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Abstract 

Background  Drought adaptation is critical to many tree species persisting under climate change, however our 
knowledge of the genetic basis for trees to adapt to drought is limited. This knowledge gap impedes our funda-
mental understanding of drought response and application to forest production and conservation. To improve our 
understanding of the genomic determinants, architecture, and trait constraints, we assembled a reference genome 
and detected ~ 6.5 M variants in 432 phenotyped individuals for the foundational tree Corymbia calophylla.

Results  We found 273 genomic variants determining traits with moderate heritability (h2
SNP = 0.26–0.64). Significant 

variants were predominantly in gene regulatory elements distributed among several haplotype blocks across all chro-
mosomes. Furthermore, traits were constrained by frequent epistatic and pleiotropic interactions.

Conclusions  Our results on the genetic basis for drought traits in Corymbia calophylla have several implications 
for the ability to adapt to climate change: (1) drought related traits are controlled by complex genomic architectures 
with large haplotypes, epistatic, and pleiotropic interactions; (2) the most significant variants determining drought 
related traits occurred in regulatory regions; and (3) models incorporating epistatic interactions increase trait pre-
dictions. Our findings indicate that despite moderate heritability drought traits are likely constrained by complex 
genomic architecture potentially limiting trees response to climate change.
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Introduction
Climate change is increasing the intensity and frequency 
of droughts worldwide [1], pushing trees to their physi-
ological limits, and in some cases to the point of failure, 
resulting in forest dieback [2]. A species’s ability to tol-
erate drought is likely determined by complex genome 
characteristics, including base pair changes [3, 4], large 
rearrangements [5], and/or interactions between genes 
[6, 7]. Understanding the genetic mechanisms that con-
trol drought related traits can lead to better predictions 
of drought tolerance, increasing our success in managing 
natural and planted forests under climate change induced 
drought.
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Droughts are major selective forces [8, 9], however it 
is generally unknown how much variation of drought 
tolerant traits in trees are genetically controlled. There 
are many traits that provide tolerance to drought condi-
tions. One drought trait that stands out is carbon iso-
tope discrimination or the ratio between C13 and C12 
(δ13C). Isotope discrimination is important because it 
is based on Rubisco’s preference for light carbon (C12), 
and plants with a higher proportion of C13 are gener-
ally more drought tolerant [10]. Further, δ13C has been 
strongly correlated to stomatal conductance [11] and 
water use efficiency [12]. Most studies that link geno-
type to drought tolerance (as δ13C) have been performed 
on agriculturally important species, such as a study that 
shows some evidence of genetic control of δ13C in soy-
beans [13]. However, a recent study on an ecologically 
important species identified 78 and 6 drought tolerant 
variants related to δ13C in coast redwoods and giant 
sequoias, respectively [14], and another study used a 
few thousand single nucleotide polymorphisms (SNPs) 
for QST–FST comparisons to identify selection occur-
ring for δ13C in Pinus pinaster [15]. A second often used 
trait that is associated with drought tolerance is specific 
leaf area (SLA), which is the leaf surface area per unit 
of dry biomass [16, 17]. A study on Populus trichocarpa 
found two SNPs associated with this trait [18]. How-
ever, other studies suggest that SLA is highly plastic and 
largely not heritable [19, 20]. A third trait used to quan-
tify the effects of drought is the normalized difference 
vegetation index (NDVI) which measures chlorophyll 
reflectance [21]. A study on maize found nine potential 
adaptive SNPs controlling NDVI [22]. Natural selection 
acts directly upon expressed phenotypes [23], which 
are controlled by additive and non-additive genetic 
variation [24]. Most studies linking genotype and phe-
notype using GWAS focus on quantifying the additive 
genetic variation controlling the trait of interest [24, 25]. 
However, by explicitly understanding the contribution 
of both additive and non-additive genetic variation to 
drought tolerant traits, we could improve predictions 
on how well populations can respond to novel drought 
conditions.

It is inherently difficult to quantify the genotypic 
effect on physiological traits when measuring plants 
in  situ because the variation could be due to environ-
ment and not genotype [26]. Growing related indi-
viduals from many populations in a common garden 
minimises the environmental variance [27] resulting 
in the phenotypic variance being the product of the 
genotypic differences. This allows for the estimation 
of trait heritability, which can be interpreted as part of 
the trait’s ‘evolvability’ or evolutionary potential [28]. 
Common gardens are also an important resource to 

use in conjunction with genome-wide association stud-
ies (GWAS), which explicitly evaluates each correlation 
between SNP and trait using mixed effects linear mod-
els. GWAS studies have been deployed for a vast num-
ber of species to understand the genetic determination 
of trait variation and gene discovery [29–31]. There-
fore, GWAS is a powerful technique that allows for the 
identification of within and among population standing 
genetic variation related to complex traits.

Estimates of trait heritability can be determined 
based on genetic variants (i.e., SNPs) contributing to 
phenotypic variation in GWAS analyses using an addi-
tive genetic framework. However, heritability from 
GWAS analyses is unable to account for non-additive 
factors that could contribute to the heritability of a 
trait. Missing heritability in complex traits may be due 
to non-additive genetic variation such as gene–gene 
interactions (epistasis [32]) and gene-trait interactions 
(pleiotropy [33]). Accounting for epistatic and pleio-
tropic interactions that contribute to the heritability 
of quantitative traits can improve model predictions 
[33, 34]. Epistatic effects could enhance or remove the 
effect of a gene on the trait depending on the pres-
ence of interacting genes in the genetic background. 
The widespread presence of epistasis could limit our 
ability to identify all the heritable variation but could 
constrain or boost adaptation of traits. Another bio-
logical process that could potentially constrain traits 
is pleiotropy because causal genes could be poten-
tially interacting with multiple traits [35]. Pleiotropy 
could result in an antagonistic behaviour where one 
gene positively affects one trait while negatively affect-
ing a second trait [36]. Together, epistasis and pleiot-
ropy can impose significant constraints for adaptive 
traits, however they are not often quantified limiting 
understanding of how organisms may respond to their 
environment.

