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Abstract 

Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 300,000 people world‑
wide. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles 
which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant 
that contributes to their disease. As therapies that slow or prevent symptoms continue to develop, such as antisense 
oligonucleotides, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts 
continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due 
to an increase in power. These analyses could highlight novel pathways in disease manifestation.

Methods Building on our previous discoveries using rare variant association analyses, we conducted rare variant bur‑
den testing on a substantially larger multi‑ethnic cohort of 6,970 ALS patients, 166 PLS patients, and 22,524 controls. 
We used intolerant domain percentiles based on sub‑region Residual Variation Intolerance Score (subRVIS) that have 
been described previously in conjunction with gene based collapsing approaches to conduct burden testing to iden‑
tify genes that associate with ALS and PLS.

Results A gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (OR = 19.18, 
p = 3.67 ×  10–39; OR = 4.73, p = 2 ×  10–10; OR = 2.3, p = 7.49 ×  10–9, respectively). These genes have been previously associ‑
ated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (p = 4.88 ×  10–7), was protective for ALS 
in this model. An intolerant domain‑based collapsing model showed a significant improvement in identifying regions 
in TARDBP that associated with ALS (OR = 10.08, p = 3.62 ×  10–16). Our PLS protein truncating variant collapsing analysis 
demonstrated significant case enrichment in ANTXR2 (p = 8.38 ×  10–6).

Conclusions In a large multi‑ethnic cohort of 6,970 ALS patients, collapsing analyses validated known ALS genes 
and identified a novel potentially protective gene, ALKBH3. A first‑ever analysis in 166 patients with PLS found a candi‑
date association with loss‑of‑function mutations in ANTXR2.
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Background
Amyotrophic lateral sclerosis (ALS) is a rare neurodegen-
erative disease characterized by the progressive loss of 
upper motor neurons in the cortex and lower motor neu-
rons of the brainstem and spinal cord. Even with FDA-
approved disease modifying medication and palliation by 
artificial nutrition and ventilation, the prognosis is poor 
and death from accumulating paralysis occurs a median 
of 32 months after symptoms first manifest [1]. Over the 
last 30 years, genetic study of the 5–10% of ALS patients 
with family history [2, 3] have securely implicated ~ 20 
monogenic causes and showed possible association to a 
similar number of genes (https:// clini calge nome. org/ affil 
iation/ 40096/). Causative mutations in the most preva-
lent ALS genes (C9ORF72, SOD1, TARDBP, and FUS) 
explain ~ 70% of familial ALS [4, 5]. Due in part to incom-
plete penetrance, 10% of simplex ALS cases, which show 
no known family history, also carry mutations in these 
same genes [6].

A paucity of unsolved ALS pedigrees for family stud-
ies has intersected with falling sequencing costs for large-
scale sequencing to allow gene discovery studies based 
on rare variant burden or collapsing methods on cohorts 
using predominantly simplex patients. Since our group 
first used this approach to implicate TBK1 and NEK1, 
others have also identified DNAJC7, TUBA4A and sev-
eral candidates [6–9]. These analyses utilized the entire 
gene or recognizable functional domains as the regions 
for burden testing [6, 7] and were restricted to cohorts 
with European ancestry, or with less than 5% non-Euro-
pean ALS cases. Recognizing that power for discovery 
could be improved by a) increasing case and control 
numbers, b) diversifying the ancestries of participants, 
and c) collapsing on domains known to be intolerant of 
variation, we conducted both standard gene and intol-
erant domain-based collapsing analyses on 6,970 multi-
ethnic ALS cases and ancestry-matched controls.

Primary lateral sclerosis (PLS) is also a neurodegenera-
tive disease of motor neurons with clinical features, neu-
ropathology, and some genetics that overlaps with ALS 
[10–12]. PLS is nearly always simplex and 20 times rarer 
than ALS [13]. Because large-scale sequencing studies of 
ALS often include PLS patients, we were able to conduct 
a gene-based collapsing analysis in 166 PLS multi-ethnic 
cases and ancestry matched controls.

Methods
Whole exome and genome sequencing
DNA sequencing was performed at Columbia University, 
the New York Genome Center, Duke University, McGill 
University, Stanford University, HudsonAlpha, and Uni-
versity of Massachusetts, Worcester. Kits used to con-
duct whole-exome capture are as follows: Agilent All 

Exon kits (50 MB, 65 MB, and CRE), Nimblegen SeqCap 
EZ Exome Enrichment kits (V2.0, V3.0, VCRome, and 
MedExome), and IDT Exome Enrichment panel. There 
were 2,185 participants with ALS who were sequenced 
using Nimblegen SeqCap EZ Exome Enrichment kits and 
51 who were sequenced using the IDT Exome Enrich-
ment panel (Supplemental Table 1). While 1,272 controls 
were evaluated using the Aligent All Exon kits, 8,498 with 
the IDT Exome Enrichment panel, and 11,201 with the 
Nimblegen SeqCap EZ Exome Enrichment kits. Sequenc-
ing was performed using Illumina GAIIx, HiSeq 2000, 
HiSeq 2500, and NovaSeq 6000 sequencers according to 
standard protocols. Whole genome sequencing was con-
ducted at the New York Genome Center and in-house at 
the IGM. Sample-level BAM files were transferred from 
the New York Genome Center to the IGM (n = 3,418). An 
additional 1,316 genomes were processed by the IGM. 
There were 1,553 genomes in our control cohort (Sup-
plemental Table 1). Data were aligned to the human ref-
erence genome (NCBI Build 37) using DRAGEN (Edico 
Genome, San Diego, CA, USA). Picard (http:// picard. 
sourc eforge. net) was used to remove duplicate reads and 
to process lane-level BAM files to create a sample-level 
BAM file. GATK was used to recalibrate base quality 
scores, realign around indels, and call variants utilizing 
the Best Practices recommendations v3.6 [14]. Variants 
were annotated using ClinEff and the Analysis Tool for 
Annotated Variants (ATAV), an in-house IGM annota-
tion tool [15]. Variants were annotated with the Genome 
Aggregation Database (gnomAD) v2.1 frequencies, 
regional-intolerance metrics, and the clinical annotations 
by the Human Gene Mutation Database (HGMD), Clin-
Var, and Online Mendelian Inheritance in Man (OMIM). 
Exonic regions were retained for downstream statistical 
analyses.

Sample and variant quality control
Samples reporting > 2% contamination according to veri-
fyBamID [16] and those with consensus coding sequence 
(CCDS release 20) < 90% were excluded from these 
analyses. KING [17] was used to test for relatedness. 
Only unrelated (up to second-degree) individuals were 
included in these analyses. For related pairs, samples 
were chosen to prefer cases. Samples where X:Y coverage 
ratios did not match expected sex were excluded.

