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Abstract
Background The number of spikelets per spike is a key trait that affects the yield of bread wheat (Triticum aestivum 
L.). Identification of the QTL for spikelets per spike and its genetic effects that could be used in molecular assistant 
breeding in the future.

Results In this study, four recombinant inbred line (RIL) populations were generated and used, having YuPi branching 
wheat (YP), with Supernumerary Spikelets (SS) phenotype, as a common parent. QTL (QSS.sicau-2 A and QSS.sicau-2D) 
related to SS trait were mapped on chromosomes 2 A and 2D through bulked segregant exome sequencing (BSE-
Seq). Fourteen molecular markers were further developed within the localization interval, and QSS.sicau-2 A was 
narrowed to 3.0 cM covering 7.6 Mb physical region of the reference genome, explaining 13.7 − 15.9% the phenotypic 
variance. Similarly, the QSS.sicau-2D was narrowed to 1.8 cM covering 2.4 Mb physical region of the reference genome, 
and it explained 27.4 − 32.9% the phenotypic variance. These two QTL were validated in three different genetic 
backgrounds using the linked markers. QSS.sicau-2 A was identified as WFZP-A, and QSS.sicau-2D was identified a 
novel locus, different to the previously identified WFZP-D. Based on the gene expression patterns, gene annotation 
and sequence analysis, TraesCS2D03G0260700 was predicted to be a potential candidate gene for QSS.sicau-2D.

Conclusion Two significant QTL for SS, namely QSS.sicau-2 A and QSS.sicau-2D were identified in multiple 
environments were identified and their effect in diverse genetic populations was assessed. QSS.sicau-2D is a novel QTL 
associated with the SS trait, with TraesCS2D03G0260700 predicted as its candidate gene.
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Introduction
Wheat (Triticum aestivum L.) is one of the most impor-
tant staple crops in the world, and estimates suggest that 
wheat production needs to increase 70% to fulfill food 
demand [1]. Therefore, maintaining food security and 
increasing yields to meet the higher demand of a growing 
global population has become a top priority for breeding 
programs [2].

Thousand gain weight (TGW), grain number per spike 
(GNS) and spike number per unit area are three major 
components of grain yield [3]. Among the above factors, 
the grain number per spike is affected by inflorescence 
architecture [4–6]. Plant inflorescences are small florets 
arranged on an axis, which can be divided into many 
types, such as racemes, spikes, corymbs, panicles etc. [7]. 
The wheat inflorescence is a spike, that usually consists of 
sessile spikelets arranged in opposite rows along the spike 
axis, each producing 3–5 florets [8]. Therefore, inflores-
cences, which determine the classification of Gramineae 
and the yield of food crops, have long been the subject of 
study of botanists and breeders [9]. In wheat germplasm 
resources, Supernumerary Spikelets (SS) is a special 
germplasm with many flowers and grains, which has the 
potential to improve the yield per unit area in wheat [10, 
11]. SS can be divided into two types. One kind is called 
branched spikelets, where a spare spike extends on the 
stem node of the original spikelets and spikelets are born 
on it. The other type of spikelets is that the stem node 
does not extend, and two or more lateral spikelets are 
attached to the spike node, which is called supernumer-
ary spikelets [12]. Identification of the QTL for spikelet 
number per spike (SNS) and its genetic effects that could 
be used in molecular assistant breeding in the future.

SNS is a complicated trait and controlled by quantita-
tive trait loci (QTL) in wheat. To comprehend the molec-
ular mechanisms that control this trait and to utilize it in 
breeding, QTL analyses have been conducted in wheat 
[13, 14]. Six QTL on chromosomes 1 A, 2D, 3B, 6 A, 7 A, 
and 7D, were found to have dominant and epistatic effects 
[13]. Cui (2015) detected three QTL on chromosomes 
2  A, 5  A, and 7B for SNS that were significant across 
multiple environments in two recombinant inbred lines 
(RILs) populations [15]. Four genomic regions affect-
ing SNS on chromosomes 1  A, 1B, 3  A, and 7  A were 
detected via a population of 191 F9 RIL was developed 
from a cross of two winter cultivars Yumai8679 with Jing 
411 [16]. Genotyping-by-sequencing (GBS) and the iSe-
lect 9 K assay were used on a doubled-haploid (DH) soft 
red winter wheat population that showed a wide range of 
phenotypic variation for spike traits, and a major QTL 
QSl.cz-1  A/QFsn.cz-1  A which explained up to 30.9% of 
the phenotypic variation for spike length (SL) was identi-
fied [17]. In addition, QFSN4B.4–17 responsible for SNS 
in multiple environments using a RIL population of 173 

lines derived from a cross of the common winter wheat 
lines Shannong 01–35 and Gancheng 9411 was also iden-
tified previously [18].