Our purpose for this study was to investigate the 
genetic determinants of drought related traits and their 
relationship to one another in an ecologically, eco-
nomically and culturally important tree species. We 
used over 6 million SNPs and phenotyped 432 trees 
under common garden conditions for three drought-
related traits to identify SNPs related to drought; we 
investigated trait heritability, genomic architecture, 
functional annotation, and gene interactions between 
multiple traits. We hypothesise that genomic architec-
ture (epistasis and haplotype blocks) plays an impor-
tant role in determining traits and that pleiotropy may 
constrain other drought-related physiological traits. We 
discover several significant genes, overabundance of 
significant loci in cis-regulatory regions, and many epi-
static and pleiotropic interactions between significant 
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SNPs that may constrain drought traits in a founda-
tional Australian tree species, Corymbia calophylla. 
These complex genomic architectures are likely to play 
important roles when managing natural and planted 
forests for drought under climate change.

Results and discussion
Species and functional traits
We quantified variation in three functional traits indic-
ative of drought resistance (δ13C, NDVI, SLA; Fig. 1b-
d). Two of the three focal traits (δ13C: h2 = 0.17**; NDVI: 
h2 = 0.15**; SLA h2 = 0.08) exhibited small, but signifi-
cant, narrow-sense heritabilities based on quantitative 
genetic models [29], indicating genetic determination 

by polygenic mechanisms. We controlled for random 
variation of the measured trait values using best linear 
unbiased predictions (BLUPs) and found that the three 
traits varied across families and populations (Fig.  1b-
d). A linear model showed that traits were signifi-
cantly differentiated among populations (F11,419 = 88.89; 
p < 0.001) and among families within populations 
(F23,407 = 53.75; p < 0.001).

Draft genome and genome‑wide association studies 
(GWAS)
We assembled a high-quality de novo genome (350 Mb 
haploid size, 100 contigs, contig N50 = 3 Mb, 11 pseu-
dochromosomes, NCBI accession #: GCA_014182845.1). 

Fig. 1  Phenotypic traits were studied in a common garden of populations sampled from across the range of Corymbia calophylla, denoted here 
by the precipitation layer. a Location of populations sampled and the experimental site mapped with precipitation of the driest month (PDM; mm; 
BIO14); b-d trait values (grey) with their best linear unbiased predictions (BLUPs; yellow) for (b) δ13C, (c) SLA, and (d) NDVI. Population colours are 
coded red for northern populations and blue for southern populations and ordered from wettest (left) to driest (right). Star represents the location 
of the experimental site. Inset shows location of study area within Australia. NDVI was scaled (y2-axis; yellow) to meet assumptions of normality 
before estimating BLUPs
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We then aligned individual short read sequences and 
identified 91 M pre-filtered single nucleotide polymor-
phisms (SNPs) (Figure S1; Table  S1). First, low quality 
samples were removed if their missingness was below 
0.5. Then variants were filtered on quality (Phred > 25), 
minimum read depth (6), missingness (max = 0.2), and 
allele frequency (minor allele frequency = 0.01), 6.49 mil-
lion informative SNPs were discovered, averaging a SNP 
every 60 bases. Linkage disequilibrium (LD) decayed 
quickly, as median base pair distance to half-maximal r2 
values were 160 base pairs (Table S2). We also estimated 
the LD scores across each chromosome (Figure S2) and 
similar LD patterns for each chromosome. These mean 
LD estimate (160 bp) is greater than previous half-max-
imal estimates of LD decay in Eucalyptus species (92 and 
113 bp) [39], confirming that there is a very high degree 
of population diversity and recombination in the system.

To discover SNP-trait associations, we performed 
genome wide association studies for the three func-
tional traits. Weak but detectable population structure 
(FST = 0.05) was controlled for in the GWAS analysis 
using the first 10 axes of a multidimensional scaling plot, 
the first two axes show a distinction between the north-
ern and southern populations (Figure S3). The resulting 
GWAS identified 279, 69 and 92 significant SNPs for 
δ13C, SLA, and NDVI, respectively (Fig.  2a). Candidate 
SNPs were found on all chromosomes across the genome 
with several regions having a high density of candidate 
SNPs with peaks on chromosomes 3, 8, and 10 (Fig. 2a). 
Magnification of these peaks highlights many SNPs that 
occur in large haplotype blocks (150–350 kb) based on 
Haploview results, beyond the median LD decay, inter-
spersed with non-significant SNPs, and different among 
all three traits (Fig. 2b). These patterns within gene-rich 

Fig. 2  Genome sampling and GWAS outputs for Corymbia calophylla. a Manhattan plots for three traits and SNP density. Points represent SNPs 
significantly associated with the trait (red = δ13C; yellow = NDVI; blue = SLA; grey = not significant) at an FDR value < 0.00001. The density plot (below 
Manhattan plot) shows the number of SNPs in 1 million base pair segments across the genome with colour (white to green). b Magnified view 
of the significant peaks within the three ‘hotspot’ regions of adaptive variation. Underneath the magnified views are haploview plots that detect 
significant blocks, bounded by black lines. The linkage disequilibrium (r.2) across the haploview plot is denoted from low (white) to high (red)
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regions could be due to structural variants such as inver-
sions [40] or large haplotype blocks, which have been 
found to be important in adaptation in other systems 
(sunflower ecotypes [41] and teosinte [42]). Structural 
variants are a significant source of variation contribut-
ing to adaptation [43], are non-randomly distributed 
throughout the genome [44], and can change gene 
expression patterns [45]. The patterns found, particu-
larly the association of trait-associated SNPs with signifi-
cant haploblocks, in our study could be due to structural 
variants, but long-read sequencing would have to be per-
formed for confirmation. Large haplotype blocks likely 
explain the strong LD between candidate SNPs within 
chromosomes (Figure S4d-f ) with significant LD for 
the haploblocks in chromosome 3 (r2 = 0.35; p = 0.03), 
chromosome 8 (r2 = 0.25; p = 0.02) and chromosome 10 
(r2 = 0.29; p = 0.04) associated with δ13C. However, these 
patterns do not explain any of the long-range LD across 
chromosomes (Figure S4a-c). The mean r2 across all sig-
nificant SNPs associated with δ13C is 0.28 with a mean 
p-value of 0.04. This is likely due to rarity disequilibrium 
(i.e., genetic indistinguishability – giSNP [46]), which is 
a widespread phenomenon that arises when interchro-
mosomal SNP pairs are in perfect LD due to the com-
binatorial limit on unique genotype patterns in finite 
sample sizes and may be contributing to the pattern. 
Even though we do not know the genomic mechanism 
of these haplotype blocks, we can be confident that the 
target genes within regions are indicative of the genetic 
architecture associated with quantitative traits due to 
high significance and extremely high LD between signifi-
cant SNPs, and given the pattern persists after removal of 
the giSNPs.