Only variants within the CCDS or the 2  bp canoni-
cal sites were included in these analyses. These vari-
ants were also required to have a quality score of at 
least 50, a quality by depth score of at least 5, genotype 
quality score of at least 20, read position rank sum of 
at least − 3, mapping quality score of at least 40, map-
ping quality rank sum greater than − 10, and a minimum 
coverage of at least 10. SNVs had a maximum Fisher’s 
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strand bias of 60, while indels had a maximum of 200. 
For heterozygous genotypes, the alternative allele ratio 
was required to be greater than or equal to 30%. Only 
variants with the GATK Variant Quality Score Recalibra-
tion filter “PASS”, “VQSRTrancheSNP90.00to99.00”, or 
“VQSRTrancheSNP99.00to99.90” were included. Vari-
ants were excluded if they were marked by EVS, ExAC, or 
gnomAD as being failures (http:// evs. gs.washington.edu/
EVS/).

Clustering, ancestry, and coverage harmonization
A neural network pre-trained on samples of known 
ancestry was used to calculate probability estimates for 
six ancestry groups (African, East Asian, European, His-
panic, Middle Eastern, and South Asian). Methods for 
characterizing samples into clusters has been previously 
described [18].

To ensure balanced sequencing coverage of evaluated 
sites between cases and controls, we imposed a statis-
tical test of independence between the case/control 
status and coverage as previously described [19]. Sites 
were removed where the absolute difference in percent-
ages of cases and controls with at least 10 × coverage 
was greater than 7%. Samples were then pruned using 
this method on a cluster-by-cluster basis. Through this 
approach, approximately 7- 11% were removed. Clusters 
with less than 5 participants were not included in these 
analyses, thereby removing 6 participants with PLS but 
none with ALS.

Variant‑level and gene‑level statistical analysis
The models that were used to test for associations of 
nonsynonymous coding or canonical splice variants 
with outcome included variants with MAF < 0.1% for 
each population represented in gnomad and internal AF 
of < 0.1%. Models tested were a standard gene-unit col-
lapsing analysis, and a domain-unit analysis. The models 
used for these analyses were previously described [7]. A 
domain-based approach utilizing sub-region Residual 
Variation Intolerance Score (subRVIS) domain percent-
age [7] with a threshold of 25 was also used to evaluate 
case enrichment of rare variants. The full list of 18,653 
CCDS genes was analyzed for each model. Genes with 
at least one qualifying variant were included for analy-
ses. As we are meta analyzing across clusters an exact 
2-sided Cochran-Mantel–Haenszel test was used (using 
the statistical package in R v3.6). Study-wide significance 
was determined by accounting for 6 nonsynonymous 
models- multiplicity-adjusted significance threshold 
α = 4.9 ×  10–7 (Supplemental Table  2). Model inflation 
was calculated using empirical (permutation-based) 
expected probability distributions as described by Povy-
sil and colleagues [18].

ALS and PLS rare variant burden testing
We conducted both standard gene and intolerant domain-
based collapsing analyses on 6,970 multi-ethnic ALS cases 
(87% European) and 22,534 ancestry-matched controls. 
Standard gene collapsing analyses identified case enrich-
ment of rare variants (minor allele frequency of 0.001) in 
an ALS cohort with 12 sub-population groups (Supple-
mental Fig. 1A) that correspond to ancestry-based clusters 
(Supplemental Fig.  1B; Supplemental Table  3). Analyses 
were conducted on clusters with at least 3 cases. Controls 
were drawn from individuals sequenced for phenotypes/
diseases with no known association with ALS (Supple-
mental Table 4). As expected, a negative control analysis 
for rare synonymous variants found no case-enrichment 
(Supplemental Fig. 2). Because gene-based collapsing con-
siders variation across the entire gene, regions that are tol-
erant of variation could swamp case-enrichment signals 
originating from regions that are intolerant to variation 
[7]. To overcome this limitation, we conducted rare vari-
ant collapsing on domains that are intolerant to variation 
as defined as a subRVIS domain score threshold of 25, a 
cutoff based on threshold testing.

As large-scale sequencing studies of ALS often 
include PLS patients, we were able to conduct a gene-
based collapsing analysis in 166 PLS multi-ethnic cases 
(88% European) and 17,695 ancestry matched con-
trols (Supplemental Fig.  3; Supplemental Tables  5). 
We expected the study would be underpowered for 
securely implicating causative genes but used this as an 
opportunity to generate candidates for future study.

ALS gene set enrichment analyses
An ALS gene set enrichment analysis was conducted 
using the gene strength association list outlined in 
Table  1. We utilized the qualifying variants that were 
associated with ALS in each gene set category and used 
the exact two-sided CMH test to analyze burden of 
ALS genes defined by gene set. These lists were curated 
using data published by Gregory and colleagues [20] 
and the Clinical Genome Resource (ClinGen). As out-
lined, “ALS Definite” genes were found to have ample 
published replication evidence, while ‘ALS Plus’ genes 
had some replication data and/or functional evidence 
for an association with ALS. However, ‘ALS Moderate 
genes, required additional replication analyses and/or 
functional data, and ‘ALS Limited’ genes were genes 
that overlapped with ALS phenotypically.

Results
Rare variant burden testing
Collapsing analysis of all rare functional variants (mis-
sense and protein truncating variants) (Supplemental 
Table  2) found genome-wide and study-wide significant 
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(p < 4.9 ×  10–7) case-enrichment for known ALS genes 
SOD1, TARDBP, TBK1 (OR = 19.18, p = 3.67 ×  10–39; 
OR = 4.73, p = 2 ×  10–10; OR = 2.3, p = 7.49 ×  10–9, respec-
tively) and control-enrichment for ALKBH3 (OR = 0.26, 
p = 4.88 ×  10–7) (Fig.  1A; Supplemental Data). Although 
SOD1, TBK1 and TARDBP are definitive ALS genes, we 
were intrigued by the identification of control-enriched 
ALKBH3. Control-enrichment was not explained by 
sequencing methodology, ancestry cluster, or specific 
phenotype/disease population within the control cohort. 
Because ALKBH3 plays a role in DNA repair [21], a mech-
anism increasingly implicated in ALS pathogenesis [22], 
we attempted to replicate this novel association by ana-
lyzing summary statistics from the Project MinE cohort, 
which is similar in size to ours [23]. None of the available 
models focused on variation as rare as in our analyses, but 
at a higher minor allele frequency (MAF) for qualifying 
variants (0.005), a minor degree of control-enrichment 
was in fact observed (OR = 0.56, p = 3.96 ×  10–4). This 
raises the possibility that rare missense and protein trun-
cating variants (PTVs) in ALKBH3 could protect from 
ALS, a finding that requires validation in large cohorts.

