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Abstract 

Background The breeding of layers emphasizes the continual selection of egg-related traits, such as egg production, 
egg quality and eggshell, which enhance their productivity and meet the demand of market. As the breeding process 
continued, the genomic homozygosity of layers gradually increased, resulting in the emergence of runs of homozy-
gosity (ROH). Therefore, ROH analysis can be used in conjunction with other methods to detect selection signatures 
and identify candidate genes associated with various important traits in layer breeding.

Results In this study, we generated whole-genome sequencing data from 686 hens in a Rhode Island Red popula-
tion that had undergone fifteen consecutive generations of intensive artificial selection. We performed a genome-
wide ROH analysis and utilized multiple methods to detect signatures of selection. A total of 141,720 ROH segments 
were discovered in whole population, and most of them (97.35%) were less than 3 Mb in length. Twenty-three ROH 
islands were identified, and they overlapped with some regions bearing selection signatures, which were detected 
by the De-correlated composite of multiple signals methods (DCMS). Sixty genes were discovered and functional 
annotation analysis revealed the possible roles of them in growth, development, immunity and signaling in lay-
ers. Additionally, two-tailed analyses including DCMS and ROH for 44 phenotypes of layers were conducted to find 
out the genomic differences between subgroups of top and bottom 10% phenotype of individuals. Combining 
the results of GWAS, we observed that regions significantly associated with traits also exhibited selection signatures 
between the high and low subgroups. We identified a region significantly associated with egg weight near the 25 Mb 
region of GGA 1, which exhibited selection signatures and has higher genomic homozygosity in the low egg weight 
subpopulation. This suggests that the region may be play a role in the decline in egg weight.

Conclusions In summary, through the combined analysis of ROH, selection signatures, and GWAS, we identified 
several genomic regions that associated with the production traits of layers, providing reference for the study of layer 
genome.
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Background
Layer breeding places significant emphasis on the selec-
tion of egg-related traits such as egg number, weight, 
quality and appearance. Layer strains are subjected to 
long-term and intensive selection for the target traits, 
ensuring the development of efficient and high-perform-
ing commercial strains. Selection indexes including egg 
number (EN), egg weight (EW), quality and appearance 
traits have been used for decades in commercial breed-
ing programs. It is commonly held that EW has a nega-
tive correlation with EN, prompting commercial breeders 
to prioritize higher EN and lower EW to meet the rising 
market demand for more eggs [1]. In addition, consum-
ers seem to be focusing on the quality and appearance of 
eggs, which requires breeders to consider comprehen-
sively the yield, quality, and appearance of eggs in order 
to meet consumers’ needs. With the advent of genomic 
selection (GS), it has become possible to investigate 
the genetic mechanism of important economic traits in 
greater depth [2]. The process of artificial selection has 
been accelerated by the application of GS, which has led 
to an increase in homozygosity in regions of the layer 
genome linked with egg-related traits [3].

Recently, runs of homozygosity (ROH) analysis has 
gained attention and is being increasingly adopted by 
researchers in the field to study population history and 
measure the degree of inbreeding [4–6]. ROH are contin-
uous segments of a genome that are homozygous, mean-
ing that the individual has inherited identical copies of 
genetic information from parents [7, 8]. ROHs can occur 
naturally in individuals as a result of inbreeding or heavy 
selection pressure and have hypothesized relevance with 
genes that influence disease susceptibility, cognitive abil-
ity, and production performance in individuals [6, 9, 10]. 
By utilizing ROH, scientists are able to better understand 
a population’s evolutionary history, inbreeding levels, and 
changes in genomic homozygosity in specific environ-
ments [11–13]. In agricultural research, ROH analysis 
has become an important tool for identifying genes and 
selection signatures that are associated with economic 
traits in livestock [3, 5, 14, 15]. Nevertheless, there are 
limitations in ROH research, mainly concerning the pre-
cise characterization of ROH in relation to the length and 
the number of loci [4, 16]. Presently, no definitive crite-
ria have been established to determine the extent of ROH 
segments. Overall, the combination of ROH and selective 
sweep analysis can help us to gain a more comprehensive 
understanding of the genetic characteristics of different 
regions in the genome, and help to reveal the mecha-
nisms associated with artificial selection and genetic vari-
ation to which chickens are subjected.

In this study, we used whole-genome sequencing 
(WGS) data to perform a genome-wide ROH study and 

multiple selective sweeps methods in order to detect and 
identify the putative regions subject to artificial selection 
for egg-related traits in a Rhode Island Red pure line with 
complete pedigree records. Rhode Island Red chickens 
are a widely used standard breed in the poultry industry 
due to their excellent egg production and quality. Spe-
cifically, we aimed to (i) investigate the distribution and 
frequency of ROH in this population, (ii) identify regions 
and genes within ROH islands that bear signals of selec-
tion across the whole population and annotate their 
functions, and (iii) combine the results of GWAS and 
selection signatures to analyze genomic differentiation 
and the differences of the incidence of SNP in ROH seg-
ments between subpopulations with high and low pheno-
type, to discovery genes or regions that may influence the 
phenotype. The traits used in this study include records 
at multiple time points of body weight (BW), egg num-
ber (EN), egg weight (EW), albumen height (AH), four 
kinds of eggshell color (ESCA, ESCB, ESCI and ESCL), 
eggshell strength (ESS), and glossiness (SINS) (Table 1). 
Our results will provide valuable insights into the genetic 
diversity and population structure of highly selected 
chicken populations and can inform breeding strategies 
to maintain and improve their productivity.

Results
Characteristics of ROH and F(ROH)
A total of 141,720 ROH segments were identified in this 
population with an average length of 1.043 Mb, an aver-
age of 206.6 segments per individual, and 4,085 SNPs 
per segment. The largest ROH segment was 10.17 Mb 
in length and located between 117.39 and 127.56 Mb 
on GGA 2, containing 55,091 SNPs. Most of the ROH 
segments were located on chromosomes 1–4 (includ-
ing 82,292 ROHs), accounting for 58.07% of the total 
(Fig.  1a). To distinguish ROH segments of different 
lengths, we artificially set three thresholds (1 Mb, 3 Mb 
and 5 Mb) to categorize them into four classes, and 
found that the proportions of these four ROH categories 
on each chromosome were not identical to the propor-
tions in the entire genome. For instance, on large chro-
mosomes, the proportions of each type were comparable; 
however, on small chromosomes, there tended to be a 
larger proportion of ROH segments longer than 3 Mb 
(Fig. 1a).

When comparing inbreeding coefficients, F(ROH), 
with a mean of 0.224, was much higher than other cal-
culations (F(PED): 0.019, F(GRM): 0.088, F(HOM): 
0.070, Fig.  1b). And due to the different SNPs used, it 
was also observed that F(ROH) had low correlation 
coefficients (0.097 ~ 0.331) with F(GRM) and F(HOM), 
which used independent SNPs obtained by linkage 
disequilibrium (LD) pruning rather than all SNPs on 
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genome. In addition, low Pearson correlation coefficient 
(0.097 ~ 0.348) between F(PED) and F(ROH), F(GRM), 
and F(HOM) were observed (see Additional file  1 

Table S1), reflecting the fact that there might be relatively 
large differences between pedigree and genomic data for 
judging the degree of inbreeding.

