic studies on the function 
and regulation of the antiviral genes are rare [2, 3]. Plas-
modesmata (PDs) are plasma membrane-lined channels 
that connect adjacent cells to mediate symplastic com-
munication in plants [4]. Callose, a beta-1,3 glucan that 
can be reversibly deposited around the neck of PD, modi-
fies cell wall properties and restricts PD aperture that 
affects the transportation of signaling elements and path-
ogenic elicitors in a cell-to-cell manner [5, 6]. The levels 
of callose at PD are controlled by two groups of enzymes, 
callose synthases and beta-1,3 glucanases, which syn-
thesize and degrade callose, respectively [7]. A number 
of studies have shown that resistance-inducing chemi-
cals, such as abscisic acid (ABA) [8, 9], salicylic acid (SA) 
[10], auxin [11], and reactive oxygen species (ROS) [12], 
contribute to the regulation of the callose balance at PD. 
The previous studies showed that callose deposition in 
the neck of PD and phloem plays key roles in restrict-
ing virus transportation between cells and long-distance 
transportation of SMV in soybean, respectively [13, 14]. 
Additionally, as an intracellular signaling molecule, nitric 
oxide (NO), which acts upstream of hydrogen perox-
ide (H2O2), was reported to play synergistic roles dur-
ing SMV-induced callose deposition in soybean [15, 16]. 
Therefore, callose deposition is believed to play a critical 
role in preventing virus transportation between cells as a 
physical barrier.

The WRKY family, which is involved in various 
response pathways to biotic and abiotic stress [17, 18], 
constitutes one of the ten largest TF families and exists 
exclusively in higher plants. Members of the WRKY fam-
ily have been identified in many species, such as Arabi-
dopsis thaliana [19], Nicotiana tabacum [20], Zea mays 
[21], Triticum aestivum [22], Cymbidium sinense [23], 
and Akebia trifoliata [24]. WRKY TFs usually contain a 
highly conserved WRKY domain at the N-termini and a 
zinc finger-like motif at the C-termini [17]. As the repre-
sentative domain of the WRKY TFs, the WRKY domain 
shows sequence variation across plant species, such as 
WRKYGQK, WRKYGEK, and WRKYGKK [25]. WRKY 
domains are necessary for WRKY TFs to recognize and 
bind to the W-box cis-elements (TTG​ACC​/T) of their 
target genes [26]. Two main types of the zinc finger-
like motifs have been identified in WRKY TFs, namely, 
C2H2 (C-X4-5-C-X22-23-HXH) and C2HC (C-X7-C-
X23-HXC) [27]. WRKY TFs can be categorized into 

three groups (I, II, and III) based on the number of the 
WRKY domains and the types of zinc finger-like motifs 
[28]. WRKY TFs in Groups I and II harbor two and one 
WRKY domain, respectively, but all have a C2H2 type 
zinc finger-like motif; while those in Group III contain 
one WRKY domain and a C2HC type zinc finger-like 
motif [25]. Furthermore, Group II WRKY TFs can be 
divided into five subgroups according to phylogenetic 
analysis, including IIa, IIb, IIc, IId, and IIe [29].

Several studies have shown that a large number of 
WRKY genes can be induced by defense-related phyto-
hormones, low temperature, and pathogens, participating 
in pattern-triggered immunity (PTI) and effector-trig-
gered immunity (ETI) through regulating ROS produc-
tion [30]. These results indicate that WRKY genes play 
important roles in the immune response to biotic and abi-
otic stress [31]. For example, CmWRKY15-1 interacted 
with CmNPR1 to promote the expression of the patho-
genesis-related genes, resulting in enhanced resistance 
to chrysanthemum white rust through the SA pathway in 
chrysanthemum [32]. In Malus domestica, MdWRKY75e 
and MdWRKY100 overexpression enhanced resistance to 
Colletotrichum gloeosporioides and Alternaria alternata 
[33, 34]. In cotton, the overexpression of GhWRKY41 
enhanced resistance to Verticillium dahliae by regulat-
ing phenylpropanoid metabolism [35]. In tobacco, the 
overexpression of the cotton GhWRKY15 enhanced its 
resistance to tobacco mosaic virus (TMV) and cucumber 
mosaic virus (CMV) by reducing ROS accumulation [36]. 
In Arabidopsis, AtWRKY8 improves plant defense against 
TMV by modulating regulators that are involved in the 
ABA and ethylene (ET) signaling pathways such as ABI4, 
which inhibits the expression of ACS6 and ERF104 [37].

