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Abstract
Background At a global scale, the SARS-CoV-2 virus did not remain in its initial genotype for a long period of time, 
with the first global reports of variants of concern (VOCs) in late 2020. Subsequently, genome sequencing has 
become an indispensable tool for characterizing the ongoing pandemic, particularly for typing SARS-CoV-2 samples 
obtained from patients or environmental surveillance. For such SARS-CoV-2 typing, various in vitro and in silico 
workflows exist, yet to date, no systematic cross-platform validation has been reported.

Results In this work, we present the first comprehensive cross-platform evaluation and validation of in silico SARS-
CoV-2 typing workflows. The evaluation relies on a dataset of 54 patient-derived samples sequenced with several 
different in vitro approaches on all relevant state-of-the-art sequencing platforms. Moreover, we present UnCoVar, a 
robust, production-grade reproducible SARS-CoV-2 typing workflow that outperforms all other tested approaches in 
terms of precision and recall.

Conclusions In many ways, the SARS-CoV-2 pandemic has accelerated the development of techniques and 
analytical approaches. We believe that this can serve as a blueprint for dealing with future pandemics. Accordingly, 
UnCoVar is easily generalizable towards other viral pathogens and future pandemics. The fully automated workflow 
assembles virus genomes from patient samples, identifies existing lineages, and provides high-resolution insights 
into individual mutations. UnCoVar includes extensive quality control and automatically generates interactive visual 
reports. UnCoVar is implemented as a Snakemake workflow. The open-source code is available under a BSD 2-clause 
license at github.com/IKIM-Essen/uncovar.
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Introduction
Since its first identification, more than 760 million cases 
of coronavirus disease 2019 (COVID-19) have been 
reported1 since December 2019. The causative pathogen 
SARS-CoV-2 has affected the lives of billions of people, 
and researchers found infection or vaccination-induced 
antibodies in 96% of their subjects in a longitudinal study 
[1]. High infection rates and continuing uncontrolled 
transmission led to the emergence and spread of viral 
lineages carrying fitness-enhancing mutations [2–11], 
while controlling transmission and vaccination promoted 
the evolution of immune-evasive alterations in the viral 
genome [12]. Due to their relatively high transmissibility 
[3, 5, 10, 13, 14], such variants of concern (VOCs) carry-
ing mutations beneficial for the virus have replaced the 
wild type [3, 15, 16], making whole-genome sequenc-
ing with next-generation sequencing (NGS) approaches 
instrumental for assessing the genomic diversity of the 
virus in patients.

Previous work has focused on the reconstruction of 
virus genomes [17–22] and the surveillance of SARS-
CoV-2 genomes [23–25]; however, limited attention has 
been given to reproducibility and portability. In addi-
tion, no comprehensive multiplatform benchmark data-
set from various protocols and sequencing instruments, 
including Sanger sequences as ground truth for assessing 
SARS-CoV-2-related workflows, has been devised thus 
far. In this work, we present both benchmark dataset and 
UnCoVar, a reproducible, transparent, and scalable analy-
sis workflow that accepts sequencing products from vari-
ous protocols. UnCoVar has been extensively optimized 
for SARS-CoV-2 in routine clinical application and envi-
ronmental surveillance during the pandemic while being 
straightforwardly adaptable to future outbreaks of other 
viruses.

Methods
The UnCoVar workflow
UnCoVar is a Snakemake [26] workflow for virus analy-
sis that provides full in silico reproducibility, diagnostic 
transparency, uncertainty awareness, and extensive inter-
active graphical exploration of results.

UnCoVar is publicly available at https://github.com/
IKIM-Essen/uncovar under the BSD-2-clause license. 
Detailed information on the software tools and libraries 
used in UnCoVar and its usage are available at https://
ikim-essen.github.io/uncovar.

UnCoVar consists of four main modules: (i) prepro-
cessing and quality control of raw sequence data, (ii) de 
novo assembly, reference-guided scaffolding, variant call-
ing and consensus building, (iii) lineage detection, and 

1 https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-
(covid-19).