Table 1 Descriptive statistics of important chicken economical traits along with aging process

Abbreviations: AH Albumen height (mm), BW Body weight (g), AFE Age at first egg, EN Egg number, ESC Eggshell color, ESS Eggshell strength, EW Egg weight (g), SINS 
Eggshell gloss. The number following the trait indicates the age of week, N Number of samples, Mean Average value, SD Standard deviation, CV (%) Coefficient of 
variation, Min Minimum value, Max Maximum value, h2 Heritability

Traits N Mean SD CV (%) Min Max h2

AH72 571 5.95 1.15 19% 2.4 9.4 0.44

AH80 490 5.28 1.55 29% 1 13.1 0.37

BW28 686 1924 141.44 7% 1482 2392 0.4

BW36 686 1947 174.15 9% 1575 2499 0.32

BW56 682 2065 202.59 10% 1374 2679 0.39

BW72 686 2111 228.96 11% 1271 2799 0.55

BW80 684 2190 237.87 11% 1365 3030 0.59

BWAFE 686 1760 120.21 7% 1335 2158 0.42

EN38 686 121 8.62 7% 100 144 0.25

EN48 686 186 9.90 5% 155 213 0.19

EN56 686 238 11.17 5% 196 268 0.16

EN72 686 339 17.29 5% 239 377 0.15

ESCA36 684 17.46 1.29 7% 12.61 21.5 0.29

ESCA56 674 17.40 1.77 10% 2.17 23.5 0.19

ESCA72 659 17.47 1.96 11% 5.11 22.18 0.18

ESCA80 658 16.86 1.68 10% 10.11 21.79 0.48

ESCB36 684 28.61 1.30 5% 23.17 32.55 0.48

ESCB56 674 28.94 1.70 6% 12.39 32.52 0.35

ESCB72 659 29.04 2.06 7% 17.86 32.43 0.2

ESCB80 658 28.26 1.77 6% 16.81 32.32 0.29

ESCI36 684 12.50 4.29 34% -0.43 28.46 0.33

ESCI56 674 16.37 5.54 34% 1.75 63.83 0.28

ESCI72 659 14.69 6.45 44% 1.35 49.37 0.26

ESCI80 658 16.11 5.81 36% -0.57 38.72 0.32

ESCL36 684 58.57 2.88 5% 47.39 68.12 0.33

ESCL56 674 62.70 3.11 5% 52.20 78.39 0.36

ESCL72 659 61.20 3.37 6% 51.57 76.35 0.36

ESCL80 658 61.23 3.45 6% 51.04 72.55 0.33

ESS36 682 3.49 0.64 18% 1.05 5.40 0.39

ESS56 673 3.48 0.57 16% 1.48 5.46 0.25

ESS72 655 2.91 0.63 22% 1.47 5.22 0.33

ESS80 652 3.31 0.62 19% 1.03 5.18 0.39

EW28 685 56.22 3.53 6% 36.3 68 0.37

EW36 686 57.62 3.81 7% 44.6 68.6 0.45

EW56 675 60.78 4.23 7% 42.5 74.9 0.41

EW72 664 60.67 4.27 7% 46.6 76.6 0.45

EW80 654 61.55 4.44 7% 49.1 74.9 0.52

EWAFE 684 43.18 7.06 16% 21.4 88 0.19

SINS36 683 3.16 0.59 19% 1.9 5.6 0.11

SINS56 673 2.45 0.49 20% 1.4 4.8 0.18

SINS72 659 2.36 0.45 19% 1.3 4 0.15

SINS80 658 2.43 0.56 23% 1.43 4.6 0.18
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In the population, we also found some individuals 
whose parents shared a common ancestor within the 
six-generation pedigree. Consequently, we formed sub-
sets of individuals whose parents had a common ances-
tor from the same generation. Moreover, we posited that 
if the parents’ common ancestor appeared in later gen-
erations, the individual would exhibit a higher degree 
of inbreeding. We found that individuals whose parents 
shared a common ancestor in last four generations had 

a significantly higher number of ROH (223.57 ~ 228.14, 
Fig. 2a, p value < 0.01) and F(ROH) (0.242 ~ 0.247, Fig. 2b, 
p value < 0.01) than the population mean (number of 
ROH: 206.59; F(ROH): 0.224), and the greater the degree 
of inbreeding was, the larger the difference. However, 
this difference was no longer significant when the com-
mon ancestor appeared five generations earlier, suggest-
ing that ROH was adept at reflecting recent inbreeding 
events. Similarly, individuals whose parents shared a 

Fig. 1 Descriptive graphics of runs of homozygosity (ROH) in Rhode Island Red chickens. a The distribution of ROH on chromosomes 
and the proportion of ROH for different lengths; b Inbreeding coefficients calculated by four methods: F(ROH) by PLINK, F(GRM) by G matrix 
in GCTA, F(PED) by pedigree in CFC, and F(HOM) by homozygosity in PLINK
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common ancestor in last four generations had a higher 
proportion of long ROH (0.65 ~ 0.66%) than the popula-
tion mean (0.62%) (Fig. 2c). These results confirmed that 
the use of F(ROH) to characterize the degree of inbreed-
ing was relatively reliable in this Rhode Island Red pure 
line. Additionally, we observed that the deviation of 
F(ROH) between full siblings (mean = 0.032) was lower 
than the mean deviation between a random pair (0.037, p 
value = 0.025), indicating a relatively stable and common 
occurrence of ROH segments (Fig.  2d). Overall, ROH 
analysis is perfectly suited for studying inbreeding and 
selection in this group.

ROH islands and De‑correlated composite of multiple 
signals
For the whole population, we initially identified 23 ROH 
islands based on regions containing the top 1% most 
frequent loci in the ROH segments (Fig.  3a, thresh-
old = 0.687) and then annotated the known QTL regions 
that overlapped with them (Table 2). Most ROH islands 
were distributed on GGA 1–6 (number: 18, account-
ing for 78.26%), and the average length of ROH islands 

was 1.13 Mb, containing a mean of 2058.6 SNPs, which 
revealed that ROH islands might be more common in 
regions with low SNP density (the average of SNP den-
sity of ROH segments was 4,085, as mentioned above). 
The average of minor allele frequency (MAF) of SNPs 
(n = 47,348) in ROH islands was 0.083, much lower than 
the average of all SNPs (0.243). In addition, the average 
incidence of SNPs in ROH segments for all ROH island 
regions was 73.41%, ranging from 68.68% to 84.81%, 
much higher than the average of all SNPs (17.70%).