Intolerant domain analyses implicated the same 
three known ALS genes (SOD1, TARDBP, and TBK1 at 

OR = 20.63, p = 1.68 ×  10–38; OR = 10.08, p = 3.62 ×  10–16; 
and OR = 3.15, p = 8.38 ×  10–11, respectively) (Fig.  1B; 
Supplemental Data). The intolerant domain analysis did 
not improve over the gene-based analysis for SOD1 or 
TBK1 (Fig. 2; Fig. 3) but doubled the odds ratio and sig-
nificantly lowered the p-value obtained for TARDBP. The 
improvement of the intolerant domain model (Fig.  1C, 
1D) stemmed from a significant drop (one-tailed z-score 
p = 0.031) in the number of qualifying variants found in 
controls dispersed across tolerant regions, while high-
lighting qualifying variants in ALS cases predominantly 
in the intolerant C-terminal region.

Although most models showed no significant genes, 
the dominant PTV model showed significant case 
enrichment for ANTXR2 (OR = 174.57, p = 8.38 ×  10–6) 
(Fig. 4; Supplemental Table 6; Supplemental Data), a gene 
associated with brain connectivity changes and Alzhei-
mer’s disease [24]. Currently, there are no additional large 
sequencing studies of PLS in which we could attempt 
replication.

ALS gene set enrichment analyses
A gene set enrichment analysis of genes that were 
defined as ‘ALS Definite’ were significantly associated 
with ALS for all dominant models, including PTV only 
(p < 1.49 ×  10–72), PTV & Missense (p < 7.93 ×  10–24), and 
Missense only (p < 8.27 ×  10–28) (Fig. 5). The synonymous 
model, which served as a control, showed no associa-
tion (p = 0.5) between these genes and ALS. Genes that 
are moderately associated with ALS, ‘ALS Moderate, 
showed significant enrichment of rare variants for the 
PTV & Missense (p < 7.9 ×  10–6), as well as the Missense 
only (p < 8.18 ×  10–5) models. The group of genes that 
were described as having limited evidence, ‘ALS Lim-
ited’, showed a significant association with rare variants 
and ALS for the PTV only model (p = 0.032). For all other 
models, rare variants in these genes were not significantly 
associated with ALS. An analysis of genes that are char-
acterized as ‘ALS Plus’ showed no significant associa-
tion of rare variants with ALS for the 4 models that were 
analyzed.

Discussion
Burden testing
Conducting genic and intolerant domain based collaps-
ing analyses in a large multi-ethnic population provides 
insight into novel and established biological mechanisms 
in disease manifestations. Additionally, analyzing specific 
disease subtypes can capture critical disease pathways 
that could be targets for clinical intervention. Here we 
show, that performing collapsing analyses in multi-ethnic 
populations and in disease subtypes found novel genetic 
associations in individuals diagnosed with ALS and PLS. 

Table 1 ALS gene association strength

ALS Definite ALS Moderate ALS Plus ALS Limited

ANXA11 CHCHD10 ALS2 ANG
C9ORF72 MATR3 AR ARPP21
KIF5A TUBA4A ATXN2 C21ORF2/ CFAP140
FUS SQSTM1 CHMP2B CAV1
NEK1 DCTN1 CAV2
OPTN DYNC1H1 CCNF
PFN1 ERLIN1 CYLD
SOD1 ERLIN2 DAO
TARDBP GRN DNAJC7
TBK1 HTT ERBB4
UBQLN2 MAPT EWSR1
VCP SETX FIG4

SIGMAR1 GLE1
SLC52A2 GLT8D1
SLC52A3 hnRNPA1
SPG11 hnRNPA2B1
SPTLC1 KANK1
SPTLC2 LGALSL
VAPB NEFH

NUP50
PRPH
SS18L1
TAF15
TIA1
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These analyses implicated ALS genes that have previously 
been identified (SOD1, TARDBP, and TBK1). We also 
identified ALKBH3 as a potentially protective gene that 
warrants further study in additional cohorts. In addition, 
we conducted the first rare variant collapsing analysis in 
PLS, identifying PTVs in ANTXR2. This gene will need 
to be investigated further in larger PLS cohorts or in tar-
geted functional analyses. Lastly, gene set enrichment 
analyses provide evidence that genes known to be associ-
ated with ALS show strong evidence to have a rare vari-
ant burden especially for protein truncating variants.

ALKBH3 associates with ALS
We found that genic collapsing analyses of individu-
als diagnosed with ALS identified known risk genes 
(SOD1, TARDBP, and TBK1) and a novel protective 
gene (ALKBH3). ALKBH3 encodes for AlkB homolog 
3, Alpha-Ketoglutarate Dependent Dioxygenase which 
protects against the cytotoxicity of methylating agents 
by repair of the specific DNA lesions [25–27]. ALKBH3 
potentially acts as a putative hyperactive promotor 
to suppress transcription associated DNA damage of 
highly expressed genes [28]. Genes that play a role in 

Fig. 1 Q‑Q plots of gene‑ and domain‑level collapsing of ALL functional coding variants in ALS cohort. A The results for a standard gene‑level 
collapsing of 6,970 ALS cases and 22,524 controls. P‑values were generated using an exact two‑sided Cochran‑Mantel–Haenszel (CMH) by gene 
by cluster. The genes with the top associations that achieved study‑wide significance of p < 4.9 ×  10–7 (SOD1 (OR = 19.18), TARDBP (OR = 4.73), TBK1 
(OR = 2.3), and ALKBH3 (OR = 0.26)) are labeled. SOD1, TARDBP, TBK1 have been previously implicated in rare variant association studies of ALS. Yellow 
and green lines indicate the 2.5th and 97.5.th percentile of expected p‑values, respectively. B The results for the domain‑based collapsing restricting 
qualifying variants to those with subRVIS domain percentage score < 25 of 6,970 cases and 22,524 controls. P‑values were generated using an exact 
two‑sided Cochran‑Mantel–Haenszel (CMH) by gene by cluster. The genes with the top associations (SOD1 (OR = 20.63), TARDBP (OR = 10.08), 
and TBK1 (OR = 3.15)) are labeled. C Standard gene‑level collapsing model showed 44 qualifying variants in cases (red circles) and 31 in controls 
(blue circles) for TARDBP (D) subRVIS domain collapsing improved association by removing control variants (cases = 43; controls = 15). Regions 
with subRVIS domain percentage below 25 are highlighted in orange while those above this threshold are highlighted in blue. A one tailed z‑score 
showed that there were significantly less controls in the intolerant domain as indicated by subRVIS domain percentage score < 25 (p = 0.031)
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DNA repair and DNA damage response such as TAR-
DBP, FUS, and NEK1 [29–32] are known to play a role 
in ALS potentially through neuronal death pathways.