To determine how much trait variation could be 
explained by all genomic SNPs, we estimated the SNP-
based heritability to explain the total proportion of 
variance in phenotypes [47]. We found that SNP-based 
heritability for all three traits (δ13C h2

SNP = 0.55 (SE 
0.14); SLA h2

SNP = 0.27 (0.12); and NDVI h2
SNP = 0.66 

(0.14)) was much greater than the heritabilities calcu-
lated through quantitative genetics methods (h2 = 0.11 
(0.08), 0.08 (0.08), and 0.15 (0.08) for δ13C, SLA, and 
NDVI, respectively [20]), and genetic correlations (rg) 
depended upon the traits. rg was significant between 
SLA and NDVI (p = 0.008) but not significant between 
δ13C and the other two traits (SLA: p = 0.16; NDVI: 
p = 0.55). Even though both NDVI and SLA are weakly 
correlated wtih δ13C at the trait level (SLA: r2 = -0.2; 
p < 0.001; NDVI: r2 = 0.19; p < 0.001), both correlative pat-
terns disappear at the genetic level. This paradox could 
indicate that correlational selection could be occurring 
among traits [48] or alternatively there is a complex sys-
tem of gene reuse among traits that are difficult to detect 

[49]. Indeed, complex evolutionary patterns have been 
observed in eucalypts where the same gene is reused in 
diverging ways under the same selection environments 
[50]. There were also major differences between the three 
h2

SNP estimates. Considering the large h2
SNP for both 

δ13C and NDVI, which includes all SNPs, we also iden-
tified several SNPs with large effect sizes (top SNP for 
δ13C 0.25, SLA 0.34, NDVI 0.17; Table  S3). Theoretical 
work indicates that in highly polygenic traits, alleles with 
very small effect sizes could be ephemeral because they 
are prone to swamping by gene flow as different geno-
typic combinations can provide optimum fitness [51]. 
While these ephemeral, swamping prone SNPs, could 
contribute to our traits, they would be impossible to dif-
ferentiate between neutral alleles in a GWAS framework. 
On the other side of the effect-size spectrum, the top 
10 candidate SNPs associated with δ13C showed greater 
effects (18—25%) (Table  S3; giSNPs were dropped from 
this model), compared to the greatest explanatory SNPs 
for NDVI and eight of the top 10 SNPs for SLA. These 
ten SNPs accounted for ~ 50% of the variation for δ13C 
and SLA, and 34% of the variation in NDVI. The lower 
combined r2 value for NDVI compared to the other two 
traits might be due to many factors, including more 
trait variation, more SNPs of small effect, and more epi-
static interactions. The inclusion of epistatic interactions 
increased the variation explained for δ13C and NDVI, but 
slightly lowered the variation explained for SLA, such 
that epistatic interactions improve phenotypic predic-
tions for two of the three traits compared to individual 
SNP effects.

There is also a proportion of trait variation that was 
not explained. One explanation might be that these traits 
are highly polygenic with very small additive effects, and 
we were only able to identify the variants most strongly 
associated with the phenotype [52]. h2

SNP should capture 
these undetected small effects, but this only explained 
a quarter to two thirds of the variation in our drought 
traits. Another explanation is that structural variants, 
which were not included in this dataset, could explain 
some of the missing heritability as they are known to be 
ubiquitous and have the potential to explain a large pro-
portion of heritable genetic variation [55]. Even though 
we performed our experiment in a common garden 
to minimse the effect of the environment, phenotypic 
plasticity could still play a role in these trait differences 
through variation in gene methylation or control through 
regulatory elements among genotypes sourced from dif-
ferent environments [26, 53, 54]. Methylation could result 
in non-heritable differences, while variants in regulatory 
elements could result in differences in plastic responses 
that are heritable. We detected genomic variants in the 
regulatory region (details below), which explained a large 
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proportion of the trait variation, despite complex interac-
tions constraining adaptation, and provide insights into 
the adaptive role of genes and regulatory elements.

Complex gene and trait interactions (i.e., epistasis and 
pleiotropy) are known to play important roles in quan-
titative traits [56, 57]. We found evidence that some of 
the unexplained trait variation could be attributable to 
epistasis among significant SNPs identified in the GWAS. 
Gene interactions among the candidate SNPs were 
explicitly evaluated using CAPE (giSNPs are removed 
from this analysis), revealing significant epistatic inter-
actions across the genome (p < 0.05; Fig. 3a), with strong 
interactions between chromosomes 3, 8, 9, and 10. Main 

effects between two SNP pairs are shown between chro-
mosomes 3 & 7 (negative effect; blue arrows in 3a) and 9 
& 11 (positive effect; yellow arrows in 3a) (Fig. 3b), and 
we also provide visualisation of an epistatic interaction 
when the main effect (variant + trait) is conditioned on 
a second variant (Fig. 3c), where the interaction between 
the two SNPs affects the trait in a negative way (Fig. 3c 
dashed line). We then assessed possible pleiotropic inter-
actions between the three traits, i.e., the effect of one SNP 
on multiple traits. Pleiotropic interactions are shown in 
Fig.  3a in the concentric bands, where the same SNP is 
highlighted for more than one trait. We identified several 
cases within chromosomes 1, 3, 7, 8, 9, and 10 that were 