(iv) aggregation of results and report generation (Fig. 1). 
Instructions on installation, deployment, configuration 
and execution as well as a detailed description of the tool 
chain can be found in the online documentation.

The approaches used for quality control, preprocessing, 
assembly and lineage detection are described in Table 1. 
We highlight that only the lineage detection tool Pangolin 
is SARS-CoV-2 specific (specificity tested against Non-
SARS-CoV-2 Corona viruses; Appendix Chap. 5), and the 
pipeline can easily be adapted to other viral pathogens by 
registering the respective reference genomes and using 
Kallisto [27] instead of Pangolin [28] for lineage detec-
tion. Moreover, we expect Pangolin (or a successor) to be 
adapted in the case of future non-SARS-CoV-2 pandem-
ics. With this amount of flexibility, UnCoVar serves the 
concept for a Disease X [29] analysis tool, a yet unknown 
pathogen with the potential for an endemic or pandemic 
outbreak.

UnCoVar is adjustable via a thoroughly documented 
configuration file. It supports whole-genome shotgun and 
amplicon-based sequencing from Illumina and Nanopore 
sequencing and has been extensively tested with data 
from both sequencing methods from a clinical dataset. In 
the following, we provide methodological details of the 
major functionalities of UnCoVar.

Variant calling
UnCoVar employs technology-specific variant callers 
(short reads: freeBayes [40] for small variants and DELLY 
[41] for structural variants; long reads: Medaka variant 
[35] for small variants and Longshot [42] for structural 
variants) to obtain a list of candidate variants for each 
investigated sample. The candidate variants are subse-
quently given to the generic variant classification func-
tionality of Varlociraptor2 [43].

Complementary genome reconstruction methods
A variety of assemblers have been compared and two 
default assembly options have been selected according 
to each library preparation method (MEGAHIT [36] for 
shotgun, metaSPAdes [37] for amplicon derived samples) 
based on the best performance (Appendix Chap.  4 and 
Figures A2 + A3). All alternative assembly tools tested 
(Trinity [44], Velvet [45], MEGAHIT-meta large/sensitive 
and corona- [46] /rnaviral-/ standard SPAdes [47]), are 
available and can be used via selecting them in UnCoVar’s 
config file. The pipeline offers two approaches for deter-
mining the genomic sequence of a given virus sample. 
The first (and preferred) approach uses de novo assembly, 
followed by reference-guided scaffolding. Then, reads are 
mapped against the obtained assembly using BWA-MEM 

2  Using Varlociraptor’s variant calling grammar: https://varlociraptor.github.
io/docs/calling/#generic-variant-calling.

https://github.com/IKIM-Essen/uncovar
https://github.com/IKIM-Essen/uncovar
https://ikim-essen.github.io/uncovar
https://ikim-essen.github.io/uncovar
https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-(covid-19)
https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-(covid-19)
https://varlociraptor.github.io/docs/calling/#generic-variant-calling
https://varlociraptor.github.io/docs/calling/#generic-variant-calling
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[48], and variants are called with Varlociraptor (see sec-
tion Variant calling). Variants for which the subclonal-
major, subclonal-high and clonal events summed to at 
least a probability of 0.95 were used to polish the assem-
bly. Low-quality loci (those with low read depth and 
ambiguous basecalls) are masked by N or IUPAC codes3

The second approach maps reads against the primary 
reference genome of the investigated virus and applies 
the above polishing approach to the reference genome, 
including the masking of uncovered regions.

Lineage assignment
Lineage calling approaches fall into two distinct classes: 
those requiring an almost fully reconstructed genome 
sequence [49] and those using raw sequencing products 

3  In line with criteria defined by the Robert-Koch-Institute, Germany: 
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/
Qualitaetskriterien.pdf? __blob=publicationFile

in the form of reads, without the necessity of sequence 
assembly [50–55].

UnCoVar offers three approaches for assigning lineages 
to samples. First, based on the obtained genome recon-
struction, in the case of SARS-CoV-2, UnCoVar utilizes 
the machine learning driven method Pangolin [28] to 
assign a lineage.