To date, several genes affecting inflorescence struc-
ture and SNS have been identified and designated. For 
example, the HvMADS1 can directly regulate the expres-
sion of HvCKX3 by binding to the promoter through a 
CArG-box domain, which affect the cytokinin homeo-
stasis and inflorescence structure in barley [19]. In rice, 
APO1 interacts with APO2 to synergistically control cell 
proliferation in meristem and regulates panicle forma-
tion, and the overexpression of APO1 or APO2 has been 
associated with significantly increasing the spikelet num-
ber [4, 20, 21]. Several genes related to SNS were identi-
fied in wheat, including WFZP [22], Ppd-1 [23], FT2 [24], 
WAPO1 [25], Q gene [26], and Grain Number Increase 1 
[27].

Although there are many reports about QTL related to 
wheat spikelet number, only few of QTL have been genet-
ically verified, offering a foundation for fine mapping and 
map-based cloning. This has greatly restricted the dis-
section of the molecular mechanisms underlying spikelet 
number as well as improvement of spikelet number in 
wheat breeding. Thus, the identification and validation 
of novel QTL/genes for spikelet number is important. In 
this study, we used a RIL population (YC) derived from 
a cross between YuPi branching wheat (YP) and Chinese 
spring wheat (CS), to identify QTL associated with SS 
trait using a high-density genetic map and phenotypic 
data obtained from a multiple environmental trial, in dif-
ferent genetic backgrounds.

Materials and methods
Plant materials
The common parent YP is a bread wheat germplasm with 
the SS character [28, 29]. An RIL population generated 
by the single seed descent method from a cross YP × CS 
(YC population, 215 F6/F7 lines), was used for BSE-Seq 
and QTL mapping. Three RIL populations derived from 
the crosses YP × CM107 (YCM population, 132 F6/F7 
lines), YP × CM104 (YJ population, 60 F6/F7 lines) and YP 
× 11N21 (NY2 population, 73 F6/F7 lines), were used to 
validate the QTL in different genetic backgrounds.

Phenotypic evaluation and statistical analysis
YC RIL population were planted in three environments: 
Chongzhou (CZ, 103° 38′ E, 30° 32′ N) in 2021–2022 
(2022CZ), Chongzhou and Wenjiang (WJ, 103° 41′ E, 
30° 36′ N) in 2022–2023 (2023CZ and 2023WJ). A ran-
domized complete block design was adopted in all 
environments. YCM, YJ and NY2 populations were 
planted at Chongzhou in 2022–2023. Fifteen seeds of 
each family were planted in 1.5  m rows spaced 30  cm 
apart. Field management was performed according to 
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recommendations for wheat production. After matu-
rity, five plants from the center rows were selected and 
used for phenotypic evaluation, including the number 
of SS per spike (NSS), SNS, TGW, GNS, grain weight 
per spike (GWS), grain length (GL), grain width (GW), 
flag leaf length (FLL) and flag leaf width (FLW). The SNS 
was determined by counting the total spikelets in the 
main spike, NSS was calculated by deducing the number 
of nodes per spike from SNS. GNS, GWS, GL and GW 
were measured by a Wanshan SC-G automatic seed test 
system (Hangzhou Wanshen Detection Technology Co., 
Ltd., CN). The TGW was calculated as 10-fold of the 
weight of 100 seeds measured with an electronic balance, 
in three replicates for each line [1].

Analysis of variance (ANOVA) for the NSS in each trial 
and Pearson correlations between variables were com-
puted in SPSS v27 (IBM SPSS, Chicago, IL, USA). To 
minimize environmental effects, the best linear unbiased 
estimates (BLUE) for NSS in three replicates was calcu-
lated using SAS 8.1 (SAS Institute Inc., Cary, NC, USA). 
According to the method described by Smith, broad-
sense heritability (h2) across environments was estimated, 
according to the equation h2 = VG/(VG + VGE/r + VE), 
where VG = genotypic variance, VGE = genotype × envi-
ronment variance, r = number of replicates, and VE = 
environmental variance. Student’s t-tests (P < 0.05) were 
applied to compare lines classified by genotype [30, 31].