Fig. 3  Patterns of significant epistatic and pleiotropic interactions in Corymbia calophylla. a Epistatic interactions are shown with coloured arrows 
and pleiotropic effects between traits are shown in the circular bands. Chromosomes are in black; chromosome six is not present because no SNPs 
were significant in the analysis. The direction of influence is shown by colour, where orange indicates that the SNP affects a different SNP 
in a positive way and blue is indicative of a negative effect. Interactions between a SNP and multiple traits indicate pleiotropy, while the same 
colours are indicative of the same effects. Antagonistic pleiotropy is inferred if the colours are different among SNPs in the same chromosomal 
location. Points on chromosome 3, 8, and 10 have been manually separated due to severe overlapping to visualise the antagonistic effects. 
b Genotypes for negatively influenced epistatic interaction between two SNP variants (grey points in (b) & blue arrows in (a)) and positively 
influenced epistatic interactions between two SNP variants (orange points in (b) & orange arrows in (a)). c Visualisation of one significant epistatic 
interaction where the main effect of a SNP (grey in (c)) and trait is conditioned on a second SNP (yellow in (c)), black dashed line is the interaction 
effect between the two variants. P-value – *** < 0.001; * < 0.05
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due to pleiotropic effects (Figs. 3a & S3). There was evi-
dence of antagonistic interactions (when a gene affects 
traits in different directions; represented by different col-
ours along the concentric trait-circles in Figs.  3a & S3). 
A network plot shows the interactions (both positive and 
antagonistic) between all 11 chromosomes (Figure S5). 
Pleiotropy was corroborated through annotation results, 
for example, there were 11 genes that were found to be 
significantly associated with all three traits (Table  S4). 
Eight of these genes were expressed during growth and 
development processes, including in plant organs such as 
guard cell and leaf structure. Pleiotropy is known to play 
in integral role among correlated polygenic traits. In fact, 
a recent study on humans shows that 90% of trait-associ-
ated loci overlap with other traits and are mostly involved 
in the regulation of transcripts [58]. It is also known that 
pleiotropic loci maintain stronger genetic correlations 
compared to loci in LD [59]. This suggests that the inter-
play between pleiotropy, regulatory regions, linkage, and 
rg is a critical component to tease apart the genetic mech-
anisms controlling drought tolerance in eucalypts. When 
assessing epistatic and pleiotropic interactions, it is dif-
ficult to determine how these control functional traits as 
there are tens of thousands of pairwise possibilities in our 
dataset contributing to the overall pattern of adaptation.

Annotation
In order to identify location (e.g., cis regulatory, genic) 
and effect (e.g., synonymous, nonsynonymous) of adapta-
tion, snpEFF was used to annotate all SNPs. Annotations 
for all 6.49 million filtered SNPs reveal many moderate 
(nonsynonymous) and low (synonymous) effect alleles 
on protein function with a much smaller proportion of 
high-effect alleles (Table  S5). Each chromosome had 
similar rates of nonsynonymous and synonymous SNPs 
(Table S5), except for chromosome 8 with a much higher 

rate of SNPs upstream and downstream of genes and 
more than double the number of high-effect SNPs than 
the other chromosomes (Table S5). We then functionally 
annotated the candidate SNPs within the three chromo-
somes with the highest significant peaks show interest-
ing patterns (Chromosomes 3, 8, and 10; red in Fig. 2a). 
For example, of the 41 SNPs on chromosome 8 associ-
ated with δ13C, 37 are within gene regulatory regions 
(< 5,000 base pairs upstream of the gene), while the four 
remaining SNPs were nonsynonymous with a moderate 
effect and synonymous with low effects (Table  1). We 
should be cautious in extrapolating this further because 
of the non-independence between significant SNPs iden-
tified in the GWAS analysis within a haplotype block 
and further work should be performed to identify the 
causal SNP(s). However, the general overabundance of 
significant SNPs within regulatory regions compared to 
genic or intergenic regions is suggestive that regulatory 
regions play an important role. The regions of adaptive 
variation in chromosomes 3 and 10 are mostly intergenic 
with SNPs in gene cis-regulatory regions (within 5 kb of a 
gene on either the 5’ (upstream) or 3’ (downstream) end 
of the gene) and six candidate SNPs in promoter regions 
(within 500 bp upstream of a gene) for δ13C on chromo-
some 10. This is notable because sequence variation in 
regulatory regions differentially impacts the function of 
nearby genes [60].

There were several significantly associated SNPs 
enriching genes with functions that provide support for 
the potential contribution to drought response (Table S6; 
results from orthofinder and eggNOG). For example, 
two genes were enriched for lignification and F-box pro-
tein (Eucgr.H02869 [61] and Eucgr.H02864 [62] respec-
tively), which are known to support drought tolerance. 
In addition, the gene Eucgr.D00100 regulates the ethyl-
ene hormone, and is an ortholog to the Arabidopsis gene 

Table 1  Annotation summary for the candidate SNPs on three chromosomes in Corymbia calophylla 

up-reg upstream regulatory region, down-reg downstream regulatory region, prom promoter region (within 500 bp of a gene), NS Nonsynonymous, S Synonymous, H 
High effect size (highly disruptive impact on protein function), M Moderate effect size (non-synonymous mutations, possible change in protein effectiveness), L Low 
effect size (synonymous mutations, non-coding or intergenic variant), Intergenic SNP not found within 5 kb of a gene

Chromosome Trait SNPs Intergenic Up-reg
(5 kb)

Prom
(500 bp)

NS S Down-reg
(5 kb)

Effect (H|M|L)

3 SLA 17 14 1 0 0 0 2 0|0|0

NDVI 23 18 2 0 0 0 3 0|0|0

δ13C 74 59 6 0 1 0 8 0|1|0

8 SLA 13 0 13 6 0 0 0 0|0|0

NDVI 16 0 16 5 0 0 0 0|0|0

δ13C 41 0 37 25 1 3 0 0|1|3

10 SLA 16 5 8 0 0 0 3 0|0|0

NDVI 26 8 11 0 0 0 7 0|0|0

δ13C 88 28 37 6 2 0 19 0|2|0
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AT4G20880. Ethylene is known to mitigate the negative 
effects of water and temperature stresses [63]. The Eucgr.
D00030 gene is an Ankyrin repeat family protein and 
has been known to confer tolerance to both drought and 
salinity in Arabidopsis and Soybean [64]. The possible 
roles these genes play in drought adaptation for C. calo-
phylla will need to be quantitatively verified, but these 
discoveries provide promising ways in which this species 
have evolved drought resilience.