In soybean, the identification of the WRKY TFs has 
been reported under both biotic and abiotic stress. 
For example, Yin et al. (2013) reported 133 GmWRKYs 
based on Glyma1 assembly (Wm82.a1.v1) and revealed 
that the large GmWRKY TF family was expanded by 
segmental duplication events and subsequent diver-
gent selection among subgroups [38]. Bencke-Malato 
et  al. (2014) reported 182 GmWRKYs that included 
33 putative pseudogenes based on Glyma1 assembly 
(Wm82.a1.v1) and analyzed the members in response 
to P. pachyrhizi [39]. Song et  al. (2016) reported 176 
GmWRKYs using the soybean genome (Wm82.a2.v1) 
and analyzed the expression pattern of GmWRKYs 
under dehydration stress and salt stress [40]. Yu et  al. 
(2016) identified 188 GmWRKYs based on the assem-
bly v2.0 in Phytozome 10.2 and revealed 3 GmWRKYs 
that are no longer found in existing soybean genomes. 
In addition, 35 GmWRKY genes were identified and 
showed decreased expression levels under salt stress 
[41]. Yang et  al. (2017) reported 174 GmWRKYs and 
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analyzed the members that promote resistance to soy-
bean cyst nematode [42]. Dong et  al. (2019) analyzed 
soybean WRKY genes in response to Peronospora man-
shurica infection through transcriptome analysis and 
found that 22 WRKY genes were differentially expressed 
in resistant versus susceptible genotypes [43]. In these 
previous studies, GmWRKY164 was reported to be 
differentially expressed under salt or SA treatment 
[40–42], but the function and molecular mechanism 
underlying are unclear.

In this study, 185 soybean WRKY genes were char-
acterized genome-wide, among them, 60 GmWRKY 
genes were differentially expressed during SMV infec-
tion according to the transcriptome data. Notably, 
GmWRKY164 exhibited high expression levels in the 
incompatible combination in Jidou 7 infected with SMV 
strain N3, and the silencing of GmWRKY164 led to 
reduced callose deposition and enhanced virus spread 
upon SMV infection by directly binding to GmGSL7c 
promoter and regulating its expression. Taken together, 
these results provide a fundamental understanding of 
the molecular mechanism underlying SMV infection 
and new clues for further research into the functions of 
soybean WRKY genes.

Materials and methods
Soybean planting and inoculation
The SMV strains (N3 and SC8) used in this study were 
acquired from Dr. Haijian Zhi (Nanjing Agricultural 
University, China). The soybean variety Jidou 7 was 
acquired from Prof. Mengchen Zhang (Institute of 
Cereal and Oil Crops, Hebei Academy of Agriculture 
and Forestry Sciences, China). Jidou 7 is resistant to 
the SMV strain N3 (to form an incompatible combina-
tion) and susceptible to the SMV strain SC8 (to form 
a compatible combination) [15]. The soybean variety 
Nannong 1138–2 was acquired from Dr. Haijian Zhi 
(Nanjing Agricultural University, China), which is sus-
ceptible to both SMV strain N3 and SC8. Soybean seed-
lings were planted in pots and placed in greenhouses. 
The temperature was 25℃, and a 14/10 (day/night) pho-
toperiod was applied with a high-pressure sodium lamp 
as the light source.

The leaf sap from SMV-infected Nannong 1138–2 
plants were mixed with emery and gently applied on the 
soybean leaves of the Jidou 7 plants or Nannong 1138–2 
plants using a brush, according to the previous report 
[16]. Two-week-old seedlings were harvested at 0, 4, 12, 
24, and 48 h after inoculation with SMV strains N3 and 
SC8, respectively. The leaves without veins were imme-
diately frozen in liquid nitrogen and stored at -80℃ for 
further experiments.

Identification of the WRKY genes in soybean
The latest version of the soybean genome file was 
downloaded from the Ensembl Plant (https://​plants.​
ensem​bl.​org/​index.​html). The pfam seed model WRKY 
(PF03106) was used for building the Hidden Markov 
Model (HMM) file using HMMER3 server with e-val-
ues lower than 0.01. To verify the reliability and exclude 
false positives, the presence of WRKY domains were 
confirmed using the SMART database (http://​smart.​
embl-​heide​lberg.​de) and the CDD database (https://​
www.​ncbi.​nlm.​nih.​gov/​cdd). In addition, GmWRKY 
transcription factor sequences were downloaded from 
PlantTFDB (http://​plant​tfdb.​gao-​lab.​org/) and com-
pared with our data.

Gene collinearity, duplication events and cis‑element 
analysis
The genome data of soybean, rice, and Arabidopsis 
were downloaded from the Ensembl database and the 
syntenic analysis maps were generated using MCScanX 
and Circos. All GmWRKY genes were classified into five 
different categories, namely, singleton, dispersed, prox-
imal, tandem, and WGD/segmental by the duplicate 
gene classifier tool in the Multiple Collinearity Scan 
toolkit (MCScanX) program [44]. The cis-acting ele-
ments were analyzed by the PlantCARE software using 
the 2000 bp sequences upstream of the start codon 
(ATG) in the GmWRKY genes.