Bulked Segregant Analysis and Exome sequencing
Total genomic DNAs were isolated from young leaves 
of the tested cultivars and RILs using a CTAB method 
followed by RNase-A digestion [32]. Isolated DNA was 
quality checked by resolving on a 1% agarose gel electro-
phoresis and concentration was determined using a UV 
spectrometer [33, 34]. Two DNA pools were constructed 
by mixing equal amounts of DNA normalized to the con-
centration 100 ng/µL from 30 extreme SS (SS-pool) and 
30 normal spike types (NS-pool), respectively. The DNA 
libraries were constructed through DNA fragmenta-
tion, end-repair, adaptor ligation, PCR and hybridization 
capture as previously described [35]. Curated sequence 
data was aligned to the CS reference genome sequence 
(RefSeq) v2.1 by BWA software [36]. The BCFtools soft-
ware was used to detect and extract the single nucleo-
tide polymorphism (SNP) and InDel [37]. The SNP and 
InDel were annotated using ANNOVAR, which mainly 
included different regions of the genome and different 
types of exon regions [38]. SNP-index methods were used 
to screen the SNP and InDel sites with candidate regions 
between the progeny mixed pools in this study [39–42]. 
To identify candidate regions associated with the SS trait, 
the ΔSNP-index of each locus was calculated by subtract-
ing the SNP-index of the SS-pool from that of the NS-
pool according to previous method [43]. To confirm the 

results of ΔSNP-index, an algorithm was further per-
formed to identify the SNPs and InDels associated with 
the SS trait using the equation reported previously [31, 
40], and the absolute value of Δ(SNP-index) was used 
for Locally Weighted Scatterplot Smoothing (LOESS) 
to obtain the correlation threshold [2]. The greater the 
ΔSNP-index, the more likely the SNPs and InDels con-
tribute to the trait of SS or is linked to a locus that con-
trols the trait.

Marker development, genetic map construction and QTL 
identification
To validate the BSE-seq results and further narrow 
down the region, primers were designed to the flank 
the sequences of the targeted SNPs using an online tool 
of the wheatomics platform (http://wheatomics.sdau.
edu.cn/PrimerServer/). Polymorphic SNPs between YP 
and CS in the initial mapping region were converted to 
KASP markers following previously described methods 
[44]. The PCR for InDel primers was conducted in a 20 
µL reaction volume with 1.0 µM primer mix, 2.5 ng/µL 
DNA and 1× Taq Master Mix (Vazyme Biotech, CN). 
PCR was performed using routine procedures, and the 
polyacrylamide gel (8%) electrophoresis was used for 
resolving amplified products [34]. The polymorphisms of 
the markers were confirmed by parental liens and some 
progenies.

Linkage mapping was conducted using JoinMap v4.0 
[45]. The maximum likelihood mapping algorithm and 
Kosambi’s function were used to determine the marker 
order and distance, respectively. QTL analysis of SS trait 
was performed by Interval Mapping (IM) with the soft-
ware MapQTL v5.0 [46]. For each trial, a test of 1,000 
permutations was performed to identify the LOD thresh-
old corresponding to a genome-wide false discovery rate 
of 1% (P < 0.01).

QTL validation
For QTL validation, the NSS from all homozygous lines 
in each of the three RIL populations (YCM, YJ and 
NY2) were counted. Based on marker profiles, individu-
als in each population were grouped into two classes as 
described above, and the difference in the average spike-
let number between these classes was used for measuring 
the QTL effects within each validation population. The 
Student’s t-test was used to determine the significance in 
differences between the two groups in each population at 
P < 0.05.