Cis‑regulatory variants drive trait adaptation
The adaptive variation associated with traits, particularly 
for δ13C, is largely driven by variants in cis-regulatory 
regions (noncoding DNA that regulates neighbouring 
genes; Table  S7 – categorised significantly associated 
SNPs into four categories 500 bp, 5 kb, 10 kb and 50 kb), 
which are less constrained by pleiotropy than coding 
regions from an evolutionary perspective [65]; this mech-
anism appears to be important in C. calophylla. Indeed, 
recent studies suggest that cis-regulatory regions are crit-
ical for different types of adaptation [66–68]. Yet there is 
poor understanding how this variation influences popu-
lation-level local adaptation, as noted by recent studies 
on evolution [69]. Here, we characterise variants associ-
ated with functional traits that are important for this spe-
cies’ adaptation to drought that are overrepresented by 
cis-regulatory regions. While we recognise that this find-
ing needs to be confirmed in future research to disentan-
gle non-independence issues within haplotype blocks, 
our data suggests that adaptation within cis-regulatory 
regions are more abundant than variants found within 
protein-coding genes and are more likely to shape the 
genomic architecture of these drought traits. Similarly, 
recent work has shown that regulatory variants are criti-
cal for drought in sunflowers [70]. We currently hypoth-
esise that intraspecific drought-related phenotypes is 
mostly governed by changes within regulatory regions.

Conclusion
Considering the impact climate change is having on 
drought frequency and severity, understanding the 
molecular underpinnings of drought related traits pro-
vides an important step forward in determining the 
mechanisms controlling drought tolerance. We found 
heritable genetic variation associated with drought traits 
within several haplotype blocks across several chromo-
somes. This is particularly important when considering 
the abundance of epistatic and pleiotropic interactions, 
which likely constrain these traits ability to adapt. Fur-
thermore, the majority of significant variants were 
detected in regulatory regions where they may influ-
ence the expression of many genes and traits. Despite 

the moderate levels of heritable variation determining 
drought related traits, the complex genomic architecture 
will complicate adaptive management strategies, i.e., by 
promoting one trait or gene, other traits or genes may be 
unexpectedly promoted or suppressed. Using the stand-
ing genomic variation in highly admixed natural popula-
tions may facilitate adaptation to climate change induced 
droughts.

Methods and materials
Study species
Corymbia calophylla is a foundation forest canopy spe-
cies located in Western Australia (WA). It is considered 
a foundation species because it is critical for forest struc-
ture and ecological processes [71]. Corymbia calophylla 
is an important component of planted forests both for 
wood production and ecological restoration, provides 
critical habitat and resources to native animals, as well as 
having deep connections to the Aboriginal people. This 
species is an ideal candidate in which to study adapta-
tion of functional traits because its distribution traverses 
strong environmental gradients over short distances, it 
has recently experienced mortality events attributed to 
climate change [37, 72], and evidence of adaptation to 
climate has been identified in physiological experiments 
and genome–environment investigations [20, 38, 73, 74].

Experimental site
This research was conducted in a plantation near Mar-
garet River, WA Australia (Fig.  1 main text), located 
in the C. calophylla’s cool–wet region. Seed collection 
and trial design have been described in detail elsewhere 
[38]. Briefly, 18 populations represented by 165 families 
were established at the experimental site for a total of 
3,960 individuals in six replicated blocks with two rows 
of buffer trees to minimise edge-effects. Seed collections 
for field trials were performed by Richard Mazanec (WA 
Department of Biodiversity, Conservation and attrac-
tions) and no voucher specimens were collected because 
the field sites are persistent. Families are defined here 
as individuals that have a known, common mother but 
unknown fathers (i.e., half-sibs) via mixed pollination 
within an intact forest. We focused on 12 populations 
representing contrasting climate combinations covering 
the full geographic distribution of C. calophylla (Fig.  1 
main text). We sampled phenotypes and genotypes from 
a total of 432 trees, including 4 half-sibs from 10 fami-
lies within 12 populations when available for a total of 
120 families. Permissions for leaf material collection 
were provided by the land owners and Western Aus-
tralia’s Department of Biodiversity, Conservation, and 
Attractions.
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Trait measurements
Traits were measured in March 2017 on C. calophylla 
trees that were 29 months old and 2–3 m tall. For each 
individual tree, we removed a north facing, mid-canopy 
side branch at its intersection with the main stem. The 
side branch was removed in the morning (between 8 
a.m. and 12 noon), stored in a cool box, and measured 
in the afternoon (between 12 noon and 6 p.m.). For each 
side branch, we collected data for the three traits (among 
others not listed here): integrated water-use efficiency 
(δ13C), specific leaf area (SLA), and normalized differ-
ence vegetation index (NDVI). All traits have shown 
close association to climate in past studies. High water-
use efficiency (WUE) is the link between photosynthesis 
and evaporation [75] that translates to climatic tolerance 
under water limitation. Water-use efficiency is correlated 
with isotope discrimination (δ13C, an isotopic signature 
measuring the ratio of 13C and 12C [76]) and relates to 
leaf gas exchange properties [77, 78]. To estimate δ13C, 
the leaves were kept in an airtight box with silica gel 
until they could be dried in an oven at 70 °C for 48 h. 
δ13C was measured from leaves dried using a benchtop 
freeze dryer (Alpha 1–4 LDplus Laboratory Freeze Dryer, 
Martin Christ). The leaves were grounded into a fine 
powder using a cyclotec mill (Foss Analytics) and sent 
for isotope analysis (ANU Isotope Laboratory) using a 
coupled EA-MS system (EA 1110 Carlo Erba; Micromass 
Isochrom).