Total RNA isolation, transcriptome data, and RT‑qPCR
Total RNA was extracted using RNA extraction kit 
(UNlQ-10 Column TRIzol Total RNA Isolation Kit, San-
gon Biotech, Shanghai, China), and the synthesis of the 
first-strand cDNA was carried out with PrimeScript RT 
Reagent Kit with gDNA Eraser (TaKaRa, Dalian, China). 
In our previous studies, H2O2-associated transcriptome 
data were obtained under imidazole (an NADPH oxi-
dase-specific inhibitor) treatment at 0, 4, 12, 24, and 48 h 
post-SMV N3 inoculation (hpi) [16]. The soybean leaves 
that were pre-injected with dH2O were used as control. 
RNA samples of the three independent biological repli-
cates were mixed in equal amounts for the construction 
of libraries. Transcriptome libraries were sequenced on 
a sequencer (HiSeq 2000, Illumina Inc., San Diego, CA, 
USA) using 90-base pair-ended modes [16]. Differen-
tially expressed genes were defined as genes with false 
discovery rate (FDR) less than 0.001 and two-fold change 
between iminazole and ddH2O treatment at each time 
point [16]. The expression levels of the 60 differentially 
expressed GmWRKYs in response to SMV infection in 
Jidou 7 according to the transcriptome data was visual-
ized using TBtools [45].

https://plants.ensembl.org/index.html
https://plants.ensembl.org/index.html
http://smart.embl-heidelberg.de
http://smart.embl-heidelberg.de
https://www.ncbi.nlm.nih.gov/cdd
https://www.ncbi.nlm.nih.gov/cdd
http://planttfdb.gao-lab.org/
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Quantitative reverse transcription PCR (RT-qPCR) 
was performed to confirm the response of differentially 
expressed GmWRKY genes to SMV infection. GmEF1b 
was used as the internal control. The primers used are 
listed in Table  S1. The RT-qPCR amplification was 
performed on a Roche LightCycler 96 machine using 
TransStart® Tip Green qPCR SuperMix (TransGen Bio-
tech, AQ141-01) as the fluorescent dye. The PCR assay 
was carried out in a total volume of 10 µL, containing 5 
µL of 2xTransStart Tip green qPCR supermix, 1 µL of 
the diluted cDNA, 0.5 µL of each primer (10 µM), and 
3 µL of the sterile distilled ddH2O. The cycle conditions 
were described as follows: 94℃ for 30 s, followed by 35 
cycles of 94℃ for 5 s, 55℃ for 15 s and 72℃ for 10 s. 
Amplification curve analysis of the amplification prod-
ucts at the end of each thermal cycling reaction was 
performed to confirm the specificity of the amplifica-
tion and to ensure successful amplification and detec-
tion, and the relative fold change in the target gene 
expression was calculated using the 2-ΔΔCt method 
[46]. Significant differences were indicated by differ-
ent lowercase letters, as determined by the LSD test at 
p < 0.05.

Generation of GmWRKY164‑silenced plants
Tobacco rattle virus (TRV) mediated virus-induced gene 
silencing (VIGS) was used to generate GmWRKY164-
silenced plants. The specific fragment of GmWRKY164 
was amplified from the cDNA of Jidou 7 using the prim-
ers listed in Table  S1 and inserted into pTRV2 plasmid 
between BamH I and Xho I. The empty plasmid of pTRV2 
was used as the control (TRV:00). Agrobacterium tume-
faciens carrying pTRV1 and the recombinant pTRV2 
(TRV:GmWRKY164) were resuspended in the infection 
buffer (50 mM MES, 2 mM Na3PO4, 28 mM D-glucose, 
0.1 mM acetosyringone, 4.1 mM L-Cys, and 0.02% (w/v) 
Silwet L-77) until the cell density (OD600) reached 0.5. 
Then, the mixture of the resuspended pTRV1 and the 
recombinant pTRV2 (1:1) was poured into the roots of 
the soybean seedlings for each plant. Before SMV inoc-
ulation, the silencing efficiency of GmWRKY164 in the 
first compound leaves of soybean seedlings was quan-
tified by RT-qPCR three weeks after A. tumefaciens 
treatment. The VIGS experiment and the calculation 
of silencing efficiency were conducted as the previous 
reported [16, 47].

Observation of SMV‑induced callose and the detection 
of SMV CP transcript products
The soybean leaves were collected at 48, 72, and 120 h 
after SMV infection for aniline blue staining and fluo-
rescence observation. The soybean leaves were placed 
in a fixative solution (50% ethanol, 16.67% glycerol, 

16.67% phenol, and 8.33% lactic acid, v/v) and boiled for 
2 min, washed for 5 min with ddH2O three times, and 
then treated with the dye solution (0.01% aniline blue 
dissolved in 0.1 M PBS, pH 7.0) for 15 min. The leaves 
were washed for 5 min with ddH2O 3 times again and 
observed with a fluorescence microscope (BX53, Olym-
pus, Tokyo, Japan) with Ex/Em = 385 nm/495 nm. ImageJ 
[48] was used to analyze the microscopic images of the 
fluorescence of callose and the callose area of 30 inocula-
tion sites was quantified. The upper leaves were observed 
15 days after SMV inoculation. According to the previous 
reported [47], the expression of SMV CP was detected 
using Taq DNA polymerase using semi-quantitative 
reverse transcription polymerase chain reaction (RT-
PCR). RT-qPCR was performed to confirm the expres-
sion of SMV CP gene with three biological replicates, and 
GmEF1b was used as the internal control. Each biologi-
cal replicate contains three plants. Values of 0, 4, 12, 24, 
and 48 indicate hours post inoculation (hpi). The primers 
used are listed in Table S1.