The De-correlated composite of multiple signals 
(DCMS) consolidates three within-population statistics 
into a comprehensive score, including nucleotide diver-
sity (Pi), Tajima’s D, and integrated Haplotype Score 
(iHS). Upon computing the DCMS statistic, we fitted 
the p-values to a normal distribution to identify candi-
date sweep regions by evaluating the empirical distribu-
tion’s top 1% (Fig.  3b, threshold = 2.20). This approach 
delineated a total of 176 candidate regions, with 127 of 
these regions situated on GGA 1–6 (72.16%). Out of 23 
detected ROH islands, 12 coincided with these candidate 
regions, while 4 lay within 1 Mb proximity. Consequently, 

Fig. 2 The degree of inbreeding measured by runs of homozygosity (ROH). “IndG-n” represents individuals whose parents’ common ancestor 
appeared “n.th” generations ago. a The number of ROH in samples with different degrees of inbreeding; b F(ROH) of samples with different degrees 
of inbreeding; c The percentage of total ROH within each ROH length category; d The difference between two full siblings’ F(ROH) and random 
pairs. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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we identified 59 regions of overlap between ROH islands 
and selection signatures, corresponding to 60 genes 
(Table  3). Functional annotation of these identified 
genes suggested that they contributed to encompass-
ing growth, immunity, disease resistance, cardiovascular 
and neurological functions in layers (Table  4). Notably, 
a number of pathways indicate that certain genes influ-
ence mRNA synthesis and metabolism. Moreover, the 
LARGE1, SLC18A2, and CACNB2 genes interact with 
various neural signal transduction pathways, while the 
LYN and LGALS2 genes are implicated in the regulation 
of immune responses.

Combination of ROH and selection signature analysis 
with GWAS
To investigate the relationship between potentially 
selected regions and phenotypes, we performed GWAS 
and two-tailed analyses for 44 phenotypes on this popu-
lation. We compared differences of the incidence of SNP 
in ROH segments and detected selection signatures with 
DCMS methods between the highest and lowest 10% 
subpopulations of samples for each phenotype, and com-
bined these results with GWAS. First, we found that for 
all phenotypes, the average differences of the frequency 
of SNP appearing in ROH between the high and low sub-
populations were almost zero, indicating that there were 

no obvious differences in genome homozygosity between 
two subpopulations (see Additional File 2, Table  S2, 
where positive values indicate a higher frequency of 
SNPs occurring in the ROH segments of the low group, 
with the number representing the frequency difference; 
negative values indicate a higher frequency of SNPs in 
ROH segments in the high group). Then, we scanned the 
genome using FST, Pi ratio (Pi ratio = Pi(low) / Pi(high)), 
and cross-population extended haplotype homozygosity 
(XP-EHH, high group was set to be reference subpopu-
lation) to analyze the genomic differentiation between 
two subpopulations for each phenotype, respectively, and 
established a DCMS framework individually to obtain 
P-values for each genomic window (Fig. 4). We retained 
genomic windows with FDR-corrected P values of less 
than 0.05 as potential selection signatures for each  phe-
notype. In addition, GWAS was performed to identify 
the significant SNPs for each phenotype on the whole 
population. In summary, we identified 1,682 significant 
and 4,095 suggestive significant SNPs (see Additional 
file 3 Table S3 and Additional file 4 Figure S1). Following 
GWAS, we also defined 29 QTL regions under 1 Mb in 
length, within 20 phenotype models (Table 5).

Among these 29 QTL regions, we found that 13 over-
lapped with selection signatures identified by the DCMS 
method, involving multiple time points for EW, ESC and 

Fig. 3 Manhattan plot of the incidence of SNPs in ROH and selective sweeps detected by DCMS. a Whole genome-wide incidence of SNPs in ROH, 
which indicates the ROH islands in the population.; b Selective sweeps detected by DCMS on whole genome
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SINS, as well as BW80, AH72 and ESS36 (Fig. 5). Taking 
egg weight as an example (Fig.  6), we located the QTL 
near 25  Mb on GGA1. This region was highlighted not 
only by the DCMS methods but also exhibited selec-
tion signatures through the XP-EHH and FST methods. 
Since the standardized XP-EHH value is greater than 2, 
it suggests a higher extended haplotype homozygosity 
in this region of the low egg weight subpopulation. Fur-
thermore, in this region, it was also observed that SNPs 
within ROH segments occur at a higher frequency in 
the low egg weight subgroup than the high (4.4 ~ 8.9%), 
implying that the low egg weight subpopulation has a 
higher degree of homozygosity in this region. In addition, 
six genes are located within this QTL region: CAPZA2, 
MET, CAV1, CAV2, TES, TFEC, and we performed func-
tional annotation for them (Table 6).

Discussion
In the current study, we utilized WGS data for ROH, 
selective sweeps and GWAS analyses in a population of 
686 Rhode Island Red hens. With this study, we aim to 
explore the impact artificial selection might have on the 

genomes of layers and provide a theoretical foundation 
for specific breeding practices.

It is important to emphasize that this population has a 
relatively small number of founders and has undergone 
several generations of intense confinement selection for 
egg-related traits. These are important contextual factors 
for interpreting and discussing our results.

Compared to the results of previous studies on chicken 
[15, 17–19], the distribution and number of ROH in this 
population did not exhibit significant differences. ROH 
segments are commonly found on larger chromosomes, 
and most are classified as short in length (< 3 Mb). It is 
generally believed that longer ROH indicate inbreeding 
or a strong selection pressure, while shorter ROH can 
reflect the population structure of ancestors [7, 8]. In 
addition, we have observed a relatively higher proportion 
of long ROH (> 3 Mb) on smaller chromosomes; however, 
there is no clear explanation for this phenomenon yet.

One common application of ROH analysis is to assess 
inbreeding levels within a population. In our popula-
tion, the value of F(ROH) was much larger than the other 
methods, which is relatively rare in various previous 

Table 2 ROH islands overlapped with reported QTLs

Position Region average of 
incidence of SNP in 
ROH (%)

Number of SNP Overlapped QTL trait(s)

1:36,940,128–37194844 0.69 944 -

1:50,146,153–52750619 0.74 4798 Feed conversion ratio / Egg number / Abdominal fat percentage / Body 
weight

1:88,042,802–88630511 0.72 1079 Feed intake / Body weight

1:89,771,664–90,206,011 0.69 734 Thigh muscle pH

2:14,947,422–15,310,050 0.69 2008 Chest width

2:18,142,793–19,271,979 0.82 1385 Abdominal fat weight / Feed conversion ratio

2:80,825,999–84272009 0.72 207 Feather pecking / Breast muscle pH / Eggshell weight / Albumen height

2:91,329,911–95,615,858 0.73 6523 Body weight / Abdominal fat percentage

2:100,871,490–103316229 0.73 7673 Feed conversion ratio / Body weight

2:110,056,725–111200505 0.79 3975 Breast muscle pH / Body temperature

3:77,258,932–77,530,838 0.71 187 Shank circumference / Feather pecking / Eggshell color

4:18,649,833–19,274,577 0.78 200 -

4:26,151,029–27447735 0.72 3225 Body depth

4:46,619,643–46,991,705 0.69 2035 Egg weight

5:46,642,314–47,290,496 0.69 1094 Antibody titer to IBV / Body weight

6:21,389,648–22,209,999 0.71 697 Eggshell stiffness / Eggshell cuticle coverage / Body weight / Breast muscle 
pH