Leaf-level normalized difference vegetation index 
(NDVI), which is generally used to measure chlorophyll 
content by quantifying leaf greenness, and is closely 
related to fraction of absorbed photosynthetically active 
radiation (FPAR) [79, 80]. While not technically a func-
tional trait (NDVI), traits based on spectral properties 
of leaves can be indicative of photosynthetic activity and 
plant stress, and from hereon, we include this complex 
trait as a functional trait for ease of discussion. A field 
spectroradiometer (ASD standard-resolution FieldSpec4, 
Malvern Panalytical) was used to measure leaf reflectance 
in the visible and reflected infrared spectral regions with 
2,151 narrow bands (10 nm full width at half maximum) 
and 1 nm spacing between band centers. Measurements 
were made for three leaves using a leaf-clip attachment 
with its own light source and calibrated to % reflectance 
using data collected from a Spectralon white reference 
panel. Means for all bands among the three leaves were 
calculated for each individual tree. Specific wavelengths 
were used to estimate the modified red-edge NDVI. The 
modified red-edge NDVI was calculated using the follow-
ing equation [81]:

mND705 = (R750 − R705)/(R750 + R705 − 2× R445)

and was developed as an improvement to the standard 
NDVI to provide a more robust estimate of chlorophyll 
content [82] across a wide range of species and leaf struc-
tures [81]. Henceforth, this index will be referred to as 
“NDVI” in the text.

Specific leaf area (SLA) varies across global climate 
gradients [83], and high SLA values increase tree suscep-
tibility to drought-induced mortality [84]. Specific leaf 
area (SLA) was measured on three fully matured leaves 
that were representative of the branch. After removing 
half of the petiole with a razor, the leaves were scanned 
into a computer using a Canon flatbed scanner (model # 
LiDE220) at 50 dpi. The leaves were then dried in an oven 
at 70 °C for 48 h and leaf mass was estimated on a digital 
scale with 1000th of a gram accuracy. SLA was calculated 
by dividing total leaf area by total leaf mass for all three 
leaves and averaged across the three leaves for a single 
SLA value for each individual tree.

BLUP estimation
Best linear unbiased predictions (BLUP) were estimated 
for each trait to account for variation attributed to the 
design matrix and to increase trait accuracy because it 
anticipates regression of progeny to the mean observed 
[85]. Analysis was performed using ASreml Version 4.1 
[86, 87]. Univariate variances were estimated within the 
framework of the linear mixed model:

Where Y is the column vector of individual phenotypic 
values of the response variable, X is the design matrix 
associating observations with fixed effects, b is the vec-
tor of fixed effects, Ζ is the design matrix associating 
observations with random effects, u is a vector of ran-
dom effects and e is the vector of residual errors assumed 
to be identically and independently normally distributed 
with E(e) = 0.

Two sets of analysis were conducted, the first at the 
family level for the purpose of checking the data for 
homoscedasticity and determining if there was a need 
for transformation, and the second at the individual tree 
level for the purpose of estimating BLUPs.

Univariate family model
Elements in b included the intercept and provenance 
effects while elements in u included replicate, row within 
replicate, column within replicate, plot and family. Resid-
ual plots were examined for homoscedasticity and appro-
priate transformations identified as outlined previously 
[86, 87]. The trait NDVI was log transformed, whereas 
the δ13C and SLA did not require transformation.

Y = Xb+ Zu+ e
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Univariate individual tree model
Elements in b and u were the same as for the univariate 
family model, with the exception that the family term 
was substituted with an individual tree, random addi-
tive effect. In this model, additive genetic covariance 
between relatives is modelled via the numerator relation-
ship matrix. A one-tailed log likelihood ratio test with 0.5 
degrees of freedom [87, 88] was used to test the signifi-
cance of additive variance estimates for each trait.

Reference genome
DNA extraction and sequencing
We isolated high molecular weight DNA suitable for 
long-read re-sequencing by following a nuclei and mag-
netic bead-based extraction protocol [89]. Briefly, 30 g of 
fresh leaf material from an individual from the Austral-
ian Botanic Gardens in Canberra Australia was processed 
with 150 ml nuclei isolation buffer using a high-pow-
ered blender. The homogenate was filtered using a fun-
nel of Miracloth. Next, 100% Triton X-100 was added to 
extract the nuclei from chloroplasts. The nuclei pellet 
was washed twice with a chilled nuclei buffer. Nuclei pel-
let lysis was performed with a lysis buffer containing 3% 
Sodium dodecyl sulphate (SDS) followed by incubating at 
50ºC. The DNA was cleaned of proteins by adding potas-
sium acetate and pelleting. The supernatant was bound to 
Sera-MagTM SpeedBead magnetic carboxylate-modified 
particles (GE Healthcare). The beads were washed with 
70% ethanol until clean. Size selection for fragments ≥ 30 
kb was performed using a PippinHT (Sage Science, Bev-
erly MA). MinION Mk1B was used to sequence the long-
reads (Oxford Nanopore Technologies, ONT).

Nuclear genome assembly
Raw read libraries were filtered and trimmed in prepara-
tion of assembly with NanoPack [90] (NanoLyse version 
1.1.0; NanoFilt version 2.6.0). First, ONT DNA control 
strand was removed. Next, 200 bp was trimmed from both 
5’ and 3’ ends, removing sequencing adapters and low qual-
ity read ends. Finally, filtering removed all reads less than 
an average quality of 7 and less than 1 Kbp in length. Qual-
ity controlled read libraries were de novo assembled using 
the long read assembler Canu [91] (version 1.9; parameters: 
corOutCoverage = 200 "batOptions = -dg 3 -db 3 -dr 
1 -ca 500 -cp 50", correctedErrorRate = 0.154, cor-
MaxEvidenceErate = 0.15, -fast). Following assembly, 
contaminant contigs were identified with blastn [92] (ver-
sion 2.9.0 +) using the NCBI nucleotide database [93] (ver-
sions BLASTDBv5). Identified contaminant contigs were 
removed with Blobtools [94] (version 1.1.1). Haplotigs, 
assembly artifacts, and plastid contigs were removed from 
assemblies with purge haplotigs [95] (version 1.1.0). Next, all 
assemblies were polished with the long read polisher Racon 

[96] (version 1.4.11) combined with minimap2 and the short 
read polisher Pilon [97] (version 1.23) combined with BWA-
MEM [98]. Contigs of less than 1 Kbp were removed and 
manual curation of all remaining contigs was performed 
with MUMmer [99] (version 4.0.0beta2) to identify plastid 
DNA. Finally, our assemblies were scaffolded by RaGOO 
[100] using synteny information provided by the previously 
published Eucalyptus grandis genome [101]. Genome com-
pleteness was assessed with BUSCO [102] (version 3.0.2) 
and Lai [103] (version beta3.2). See Figure S1 for a summary 
of our assembly statistics.