Second, it employs Kallisto [27] to quantify the num-
bers of reads originating from given lineage reference 
sequences, and subsequently calculates their fraction 
among the total amount of mappable reads. This 
approach has the advantage of being able to detect lin-
eage mixtures within a single sample, which can allow the 
detection of mixed infections or the assessment of waste-
water samples.

To account for the rapid evolution of SARS-CoV-2, 
UnCoVar offers a comparison between the investigated 
sample and the most similar lineages at the level of indi-
vidual variants. The pipeline obtains the catalog of all 
known amino acid and noncoding alterations of variants/

Table 1 Tools used in UnCoVar depending on the type of input data (Illumina short reads or Nanopore long reads)
Stage Step Tool Illumina Tool Nanopore SARS-CoV-2 specific
Preprocessing primer clipping BAMClipper [30] NoTrAmp [31] no

quality clipping fastp [32]
contamination removal Kraken2 [33]
Denoising ***a Canu [34], Medaka [35]

Assembly Assemblyb MEGAHIT [36], metaSPAdes [37]
scaffolding RaGOO [38]
polishing BCFtools consensus [39] Medaka consensus

Variant calling SNV calling freeBayes [40], DELLY [41] Medaka variant, Longshot [42]
SNV validation Varlociraptor [43]

Lineage detection read based lineage assignment Kallisto [27]
lineage call Pangolin [28] yes

aNo denoising is performed for Illumina reads. Instead, assembly products are polished with uncertainty-aware variant calls from Varlociraptor
bBesides the default assembly options, Trinity, Velvet, MEGAHIT-meta large/sensitive and corona-/rnaviral-/ standard SPAdes are available for use

Fig. 1 Outline of UnCoVar. The individual steps of the workflow can be summarized as follows: preprocessing, assembly and variant calling, lineage 
detection and result generation

 

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/Qualitaetskriterien.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/Qualitaetskriterien.pdf?__blob=publicationFile
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lineages of concern (VOCs) available on covariants.org. 
Amino acid alterations are back-translated into all poten-
tial causing multiple nucleotide variants (MNVs). The 
resulting set of candidate variants is called using Varlo-
ciraptor (see section Variant calling, leveraging Varlo-
ciraptor’s functionality to classify any set of candidate 
variants). To determine the degree of similarity between 
the sample and the VOCs, we performed the follow-
ing scoring. Let n be the total number of variants and m 
be the number of VOCs. Let X be a binary matrix that 
relates variants with VOCs, namely, Xi,j = 1 if and only 
if variant i is in VOCj, with i = 1,…,n and j = 1,…,m. Let 
θi be the latent allele frequency of variant i in the given 
sample and θ̂i  be the maximum a posteriori estimate of 
θi as provided by Varlociraptor. Let pi = Pr (θi > 0 |D)  
be the posterior probability that the variant i is present 
in the sample (i.e., the probability that its latent allele fre-
quency is greater than zero, given the data D). Then, the 
similarity of a given sample to VOCj can be calculated as 
the Jaccard-like similarity score:

 

n∑
i=1

pi · θ̂i ·Xi,j + (1− pi) · (1−Xi,i)

n

The better the variant pattern of a VOC is matched (pres-
ent true positive plus absent true negative mutations), 
the closer the similarity score is to one. In contrast, if 
the variant pattern tends toward being the opposite of a 
VOC, the corresponding score tends toward zero. A low 
maximum a posteriori VAF estimate or a weaker prob-
ability lowers the summand for a specific variant i , such 
that the overall score decreases.

In this way, UnCoVar is capable of assigning lin-
eage similarities without a fully reconstructed genome, 
which is especially useful when the analyzed samples 
are derived from patients with low-level viremia or from 
environmental sewage water samples, where the abun-
dance of viral RNAs is low and potentially contains sev-
eral different lineages. UnCoVar reports the top 10 VOC 
lineages found based on the calculated Jaccard-like simi-
larity of all present and absent mutations included in the 
VOC database.