6:26,246,593–26,431,590 0.69 593 -

6:28,457,718–30,108,964 0.76 1461 Feather pecking / Feed conversion ratio / Body weight

9:4,539,012–4871440 0.69 621 Feed conversion ratio

11:18,750,256–20156406 0.85 999 Body weight / Egg production rate / Breast muscle weight / Body weight

12:31,451–610,718 0.81 443 -

13:7,808,825–8225656 0.71 2193 Feather pecking / Feed conversion ratio / Breast muscle weight

18:5,622,977–6,399,812 0.74 4274 Feather pecking / Body weight / Abdominal fat weight
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Table 3 Genes located in overlapping regions of ROH islands and selective sweeps

Gene Gene Name Position Description

ENSGALG00000012050 TNRC6B 1:50,120,269–50164133 trinucleotide repeat containing 6B

ENSGALG00000012236 DMC1 1:50,865,020–50876251 DNA meiotic recombinase 1

ENSGALG00000037360 DDX17 1:50,877,655–50894778 DEAD-box helicase 17

ENSGALG00000032313 KDELR3 1:50,897,173–50902317 KDEL endoplasmic reticulum protein retention receptor 3

ENSGALG00000012254 KCNJ4 1:50,905,908–50917205 Potassium inwardly rectifying channel subfamily J member 4

ENSGALG00000053778 LOC101747255 1:50,909,163–50911116 serologically defined colon cancer antigen 3 homolog

ENSGALG00000032257 CSNK1E 1:50,927,995–50948440 casein kinase 1 epsilon

ENSGALG00000012285 BAIAP2L2 1:50,999,516–51007562 BAI1 associated protein 2 like 2

ENSGALG00000036897 SLC16A8 1:51,008,968–51016634 solute carrier family 16 member 8

ENSGALG00000041823 PICK1 1:51,019,143–51030492 protein interacting with PRKCA 1

ENSGALG00000012290 SOX10 1:51,055,215–51064410 SRY-box 10

ENSGALG00000012291 POLR2F 1:51,067,332–51070945 RNA polymerase II subunit F

ENSGALG00000012293 C22orf23 1:51,071,012–51075308 chromosome 1 C22orf23 homolog

ENSGALG00000012265 MICALL1 1:51,075,320–51093611 MICAL like 1

ENSGALG00000012299 ANKRD54 1:51,089,196–51112478 ankyrin repeat domain 54

ENSGALG00000012296 EIF3L 1:51,097,092–51106741 eukaryotic translation initiation factor 3 subunit L

ENSGALG00000012307 GALR3 1:51,117,014–51118848 galanin receptor 3

ENSGALG00000019312 LOC693258 1:51,121,427–51,122,146 noggin 4

ENSGALG00000012312 GCAT 1:51,123,081–51128130 glycine C-acetyltransferase

ENSGALG00000012410 NOL12 1:51,151,276–51,155,431 nucleolar protein 12

ENSGALG00000012416 LOC100858460 1:51,155,529–51,162,122 arf-GAP with dual PH domain-containing protein 1-like

ENSGALG00000012419 UTS2RL 1:51,162,834–51,165,452 urotensin-2 receptor-like

ENSGALG00000012420 CG-1B 1:51,166,508–51169768 galectin 1

ENSGALG00000023131 PDXP 1:51,181,690–51185095 pyridoxal phosphatase

ENSGALG00000012422 SH3BP1 1:51,186,462–51,193,519 SH3 domain binding protein 1

ENSGALG00000039658 GGA1 1:51,196,551–51,205,052 golgi associated, gamma adaptin ear containing, ARF binding protein 1

ENSGALG00000003213 LGALS2 1:51,206,946–51218711 galectin 2

ENSGALG00000038556 CDC42EP1 1:51,221,544–51,223,454 CDC42 effector protein 1

ENSGALG00000042365 CARD10 1:51,238,459–51,251,963 caspase recruitment domain family member 10

ENSGALG00000012442 MFNG 1:51,255,614–51,276,612 MFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase

ENSGALG00000012446 ELFN2 1:51,333,318–51,335,744 extracellular leucine rich repeat and fibronectin type III domain con-
taining 2

ENSGALG00000012454 CYTH4 1:51,385,635–51,405,059 cytohesin 4

ENSGALG00000012522 PVALB 1:51,608,164–51618692 parvalbumin

ENSGALG00000042990 IFT27 1:51,627,090–51635098 intraflagellar transport 27

ENSGALG00000012540 RBFOX2 1:51,917,777–51,989,848 RNA binding protein, fox-1 homolog 2

ENSGALG00000012541 MB 1:52,004,040–52007757 myoglobin

ENSGALG00000012542 RASD2 1:52,034,440–52042836 RASD family member 2

ENSGALG00000012559 LARGE1 1:52,678,868–52,954,337 LARGE xylosyl- and glucuronyltransferase 1

ENSGALG00000054689 LOC101752020 1:88,465,698–88,466,831 inositol 1,4,5-trisphosphate receptor-interacting protein-like 1-like

ENSGALG00000037769 NEBL 2:18,124,237–18,368,109 nebulette

ENSGALG00000007956 PLXDC2 2:18,525,903–18759573 plexin domain containing 2

ENSGALG00000008591 CACNB2 2:19,119,896–19,343,839 calcium voltage-gated channel auxiliary subunit beta 2

ENSGALG00000036128 ZNF407 2:91,466,387–91,808,773 zinc finger protein 407

ENSGALG00000033168 ENSGALG-00000033168 2:91,686,325–91,690,076

ENSGALG00000015261 NPBWR1 2:110,084,486–110087007 neuropeptides B and W receptor 1

ENSGALG00000025941 RGS20 2:110,314,102–110333425 regulator of G-protein signaling 20

ENSGALG00000015274 TCEA1 2:110,336,672–110362086 transcription elongation factor A1

ENSGALG00000031869 RP1 2:110,575,597–110697739 retinitis pigmentosa 1 (autosomal dominant)

ENSGALG00000035429 XKR4 2:110,760,621–110984213 XK related 4
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Table 3 (continued)

Gene Gene Name Position Description

ENSGALG00000031835 TMEM68 2:111,010,166–111029857 transmembrane protein 68

ENSGALG00000030767 LOC421125 2:111,032,635–111051679 transmembrane protein 68-like

ENSGALG00000015340 TGS1 2:111,084,380–111107118 trimethylguanosine synthase 1

ENSGALG00000042321 LYN 2:111,134,283–111,181,422 LYN proto-oncogene, Src family tyrosine kinase

ENSGALG00000015836 CEP162 3:77,469,083–77515525 centrosomal protein 162

ENSGALG00000008465 SORCS1 6:26,083,271–26356014 sortilin related VPS10 domain containing receptor 1

ENSGALG00000009289 SLC18A2 6:30,092,809–30110773 solute carrier family 18 member A2

ENSGALG00000033195 IGF2BP2 9:4,590,676–4607425 insulin like growth factor 2 mRNA binding protein 2