ANTXR2 associated with PLS
Genic collapsing analyses of protein truncating variants 
on individuals with PLS identified a suggestive gene 

Fig. 2 Plot of gene‑ and domain‑level collapsing of ALL SOD1 functional coding variants. Standard gene‑level collapsing model showed 93 
qualifying variants in cases (red circles) and 18 in controls (blue circles) for SOD1. subRVIS domain collapsing improved association by removing 
control variants (cases = 90; controls = 16). Regions with subRVIS domain percentage below 25 are highlighted in orange while those above this 
threshold are highlighted in blue. However, a one tailed z‑score showed that the differences in the number of controls in the intolerant domain 
was not significantly lower than those in the entire gene as indicated by subRVIS domain percentage score < 25 (p = 0.4)

Fig. 3 Plot of gene‑ and domain‑level collapsing of ALL TBK1 functional coding variants. Standard gene‑level collapsing model showed 73 
qualifying variants in cases (red circles) and 143 in controls (blue circles) for TBK1. subRVIS domain collapsing improved association by removing 
control variants (cases = 47; controls = 72). Regions with subRVIS domain percentage below 25 are highlighted in orange while those above this 
threshold are highlighted in blue. However, a one tailed z‑score showed that the differences in the number of controls in the intolerant domain 
was not significantly lower than those in the entire gene as indicated by subRVIS domain percentage score < 25 (p = 0.3)
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Fig. 4 Q‑Q plot of gene‑level collapsing of protein truncating variants (PTV) in PLS cohort. The results for a standard gene‑level collapsing of 166 
PLS cases and 17,695 controls. P‑values were generated using an exact two‑sided Cochran‑Mantel–Haenszel (CMH) by gene by cluster. The gene 
with the top associations that achieved genome‑wide significance of p < 8.38 ×  10–6 (ANTXR2 (OR = 174.57)) is labeled. ANTXR2 has not been 
previously implicated in rare variant association studies of PLS. Yellow and green lines indicate the 2.5th and 97.5th percentile of expected p‑values, 
respectively

Fig. 5 Forest plot of ALS genes by model. Rare variants in “ALS Definite” genes were significantly associated with ALS in gene‑based collapsing 
models except the control synonymous model. Rare variants in “ALS Moderate” genes were associated with ALS in “PTV & Missense” and “Missense” 
gene‑based collapsing model. There was no association with ALS of rare variants in “ALS Plus” and a weak association in the PTV “ALS Limited” genes. 
Pooled odds ratio, 95% confidence intervals, and p‑values were generated from exact two‑sided Cochran‑Mantel–Haenszel (CMH) tests
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(ANTXR2). ANTXR2 encodes a receptor for anthrax 
toxin that may be involved in extracellular matrix adhe-
sion. Variants in this gene have been associated with 
hyaline fibromatosis [33, 34], and has been shown to 
play a role in angiogenesis [35]. This finding adds to the 
number angiogenic genes that have been implicated in 
ALS including VEGF and ANG [36].

While we identified a potentially important gene that is 
associated with PLS, we were limited in our sample size 
and will therefore need additional cohorts or functional 
studies to further investigate this finding. Additionally, 
there are potentially more ALS subtypes that could be 
investigated to better understand this heterogeneous dis-
ease. Lastly, unknown confounders could be contributing 
to the signal that are found in these association analyses.

Conclusions
In summary, we performed the largest rare variant analyses 
of a multi-ethnic population of patients with ALS to date. 
Our analysis did not identify new ALS risk genes but dem-
onstrated that collapsing models informed by regions of 
intolerance can be useful for identifying genes where disease-
associated variation is limited to regions with low background 
variation. This analysis also confirmed the association of the 
C-terminal domain of TARDBP. We also identified ALKBH3 
as a potentially protective gene that warrants further study in 
additional and larger cohorts. Finally, we conducted the first 
rare variant collapsing analysis in PLS, identifying PTVs in 
ANTXR2 as a candidate disease gene. This association and 
potential mechanisms for PTVs in this gene will need to be 
investigated further in larger PLS cohorts.

It is important to note that this analysis doubled the num-
ber of ALS cases and quadrupled the number of controls 
from our first study [6] but remained underpowered for the 
identification of new ALS genes. A recently published rare 
variant burden analysis with a similar number of ALS cases 
did not identify new genes [23] either, emphasizing the 
need for increasingly large genomically characterized ALS 
cohorts, especially in non-European populations.

Availablity of data and materials
All summary data generated during this study are 
included in this published article and its supplementary 
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Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864‑ 024‑ 10538‑1.

Supplementary Material 1.

Supplementary Material 2.

Supplementary Material 3.