Chloroplast assembly
Chloroplast reads were identified and subsequently 
extracted by aligning all reads with minimap2 [104] 
against a composite chloroplast genome made up of all 
published Eucalyptus chloroplast genomes. Chloro-
plast reads were identified within the alignment file with 
samtools v1.9 view [105] and extracted from all curated 
ONT reads using seqtk subseq (version: 1.3-r106; [106]). 
1,000 chloroplast reads were randomly sampled using 
seqtk sample and assembled with Unicycler [107] (ver-
sion 0.4.8) and polished using Pilon [97]. To confirm that 
the assembled contig was a chloroplast genome, an align-
ment dot plot was made of our chloroplast genome to the 
published Eucalyptus chloroplast genomes, using MUM-
mer [99].

Repeat and gene annotation
Prior to gene annotation repetitive regions in C. calo-
phylla’s genome were identified and soft masked with 
RepeatMasker [108] (version 4.1.1) using de novo repeat 
libraries created with EDTA [109] (version 1.9.6). Pro-
tein-coding genes and transcripts were predicted by 
BRAKER2 [110] (version 2.1.5; parameters: epmode), 
using 306,675 proteins sequences from Myrtaceae (Tax-
onomy ID: 3931) and 371,118 proteins sequences from 
Arabidopsis thaliana (Taxonomy ID: 3702) obtained 
from the National Center for Biotechnology Information 
[93] as homology evidence.

Library preparation & variant calling
DNA extraction for whole genome sequencing was per-
formed by the Australian Genomic Research Facility 
(AGRF, Adelaide, SA Australia) using a modified CTAB 
method [111]. We generated short-read whole-genome 
shotgun DNA sequencing libraries using a low-cost 
transposase-based protocol [89]. Briefly, we quantified 
DNA concentrations using a fluorometric Quant-iT™ 
high sensitivity dsDNA assay kit (Molecular Probes™ 
Q33120). To normalise concentrations among sam-
ples, we diluted DNA to 2 ng/μl, quantified again and 
then diluted to 0.8 ng/μl. To form sequencing libraries, 
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we combined 3 μl of each sample (approx 2.24 ng) with 
a small quantity of a Nextera™ tagment DNA enzyme 
(Illumina catalogue #15,027,865). To decrease costs, we 
performed this tagmentation reaction at 1/5th volume 
and 1/5th concentration of the manufacturer’s proto-
col, i.e., 1/25th reactions. We amplified the libraries and 
added custom index sequences during 13 cycles of PCR. 
We purified and size-selected libraries using two SPRI-
bead based cleanups and electrophoresis-based final size 
selection for insert sizes between 200 and 500 bp. We 
sequenced these libraries on a single S4 flow-cell on an 
Illumina NovoSeq 6000 instrument at Genomics West 
Australia/Telethon Kids Institute, Perth, West Australia.

Sequencing yielded between 3 and 10 Gbp per sam-
ple (~ 10-30X coverage), pooled across all sequencing 
runs (see Fig.  1 in main text). We discovered genetic 
variation among samples following a previous approach 
[39]. Briefly, we filtered, trimmed, and merged pairs of 
raw sequencing data using AdapterRemoval [112], then 
aligned reads to reference genomes using BWA-MEM 
version 0.7.15 [98, 113]. We detected short genomic vari-
ants using bcftools mpileup, normalised variants with 
bcftools norm, and performed initial variant filtering 
with bcftools filter [114]. Reads were aligned against our 
custom Corymbia calophylla reference genome. During 
initial variant filtering, we discarded variants with qual-
ity < 25, fewer than five reads in total across all alleles in 
all samples and fewer than three reads supporting the 
alternate allele across all samples. Resulting in 91 million 
pre-filtered single nucleotide variants, a variant every ~ 4 
bp, which is normal among eucalypt species [39].

Filtering
After variants were called using the above pipeline, addi-
tional filtering was performed in PLINK 2.0 [115] with 
the following thresholds. Minimum read-depth was set 
to six. We extracted biallelic variants only, to ensure all 
variants were biallelic and minimise complex signals. The 
minimum basepair distance between variants was set 
to 10. Minor allele frequency (MAF) was set to 0.01, to 
have sufficient power for GWAS detection. Missing data 
threshold was set to 0.5 but the average missing data in 
the data set was 0.2. Resulting in a dataset with 6.5 mil-
lion SNPs across all 11 chromosomes.

Linkage disequilibrium
Linkage disequilibrium (LD) was measured using median 
base pair distance to half-maximal r2 values using bor-
ingLD v0.3.0 (https://​github.​com/​kdmur​ray91/ boringld). 
We set the window size to 30 kbp with a 15 kbp overlap. 
We fitted analytical models of the decay of r2 as a function 
of inter-SNP base pair distance using formulae derived by 
Hill and Weir [116] and then calculated base pair distance 

to half-maximal r2 for each window. We summarized per-
window estimates of half-maximal r2 across all genome 
windows for a global r2 estimate. To test if LD was a func-
tion of the number of SNPs within each window, we used a 
linear model within each chromosome (Figure S2). The lin-
ear fit was significant for all chromosomes but the r2 values 
were low, this pattern was driven by the windows with very 
few SNPs. We also use LDSC to obtain LD scores which are 
the cumulative sum of r2 values across SNPs within 30 kb 
windows [117] and plotted these scores for each chromo-
some using ggplot2 [118] and R [119].