Chromatin immunoprecipitation (ChIP) and ChIP‑qPCR
ChIP assays were carried out as the previous described 
[49]. The leaves of Jidou 7 were infiltrated with Agro-
bacterium tumefacien (GV3101) containing 35S: 
GmWRKY164-GFP or 35S: GFP. 2 g three-week-old 
leaves were sampled at 40 hpi with N3 and crosslinked 
with 1% (w/v) formaldehyde for 30 min under vacuum 
and quenched with 2.0 M glycine for 5 min. The chroma-
tin was sheared to 100–500 bp fragments via ultrasonic 
disruption (Diagenode, Belgium). Immunoprecipita-
tion was performed with Dynabeads Protein G (Sigma-
Aldrich, Germany) and anti-GFP antibody (Novus, USA). 
For the ChIP-qPCR assay, the amount of immunoprecipi-
tated GmGSL7c chromatin in the P1 and P2 regions on 
its promoter was detected by qPCR. The primers used 
are listed in Table S1.

Electrophoretic mobility shift assay
Electrophoretic mobility shift assay (EMSA) was per-
formed using the Light Shift Chemiluminescent EMSA 
Kit (Thermo Fisher Scientific, USA). The double-stranded 
DNA probe containing W-box was labeled with biotin 
at 5’ end (Table S1). Nonlabelled probes (200-fold) were 
used as competitors. The biotinylated probes (Table S1) 
were synthesized by Sangon Biotech (Shanghai, China). 
The biotinylated and unlabeled probers were incubated 
with 6 µg of His-tagged GmWRKY164 protein in binding 
reactions (provided with the EMSA kit) for 20 min. The 
reactions were stopped by the addition of loading buffer 
and the proteins were resolved on a 6% (w/v) native 
polyacrylamide gel. Then, the complex was electropho-
retically transferred to a Hybond-N+ nylon membrane 
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(Solarbio, China), which was subsequently crosslinked 
under ultraviolet light. The signals were detected using a 
charge-coupled device camera.

Results
Characteristics of the GmWRKY genes in soybean
A total of 185 GmWRKY (Table S2) members were anno-
tated in the latest version of the soybean genome file 
(Glycine_max_v2.1), which is consistent with the num-
ber recorded in the PlantTFDB. The 185 GmWRKYs 
were named according to the report by Yu et  al. (2016) 
[41]. Then we investigated the number and proportion 
of WRKY members in eight representative plant spe-
cies, including Glycine max, Arabidopsis thaliana, Triti-
cum aestivum, Cucumis sativus, Nicotiana tabacum, 
Zea mays, Akebia trifoliata, and Cymbidium sinense 
(Table  S3 and Fig.  1). The number of WRKY genes in 
Glycine max far exceeded those in other species, except 
for Triticum aestivum and Nicotiana tabacum, which 
are both allopolyploid plant species. The proportions of 
GmWRKY proteins in Group I were generally the same in 
different species except for Akebia trifoliata and Cymbid-
ium sinense. The number of WRKY proteins in Group II 
was generally greater than that in Group I and Group III 
in the eight plant species, ranging from 54.8% to 70.5%. 
Additionally, Group IIc had the most WRKY members 
in the eight representative plant species. These results 
suggested that the majority of members of Group II 
might experience a significant expansion in soybean and 
other species, which could be caused by whole-genome 

duplications, tandem duplications, or segmental duplica-
tions of genomes.

Duplication events and syntenic analysis of the GmWRKY 
members
Two diploid soybean species experienced two sequen-
tial WGD events, including a polyploidy event at ~ 59 
MYA and a Glycine-specific WGD at ~ 8–13 MYA [50, 
51]. Duplicated genes in soybean have been classified 
into five categories, including singletons, dispersed, 
proximal, tandem, and WGD (including segmental 
duplications), which strongly correlate with gene func-
tion [50]. Therefore, we analyzed the duplication types 
of GmWRKY genes via MCScanX (Fig.  2). The results 
showed that WGD events accounted for 96.7% (29/30), 
90.9% (118/130), and 72.0% (18/25) in Groups I, II, and 
III, respectively (Fig. 2A). In addition, dispersed duplica-
tion events accounted for 3.3% (1/30) and 5.4% (7/130) in 
Group I and II, respectively. Tandem and proximal dupli-
cation events occurred mainly in Group III, account-
ing for 24.0% (6/25) and 4.0% (1/25), respectively. WGD 
events were subsequently visualized within the soybean 
genome, and 220 segmental duplication pairs were found 
between 165 GmWRKY genes (Fig.  2B and Table  S4). 
The Ka/Ks (nonsynonymous/synonymous substitutions) 
of 220 WGD gene pairs were calculated to be less than 
1 (Table S4), indicating that the expansion of GmWRKYs 
was caused mainly by the WGD events under negative 
selection pressure during their evolution. The synthetic 
analysis of WRKYs in Arabidopsis and rice were per-
formed with GmWRKYs (Fig.  2C). The result showed 

Fig. 1  Statistics on the number of WRKY genes in eight plant species. A The number of WRKY genes in Group I, Group II and Group III in eight plant 
species. B The number of WRKY genes in Groups IIa, IIb, IIc, IId and IIe in eight plant species
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that 96 orthologous pairs were identified according to 
the whole-genome-wide comparative analysis between 
soybean and Arabidopsis, and 33 orthologous pairs were 
identified between soybean and rice (Table  S5). Among 

them, 76 and 19 GmWRKYs (41.1% and 10.3%) displayed 
syntenic relationships with 35 and 17 AtWRKYs and 
OsWRKYs (48.6% and 17.0%) in Arabidopsis and rice, 
respectively.