Graphical report
UnCoVar’s high-level interactive graphical reporting 
interface allows noncomputational scientists to navigate 
the details of the analysis and results. The user inter-
face provides an accurate picture of uncertainties in the 
data. The Snakemake-generated report is portable and 
maintenance-free since it does not require a running 
and constantly maintained database or web service. It 
can be easily archived, distributed via email, a static web 
server, or any file-sharing platform and solely requires 

an HTML54 compliant web browser to be viewed (see 
Fig. 2). A detailed overview of all included results can be 
found on the GitHub pages of UnCoVar (https://ikim-
essen.github.io/uncovar/).

The benchmark dataset
We present a benchmark dataset of 54 clinical SARS-
CoV-2 patient samples. These 54 samples were obtained 
from SARS-CoV-2 qPCR-positive patients at the Uni-
versity Hospital Essen, Germany, covering the period 
from February to September 20215. For all the samples, 
cDNA synthesis was conducted using the LunaScript® RT 
SuperMix kit (New England Biolabs, USA). Subsequently, 
all samples underwent Sanger sequencing for a portion 
of the genome region encoding the S protein as well as 
two separate procedures for the targeted sequencing 
of complete SARS-CoV-2 genomes by tiled amplicons. 
First, a sequencing library was prepared according to the 
LoCost nCoV-2019 sequencing protocol (Quick) using 
the ARTICv3 primer panel (Integrated DNA Technolo-
gies, Coralville, Iowa) for loading onto an R9.4.1 Flow 
Cell and subsequent sequencing on a GridION device 
(Oxford Nanopore Technologies, Oxford, United King-
dom). Second, library preparation was performed using 
the EasySeq™ SARS-CoV-2 WGS kit (NimaGen, Nijme-
gen, The Netherlands), followed by sequencing on an 
Illumina MiSeq sequencing platform (Illumina Inc., San 
Diego, CA, USA). For a subset of 32 samples, library 
preparation was additionally performed using the Illu-
mina COVIDSeq Assay Kit (Illumina Inc., San Diego, 
CA, USA) followed by sequencing on an Illumina MiSeq 
platform. The approaches of the Illumina and NimaGen 
library preparation kits are similar, except that the Easy-
Seq kit combines cDNA amplification and index PCR 
in a single reaction. Since the dataset was collected in 
the middle of the SARS-CoV-2 pandemic, we carefully 
curated the matching between the different technologies 
to rule out human errors. As a result, we discarded 22 
Illumina samples due to potential sample swaps. The data 
generated by all different approaches were then analyzed 
and used to benchmark precision and recall across differ-
ent sequencing platforms in terms of calling individual 
mutations, virus lineages, and sequence assemblies. The 
raw NGS benchmarking data is available for download at 
https://www.ebi.ac.uk/ena/browser/view/PRJEB73579.

Results
Using the presented benchmark dataset, we analyzed the 
performance of UnCoVar and other state-of-the-art anal-
ysis pipelines in terms of precision, recall and runtime. 
Furthermore, we investigated the required number and 

4 http://www.w3.org/TR/html5.
5 ethics vote #20-9512-BO.

https://ikim-essen.github.io/uncovar/
https://ikim-essen.github.io/uncovar/
https://www.ebi.ac.uk/ena/browser/view/PRJEB73579
http://www.w3.org/TR/html5
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length of reads needed for accurate lineage assignment 
in UnCoVar and examined the time required to execute 
the workflow. Finally, we compared UnCoVar against 
other available pipelines using the benchmark dataset 
described above.

Benchmarking
To assess the different sequencing protocols, the pre-
processed reads (see Methods) were aligned to the pri-
mary SARS-CoV-2 reference genome from Wuhan 
(NC_045512.2 or MN908947), and variants were called 
using UnCoVar. Only variants with a posterior probabil-
ity ≥ 0.95 for presence according to Varlociraptor were 
considered, thereby controlling the local false discovery 
rate in a Bayesian sense at 0.05. The observed variants 
were compared with those found in the Sanger sequence 
in the corresponding region. Variants outside of the 
Sanger sequenced region were omitted. If a variant also 
occurred in the Sanger sequencing, it was considered 
a true positive; if not, it was considered a false positive 
(assuming that Sanger sequencing has the highest possi-
ble accuracy). Sanger-based variants that did not occur in 
the investigated sample were considered false negatives. 
Let TP, FP, and FN be the respective numbers of true pos-
itives, false positives, and false negatives across all sam-
ples. We defined precision as the fraction TP/(TP + FP) 