Acknowledgements
We thank the following groups for contributing ALS/PLS samples, sequencing, 
or clinical data:
New York Genome Center ALS Consortium: J. Kwan, D. Sareen, J.R. Broach, Z. 
Simmons, X. Arcila‑Londono, E.B. Lee, V.M. Van Deerlin, E. Fraenkel, L.W. Ostrow, 
F. Baas, N. Zaitlen, J.D. Berry, A. Malaspina, P. Fratta, G.A. Cox, L.M. Thompson, 
S. Finkbeiner, E. Dardiotis, T.M. Miller, S. Chandran, S. Pal, E. Hornstein, D.J. 
MacGowan, T. Heiman‑Patterson, M.G. Hammell, N.A. Patsopoulos, J. Dubnau, 
and A. Nath.
ALS Exome Sequencing Consortium: S.H. Appel, R.H. Baloh, R.S. Bedlack, R. 
Brown, W.K. Chung, S. Gibson, J.D. Glass, A. Gitler, D.B. Goldstein, T.M. Miller, R.M. 
Myers, S.M. Pulst, J.M. Ravits, G. Rouleau, E. Greene, N. Shneider, and W.W. Xin;
Genomic Translation for ALS Care (GTAC) study: S.H. Appel, R.H. Baloh, R.S. 
Bedlack, S. Chandran, L. Foster, S. Goutman, E. Green, C. Karam, D. Lacomis, G. 
Manousakis, T.M. Miller, S. Pal, D. Sareen, A. Sherman, Z. Simmons, L. Wang.
ALS COSMOS Study Sites Group: Columbia University Coordinating 
Center, NY, NY: Hiroshi Mitsumoto, MD, DSc, Pam Factor‑Litvak, PhD, Regina 
Santella, PhD, Howard Andrews, PHD; Texas Neurology, P.A., Dallas, TX: 
Daragh Heitzman, MD; Duke University, Durham, NC: Richard S. Bedlack, 
MD, PhD; California Pacific Medical Center, San Francisco, CA: Jonathan 
S. Katz, MD, Robert Miller, MD, Dallas Forshew; University of Kansas, Kansas 
City, KS: Richard J. Barohn, MD, PhD; Mayo Clinic, Rochester, MN; Dr. Eric 
J. Sorenson, MD; University of California—Davis, Sacramento, CA: Bjorn 
E. Oskarsson, MD, PhD; University of Kentucky, Lexington, KY: Edward J. 
Kasarskis, MD, PhD; University of California—San Francisco, San Francisco, 
CA: Catherine Lomen‑Hoerth, MD, PhD, Jennifer Murphy, PhD; University of 
Colorado, Aurora, CO: Yvonne D. Rollins, MD, PhD; University of Califor‑
nia – Irvine, Orange, CA: Tahseen Mozaffar, MD; University of Nebraska, 
Omaha, NE; J. Americo M. Fernandes, MD; University of Iowa, Iowa City, IA: 
Andrea J. Swenson, MD; University of Texas—Southwestern, Dallas: Sharon 
P. Nations, MD; SUNY—Upstate Medical University, Syracuse, NY: Jeremy 
M. Shefner, MD, PhD; and Hospital for Special Care, New Britain, CT: Jinsy A. 
Andrews, MD, MS, Dr. Agnes Koczon‑Jaremko.
PLS COSMOS Study Group: Columbia University Irving Medical Center, NY, 
NY: Hiroshi Mitsumoto, MD, DSc, Peter L. Nagy, MD, PhD, Pam Factor‑Litvak, 
PhD, PhD, Rejina Santella, PhD, Howard Andrews, PhD, Raymond Goetz, PhD; 
Icahn School of Medicine—Mount Sinai, NY, NY: Chris Gennings, PhD; Uni‑
versity of California—San Francisco, San Fransisco, CA: Jennifer Murphy, 
PhD; National Institute of Neurological Disorders and Stroke, Bethesda, 
MD: Mary Kay Floeter, MD, PhD; University of Kansan Medical Center, Kan‑
sas City, KS: Richard J. Barohn, MD; University of Texas, Dallus, TX: Sharon 
Nations, MD; Western University, London, Ontario: Christen Shoesmith, MD; 
and University of Kentucky, Louisville, KT: Edward Kasarskis, MD, PhD.
We thank The Washington Heights–Inwood Columbia Aging Project (WHICAP) 
for the contribution of control samples. We also thank the WHICAP study 
participants and the WHICAP research and support staff for their contributions 
to this study: K. Welsh‑Bomer, C. Hulette, and J. Burke; D. Valle, J. Hoover‑Fong, 
and N. Sobriera; A. Poduri; S. Palmer; R. Buckley; K. Newby; The Murdock Study 
Community Registry and Biorepository Pro00011196; National Institute of 
Allergy and Infectious Diseases Center for HIV/AIDS Vaccine Immunology 
(CHAVI) (U19‑AI067854); National Institute of Allergy and Infectious Diseases 
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (UM1‑
AI100645); CHAVI Funding; R. Ottman; V. Shashi; S. Berkovic, I. Scheffer, and B. 
Grinton; The Epi4K Consortium and Epilepsy Phenome/Genome Project; C. 
Depondt, S. Sisodiya, G. Cavalleri, and N. Delanty; S. Hirose; C. Woods, C. Village, 
K. Schmader, S. McDonald, M. Yanamadala, and H. White; G. Nestadt, J. Samu‑
els, and Y. Wang; D. Levy; E. Pras, D. Lancet, and Z. Farfel; S. Chen; R. Wapner; 
C. Moylan, A. Mae Diehl, and M. Abdelmalek; DUHS (Duke University Health 
System) Nonalcoholic Fatty Liver Disease Research Database and Specimen 
Repository; M. Winn and R. Gbadegesin; M. Hauser; S. Delaney; A. Need and J. 
McEvoy; M. Walker; M. Sum; Undiagnosed Diseases Network; National Institute 
on Aging (R01AG037212, P01AG007232).

CONSORTIA
New York Genome Center ALS Consortium: Matthew B  Harms1,5,6, Justin 
 Kwan10, Dhruv  Sareen11, James R  Broach12, Zachary  Simmons13, Ximena Arcila‑
Londono14, Edward B  Lee15, Vivianna M Van  Deerlin15, Ernest  Fraenkel16, Lyle W 
 Ostrow17, Frank  Baas18, Noah  Zaitlen19, James D  Berry20, Andrea  Malaspina21, 
Pietro  Fratta22, Gregory A  Cox23, Leslie M  Thompson24, Steve  Finkbeiner25, 
Efthimios  Dardiotis26, Timothy M  Miller27, Siddharthan  Chandran28, Suvankar 

https://doi.org/10.1186/s12864-024-10538-1
https://doi.org/10.1186/s12864-024-10538-1


Page 9 of 11Pottinger et al. BMC Genomics          (2024) 25:651  

 Pal28, Eran  Hornstein29, Daniel J  MacGowan30, Terry Heiman‑Patterson31, Molly 
G  Hammell32, Nikolaos A  Patsopoulos33, Joshua  Dubnau34, and Avindra  Nath35.
10 Department of Neurology, University of Maryland School of Medicine, 
University of Maryland ALS Clinic, Baltimore, United States of America
11 Cedars‑Sinai Department of Biomedical Sciences, Board of Governors 
Regenerative Medicine Institute and Brain Program, Cedars‑Sinai Medical 
Center, Los Angeles, United States of America
12 Department of Biochemistry and Molecular Biology, Penn State Institute 
for Personalized Medicine, The Pennsylvania State University, Hershey, United 
States of America
13 Department of Neurology, The Pennsylvania State University, Hershey, 
United States of America
14 Department of Neurology, Henry Ford Health System, Detroit, United States 
of America
15 Department of Pathology and Laboratory Medicine, Perelman School of 
Medicine, University of Pennsylvania, Philadelphia, United States of America
16 Department of Biological Engineering, Massachusetts Institute of Technol‑
ogy, Cambridge, United States of America
17 Department of Neurology, Johns Hopkins School of Medicine, Baltimore, 
United States of America
18 Department of Neurogenetics, Academic Medical Centre, Amsterdam and 
Leiden University Medical Center, Leiden, Netherlands
19 Department of Medicine, Lung Biology Center, University of California, San 
Francisco, San Francisco, United States of America
20 ALS Multidisciplinary Clinic, Neuromuscular Division, Department of Neu‑
rology, Harvard Medical School, Boston, United States of America
21 Centre for Neuroscience and Trauma, Blizard Institute, Barts and The 
London School of Medicine and Dentistry, Queen Mary University of London, 
London, United Kingdom
22 Institute of Neurology, National Hospital for Neurology and Neurosurgery, 
University College London, London, United Kingdom
23 The Jackson Laboratory, Bar Harbor, United States of America
24 Department of Psychiatry and Human Behavior and Department of Biologi‑
cal Chemistry, School of Medicine, University of California, Irvine, Irvine, United 
States of America
25 Taube/Koret Center for Neurodegenerative Disease Research, Roddenberry 
Center for Stem Cell Biology and Medicine, Gladstone Institute, San Francisco, 
United States of America
26 Department of Neurology and Sensory Organs, University of Thessaly, 
Thessaly, Greece
27 Department of Neurology, Washington University in St. Louis, St. Louis, 
United States of America
28 Centre for Clinical Brain Sciences, Anne Rowling Regenerative Neurology 
Clinic, Euan MacDonald Centre for Motor Neurone Disease Research, Univer‑
sity of Edinburgh, Edinburgh, United Kingdom
29 Department of Molecular Genetics, Weizmann Institute of Science, Reho‑
vot, Israel
30 Department of Neurology, Icahn School of Medicine at Mount Sinai, New 
York, United States of America
31 Center for Neurodegenerative Disorders, Department of Neurology, the 
Lewis Katz School of Medicine, Temple University, Philadelphia, United States 
of America
32 Cold Spring Harbor Laboratory, Cold Spring Harbor, United States of 
America
33 Computer Science and Systems Biology Program, Ann Romney Center 
for Neurological Diseases, Department of Neurology, Brigham and Women’s 
Hospital, Harvard Medical School, Boston, United States of America
34 Department of Anesthesiology, Stony Brook University, Stony Brook, United 
States of America
35 Section of Infections of the Nervous System, National Institute of Neuro‑
logical Disorders and Stroke, NIH, Bethesda, United States of America
Scottish Genomes Partnership: Timothy J.  Aitman8, Nicola  Williams36,37, 
Jonathan  Berg38, Ruth  McGowan36, Zosia  Miedzybrodzka39, Mary 
 Porteous40, Edward  Tobias36