Fig. 2  Duplication events and syntenic analysis of GmWRKYs. A The proportion of GmWRKY genes that exhibit different modes of duplication 
in the soybean genome. B Chromosome distribution and collinearity of duplicated GmWRKY pairs. Chromosomes are represented by differently 
colored boxes. C Collinearity analysis of WRKY family genes between soybean and Arabidopsis, soybean and rice, respectively. The gray lines indicate 
the collinear pairs in the soybean, rice, and Arabidopsis genomes, while the red lines highlight the collinear WRKY pairs. Gmax, Osa, and Ath indicate 
soybean, rice, and Arabidopsis, respectively
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Promoter analysis of the GmWRKY genes
To explore the regulatory mechanisms of GmWRKYs, 
32 types of cis-elements were identified in the promot-
ers of GmWRKYs [52, 53], including those in hormone 
responses, stress responses, plant growth and develop-
mental responses, and light responses (Fig.  3). Among 
them, 12 hormone-responsive elements were found, 
including Abscisic Acid (ABRE), Auxin (AuxRR-core, 
TGA-element and TGA-box), Gibberellin (GARE-
motif, P-box and TATC-box), MeJA (CGTCA-motif 
and TGACG-motif ), Salicylic Acid (TCA-element and 
SARE), and Ethylene (ERE). Among the hormone-
responsive elements, the ERE and ABRE were widely 
distributed among the promoters of GmWRKYs (Fig. 3A) 
and occupied the largest proportions (28.53% and 26.25% 
respectively) (Fig. 3B). Eight stress-responsive related ele-
ments (Fig. 3C) were identified, including ARE (anaero-
bic induction), GC-motif, LTR (low-temperature), MBS 
(drought), TC-rich repeats (stress-responsive), W-box, 
WUN-motif (wound), and STRE (heat shock response). 
Remarkably, the W-box existed in 94 GmWRKYs, and 
can be specifically recognized and bound by WRKY TFs, 
indicating that these GmWRKYs may be regulated by 

themselves or other WRKY TFs at the transcriptional 
level. Eight elements were involved in plant growth and 
developmental responses (Fig.  3D), including MBSI 
(MYB binding site), CAT-box (meristem-specific ele-
ment), CCG​TCC​-motif (meristem-specific activation), 
GCN4-motif (endosperm-specific element), circadian 
(circadian control responsiveness), HD-Zip 1 (palisade 
mesophyll cells differentiation), O2-site (zein metabo-
lism regulation), and RY-element (seed-specific regu-
lation). Four elements involved in light response were 
detected (Fig.  3E), including Box  4, G-box, AE-box and 
MRE. Among them, the Box4 elements exhibit a wide 
distribution in GmWRKY genes, which were identified 
in 177 (95.7%) members of GmWRKYs and occupied the 
largest proportions among light response-related motifs 
(68.33%), providing a reference for further studies.

Expression patterns of the GmWRKYs during SMV infection
In our previous studies, we found that NO and H2O2 
played synergistic roles in callose deposition dur-
ing SMV infection, which is crucial for restrict-
ing virus transportation [15, 16]. To investigate the 
roles of GmWRKYs in response to SMV infection, we 

Fig. 3  Types and numbers of cis-acting elements in promoters of GmWRKY genes. A The number of each type of cis-acting element that is present 
in GmWRKYs. The proportion of each cis-acting element based on its biological function, including hormone-responsive elements (B), 
stress-responsive elements (C), cis-acting elements involved in plant development and growth (D), and light-responsive cis-acting elements (E)
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identified 60 GmWRKY genes (Fig. 4) that were differ-
entially expressed upon SMV infection according to 
H2O2-associated transcriptome data [16]. Among them, 
7 and 8 GmWRKYs belonged to Group I and Group 
III, respectively. In addition, 45 members belonged 
to Group II, including 8 in Group IIa, 9 in Group IIb, 
18 in Group IIc, 3 in Group IId, and 8 in Group IIe 
(Fig.  4). Furthermore, 12 GmWRKYs were selected in 
Groups and were subjected to RT-qPCR analysis for 
the validation of their expression patterns upon SMV 
infection (Fig. 5). The results showed that some genes, 

such as, GmWRKY16, GmWRKY56, GmWRKY126, 
GmWRKY141, GmWRKY149, GmWRKY164, and Gm 
WRKY188, were highly expressed in the incompat-
ible combination (Fig. 5). However, GmWRKY139, Gm 
WRKY165, and GmWRKY168, were highly expressed 
in the compatibility combination. Among them, Gm 
WRKY164 in Group IIc, which had high expression lev-
els in the incompatible combination and was downreg-
ulated after imidazole treatment (Fig. 4 and Fig. 5), was 
selected for further functional analysis.