Associations
Genome wide association studies (GWAS) were per-
formed in Plink2 for each of the three functional traits. 
We used the individual BLUP estimates as the func-
tional trait inputs, as this accounted for experimen-
tal site effects. We used the first 10 axes from an MDS 
as a covariate for population structure (first two axes 
are plotted and shown in Figure S3). We used the gen-
eral linear model (glm) function to calculate p-values. 
We note that the power of GWAS analyses increases 
with higher genetic variation [120], but Corymbia calo-
phylla is known to have extremely high diversity across 
its range with high connectivity [74, 121], making this 
species an exceptional study organism for this type of 
analysis. We also tested the associations of the GWAS 
using GEMMA with kinship matrix as a random covari-
able and the outputs resulted in nearly identical p-value 
distributions to the Plink2 analysis (Figure S6). We 
imported the Plink2 results to R [119] and adjusted the 
p-values for multiple comparisons using the Benjamini–
Hochberg method (BH). Then used the CMplot com-
mand from the CMplot package to visualise the p-value 
distribution in a manhattan plot format. To ensure that 
the significant associations identified using the GWAS 
approach were not random, we used 100 permutations 
across the phenotype data in two ways and ran the 
Plink2 GLM analysis for both permutation variations. 
The first was completely random using the sample 
function in R without replacement, and the second was 
keeping the family structure of phenotypes and resam-
pling among families. 

The qq plots suggest that the p-values were inflated 
regardless of the covariable used (population or family 
structure; Figure S6). Both GWAS methods identified 
very similar groupings of SNPs (51–65% total similarity 
and top 50 SNPs were 88% similar for δ13C). The differ-
ences between the distribution of BH adjusted p-values 
were significantly different between the real and per-
muted datasets (t.test: T1,1.3 m = -2648.8, versus Random 
p < 0.001; T1,1.3 m = -244.4, versus Family p < 0.001), sug-
gesting that the adaptive variants were not due to chance. 

https://github.com/kdmurray91/
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We wanted to determine if the associations between SNP 
and trait were associated with local genomic structure, 
as described in Li and Ralph [122]. Therefore, we used 
the package lostruct in R to investigate the structure 
within 1000 SNP windows (this is equivalent to approx-
imately 10 kbp) within each chromosome, creating 
between 400 and 600 windows per chromosome. Then 
we compared the first two axes within chromosomes to 
the location of adaptive genomic regions for three major 
areas of association on chromosome 3, 8, and 10. We 
found that anomalous local population structure among 
1000 SNP windows was not localised near regions that 
were significantly associated with phenotypes (Figure 
S7). Significant haplotype blocks within these three major 
regions were identified using Haploview [123] with 500 
max kb, 0.05 minor allele frequency threshold, and block 
significance was determined using the default option of 
95% confidence intervals [124].

SNP heritability
To calculate SNP based heritability, we used the GEMMA 
model to describe the proportion of variance in pheno-
types explained (PVE). GEMMA fits a univariate linear 
mixed model for marker association tests with a single 
phenotype, and for estimating the PVE by all variants 
[125]. We acknowledge that this work is performed in 
one common garden and that shared environments are 
known to inflate heritability [126]. However, upward bias 
due to shared environments would be consistent across 
populations [127] such that the heritability relationships 
are comparable among populations within the study 
species. This difference between actual and inflated her-
itability indicates that not all variation identified is adap-
tive, further quantitative experiments would need to be 
performed to confirm these results. We also determined 
genetic correlation (rg) between the three traits using 
LDSC [128], following the author’s recommendations.

Epistasis & pleiotropy
We attempted to uncover some of the complex epistatic and 
pleiotropic relationships between variants and traits by use 
of the combined analysis of pleiotropy and epistasis (CAPE) 
package in R [129], which implements an analytical method 
described in Carter et  al. [130] to explicitly test for these 
complex interactions. This method was designed for data-
sets that include populations with mixed genetic variation, 
and is therefore appropriate for our study design. CAPE cal-
culates both the main effects, which are the effect of a SNP 
from the set of all pairwise regressions that included that 
SNP, and the directional influences of that SNP that inter-
act epistatically. We used the following parameters for the 

CAPE analysis (parameter file available online): traits_
scaled = true, pval_correction = fdr, alpha = 0.5, 
peak_density = 0.8, tolerance = 10, num_alleles_
in_pairscan = 300, maxpair_cor = 0.5, pairscan_
null_size = 1000. We used a high peak_density 
because of the quick LD decay, as suggested in the CAPE 
documentation. We also used a num_alleles_in_
pairscan of 300 to limit the number of SNP pair analyses,  
this results in a different outcome for each run because 
we do not test all 104,329 pair possibilities. To be clear, 
individual SNP pair outcomes will not change, it is 
whether or not the individual SNP pair is randomly 
included in the output. Even so, the result shown here is 
a representative subset of these interactive effects. Both 
the inputs and outputs for our specific CAPE analysis 
are provided online, so the user can recreate our figures 
but also explore other individual runs and create new 
figures. 

Functional annotations
The program snpEFF [131] was used to identify the 
location of significantly associated SNPs using the Cor-
ymbia calophylla genome (NCBI txid34324; assem-
bly ASM1418284v1). Variants found within genes were 
recorded as synonymous or nonsynonymous, in addition 
variants in regulatory regions found within 5,000 base 
pairs of genes were recorded as being upstream or down-
stream, along with the number of base pairs between 
the gene and SNP. We recorded putative impact of the 
SNP on gene function and generally moderate effects are 
from nonsynonymous SNPs (changes in amino acids; ‘M’ 
in Table  1), low effects are from synonymous SNPs (no 
changes to amino acids; ‘L’ in Table 1), and high effects 
are from frame shifts or changes to start/stop codons 
(loss off function; ‘H’ in Table 1). We also specified which 
variants are in promoter regions, defined here as being 
within 500 bp upstream of the gene. Then, orthofinder 
was used to identify homologs between C. calophylla 
and E. grandis genomes [132], and assign putative func-
tions to predicted genes identified as significant. We also 
provided results from a scale mapper to identify pos-
sible orthologs across KEG, COG, and eggNOG data-
bases using eggnog-mapper [133] (version: 5.0) using the 
sequence aligner diamond [134] (version: 2.0.15).
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