Prediction of candidate genes for QTL
The physical interval of QTL was obtained by conducting 
a homolog search of the flanking makers against the Chi-
nese Spring reference genome (IWGSC_Refseq v2.1), and 
the genes mapped to the region were identified. Further, 

http://wheatomics.sdau.edu.cn/PrimerServer/
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information on the genes were obtained from the whea-
tomics platform (http://wheatomics.sdau.edu.cn/). The 
expression values as transcripts per million (TPM) in 
roots, stems, leaves, spikes, and grain were obtained from 

the GeneExpression of Wheatomics platform. Genes 
were annotated through BLAST against the correspond-
ing protein sequences in rice and Arabidopsis thaliana on 
KOBAS v3.0 [47]. The total RNA was extracted by using 
the RNeasy plant mini kit (Qiagen, CN) from CS and 
YP at the correct stage, and the products after reverse 
transcription were used for quantitative RT-qPCR. The 
genomic DNA of parents was used to amplify candidate 
genes for sequence analysis.

Results
The NSS of YC RIL population in different environments
In the different environments, the NSS of CS remained 
stable at 0, while that of YP ranged from 56.4 to 65.8, 
with the NSS of YP being significantly (P < 0.01) higher 
than that of CS (Table  1; Fig.  1). The NSS trait in YC 
population was also observed in different environments, 
ranged from 0 to 63.6, and the broad-sense heritability 
was estimated as 0.96 (Table  1). The correlation coeffi-
cients between the different environments were all signif-
icant and ranged from 0.922 (P < 0.01) to 0.982 (P < 0.01) 
(Table  2). The BLUE values of SNS, GWS, TGW, GNS, 
GL, GW, FLL and FLW were shown in Table 1 and were 
used to assess the effect of SS QTL on these traits.

BSE-seq analysis
The results obtained from the exome capture sequencing 
of bulked segregants were compared with the CS refer-
ence genome v2.1. We use the ΔSNP-index algorithm to 

Table 1 Distribution of NSS in the YC population
Trait Environment Parents Population

Mean of YP Mean of CS Range Mean SD H2

NSS CZ2022 56.40** 0.00 0.00-36.60 5.00 8.10
WJ2023 65.80** 0.00 0.00-63.60 7.81 14.51
CZ2023 62.20** 0.00 0.00-58.20 5.82 10.91
BLUE 57.31** 0.21 0.21-53.0 6.42 10.74 0.96

SNS BLUE 70.51** 26.82 16.94–73.55 30.17 10.36 0.88
GWS BLUE 3.87** 1.91 1.52–2.93 2.01 0.21 0.55
TGW BLUE 37.49** 27.92 23.38–43.10 34.10 3.78 0.76
GNS BLUE 108.07** 62.71 41.56–85.34 59.33 7.94 0.62
GL/mm BLUE 6.82** 5.24 6.54–9.16 7.97 0.40 0.87
GW/mm BLUE 2.78 2.72 3.23–4.17 3.79 0.17 0.74
FLL/cm BLUE 22.61** 25.12 18.20-29.54 22.49 2.04 0.70
FLW/cm BLUE 1.84** 1.53 1.27-2.00 1.60 0.12 0.72
** indicate significant differences at P < 0.01. NSS, the number of SS per spike. SNS, spikelets number per spike. GNS, grain number per spike. GWS, grain weight per 
spike. TGW, thousand gain weight. GL, grain length. GW, grain width. FLL, flag leaf length. FLW, flag leaf width. BLUE, best linear unbiased estimator

Table 2 Correlation coefficients for the NSS in the YC population
repetition CZ2022 CZ2023 WJ2023 BLUP
CZ2022 1
CZ2023 0.922** 1
WJ2023 0.922** 0.925** 1
BLUE 0.965** 0.982** 0.973** 1
** indicate significant differences at P < 0.01

Fig. 1 Spike features of YuPi branching wheat (YP) and Chinese spring 
wheat (CS)
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calculate the allele segregation of the SNPs and InDels 
between two extreme DNA pools. ΔSNP-index algorithm 
showed abundant candidate SNPs/InDels enriched on 
chromosome 2  A and 2D (Chr2A and Chr2D). ΔSNP-
index greater than 95% confidence interval was selected 
as the threshold for screening [48]. A 16.3 Mb region of 
Chr2A (63.8–80.1  Mb) and a 9.1  Mb region of Chr2D 
(68.1–77.2 Mb) were identified as the candidate regions 
for SS trait (Figure S1).