ENSGALG00000031128 SENP2 9:4,610,405–4623784 SUMO1/sentrin/SMT3 specific peptidase 2

ENSGALG00000054723 AMOTL2 9:4,625,172–4,641,190 angiomotin like 2

ENSGALG00000001690 GABRB2 13:8,067,187–8204642 gamma-aminobutyric acid type A receptor beta2 subunit

Table 4 Functional annotation for overlap genes of ROH islands with selective sweeps

Terms Term Name Term ID P value Gene Number

GO:MF molecular_function GO:0003674 8.59E-09 49

GO:MF ion binding GO:0043167 4.51E-02 16

GO:BP cellular process GO:0009987 5.40E-07 45

GO:BP mast cell degranulation GO:0043303 2.10E-02 2

GO:BP regulation of mRNA metabolic process GO:1,903,311 2.10E-02 4

GO:BP regulation of actin polymerization or depolymerization GO:0008064 2.60E-02 3

GO:BP plasma membrane organization GO:0007009 2.60E-02 3

GO:BP immune response-inhibiting cell surface receptor signaling pathway GO:0002767 3.65E-02 1

GO:BP 7-methylguanosine cap hypermethylation GO:0036261 3.65E-02 1

GO:BP post-embryonic hindlimb morphogenesis GO:0035129 3.65E-02 1

GO:BP positive regulation of GTPase activity GO:0043547 3.65E-02 2

GO:BP pyridoxal phosphate catabolic process GO:0032361 3.65E-02 1

GO:BP positive regulation of dendritic cell apoptotic process GO:2,000,670 3.65E-02 1

GO:BP neuromuscular junction development GO:0007528 3.74E-02 2

GO:BP striated muscle cell development GO:0055002 4.24E-02 2

GO:BP establishment of protein localization to membrane GO:0090150 4.24E-02 3

GO:BP regulation of alternative mRNA splicing, via spliceosome GO:0000381 4.24E-02 2

GO:BP monoamine transport GO:0015844 4.24E-02 2

GO:BP locomotory behavior GO:0007626 4.24E-02 3

GO:BP lymphocyte homeostasis GO:0002260 4.24E-02 2

GO:BP threonine catabolic process GO:0006567 4.74E-02 1

GO:BP negative regulation of mast cell proliferation GO:0070667 4.74E-02 1

GO:BP slow endocytic recycling GO:0032458 4.74E-02 1

GO:BP actin rod assembly GO:0031247 4.74E-02 1

GO:BP inhibitory chemical synaptic transmission GO:0098977 4.74E-02 1

GO:BP membrane depolarization during atrial cardiac muscle cell action potential GO:0098912 4.74E-02 1

GO:BP inner ear receptor cell development GO:0060119 4.74E-02 2

GO:BP negative regulation of toll-like receptor 2 signaling pathway GO:0034136 4.74E-02 1

GO:BP membrane depolarization during AV node cell action potential GO:0086045 4.74E-02 1

GO:BP cardiac muscle thin filament assembly GO:0071691 4.74E-02 1

GO:BP protein localization to cilium GO:0061512 5.00E-02 2

GO:CC cellular_component GO:0005575 1.81E-06 45

GO:CC galectin complex GO:1,990,724 2.21E-02 1

GO:CC RNA polymerase II, holoenzyme GO:0016591 3.84E-02 2
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animal studies [3, 13, 20]. Comparative analysis of vari-
ous methods revealed that F(ROH) and F(PED) exhibit 
relatively low correlations with alternative approaches, 
whereas F(GRM) displays a higher correlation with 
F(HOM). The discrepancy may arise from the use of 
different SNP datasets in the computation process—
F(GRM) and F(HOM) typically employ loci inde-
pendently filtered for LD [16]. In fact, when we used 
independent SNPs for detection of ROH, we found that 
the value of F(ROH) decreased, while the correlation 
with F(HOM) and F(GRM) increased. In the commercial 
breeding, pedigrees are conventionally employed to cir-
cumvent inbreeding, culminating in diminished inbreed-
ing coefficients. Nonetheless, genomic analysis indicates 
that sustained intensive selective breeding across mul-
tiple generations can escalate genomic homozygosity, 
thereby exacerbating inbreeding levels. This phenom-
enon potentially accounts for the pronounced disparity 
in F(PED) relative to other genomic-based inbreeding 
coefficients. Further, our research indicates that individu-
als with more closely related parents possess an increased 
number of ROH segments and elevated F(ROH) val-
ues, confirming that ROH can measure the degree of 
inbreeding.

In analyzing the entire population, our objective was to 
pinpoint regions and corresponding genes under strong 
selection pressure by investigating genomic regions 

featuring overlaps between ROH islands and selective 
sweeps. We commenced by determining the frequency of 
each SNP within ROH segments, isolating the top 1% of 
SNPs genome-wide to identify 23 ROH islands. The find-
ings revealed that both the SNP density and the MAF on 
these islands were considerably lower than the overall 
genomic mean. We speculate that reduced SNP density 
may aid ROH detection, and a diminished MAF indicates 
a propensity for SNP fixation within ROH islands.

DCMS strategy effectively amalgamates diverse selec-
tion signatures methods within a population into a sin-
gle score, enhancing the precision of signal detection 
[21]. Within this framework, the methods Pi, Tajima’s 
D, and iHS were employed. We designated the top 1% of 
windows by DCMS P-value as potential signals of selec-
tion. Our analysis revealed that over half of ROH islands 
coincide with these candidate regions, culminating in 
the delineation of 60 genes. Subsequent functional anno-
tation indicated that these pathways could influence a 
range of physiological activities in layers, encompassing 
growth, immunity, disease resistance, cardiovascular and 
neurological functions, kinesthetic capabilities, behav-
ior, and metabolic processes at the cellular level. We 
have discovered several genes that may be related to the 
physiological activities of laying hens. The gene LARGE1 
(Like-Glycosyltransferase 1) is associated with pathways 
related to ion channels and signal transduction in the 

Fig. 4 Manhattan plots of selective sweeps for EW56, BW80, AH72 and ESCA56. Selective sweeps detected by DCMS on whole genome for EW56, 
BW80, AH72 and ESCA56. Abbreviations: AH, albumen height; BW, body weight; ESC: eggshell color; EW, egg weight. The number following the trait 
indicates the age of week
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body of laying hens. This gene encodes a glycosyltrans-
ferase that participates in the modification of glycopro-
teins. It has been reported as a gene potentially related to 
the abundance of intestinal microbiota in chickens, influ-
encing the deposition of abdominal fat in chickens [22]. 
LYN (LYN Proto-Oncogene, Src Family Tyrosine Kinase) 
is a tyrosine kinase involved in various pathways related 
to immunity and cell apoptosis, and is also associated 
with growth [23] and aging [24]. These results describe 
the changes that occur in genome on whole population 
when it is subjected to artificial selection, yet it is difficult 
to directly relate to a specific production trait or breeding 
purpose.