Fig. 4  The expression levels of 60 differentially expressed GmWRKYs in response to SMV infection in Jidou 7 according to the transcriptome data. 
GmWRKY164 (Glyma.17G224800) is outlined in red. The hour points indicate 0, 4, 12, 24, and 48 h after SMV infection under water (the control) 
and imidazole treatments. Differentially expressed genes were defined as genes with false discovery rate (FDR) less than 0.001 and two-fold change 
between iminazole and ddH2O treatment at each time point. The result was visualized using TBtools [45]



Page 9 of 16Zhao et al. BMC Genomics          (2024) 25:620 	

GmWRKY164 plays a positive role in resistance to soybean 
mosaic virus
To investigate the role of GmWRKY164 in response 
to SMV, the GmWRKY164-silenced plants were gen-
erated via TRV-mediated VIGS in Jidou 7 with the 

silenced efficiency of more than 50% determined by 
RT-qPCR. Compared to the control (TRV:00), the dis-
ease symptoms in the inoculated, non-inoculated upper 
and top leaves at 15 dpi (Fig.  6A and Fig.  6B) of the 
GmWRKY164-silenced plants displayed severe mosaic 

Fig. 5  The expression levels of differentially expressed GmWRKYs in response to SMV infection. The soybean cultivar variety Jidou 7 is resistant 
and susceptible to SMV strains N3 and SC8 respectively. Values of 0, 4, 12, 24, and 48 indicate hours post inoculation (hpi). Each experiment 
was performed with three biological replicates. Each biological replicate contains three plants. The data is represented as mean ± SD (n = 3). 
Significant differences were indicated by different lowercase letters, as determined by the LSD test at p < 0.05
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symptoms with more chlorosis and necrotic spots. The 
area of cells with callose fluorescence induced by SMV 
infection was significantly decreased at 48, 72, and 
120 hpi in GmWRKY164-silenced plants (Fig.  6C and 
6D). In addition, the SMV-susceptible cultivar Nan-
nong 1138–2 infected with N3 and SC8 showed typical 

mosaic symptoms on the upper leaves, especially for 
SC8, indicating that SC8 has more enhanced viru-
lence than N3 in Nannong 1138–2 (Figure S1A). RT-
qPCR analysis indicated that GmWRKY164 had lower 
expression levels in both Nannong 1138–2 and Jidou 
7 plants infected by SC8 (Figure S1B), exhibiting more 

Fig. 6  Silencing of GmWRKY164 reduces callose deposition in Jidou 7 during SMV infection. A Phenotypes of inoculated leaves, non-inoculated 
upper and top leaves in GmWRKY164-silenced plants inoculated with SMV N3 at 15 dpi. The Mock-TRV:GmWRKY164 indicates the TRV:GmWRKY164 
without SMV inoculation. B Relative expression of GmWRKY164 in the GmWRKY164-silenced plants in Jidou 7 after SMV N3 inoculation. The relative 
expression level of GmWRKY164 in TRV:00 at each time point was defined as 1. Each experiment was performed with three biological replicates. Each 
biological replicate contains three plants. The significance of all comparisons was determined using Student’s t test, *p < 0.05, **p < 0.01. C Callose 
was observed on the leaves of GmWRKY164-silenced plants inoculated with SMV N3 after 48, 72 and 120 h. The callose was stained with aniline blue 
and observed under the fluorescence microscope (Olympus BX53). Bar = 50 μm. D The area of callose fluorescence per inoculation was analyzed 
for the GmWRKY164-silenced plants in Jidou 7 after SMV N3 inoculation. The presence of at least 30 discontinuous infestation sites was calculated. 
Values are mean ± SD of 30 independent measurements. Representative images of three biological replicates are shown in C. Lowercase letters 
indicate significant differences between different samples by one-way ANOVA test followed by Duncan’s range test (p < 0.05)
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pronounced necrosis symptoms than those infected by 
N3. In addition, GmWRKY164 displayed higher expres-
sion levels at 12 and 24 hpi in Jidou 7 infected by N3 
compared to SMV strain SC8 (Figure S1C), confirming 
that GmWRKY164 plays a positive role in resistance 
to SMV. Furthermore, the expression level of the coat 
protein (CP) gene in SMV was significantly increased in 
Jidou 7 infected by N3 (Figure S2), indicating that the 
viral load was increased in the GmWRKY164-silenced 
plants upon SMV infection. These results suggested 
that GmWRKY164 may play a positive role in response 
to SMV through increasing callose deposition to inhibit 
virus spreading.