36 West of Scotland Centre for Genomic Medicine, Queen Elizabeth University 
Hospital, Glasgow, Scotland UK
37 Genomics England, QMUL, Dawson Hall, London, EC1M 6BQ England UK
38 University of Dundee Human Genetics Unit, Level 6, Ninewells Hospital, 
Dundee, DD1 9SY Scotland UK
39 Institute of Medical Sciences, University of Aberdeen, North of Scotland 
Regional Genetic Service, NHS Grampian

40 South East Scotland Genetic Service, NHS Lothian, Western General Hospi‑
tal, Edinburgh, Scotland UK
ALS COSMOS Study Group:Hiroshi  Mitsumoto5,41, Pam Factor‑Litvak41, Regina 
 Santella41, Howard  Andrews41, Daragh  Heitzman42, Richard S.  Bedlack43, 
Jonathan S.  Katz44, Robert  Miller44, Dallas  Forshew44, Richard J.  Barohn45, Eric J. 
 Sorenson46,Bjorn E.  Oskarsson47,Edward J.  Kasarskis48,Catherine Lomen‑Hoe‑
rth49, Jennifer  Murphy49, Yvonne D.  Rollins50, Tahseen  Mozaffar51, J. Americo M. 
 Fernandes52, Andrea J.  Swenson53, Sharon P.  Nations54, Jeremy M.  Shefner55, 
Jinsy A.  Andrews56, Agnes Koczon‑Jaremko56

41 Columbia University Coordinating Center, New York, New York, United 
States of America
42 Texas Neurology, P.A., Dallas, Texas, United States of America
43 Duke University, Durham, North Carolina, United States of America
44 California Pacific Medical Center, San Francisco, California, United States of 
America
45 University of Kansas, Kansas City, Kansas, United States of America
46 Mayo Clinic, Rochester, Minnesota, United States of America
47 University of California ‑ Davis, Sacramento, California, United States of 
America
48 University of Kentucky, Lexington, Kentucky, United States of America
49 University of California ‑ San Francisco, San Francisco, California, United 
States of America
50 University of Colorado, Aurora, Colorado, United States of America
51 University of California – Irvine, Orange, California, United States of America
52 University of Nebraska, Omaha, Nebraska, United States of America
53 University of Iowa, Iowa City, Iowa, United States of America
54 University of Texas ‑ Southwestern, Dallas, Texas, United States of America
55 SUNY ‑ Upstate Medical University, Syracuse, New York, United States of 
America
56 Hospital for Special Care, New Britain, Connecticut, United States of America
PLS COSMOS Study Group: Hiroshi  Mitsumoto5,41,57, Peter L.  Nagy57, Pam 
Factor‑Litvak41,57, Rejina  Santella41,57, Howard  Andrews41,57, Raymond  Goetz57, 
Chris  Gennings58, Jennifer  Murphy49, Mary Kay  Floeter59, Richard J.  Barohn45, 
Sharon  Nations54, Christen  Shoesmith60, Edward  Kasarskis48

57 Columbia University Irving Medical Center, New York, New York, United 
States of America
58 Icahn School of Medicine ‑ Mount Sinai, New York, New York, United States 
of America
59 National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 
United States of America
60 Western University, London, Ontario, Canada
Genomic Translation for ALS Care (GTAC) study: Matthew B  Harms1,5,6, 
Stanley  Appel61, Robert  Baloh62, Richard  Bedlack63, Siddharthan  Chandran64, 
Laura  Foster65, Stephen  Goutman66, Ericka  Greene67, Chafic  Karam68, David 
 Lacomis69, George  Manousakis70, Timothy  Miller71, Suvankar  Pals72, Dhruv 
 Sareen73, Alex  Sherman74, Zachary  Simmons75, Leo  Wang76

61 Department of Neurology, Houston Methodist, Houston, Texas, United 
States of America
62 Department of Neurology, Cedars Sinai, Los Angeles, California, United 
States of America
63 Department of Neurology, Duke University, Durham, North Carolina, United 
States of America
64 Department of Neurology, University of Edinburgh, Edinburgh, Scotland, UK
65 Department of Neurology, University of Colorado, Aurora, Colorado, United 
States of America
66 Department of Neurology, University of Michigan, Ann Arbor, Michigan, 
United States of America
67 Department of Neurology, Houston Methodist, Houston, Texas, United 
States of America
68 Department of Neurology, Oregon Health Sciences University, Portland, 
Oregon, United States of America
69 Department of Neurology, University of Pittsburg Medical Center, Pitts‑
burgh, Pennsylvania, United States of America
70 Department of Neurology, University of Minnesota, Minneapolis, Minne‑
sota, United States of America
71 Department of Neurology, Washington University in St. Louis, St. Louis, Mis‑
souri, United States of America
72 Department of Neurology, University of Edinburgh, Edinburgh, Scotland, UK
73 Cedars Sinai, Los Angeles, California, United States of America
74 Massachusetts General Hospital, Boston, Massachusetts, United States of 
America



Page 10 of 11Pottinger et al. BMC Genomics          (2024) 25:651 

75 Department of Neurology, The Pennsylvania State University, College of 
Medicine, Hershey, Pennsylvania, United States of America
76 Department of Neurology, University of Washington, Seattle, Washington, 
United States of America

Authors’ contributions
Conception and design: T.D.P., J.E.M., D.B.G., and M.B.H. Data acquisition: 
C.A.M.M., Z.R., H.P., T.J.A., J.S.L, H.M., D.B.G., and M.B.H. Analysis: T.D.P. and M.B.H. 
Interpretation, draft and review, and final approval: all authors. T.D.P. and M.B.H. 
had full access to the study data and take responsibility for the integrity of 
the data and accuracy of analyses. All authors read and approved the final 
manuscript.