The above findings mainly focused on regions of the 
genome that have been subjected to selection in the 
entire population, but did not address specific traits. 
To gain a deeper understanding of the impact of artifi-
cial selection on specific traits and associated genes, we 

conducted a two-tailed analysis. The analysis included: 
comparing the ROH islands and computing multiple 
selection signatures and building the DCMS framework 
between high and low subgroups, and combining these 
results with GWAS on each phenotype. We first found 
that in the high and low subgroups for most traits, the 
mean of the frequency differences of SNPs in ROH was 
close to zero, with extremes ranging from 0.22 to 0.38. 
These results suggest that there is no difference in the 
genomic homozygosity between high and low subgroups 
at the whole-genome level, though significant variations 
may exist in localized regions.

GWAS is capable of identifying common variants that 
explain genetic variation, and through it, we identified 
thousands of SNPs associated with different traits and 
defined QTL regions. We then explored the selection 
signatures by DCMS between high and low subgroups 
of each phenotype and corrected the results using FDR. 
Our aim was to find selection signatures in regions sig-
nificantly associated with traits (QTL). Overall, we 
defined 29 QTL regions in 20 phenotypes (related to 8 
traits, including AH, BW, ESCA, ESCI, ESCL, ESS, EW 
and SINS), and 13 QTLs overlapped with the signifi-
cant regions in DCMS, which meant that these regions 
significantly associated with the traits were at the same 
time selection signatures identified by DCMS. In addi-
tion, since XP-EHH could be used to determine which 
subgroups had higher extended haplotype homozygo-
sity, while ROH islands analysis could determine which 
had higher homozygosity, it might be possible to link the 
targets of artificial selection to the actual changes on the 
genome. Using EW56 as an example, we found signifi-
cant DCMS results near the QTL region associated with 
EW56, implying that there might be genomic differences 
between the high and low EW56 subpopulations. The 
XP-EHH results were greater than 2, this suggested that 
the extended haplotype homozygosity was higher in the 
low EW56 subpopulation. In addition, the ROH island 
analysis also indicated that the degree of homozygosity 
of low EW56 subpopulation was higher near this region. 
Since the aim of artificial selection in this population is 
to reduce egg weight, our results seem to match this aim, 
but the exact relationship remains unknown.

Six genes are located within the QTL regions, and we 
have performed functional annotation on them. CAPZA2 
and TES are involved in cell adhesion and regulating 
the cytoskeleton, affecting cell shape and movement. 
F-actin-capping protein subunit alpha-2 (CAPZA2) is 
a cytoskeleton assembly-associated protein that may be 
associated with the formation of small intestinal micro-
villi in poultry [25, 26]; Testin (TES) testosterone is a 
protein that is expressed in virtually all normal human 
tissues, and it plays an important role in its cell motility, 

Table 5 QTL regions and lead SNPs of phenotypes

Trait Lead SNP Position P value QTL left QTL right

AH72 rs736230645 5:55,265,697 7.42E-11 55,001,211 55,289,370

BW56 1:71,807,817 1:71,807,817 4.37E-07 71,398,809 71,982,505

BW80 rs316220739 9:15,536,731 2.27E-07 15,408,642 15,853,453

BW80 20:7,110,620 20:7,110,620 2.47E-07 6,610,644 7,610,553

BWAFE 7:226,974 7:226,974 3.03E-08 36,935 835,038

ESCA36 rs313161340 6:32,610,280 6.28E-08 32,571,017 32,749,221

ESCA36 8:2,090,790 8:2,090,790 1.80E-07 1,590,889 2,590,685

ESCA56 3:2,988,169 3:2,988,169 2.62E-08 2,563,304 3,983,803

ESCI36 rs739533938 6:32,668,898 1.86E-07 32,482,856 32,759,520

ESCI56 3:2,988,169 3:2,988,169 1.70E-07 2,488,286 3,484,831

ESCI56 8:6,305,498 8:6,305,498 1.95E-07 5,805,555 6,805,492

ESCI80 3:2,988,169 3:2,988,169 5.09E-07 2,488,286 3,484,831

ESCI80 8:6,312,140 8:6,312,140 2.77E-07 5,812,371 6,812,090

ESCL36 rs731984255 8:1,872,357 1.99E-07 1,372,448 2,372,313

ESCL56 3:2,988,169 3:2,988,169 6.48E-08 2,488,286 3,484,831

ESCL56 8:6,305,498 8:6,305,498 1.03E-07 6,265,397 6,317,241

ESCL72 8:6,293,110 8:6,293,110 1.16E-07 6,201,681 6,432,209

ESCL80 3:2,988,169 3:2,988,169 5.98E-08 2,488,286 3,484,831

ESCL80 8:6,312,140 8:6,312,140 8.70E-09 5,812,371 6,812,090

ESS36 rs734838923 3:103,651,372 3.22E-07 103,151,587 104,151,356

ESS36 rs735838278 8:6,303,273 3.33E-07 5,803,530 6,803,257

EW36 rs733232315 5:57,609,532 1.50E-07 57,110,085 58,109,515

EW56 rs732195048 1:25,343,938 1.44E-08 24,902,556 25,908,677

EW56 6:5,397,806 6:5,397,806 5.83E-07 4,897,817 5,897,731

EW72 1:25,436,089 1:25,436,089 4.08E-11 25,143,248 25,907,962

EW80 1:25,705,664 1:25,705,664 9.61E-08 25,205,864 26,205,603

EW80 24:5,133,917 24:5,133,917 2.72E-07 4,645,990 5,633,270

SINS36 2:63,008,967 2:63,008,967 5.37E-07 62,508,989 63,508,907

SINS56 rs316665180 23:2,835,996 4.50E-08 2,809,164 3,332,578

The number following the trait indicates the age of week

Abbreviations: AH Albumen height (mm), BW Body weight (g), AFE Age at first 
egg, ESC Eggshell color, ESS Eggshell strength, EW Egg weight (g), SINS Eggshell 
gloss
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adhesion and cytoskeleton [27]. Caveolin-1 (CAV1) is 
involved in several physiological activities such as signal-
ing, apoptosis, and lipid metabolism. It has been reported 
to be associated with eggshell quality and organismal 
aging [28]. Caveolin-2 (CAV2) and CAV1, are members 
of the CAV family and are involved in the formation of 
lipid rafts (cholesterol-rich microdomains within mem-
branes). They play a role in a variety of signaling, lipid 
metabolism, and cell protection from programmed 
death [29]. TFEC, as a transcription factor, may regu-
late genes related to cell differentiation and metabolism 
and has been reported to be expressed in chicken mac-
rophages [30]. These genes are associated with the bio-
logical processes listed in Table  6, which may indirectly 
or directly influence the egg weight of laying hens. This 
includes (a) the modulation of membrane channels and 
signal transduction, such as potassium channel inhibition 
and calcium concentration regulation, which may affect 
muscle contraction and the function of the oviduct; (b) 
regulation of cell survival and programmed cell death, 
which may impact on follicle survival and lipid metabo-
lism, related to the size and quality of the egg; © regula-
tion of the cytoskeleton and adhesive structures, affecting 
cell morphology, differentiation, and the physical stabil-
ity of follicles; (d) lipid and energy metabolism, such as 

lipid storage and cholesterol balance, which may play an 
important role in regulating the composition and size of 
the yolk.

