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Abstract
Background  Aging is a prominent risk factor for diverse diseases; therefore, an in-depth understanding of its 
physiological mechanisms is required. Nonhuman primates, which share the closest genetic relationship with 
humans, serve as an ideal model for exploring the complex aging process. However, the potential of the nonhuman 
primate animal model in the screening of human aging markers is still not fully exploited. Multiomics analysis of 
nonhuman primate peripheral blood offers a promising approach to evaluate new therapies and biomarkers. This 
study explores aging-related biomarker through multilayer omics, including transcriptomics (mRNA, lncRNA, and 
circRNA) and proteomics (serum and serum-derived exosomes) in rhesus monkeys (Macaca mulatta).

Results  Our findings reveal that, unlike mRNAs and circRNAs, highly expressed lncRNAs are abundant during the 
key aging period and are associated with cancer pathways. Comparative analysis highlighted exosomal proteins 
contain more types of proteins than serum proteins, indicating that serum-derived exosomes primarily regulate aging 
through metabolic pathways. Finally, eight candidate aging biomarkers were identified, which may serve as blood-
based indicators for detecting age-related brain changes.

Conclusions  Our results provide a comprehensive understanding of nonhuman primate blood transcriptomes and 
proteomes, offering novel insights into the aging mechanisms for preventing or treating age-related diseases.
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Background
Aging, characterized by time-dependent functional 
decline at cellular and organismal levels, is a primary risk 
factor for prevalent diseases, including cancer [1], cardio-
vascular disease [2], and neurodegeneration [3]. High-
throughput sequencing of human samples [4] and various 
animal models [5, 6] has revealed numerous age-related 
genes mechanistically linked to longevity. Findings from 
the past decade have emphasized the translatability of 
the molecular mechanism of aging to primates [7, 8], 
with implications for human aging biology [9]. Rhesus 
monkeys, sharing 93.5% genomic identity with humans 
[10], along with analogous physiological and behavioral 
features [9, 11], serve as a pertinent model for human 
aging, exhibiting an increased incidence of age-related 
pathological conditions. Therefore, understanding aging 
mechanisms in nonhuman primates (NHPs) may provide 
additional targets for preventing or treating age-related 
diseases.

The complex mechanism of aging encompasses 
genomic instability, telomere attrition, epigenetic altera-
tions, proteostasis loss, disabled macroautophagy, dereg-
ulated nutrient sensing, mitochondrial dysfunction, 
cellular senescence, stem cell exhaustion, altered intercel-
lular communication, chronic inflammation, and dysbio-
sis [12]. Major advances in high-throughput sequencing 
technology [13, 14] and mass spectrometry (MS)-based 
proteomics [15, 16] have enabled the identification of 
products at various expression levels with increased 
accuracy and reproducibility. Thus, numerous studies 
have applied genomic, transcriptomic (including mRNA, 
miRNA, circRNA, and lncRNA), and proteomic assays 
(collectively termed “multiomics”) in aging research [17, 
18]. For example, computational integration of the aging 
proteome with single-cell transcriptomes has enabled 
the construction of an unbiased reference map of the 
aging lung [19]. Furthermore, the regulatory mechanisms 
of circRNAs [20, 21] and lncRNAs [22, 23] have been 
reported in aging mammalian tissues.

Unlike specific tissues, blood contains RNAs and pro-
teins from nearly all cell types and tissues. Multiple 
studies have demonstrated the potential rejuvenation 
of various tissues, such as muscle, liver, heart, pancreas, 
kidney, bone, and brain tissues, through the interconnec-
tion of circulatory systems in old mice with those of their 
younger counterparts [24]. Identifying varying expres-
sion levels of key regulators in blood can contribute to 
understanding organismal aging mechanisms [25]. Nev-
ertheless, comprehensive exploration of these mecha-
nisms, particularly in NHPs, remains limited, and more 
information is needed.

In this study, we sequenced the blood transcriptomes 
(mRNA, lncRNA, and circRNA) and proteomes [serum 
and serum-derived exosomes (SDEs)] in four age groups 

of rhesus monkeys to examine transcription and protein 
level changes (Fig.  1a). Through multiomics analysis of 
blood, we provide novel insights into the molecular foun-
dations of aging. Additionally, we identify eight candidate 
aging biomarkers with applicability as blood-based bio-
markers for detecting brain aging.