of true positives among all predicted variants and recall 
as the fraction TP/(TP + FN) of true positives among all 
variants in the Sanger sequences. Obviously, the recall 
can drop with decreasing sequencing depth. More details 
on the sequencing depth necessary for proper lineage 
assignment can be found in Appendix Chap.  6. In gen-
eral, we can conclude, that Pangolin and Kallisto perform 
equally well in case of nearly complete assemblies while 
the lineage prediction accuracy of Pangolin decreases 
with the of completeness of the assembly (Appendix 
Chap. 6, Figure A4).

As shown in Table  2, the UnCoVar pipeline achieves 
outstanding precision and recall when using Sanger 
sequencing data as a true positive gold standard across 
three different in vitro technologies. Importantly, the 
precision always stays above the expectation of 0.95 
defined by the controlled FDR of 0.05, indicating that the 

Table 2 UnCoVars precision/recall of observed variants per 
sequencing kit vs. observed variants of Sanger sequencing. 
*Reduced number of samples for the Illumina kit due to potential 
sample swaps; see methods

Sanger Artic/ONT Illumina NimaGen
Variants 160/85* 160 83* 161
Precision - 1.0 1.0 0.97
Recall - 1.0 0.98 0.98

Fig. 2 Four different example elements of the results generated by UnCoVar: (a) The genome coverage of the aligned reads, visualized for multiple 
samples, (b) evaluation of known protein alterations from VOCs for one sample, (c) a pileup of reads at the position of one protein alteration. The muta-
tions observed for multiple reads (gray bars) for a single sample, here in the S gene, (d) The lineage assignments inferred for single reads for one sample. 
Unmapped reads can be attributed to low sequence quality and variation beyond the considered lineages
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statistical model of Varlociraptor used in UnCoVar man-
ages to properly assess the uncertainty in the data.

Comparison with other pipelines
We compared UnCoVar against other available state-of-
the-art pipelines using the above-mentioned benchmark 
dataset (Table 3).

All but two of the pipelines achieved a precision and 
recall above 0.90. This represents a satisfactory result 
both for the software developers and for clinicians using 
the results from these pipelines. UnCoVar was the only 
pipeline that consistently achieved at least 0.97 for both 
precision and recall across the different in vitro platforms 
used. When measuring and comparing the execution 
time to produce variant callings between all considered 
workflows (average of the individual processing time for 
all 54 samples), UnCoVar was the fastest for one and close 
to the compared other pipelines in the other Illumina in 
vitro approach. A more detailed view of the run times of 
UnCoVar with differing sequencing depths can be found 
in Appendix Chap. 2. For Oxford Nanopore data, UnC-
oVar is one of two pipelines capable of processing such 
samples without errors at the time of writing, with per-
fect precision and recall rates and the quickest average 
execution time measured for all 54 samples. We note that 
we cannot guarantee overall correct usage of the other 
software products and executed the compared workflows 
based on the available documentation. Any bugs that 
occurred were reported to the original authors. An over-
view of the tested pipelines and reasons for exclusion can 
be found in the appendix (Appendix Chap. 7, Table A1).

We posit that the presence of a vendor- and platform-
agnostic gold standard for NGS data supported by non-
NGS data will enable other groups to use the data for 
benchmarking their approaches.

Discussion
We present UnCoVar, a fully automated, reproducible 
workflow for analyzing viral pathogen sequencing data. 
In addition, we present a thoroughly investigated gold 
standard benchmark dataset of 54 SARS-CoV-2 samples 
sequenced with multiple technologies. Using this dataset, 
we show that UnCoVar outperforms all other available 
analysis pipelines in terms of recall and precision. UnCo-
Var thereby manages to accurately control the false dis-
covery rate using Varlociraptor [43].