Linkage map construction and QTL identification
To confirm the preliminarily identified genomic regions 
responsible for SS trait, SNPs and InDels in the target 
regions were converted into KASP and InDel markers, 
and were used for the construction of the genetic map. 
In total, 13 KASP markers and one InDel marker were 
used for the construction of the genetic maps. Six KASP 

markers developed for Chr2A generated a linkage map 
spanning 18.0  cM, while seven KASP markers and one 
InDel marker developed for Chr2D generated a linkage 
map spanning 25.2 cM (Fig. 2, Table S1). The phenotypic 
data of SS trait evaluated in the three environments were 
used for QTL mapping. Two stable QTLs named QSS.
sicau-2 A and QSS.sicau-2D were detected in three envi-
ronments and BLUE. QSS.sicau-2 A located between A11 
and A17, explained 13.7–15.9% of the phenotypic vari-
ance with the LOD values ranging from 6.9 to 8.1. QSS.
sicau-2D located between INDEL and D3, explained 
27.4–32.9% of the phenotypic variance with the LOD 
values ranging from 15.0 to 18.7 (Table 3). The favorable 
alleles of the two QTL were all contributed by YP.

Table 3 QTL analysis for SS in different environments and the BLUE datasets
QTL Environment Flanking markers LOD LOD Thre PVE(%) Add Physical interval(Mb)
QSS.sicau-2 A CZ2022 A11, A17 7.9 3.2 15.5 3.72 70.6–78.2

CZ2023 A11, A17 8.0 3.3 15.7 6.44 70.6–78.2
WJ2023 A11, A17 6.9 3.2 13.7 4.62 70.6–78.2
BLUE A11, A17 8.1 3.4 15.9 4.90 70.6–78.2

QSS.sicau-2D CZ2022 INDEL, D3 15.0 2.9 27.4 6.62 72.7–75.1
CZ2023 INDEL, D3 15.3 2.9 27.8 8.69 72.7–75.1
WJ2023 INDEL, D3 18.7 3.1 32.9 5.49 72.7–75.1
BLUE INDEL, D3 17.1 3.5 30.6 6.91 72.7–75.1

LOD, logarithm of odds. LOD Thre, the LOD threshold. PVE, phenotypic variation explained. Add. additive effect (positive values indicate that alleles from YP 
increased trait scores, and negative values indicate that alleles from CS increased trait scores). BLUE, best linear unbiased estimator

Fig. 2 Linkage map of chromosome 2 A and chromosome 2D. (a) Physical map of chr2A, with QSS.sicau-2 A mapped on a region of the 3.0 cM genetic 
map. (b) Physical map of Chr2D, with QSS.sicau-2D mapped on a region of the 1.8 cM genetic map
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Effects of supernumerary spikelet QTL in different genetic 
backgrounds
Three KASP markers (A4, D3, 2DYC) and one InDel 
marker (INDEL) were used to assess the effects of QTL 
on NSS in validation populations (A4 is linked to QSS.
sicau-2  A and exhibits polymorphism across the three 
validation populations. INDEL, 2DYC and D3 are linked 
to QSS.sicau-2D and exhibit polymorphism in YJ, G2 
and NY2 populations, respectively). In YJ population, 
the average NSS in homozygous “AA, DD” genotype was 
17.71, that was significantly (P < 0.01) increased than that 
in homozygous “aa, dd”, “AA, dd” and “aa, DD” genotypes. 
Similarly, in G2 and NY2 populations, the average NSS in 
homozygous “AA, DD” genotypes were 15.75 and 14.52, 
respectively, that significantly (P < 0.01) increased than 
that in other three homozygous genotypes (Fig. 3).

Candidate gene prediction
According to the CS genome (IWGSC Refseq v2.1), QSS.
sicau-2  A was located between 70.6  Mb and 78.2  Mb 
on Chr2A, and 91 high-confidence genes, including 
WFZP-A (TraesCS2A03G0239400) spanned the region. 
Sequence analysis of the WFZP-A (Table S2), revealed a 
4-bp deletion in WFZP-A resulting a frame-shift in YP 
(Figure S2, Table S3), and the variation type is consistent 
with Zang734 [49]. These results suggest that WFZP-A is 
likely responsible for QSS.sicau-2 A.