Conclusions
In this research, we used WGS data to perform a genomic 
analysis of Rhode Island Red inbred lines of laying hens, 
employing ROH and selection signatures analyses. We 
detected 60 candidate genes within the intersection 
of ROH and selection signatures, potentially influenc-
ing productive attributes related to growth, immune 
response, disease resistance, cardiovascular health, and 
neurological functions in laying hens. Integrating both 
two-tailed analyses with GWAS identified multiple QTL 
subjected to selection for various phenotypes. Spe-
cifically, for egg weight, a QTL was pinpointed near the 
25MB region on GGA 1. And both XP-EHH and ROH 
analyses indicated higher degree of extended haplotype 
homozygosity and genomic homozygosity in the low egg 
weight subpopulation near this region, consistent with 
the direction of artificial selection. Functional annotation 
of six genes (CAPZA2, MET, CAV1, CAV2, TES, TFEC) 
within this QTL indicated associations with vital physi-
ological pathways, such as signal transduction, apoptotic 
processes, and lipid metabolism. Overall, our findings 

Fig. 5 Regional point and line plots of GWAS and selective sweeps. The combination of the regional point plots of GWAS with the line plots 
of selective sweeps for EW56, BW80, AH72 and ESCA56. Within the black vertical dashed line are the QTL regions defined through GWAS results. Red 
diamond dots indicate lead SNP within the corresponding QTL regions. The colored lines in each subfigure represent the P-values of the windows 
calculated by DCMS methods. Abbreviations: AH, albumen height; BW, body weight; ESC: eggshell color; EW, egg weight. The number 
following the trait indicates the age of week
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enhance the comprehension of the genome of layers and 
inform for poultry breeding programs.

Methods
Samples and whole genome sequencing
The population used in this study was obtained from 
a Rhode Island Red pure line in a commercial laying 
breeding program in Beijing, China. This line had been 
subjected to fifteen consecutive generations of intensive 
selection with selection indexes including EN, ESC and 
egg quality traits. The breeding stock was selected and 
reproduced for one generation per year, with 80 ~ 100 sire 
families per generation. Inbreeding was avoided in mat-
ing plans based on the pedigree. A total of 686 female 
chickens with full pedigree records over the past six gen-
erations and complete measurements of body weight and 
egg-related trait at different ages were used in this study. 

For each chicken, DNA was extracted from a volume of 
approximately 2 ml venous blood, which was collected 
from the wing and then placed in an anticoagulation tube 
with EDTA. The integrity of the DNA was verified, and 
whole-genome sequencing was performed using an Illu-
mina HiSeq 2500 Sequencer (Illumina, Inc., San Diego, 
CA, USA). Paired-end reads of 150 bp were generated for 
each sample.

Data processing and quality control
Raw sequencing data were processed to acquire high-
quality single nucleotide polymorphisms (SNPs) by 
adhering to the following protocols. Low-quality reads 
were filtered using FastQC v0.11.9 software [31]. Clean 
reads were then aligned to the Gallus gallus 6.0 refer-
ence genome using the Burrows‒Wheeler Alignment 
(BWA) v0.7.17 tool with default settings [32]. Potential 

Fig. 6 Line plots of multi selective sweeps methods on the QTL associated with EW56. The upper, middle, and lower line plots represent the trends 
of the XP-EHH, FST and the differences of incidence of SNP in ROH segments near the QTL region associated with EW56, respectively
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duplicate reads were removed using the Picard toolkit, 
and the resulting alignments were indexed via SAM-
tools v1.17 [33]. Genome Analysis Toolkit (GATK) 
v4.2.3 was employed to process the alignments 
according to best practices [34]. To derive high-qual-
ity SNPs, a minimum quality score of 20 was applied 
to both bases and mapped reads for variant calling. 
SNPs from each bird were combined, and the result-
ing data were filtered using the GATK Variant Filtra-
tion module by applying stringent criteria: quality by 
depth > 5.0, mapping quality score > 40.0, FS < 60.0, 
MQRankSum > -12.5, ReadPosRankSum > -8.0, and 
excluding any three SNPs clustered within a 10 bp win-
dow. Subsequently, we employed PLINK v1.9 [35] to 
filter the SNP data using set parameters: a sample call 
rate exceeding 0.9, a SNP call rate over 0.9, and MAF 
greater than 0.01. Following filtration, the remain-
ing SNPs and individuals were earmarked for impu-
tation via BEAGLE v5.2 [36]. We then reperformed 
the PLINK v1.9 analysis, adhering to the same crite-
ria previously mentioned. After these procedures, a 
comprehensive total of 5,904,820 SNPs spread across 
32 chromosomes from 686 birds remained for subse-
quent analysis. Finally, these phased and filtered SNP 

data were annotated with SNPEff v5.2 [37] utilizing the 
chicken reference genome.

Detection of runs of homozygosity (ROH) and calculation 
of the inbreeding coefficient
Two studies were referenced for ROH setting [12, 38], 
and PLINK v1.9 was used for ROH detection with the 
following parameters: a minimum length of 500 Kb in an 
ROH (-homozyg-kb 500), a minimum of 50 SNPs in an 
ROH (-homozyg-snp 50), the minimum SNP density set 
to 1 SNP per 50 kb (-homozyg-density 50), and the maxi-
mum gap between two consecutive SNPs set to 1000 kb 
(-homozyg-gap 1000). For a sliding window of 50 SNPs, 
an allowance of no more than 5 missing SNPs per win-
dow (-homozyg-window-missing 5) and a maximum of 
one heterozygous SNP per window (-homozyg-window-
het 1) were set.

Following ROH detection, we computed the coefficient 
of inbreeding using four different methods: (a) F(ROH), 
calculated as the sum of ROH segment lengths divided by 
the whole genome length; (b) F(PED), computed based 
on the pedigree using CFC software [39]; (c) F(GRM), 
the result of the diagonal of the genomic relationship 
matrix (GRM) constructed by GCTA v1.26.0 [40]; and 

Table 6 Functional annotation for genes located in QTL regions associated with egg weight

Terms Term Name Term ID P value Gene 
Number

GO:MF potassium channel inhibitor activity GO:0019870 1.18E-02 1

GO:MF protein dimerization activity GO:0046983 1.18E-02 3

GO:MF protein tyrosine kinase inhibitor activity GO:0030292 1.63E-02 1

GO:MF peptidase activator activity GO:0016504 2.46E-02 1

GO:MF transmembrane receptor protein tyrosine kinase activity GO:0004714 3.67E-02 1