GmWRKY164 directly targets GmGSL7c to suppress virus 
spread through increasing callose deposition
To further understand how GmWRKY164 works 
during SMV infection, 693 differentially expressed 
genes (DEGs) that show similar expression trends 
with GmWRKY164 were identified according to the 
transcriptome data (Table  S6) [16]. Among them, 
a glucan synthase-like gene (named GmGSL7c, 
Glyma.08G308200) was found to be involved in cal-
lose synthesis [54]. In addition, the transcript lev-
els of GmGSL7c were dramatically lower in the 
GmWRKY164-silenced plants in Jidou 7 (Fig. 7A). Fur-
thermore, a W-box (GTCAA, -1901 bp to -1905 bp) 
was found through the prediction of the cis-elements 
in the GmGSL7c promoter region (Table  S7). To test 
this hypothesis, electrophoretic mobility shift assay 
(EMSA) in  vitro was performed, which revealed that 
GmWRKY164 could directly bind to the W-box motif 
of the GmGSL7c promoter (Fig.  7B). In this assay, the 
biotin-labeled probe containing a combination of the 
W-box from the GmGSL7c promoter was constructed 
and incubated with the recombinant protein His-
tagged GmWRKY164. The mobility shift we observed, 
indicated that GmWRKY164 bound to W-box motif 
of the GmGSL7c promoter in  vitro (Fig.  7B). Next, 
ChIP-qPCR was used to determine the enrichment of 
GmWRKY164-GFP in the P1 region (-1947 bp to -1879 
bp, containing a W-box motif ) and the P2 region (-781 
bp to -735 bp, without a W-box motif ) of the GmG-
SL7c promoter (Fig.  7C). These results suggested that 
the enrichment of GmWRKY164-GFP was markedly 
greater in the P1 region than that in the P2 region in 
the 35S:GmWRKY164-GFP plants, but not in the 
35S:GFP plants (Fig.  7C). In summary, these results 
demonstrated that GmWRKY164 directly binds to the 
promoter of GmGSL7c in vitro and in vivo to promote 
its transcription, which increases callose deposition 
and suppresses virus spreading (Fig. 7D).

Discussion
Plant WRKY transcription factors are one of the key 
components of plant immune responses and involved 
in the regulatory network to resistant pathogens. For 
example, SlWRKY75 enhances tomato defenses against 
Pst DC3000 by activating the expression of SlGH3.3 [55]. 
The exogenous expression of barley HvWRKY6 enhances 
resistance to leaf rust, Fusarium crown rot, and sharp 
eyespot in wheat [56]. In Arabidopsis, AtWRKY50 specif-
ically binds to LS10 region of the PR1 promoter and inter-
acts with TGAs to synergistically activate PR1 expression 
[57]. In addition, AtWRKY50 also plays roles in both SA- 
and low-18:1-dependent repression of JA signaling [58]. 
In rice, OsWRKY77 is reported to be a positive regula-
tor of PR1, PR2 and PR5 expressions and basal resistance 
to the bacterial pathogen PstDC3000 [59]. In soybean, so 
many evidences illustrated that GmWRKYs participate 
in a variety of abiotic stresses, for instance, GmWRKY17 
and GmWRKY54 improve soybean drought tolerance 
[60, 61], GmWRKY21 and GmWRKY81 improve soybean 
Al tolerance [62, 63], GmWRKY142 and GmWRKY172 
enhance cadmium tolerance [64, 65], GmWRKY12 and 
GmWRKY16 enhance drought and salt tolerance [66, 
67]. However, the involvement of GmWRKYs in biotic 
stresses has been less reported. Except for, GmWRKY31 
and GmWRKY40 are reported to play positive roles in 
response to Phytophthora sojae [68, 69]. In our study, we 
identified 60 GmWRKY genes that potentially play roles 
in response to SMV infection. Furthermore, we revealed 
that GmWRKY164, which had the highest homology with 
AtWRKY50 (Figure S6), plays a positive role in response 
to SMV through increasing callose deposition to inhibit 
virus spreading by activating GmGSL7c expression.

The previous studies have shown that phytohormones, 
low temperature, pathogens and other factors can induce 
the expression of WRKY genes to participate in various 
physiological processes in plants [70, 71]. For example, 
OsARF12 can bind to the AuxRE in the OsWRKY13 
promoter to activate its expression, contributing to the 
antiviral immune response to rice dwarf virus in rice 
[72]. In cotton, GhTINY2 could promote the expression 
of WRKY51 through binding to the ERE in its promoter, 
thereby improving resistance to Verticillium dahlia [73]. 
In tomato, SIWRKY33 can bind to the TCA element 
at its own promoter to activate its transcription, and 
enhance the response to cold stress [74]. In our study, 
numerous cis-acting elements were identified in the pro-
moters of GmWRKY genes, especially elements related to 
phytohormones, including ABA (ABRE), auxin (AuxRR-
core, TGA element), gibberellin (GARE motif, P-box, 
and TATC-box), ethylene (ERE), MeJA (CGTCA motif 
and TGACG motif ) and salicylic acid (TCA element 
and SARE). Additionally, many other cis-elements, such 
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as W-box, LTR, and MBS, also occur in the promoters 
of GmWRKYs. These results revealed a series of poten-
tial transcription factors that regulate the expression of 
GmWRKYs, which provides the theoretical basis and data 
resources for the molecular regulatory networks associ-
ated with soybean response to SMV, but their regulatory 
mechanism needs to be further explored.