QSS.sicau-2D was mapped between 72.7  Mb and 
75.1  Mb on Chr2D, revealing 34 high-confidence genes 
in the region (Table S4). Eight spike/grain-specific genes 
were identified by gene expression of WheatOmics 
(http://202.194.139.32/expression/index.html), that 
might probably be involved in spike growth and develop-
ment (Table S5, Figure S3). Exome sequencing data of YP 
reveal one T to A substitution which converts the codon 
(TAT) to a translational stop codon (TAA) in TraesC-
S2D03G0260700 (Fig. 4). Additionally, we examined the 
coding sequences of the known branching gene WZFP-D 

(TraesCS2D03G0248500, chr2D: 69,940,372.69,941,615). 
No sequence variation between YP and CS was identified 
for WZFP-D, and no significant difference (P > 0.05) in 
gene expression in YP and CS (Figure S4, Table S3).

Effects of QSS.sicau-2 A and QSS.sicau-2D on yield-related 
traits
Two QTL, QSS.sicau-2 A and QSS.sicau-2D, were identi-
fied in YC population. Their effects on the yield-related 
traits were analyzed by linking markers. The YC popula-
tion was divided into four genotypes of “aa, dd” “AA, dd”, 
“aa, DD” and “AA, DD” by molecular markers. The SNS, 
GNS and GWS of homozygous “AA, DD” genotypes were 
significantly higher than that of other three genotypes, 
the TGW, GL and GW of homozygous “AA, DD” geno-
types were significantly lower than that of other three 
genotypes (Fig. 5a and f ). Additionally, the FLL and FLW 
were not affected by QSS.sicau-2  A and QSS.sicau-2D 
(Fig. 5g and h).

Discussion
The complexity of the wheat genome combined with the 
fewer spikelet number mutants, hinder the identification 
of beneficial variants associated with spikelet number. To 
enhance the yield potential of wheat, breeders have tried 
to alter its sink capacity by modifying spike morphology 
[50]. The supernumerary spikelet (SS) character of bread 
wheat (Triticum aestivum L.) is an abnormal spike mor-
phology with extra spikelets per rachis node. In some 
materials, the SS trait was unstable, and some environ-
mental factors and photoperiod could affect the expres-
sion of bh gene for SS character [51, 52]. In this study, 
YP maintained SS trait in multiple environments, which 
provides an available germplasm resource for improving 
wheat spikelets.

Fig. 3 The effects of QSS.sicau-2 A and QSS.sicau-2D on NSS in the validation populations. (a) YP/CM104 RIL population. (b) YP/CM107 RIL population. (c) 
YP /11N21 RIL population. ** indicate significance level at P < 0.01 by the Student’s t-test. NSS, the number of SS per spike
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Fig. 4 Variation sequence and expression patterns of TraesCS2D03G0260700. (a) The nucleotide of YP and CS are shown in red and black, respectively. (b) 
The amino acid sequence encoded by the TraesCS2D03G0260700 in YP and CS. (c) TraesCS2D03G0260700 expression patterns in different tissues, the data 
(TPM value) were downloaded from the GeneExpression of WheatOmics (http://wheatomics.sdau.edu.cn/). Z10, first leaf through coleoptile. Z13, 3 leaves 
unfolded. Z23, main shoot and 3 tillers. Z30, pseudo stem erection. Z32, 2nd node detectable. Z39, flag leaf ligule/collar just visible. Z65, anthesis half-way. 
Z71, caryopsis water ripe. Z75, medium milk. Z85, soft dough

 

http://wheatomics.sdau.edu.cn/


Page 8 of 10Wang et al. BMC Genomics          (2024) 25:675 

Comparison of QTL identified for wheat spikelet number 
with previous studies
In recent years, many QTLs related to SNS have been 
widely reported and were mapped to all 21 chromosomes 
of wheat [14, 53–56]. QSns.Y4Y-2  A, a QTL related to 
SNS, was detected in multiple environments and mapped 
between 85.6  Mb and 91.1 Mb [57]. Li [58] found one 
local cultivar YM44 that has SS phenotype, which was 
linked to the marker Xwmc522 and cfd56 mapped on 
chromosome 2 A and 2D, respectively, and further con-
firmed that WFZP-A is the functional gene of chromo-
some 2  A that causes SS phenotype. In this study, we 
found that WFZP-A (Chr2A: 71,582,645.71,583,948) 
exists in the QSS.sicau-2  A (70.6–78.2  Mb) interval, 
and the similar variation existed in YP by the sequences 
analysis of WFZP-A in YP and CS (Figure S2). Therefore, 
we speculate that WFZP-A may be responsible for QSS.
sicau-2 A.