Funding
The collection of ALS and PLS samples and data was funded in part by: The 
Scottish Genomes Partnership (Chief Scientist Office of the Scottish Govern‑
ment Health Directorates (SGP/1) and The Medical Research Council Whole 
Genome Sequencing for Health and Wealth Initiative (MC/PC/15080); The New 
York Genome Center ALS Consortium (ALS Association 15‑LGCA‑234, 19‑SI‑
459, and the Tow Foundation; The GTAC study (ALS Association 16‑LGCA‑310 
and Biogen Idec); ALS Exome Sequencing Consortium (Biogen Idec). Funding 
for the ALS 561 COSMOS and PLS COSMOS studies was provided by NIEHS 
R01ES016348, the Muscular 562 Dystrophy Association, MDA Wings Over Wall 
Street, Spastic Paraplegia Foundation (SPF), private 563 donations from Mr. 
and Mrs. Marren, the Adams Foundation, and Ride for Life.
The collection of control samples and data was funded in part by: Bryan ADRC 
NIA P30 AG028377; NIH RO1 HD048805; Gilead Sciences, Inc.; D. Murdock; 
National Institute of Allergy and Infectious Diseases Center for HIV/AIDS Vac‑
cine Immunology (CHAVI) (U19‑AI067854); National Institute of Allergy and 
Infectious Diseases Center for HIV/AIDS Vaccine Immunology and Immunogen 
Discovery (UM1‑AI100645); Bill and Melinda Gates Foundation; NINDS Award# 
RC2NS070344; New York‑Presbyterian Hospital; The Columbia University 
College of Physicians and Surgeons; The Columbia University Medical Center; 
NIH U54 NS078059; NIH P01 HD080642; The J. Willard and Alice S. Marriott 
Foundation; The Muscular Dystrophy Association; The Nicholas Nunno 
Foundation; The JDM Fund for Mitochondrial Research; The Arturo Estopinan 
TK2 Research Fund; UCB; Epilepsy Genetics Initiative, A Signature Program of 
CURE; Epi4K Gene Discovery in Epilepsy study (NINDS U01‑NS077303) and The 
Epilepsy Genome/Phenome Project (EPGP ‑ NINDS U01‑NS053998); The Ellison 
Medical Foundation New Scholar award AG‑NS‑0441‑08; National Institute 
Of Mental Health of the National Institutes of Health under Award Number 
K01MH098126; B57 SAIC‑Fredrick Inc. M11‑074; OCD Rare 1R01MH097971‑
01A1. This research was supported in part by funding from Funding from 
the Duke Chancellor’s Discovery Program Research Fund 2014; an American 
Academy of Child and Adolescent Psychiatry (AACAP) Pilot Research Award; 
NIMH Grant RC2MH089915; Endocrine Fellows Foundation Grant; The NIH 
Clinical and Translational Science Award Program (UL1TR000040); NIH 
U01HG007672; The Washington Heights Inwood Columbia Aging Project; The 
Stanley Institute for Cognitive Genomics at Cold Spring Harbor Laboratory and 
the Utah Foundation for Biomedical Research. Data collection and sharing for 
the WHICAP project (used as controls in this analysis) was supported by The 
Washington Heights–Inwood Columbia Aging Project (WHICAP, PO1AG07232, 
R01AG037212, RF1AG054023) funded by the National Institute on Aging (NIA) 
and by The National Center for Advancing Translational Sciences, National 
Institutes of Health, through Grant Number UL1TR001873. This manuscript has 
been reviewed by WHICAP investigators for scientific content and consistency 
of data interpretation with previous WHICAP Study publications. The content 
is solely the responsibility of the authors and does not necessarily represent 
the official views of the National Institutes of Health.

Declarations

Ethics approval and consent to participate
IRB approval was granted by Columbia University Human Research Protection 
Office and IRBs for the study, and informed consent was obtained from all 
participants. All methods were carried out in accordance with the protocols 
laid out in the approved IRB and in accordance with current guidelines and 
regulations regarding human subject research. All samples and data came 
from participants that provided written, informed consent for genetic studies 
that had been IRB‑approved at each contributing center.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute for Genomic Medicine, Columbia University Irving Medical Center, 
New York, NY, USA. 2 Department of Internal Medicine, Columbia University 
Irving Medical Center, New York, NY, USA. 3 Department of Pediatrics, Columbia 
University Irving Medical Center, New York, NY, USA. 4 Department of Neurol‑
ogy, School of Medicine, Universidade de São Paulo, São Paul, Brazil. 5 Depart‑
ment of Neurology, Columbia University Irving Medical Center, New York, 
NY, USA. 6 Center for Motor Neuron Biology and Disease, Columbia University 
Irving Medical Center, New York, NY, USA. 7 New York Genome Center, New 
York, NY, USA. 8 Centre for Genomic and Experimental Medicine, University 
of Edinburgh, Edinburgh, Scotland, UK. 9 Edinburgh Genomics, University 
of Edinburgh, Edinburgh, Scotland, UK. 10 Division of General Medicine, 
Department of Medicine, 622 West 168, New York, NY 10032, USA. 

Received: 7 December 2023   Accepted: 17 June 2024

References
 1. Dorst J, Ludolph AC, Huebers A. Disease‑modifying and symptomatic 

treatment of amyotrophic lateral sclerosis. Ther Adv Neurol Disord. 
2018;11:1756285617734734.

 2. Chen S, Sayana P, Zhang X, Le W. Genetics of amyotrophic lateral sclerosis: 
an update. Mol Neurodegener. 2013;8:28.

 3. Gibson SB, Figueroa KP, Bromberg MB, Pulst SM, Cannon‑Albright L. Familial 
clustering of ALS in a population‑based resource. Neurology. 2014;82(1):17–22.

 4. Chia R, Chiò A, Traynor BJ. el genes associated with amyotrophic lateral scle‑
rosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94–102.

 5. Boylan K. Familial Amyotrophic Lateral Sclerosis. Neurol Clin. 2015;33(4):807–30.
 6. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, et al. 

Exome sequencing in amyotrophic lateral sclerosis identifies risk genes 
and pathways. Science. 2015;347(6229):1436–41.

 7. Gelfman S, de Araujo Moreno C Martins, Dugger S, Ren Z, Wolock CJ, 
Shneider NA, et al. A new approach for rare variation collapsing on func‑
tional protein domains implicates specific genic regions in ALS. Genome 
Res. 2019;29(5):809–18.

 8. Jih KY, Tsai PC, Tsai YS, Liao YC, Lee YC. Rapid progressive ALS in a patient 
with a DNAJC7 loss‑of‑function mutation. Neurol Genet. 2020;6(5): e503.

 9. Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, et al. Exome‑
wide rare variant analysis identifies TUBA4A mutations associated with 
familial ALS. Neuron. 2014;84(2):324–31.