Numerous studies have shown that the deposition of 
the callose on the plasmodesmata is the main strategy 
to against virus invasion [13, 75]. Additionally, H2O2 
also plays important roles in plant immune response 
[29, 71, 76]. In our previous study, it was shown that the 
decreased callose deposition on the plasmodesmata, 
due to the inhibition of H2O2 production, elevated the 

Fig. 7  GmWRKY164 binds to the promoter of GmGSL7c both in vitro and in vivo. A Relative expression of GmGSL7c in the GmWRKY164-silenced 
plants in Jidou 7 after SMV N3 inoculation. The relative expression level of GmGSL7c in TRV:00 at each time point was defined as 1. Each experiment 
was performed with three biological replicates. Each biological replicate contains three plants. Significance of all comparisons was determined 
using Student’s t test, *p< 0.05, **p < 0.01. B EMSA shows that GmWRKY164 binds directly to the W-box (GTCAA) of the GmGSL7c promoter. The 
W-box element was labeled with biotin and used as a probe. Non-labeled probes (200-fold) were used as competitors. Shifted and free probes 
indicate the complexes of protein-probes and unbound probes, respectively. The uncropped blots are presented in Figure S5. C ChIP-qPCR analysis 
of GmWRKY164 binding to the GmGSL7c promoter. Schematic diagrams of GmGSL7c promoter. The gray circle indicates the position of the W-box. 
P1 and P2 indicate the fragments in the GmGSL7c promoter used for ChIP-qPCR analysis. Chromatin isolated from 35S:GmWRKY164-GFP 
and 35S:GFP leaves were immunoprecipitated with anti-GFP antibody. Isolated gDNA was amplified by qPCR, and the results for each ChIP sample 
was normalized to those for the input samples. Asterisks indicate significant differences by Student’s t-test (**p < 0.01). D Diagram depicting 
the mechanism of the GmWRKY164-GmGSL7c module in response to SMV. Upon SMV infection, the expression level of GmWRKY164 increases, 
and the protein it encodes could bind to the W-box and promotes the expression of GmGSL7c, thereby resulting in enhanced callose synthesis 
to suppress SMV spread
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diffusion of SMV [16]. The previous studies have also 
shown that WRKY TFs can directly or indirectly regulate 
the expression of callose synthase genes to affect callose 
accumulation. For example, OsWRKY46 and OsWRKY72 
can directly bind to the promoter region of CalS gene 
to enhance its transcriptional level and promote callose 
synthesis in rice [77]. In tobacco, NbWRKY40 can bind 
to the promoter of SA biosynthesis gene (ICS1), thereby 
indirectly affects the expression of callose synthase gene, 
leading to callose deposition in PD neck to inhibit virus 
movement, and positively regulating tobacco resistance 
to tomato mosaic virus infection [78]. In sweet sorghum, 
SbWRKY22 and SbWRKY65 could enhance plant Al tol-
erance by promoting callose degradation in the root [79]. 
In soybean, the GmWRKY family members have not 
been confirmed to participate in the regulation of cal-
lose synthesis. In our study, we found that GmWRKY164 
plays a positive role in response to SMV through increas-
ing callose deposition to inhibit virus spreading. Under 
biotic stress, the accumulation of callose is often trig-
gered in plants. The cell wall permeability is controlled by 
the deposition of callose in cell wall, plasmodesmata, and 
sieve pore, forming physical barriers to slow down path-
ogen invasion [80, 81]. Callose synthase (CalS), which 
catalyzes the synthesis of callose from UDP-glucose [82], 
is also known as GSL for GLUCAN SYNTHASE-LIKE. 
The reported study has shown that the decrease of cal-
lose in papillae in the loss-of-function mutants of GSL5 
enhanced the invasion of the powdery mildew in Arabi-
dopsis [83]. In cotton, GhCalS5 is involved in response to 
cotton aphid damage through callose formation [84]. In 
our previous study, the silencing of GmGSL7c promoted 
the transportation of SMV through decreasing callose 
deposition, indicating that it plays a positive role in the 
resistance to SMV [54]. In this study, we further found 
that GmWRKY164 plays a positive role in resistance to 
SMV infection by regulating the expression of GmGSL7c, 
resulting in the deposition of callose to suppress viral 
movement. Our findings provide guidance for future 
studies in understanding virus-resistance mechanisms in 
soybean.

Conclusion
In this study, 185 GmWRKY genes were character-
ized in soybean using the Glycine_max_v2.1, and 60 
GmWRKY genes were identified to be the potential reg-
ulators involved in response to SMV infection. Among 
them, GmWRKY164 in Group IIc had high expression 
levels in the incompatible combination and was down-
regulated after imidazole treatment. The silencing of 
GmWRKY164 reduced callose deposition and enhanced 
virus spread during SMV infection. In addition, EMSA 

and ChIP-qPCR revealed that GmWRKY164 can 
directly bind to the promoter of GmGSL7c, which is 
involved in callose synthesis. Therefore, our findings 
highlighted the important role of GmWRKY164 in 
resistance to SMV, demonstrating its involvement in 
callose deposition and virus spreading restriction.
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