In addition, several QTL controlling SNS trait have 
been reported on chromosome 2D in wheat. QSns.sau-
2D was mapped on chromosome arm 2DS flanked by the 
markers AX-109,836,946 (32.8  Mb) and AX-111,956,072 
(34.4 Mb) [59]. Gene Mrs1 on the short arm of chromo-
some 2D, that closely linked to Xgwm 484 (50.6 Mb), and 
further identified the candidate gene WFZP-D (chr2D: 
69,940,372.69,941,615) by homologous function annota-
tion [22, 60]. In this study, QSS.sicau-2D was mapped to 
the genomic region of Chr2D between 72.7- and 75.1 Mb, 
and no overlap between the QTL interval associated with 

SNS and indicating QSS.sicau-2D may be a novel QTL 
for SS trait.

Potential candidate genes for QSS.sicau-2D
To screen the candidate gene for QSS.sicau-2D, we 
amplified WFZP-D in the cDNA of both parents even 
though WFZP-D is not in the interval of QSS.sicau-2D. 
The results showed that WFZP-D had no sequence differ-
ence between YP and CS. Furthermore, there was no sig-
nificant difference (P > 0.05) in the expression of WFZP-D 
in YP and CS by RT-qPCR analysis (Figure S4). One SNP 
was identified between CS and YP 60 bp downstream of 
the WFZP-D and a KASP marker named D21 was devel-
oped to assay the polymorphism. The D21 marker was 
mapped 9.4  cM away from QSS.sicau-2D in the recon-
structed genetic map (Figure S5). These results indicated 
the WFZP-D is not the candidate gene for QSS.sicau-2D.

Eight spikelet/grain specific expressed genes were 
identified in the QSS.sicau-2D region, among which, 
one SNP converts the codon (TAT) to a translational 
stop codon (TAA) of TraesCS2D03G0260700 in YP 
by exome sequencing and Sanger sequencing analysis. 
In addition, TraesCS2D03G0260700 encoding cyclin-
like F-box domain protein, and previous studies have 
shown that cyclin-like F-box domain is specifically 
expressed in wheat inflorescence and involved in the 
development of wheat inflorescence [61–65]. Overall, 
TraesCS2D03G0260700 was predicted to be a potential 
candidate gene for QSS.sicau-2D.

Fig. 5 Effects of QSS.sicau-2 A and QSS.sicau-2D on grain traits and flag leaf. Bar pattern and significance analysis of (a) SNS, (b) GNS, (c) GWS, (d) TGW, (e) 
GL, (f) GW, (g) FLL and (h) FLW. Each bar shows mean ± SD. Different letters indicate significance level at P < 0.05 by the Tukey’s test. SNS, spikelets number 
per spike. GNS, grain number per spike. GWS, grain weight per spike. TGW, thousand gain weight. GL, grain length. GW, grain width. FLL, flag leaf length. 
FLW, flag leaf width
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Effects of QSS.sicau-2 A and QSS.sicau-2D on yield-related 
traits
Consistent with previous studies, GL, GW and TGW 
have decreased while GNS has increased, with the 
increase of SNS (Fig.  5), such as a single mutation in 
WFZP-D can significantly increase the SNS and GNS 
[49, 58, 59]. GWS is an important trait influencing wheat 
yield [66]. In this study, we found that the GWS exhib-
ited a significant increase in YC population when QSS.
sicau-2  A and QSS.sicau-2D coexisted. This may be 
attributed to the compensatory increase in grain num-
ber per spike (GNS) offsetting the decrease in thousand-
grain weight (TGW). In conclusion, the SS trait have the 
value of increasing the yield potential of wheat.

Conclusion
In this study, two major SS QTL were identified in 
multi-environments and validated in different genetic 
populations. QSS.sicau-2D is a new QTL of SS trait, 
and predicted TraesCS2D03G0260700 to be its candi-
date gene. At the same time, the combined effect of QSS.
sicau-2 A and QSS.sicau-2D significantly increased GWS, 
which has the application value of increasing the yield 
potential of wheat.
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