GO:MF protein phosphatase binding GO:0019903 4.35E-02 1

GO:BP plasma membrane raft assembly GO:0044854 9.23E-05 2

GO:BP negative regulation of cellular process GO:0048523 1.25E-04 6

GO:BP intracellular nitric oxide homeostasis GO:0033484 4.53E-03 1

GO:BP negative regulation of anoikis GO:2,000,811 1.26E-02 1

GO:BP muscle cell cellular homeostasis GO:0046716 1.51E-02 1

GO:BP positive chemotaxis GO:0050918 1.65E-02 1

GO:BP regulation of cytosolic calcium ion concentration GO:0051480 1.72E-02 1

GO:BP membrane depolarization GO:0051899 1.99E-02 1

GO:BP lipid storage GO:0019915 2.28E-02 1

GO:BP triglyceride metabolic process GO:0006641 2.40E-02 1

GO:BP cholesterol homeostasis GO:0042632 2.47E-02 1

GO:BP response to calcium ion GO:0051592 2.86E-02 1

GO:CC caveolar macromolecular signaling complex GO:0002095 2.42E-06 2

GO:CC focal adhesion GO:0005925 2.72E-05 3

GO:CC cell cortex GO:0005938 2.12E-03 2

GO:CC basal plasma membrane GO:0009925 4.25E-02 1
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(d) F(HOM), based on the homozygous sites by PLINK 
v1.9. We compared the results of all four methods in R 
(https:// www.R- proje ct. org/) to evaluate the degree of 
inbreeding and calculated the correlation coefficients of 
F(ROH) with F(PED), F(GRM), and F(HOM).

Detection of ROH islands
To delineate the genomic regions exhibiting the strong-
est association with ROH, we quantified the prevalence 
of SNPs within ROH by enumerating the occurrences of 
a specific SNP in an ROH across a diverse set of individu-
als. Subsequently, we selected the top 1% of SNPs dem-
onstrating a prevalence exceeding 67.93% and combined 
proximate SNPs into genomic regions that were repre-
sentative of ROH islands, which were then subjected to 
in-depth investigations. This result is presented by a Man-
hattan plot. All Manhattan plots in this paper were gener-
ated by the R packages CMplot [41] and ggplot2 [42].

Selective sweep identification and De‑correlated 
composite of multiple signals
In addition to the analysis of selection signatures for 
within-population, we designed a two-tailed analysis to 
discover genomic differences between high- and low-
level individuals for each trait. Before the detection for 
selection signatures, we placed the individuals rank-
ing in the top and bottom 10% for each trait into the 
high- and low-level subgroups of this trait. To detect 
selection signatures within our population or between 
subgroups of each trait, we employed various strate-
gies to examine the entire genome. Using VCFtools 
v0.1.16 [43], we computed fixation index (FST), nucleo-
tide diversity (Pi) and Tajima’s D values with a sliding 
window approach, setting the window size to 50Kb and 
the step size to 25Kb for FST and Pi, with Tajima’s D 
also analyzed across 50Kb windows. And the Pi ratio is 
equal to the Pi value for each window in the low-level 
subgroup divided by the Pi value in the high-level sub-
group (Pi ratio = Pi(low) / Pi(high)). Further, we deter-
mined genome-wide XP-EHH [44] and iHS values 
[45] using the –xpehh and -ihs command in the Sels-
can v1.3.0 software [46], normalized these values with 
the -norm command, and obtained the average XP-
EHH and iHS value for each 50 Kb region. And in XP-
EHH analysis, high subgroup was set to be reference 
subpopulation.

We incorporated Tajima’s D, Pi and iHS in the intra-
population De-correlated composite of multiple sig-
nals (DCMS) [21] framework for detecting selection 
signatures of whole population, and FST, Pi ratio and 
XP-EHH in the inter-subpopulation DCMS frame-
work for genomic differentiation between high- and 

low-level subgroups of each trait. In every DCMS, we 
calculated this statistic for each 50kb window using the 
MINOTAUR package in R [47]. The analysis steps were 
performed with reference to other studies [48–50]. 
To compute genome-wide P-values, we employed the 
stat_to_pvalue function, performing a left-tailed test 
for Pi, Tajima’s D, and iHS (setting two.tailed = FALSE, 
right.tailed = FALSE) and a right-tailed test for FST, Pi 
ratio and XP-EHH (setting two.tailed = FALSE, right.
tailed = TRUE). An n × n correlation matrix was gen-
erated across these statistics utilizing the covNAMcd 
function in the rrcovNA R package (with parameters 
alpha = 0.75, nsamp = 300,000). This matrix provided 
the basis for calculating genome-wide DCMS values 
via the DCMS function in the MINOTAUR package. 
Subsequent to the DCMS value computation, we fit-
ted a robust linear model to these values and normal-
ized the distribution using the rlm function (with 
model dcms ~ 1) from the MASS R package. Finally, 
we applied the pnorm function to calculate P-values 
for the DCMS statistics and identify candidate sweep 
regions by evaluating the empirical distribution’s top 
1%. For the DCMS between high- and low-subgroups, 
we applied the p.adjust function to conduct FDR corre-
lation for the significant intervals associated with traits.

Then, we used BEDTools v2.26.0 [51] intersect to iden-
tify SNPs that were located in both ROH islands and 
potentially selected regions with low DCMS P-values. 
These SNPs were regarded as putative selection signa-
tures and annotated to candidate genes and reported 
QTLs.

Functional annotation
We employed the online website g:Profiler (https:// biit. 
cs. ut. ee/ gprofi ler/ gost) [52] to retrieve enriched func-
tional terms for these genes, including Gene Ontology 
(GO) categories and KEGG pathways.

Genome Wide Association Study (GWAS)
We conducted a genome-wide association study (GWAS) 
on all 42 traits incorporating all valid samples and SNPs 
passing the quality control of MAF (0.05) and Hardy–
Weinberg test (1e-6), utilizing a univariate linear mixed 
model (LMM). This analysis was executed with GEMMA 
(version 0.98.4) software [53]. The statistical model 
implemented in this investigation is as follows:

Here, y represents the phenotypes of 686 individuals; W 
is a matrix of covariates (fixed effects: top five principal 
components and hatch effects) accounting for population 
structure, with α being a vector of corresponding effects 

y = Wα+ xβ+ µ+ ε

https://www.R-project.org/
https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
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that form the intercept; x signifies the marker genotypes 
and β refers to the associated marker effects; μ constitutes 
a vector of random polygenic effects with a covariance 
structure; and ε denotes a vector of random residuals. 
Additionally, the P value from the likelihood ratio test 
was chosen as a benchmark to evaluate the significance of 
the association between SNPs and egg traits. The thresh-
old for genome-wide significance was established using 
a modified Bonferroni correction implemented through 
the R package simpleM. A total of 84,633 valid SNPs were 
carried out, and the thresholds of genome-wide signifi-
cance and suggestive significance were defined as 5.91e-7 
(0.05/84,633) and 1.18e-5 (1/84,633), respectively.

QTL region definition
For each trait, we used GWAS results to define QTL as 
chromosomal regions where the distance between adja-
cent pairs of significant variants was less than 1 Mb [54]. 
Within each locus, we identified the most significant var-
iant as the lead variant. A maximum distance of 0.5 Mb 
on either side of the lead variant was allowed.
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