By using a combination of Snakemake [26], Conda/
Mamba, and Snakedeploy, the workflow is portable, 
reproducible, transparent, and adaptable to any viral 
pathogen. A combination of different state-of-the-art 
tools delivers a robust analysis that accepts sequencing 
products from a range of different instruments and pro-
tocols as input.

During the SARS-CoV-2 pandemic, rapid viral muta-
tions played a major role in increasing infection rates [12, 
59–61]. While other approaches [56, 57] commonly use 
only one strategy for crucial steps in the analysis (e.g., 
de novo assembly or SNV-based consensus building), 
UnCoVar provides complementary functions for assem-
bly, variant calling, genome reconstruction, and lineage 
identification. With the strength of using Varlociraptor 
and its powerful features for the probabilistic re-evalua-
tion of identified mutations, we integrated a unique addi-
tion to conventional variant calling methods, as confident 
identification of SNVs and other mutations played a cru-
cial role in pandemic surveillance. The widely used tool 
Pangolin for SARS-CoV-2 lineage assignment depends 
on accurate genome assembly, which UnCoVar achieves 
by automated SNV-based consensus building, inte-
grated quality assurance and postprocessing of recon-
structed genomes. While this is commonly achieved 
when sequencing patient samples, a lack of full-genome 
amplification and sequencing and therefore, incomplete 
genome assembly often occurs in the case of analyzing 

Table 3 Computing time and precision/recall comparison of the identified variants between UnCoVar and three other state-of-the-art 
pipelines. Computing time is given as the median computing time per sample when running all considered benchmark samples and 
performing only the variant callings. *Reduced number of samples for Illumina kit due to potential sample swaps (Nimagen/ONT = 54 
samples; Illumina = 32 samples)
Kit + Sequencer Pipeline Precision Recall Computing time (h: mm: ss)
Illumina/Illumina* UnCoVar 1.0 0.98 0:03:44

Nf-core-viralrecon [53] 0.98 0.99 0:03:46
V-Pipe [56] 0.66 0.95 1:15:41
CoVPipe [57] 0.92 0.99 0:06:41

NimaGen/Illumina UnCoVar 0.97 0.98 0:06:48
Nf-core-viralrecon 0.99 0.76 0:05:21
V-Pipe 0.9 0.33 1:12:46
CoVPipe 0.78 0.87 0:04:18

Artic/ONT UnCoVar 1.0 1.0 0:02:02
Artic-medaka [58] 0.98 1.0 0:06:03
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environmental – for example, wastewater – samples. Fur-
thermore, evaluating known SARS-CoV-2 protein altera-
tions and not being dependent on a fully reconstructed 
genome allows us to identify the occurrence of new virus 
variants through the exclusivity of specific mutations. By 
providing all these “belts and suspenders”, UnCoVar is a 
versatile all-in-one pipeline with considerable potential, 
not only for analyzing SARS-CoV-2 samples.

Future work will entail the potential addition of 
BUSCO [62] for assembly quality assessment. More-
over, we will investigate the use of pangenome references 
[63] for further improving contamination detection and 
reducing reference bias in read alignment.

We will work on updating the benchmark dataset with 
additional SARS-CoV-2 variants and attempt to include 
other sequencing platforms. As we continue to analyze 
patient-derived samples from our institution, we will 
maintain the SARS-CoV-2 analysis and include addi-
tional viral pathogens (RSV, influenza A and B) for analy-
sis with UnCoVar. UnCoVar was efficiently employed for 
the characterization of SARS-CoV-2 variants from waste-
water samples [64], and a prototypical module of UnCo-
Var was employed in a SARS-CoV-2 surveillance project 
at neighborhoods and city scales in the metropolitan 
Ruhr area of Germany (Thomas et al., in preparation).

Availability and requirements
Project name: UnCoVar.
Project home page: github.com/IKIM-Essen/uncovar.
Operating system(s): platform independent.
Programming language: Python.
Other requirements: Conda, Snakemake 6.9. or higher.
License: BSD-2-Clause License.
Any restrictions to use by non-academics: None.
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