 10. Tartaglia MC, Rowe A, Findlater K, Orange JB, Grace G, Strong MJ. Differen‑
tiation between primary lateral sclerosis and amyotrophic lateral sclerosis: 
examination of symptoms and signs at disease onset and during follow‑
up. Arch Neurol. 2007;64(2):232–6.

 11. Statland JM, Barohn RJ, Dimachkie MM, Floeter MK, Mitsumoto H. Primary 
Lateral Sclerosis. Neurol Clin. 2015;33(4):749–60.

 12. Mitsumoto H, Nagy PL, Gennings C, Murphy J, Andrews H, Goetz R, et al. 
Phenotypic and molecular analyses of primary lateral sclerosis. Neurol 
Genet. 2015;1(1): e3.

 13. Turner MR, Barohn RJ, Corcia P, Fink JK, Harms MB, Kiernan MC, et al. 
Primary lateral sclerosis: consensus diagnostic criteria. J Neurol Neurosurg 
Psychiatry. 2020;91(4):373–7.

 14. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernyt‑
sky A, et al. The Genome Analysis Toolkit: a MapReduce framework 
for analyzing next‑generation DNA sequencing data. Genome Res. 
2010;20(9):1297–303.

 15. Ren Z, Povysil G, Hostyk JA, Cui H, Bhardwaj N, Goldstein DB. ATAV: a 
comprehensive platform for population‑scale genomic analyses. BMC 
Bioinformatics. 2021;22(1):149.

 16. Jun G, Flickinger M, Hetrick KN, Romm JM, Doheny KF, Abecasis GR, 
et al. Detecting and estimating contamination of human DNA samples 
in sequencing and array‑based genotype data. Am J Hum Genet. 
2012;91(5):839–48.



Page 11 of 11Pottinger et al. BMC Genomics          (2024) 25:651  

 17. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust 
relationship inference in genome‑wide association studies. Bioinformat‑
ics. 2010;26(22):2867–73.

 18. Povysil G, Chazara O, Carss KJ, Deevi SVV, Wang Q, Armisen J, et al. Assess‑
ing the Role of Rare Genetic Variation in Patients With Heart Failure. JAMA 
Cardiol. 2021;6(4):379–86.

 19. Petrovski S, Todd JL, Durheim MT, Wang Q, Chien JW, Kelly FL, et al. An 
Exome Sequencing Study to Assess the Role of Rare Genetic Variation in 
Pulmonary Fibrosis. Am J Respir Crit Care Med. 2017;196(1):82–93.

 20. Gregory JM, Fagegaltier D, Phatnani H, Harms MB. Genetics of Amyotrophic 
Lateral Sclerosis. Current Genetic Medicine Reports. 2020;8(4):121–31.

 21. Kuang W, Jin H, Yang F, Chen X, Liu J, Li T, et al. ALKBH3‑dependent m(1)
A demethylation of Aurora A mRNA inhibits ciliogenesis. Cell Discov. 
2022;8(1):25.

 22. Konopka A, Atkin JD. DNA Damage, Defective DNA Repair, and Neuro‑
degeneration in Amyotrophic Lateral Sclerosis. Front Aging Neurosci. 
2022;14: 786420.

 23. van Rheenen W, van der Spek RAA, Bakker MK, van Vugt J, Hop PJ, Zwam‑
born RAJ, et al. Common and rare variant association analyses in amyo‑
trophic lateral sclerosis identify 15 risk loci with distinct genetic architec‑
tures and neuron‑specific biology. Nat Genet. 2021;53(12):1636–48.

 24. Elsheikh SSM, Chimusa ER, Mulder NJ, Crimi A. Genome‑Wide Association 
Study of Brain Connectivity Changes for Alzheimer’s Disease. Sci Rep. 
2020;10(1):1433.

 25. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal 
of DNA alkylation damage by two human dioxygenases. Proc Natl Acad 
Sci U S A. 2002;99(26):16660–5.

 26. Bian K, Lenz SAP, Tang Q, Chen F, Qi R, Jost M, et al. DNA repair enzymes 
ALKBH2, ALKBH3, and AlkB oxidize 5‑methylcytosine to 5‑hydroxymethyl‑
cytosine, 5‑formylcytosine and 5‑carboxylcytosine in vitro. Nucleic Acids 
Res. 2019;47(11):5522–9.

 27. Jiang F, Wang L, Dong Y, Nie W, Zhou H, Gao J, et al. DPPA5A suppresses 
the mutagenic TLS and MMEJ pathways by modulating the cryptic splic‑
ing of Rev1 and Polq in mouse embryonic stem cells. Proc Natl Acad Sci 
U S A. 2023;120(30): e2305187120.

 28. Liefke R, Windhof‑Jaidhauser IM, Gaedcke J, Salinas‑Riester G, Wu F, 
Ghadimi M, et al. The oxidative demethylase ALKBH3 marks hyperactive 
gene promoters in human cancer cells. Genome Med. 2015;7(1):66.

 29. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP‑43 
mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 
2008;319(5870):1668–72.

 30. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ 
C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial 
amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8.

 31. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, 
et al. Mutations in FUS, an RNA processing protein, cause familial amyo‑
trophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11.

 32. Kenna KP, van Doormaal PT, Dekker AM, Ticozzi N, Kenna BJ, Diekstra FP, 
et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. 
Nat Genet. 2016;48(9):1037–42.

 33. Denadai R, Raposo‑Amaral CE, Bertola D, Kim C, Alonso N, Hart T, et al. 
Identification of 2 novel ANTXR2 mutations in patients with hyaline 
fibromatosis syndrome and proposal of a modified grading system. Am J 
Med Genet A. 2012;158A(4):732–42.

 34. Hanks S, Adams S, Douglas J, Arbour L, Atherton DJ, Balci S, et al. Muta‑
tions in the gene encoding capillary morphogenesis protein 2 cause 
juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum 
Genet. 2003;73(4):791–800.

 35. Reeves CV, Dufraine J, Young JA, Kitajewski J. Anthrax toxin receptor 2 is 
expressed in murine and tumor vasculature and functions in endothelial 
proliferation and morphogenesis. Oncogene. 2010;29(6):789–801.

 36. Lambrechts D, Lafuste P, Carmeliet P, Conway EM. Another angio‑
genic gene linked to amyotrophic lateral sclerosis. Trends Mol Med. 
2006;12(8):345–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Rare variant analyses validate known ALS genes in a multi-ethnic population and identifies ANTXR2 as a candidate in PLS
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Whole exome and genome sequencing
	Sample and variant quality control
	Clustering, ancestry, and coverage harmonization
	Variant-level and gene-level statistical analysis
	ALS and PLS rare variant burden testing
	ALS gene set enrichment analyses

	Results
	Rare variant burden testing
	ALS gene set enrichment analyses

	Discussion
	Burden testing
	ALKBH3 associates with ALS
	ANTXR2 associated with PLS

	Conclusions
	Availablity of data and materials
	Acknowledgements
	References