Methods
Animals and sample collection
Whole blood samples were collected from 282 rhesus 
macaques provided by the Medical Primate Research 
Center of Institute of Medical Biology, Chinese Acad-
emy of Medical Sciences. Information on the growth, 
development, and reproduction of rhesus monkeys in 
captivity was provided by the Medical Primate Research 
Center and obtained from published literature [26]. The 
monkeys used in the study were groups into four catego-
ries: 2–4 years, 5–10 years, 11–19 years, and 20–34 years. 
Sample collection were performed under anesthesia. All 
animals were anaesthetized with Zoletil®50 (4 mg/kg, Vir-
bac) and administrated intramuscularly. We randomly 
selected 49 out of 282 samples for RNA extraction as 
well as 74 samples for serum and SDE protein extraction. 
Brain samples were obtained from the Primate Labora-
tory Animal Biobank, Medical Primate Research Cen-
ter of Institute of Medical Biology, Chinese Academy of 
Medical Sciences.

RNA-seq library construction and sequencing
Whole blood, preserved in PAXgene Blood RNA Tubes 
(PreAnalytiX, Qiagen, Hombrechtikon, Switzerland), was 
stored at − 80  °C. Total RNA extraction was performed 
using the PAXgene Blood miRNA Kit (PreAnalytiX, 
Qiagen) following the manufacturer’s instructions. RNA 
purity, concentration, and integrity were determined 
using a NanoPhotometer spectrophotometer (IMPLEN, 
Westlake Village, CA), a Qubit 2.0 Fluorometer with the 
Qubit RNA Assay Kit (Life Technologies, Carlsbad, CA), 
and the Bioanalyzer 2100 System with the RNA Nano 
6000 Assay Kit (Agilent Technologies, Santa Clara, CA), 
respectively.

For RNA sample preparations, 5 µg of RNA per sample 
served as input material. Ribosomal RNA was initially 
removed using the Epicentre Ribozero® rRNA Removal 
Kit (Epicentre, USA), followed by ethanol precipitation 
for cleaning rRNA-free residues. Subsequently, linear 
RNA underwent digestion with 3 U of RNase R (Epicen-
tre) per microgram of RNA. The NEBNext® Ultra™ Direc-
tional RNA Library Prep Kit for Illumina® (NEB, USA) 
was employed for generating sequencing libraries follow-
ing the manufacturer’s recommendations. Briefly, frag-
mentation was performed using divalent cations under an 
elevated temperature in NEBNext First Strand Synthesis 
Reaction Buffer (5X). First-strand cDNA was synthesized 
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using the random hexamer primer and M-MuLV Reverse 
Transcriptase (RNaseH-). Subsequently, second-strand 
cDNA was synthesized using DNA Polymerase I and 
RNase H. In the reaction buffer, dTTP was replaced by 
dUTP. Remaining overhangs were converted into blunt 
ends via exonuclease/polymerase activities. After adenyl-
ation of DNA fragments’ 3′ ends, an NEBNext Adaptor 
with a hairpin loop structure was ligated in preparation 
for hybridization. To preferentially select 150–200  bp 
cDNA fragments, library fragments were purified using 
an AMPure XP system (Beckman Coulter, Beverly, USA), 
and 3 µL of USER Enzyme (NEB, USA) was incubated 
with size-selected, adaptor-ligated cDNA at 37  °C for 
15 min, followed by 5 min at 95  °C prior to polymerase 
chain reaction (PCR). PCR was then performed using 
Phusion High-Fidelity DNA Polymerase, Universal PCR 
primers, and Index (X) primers. Finally, the products 
were purified using the AMPure XP system, and library 
quality was assessed using the Agilent Bioanalyzer 2100 
system.

Index-coded samples were clustered using the cBot 
Cluster Generation System with the TruSeq SR Clus-
ter Kit v3-cBot-HS (Illumina) according to the manu-
facturer’s instructions. After cluster generation, the 
lncRNA, mRNA, and circRNA library preparations were 

sequenced on an Illumina HiSeq 4000 platform, generat-
ing 150 bp paired-end reads.

RNA-seq raw data filtering, mapping, and alignment 
statistics
Clean reads were obtained after removing adaptor-con-
taining reads, poly-N–containing reads, and low-quality 
reads from the raw data. Clean reads were aligned to the 
Ensemble genome (Macaque 8.0.1) using Bowtie (version 
2.2.8) [27] with its default parameters. The transcriptome 
of each sample was constructed using Cuffdiff (version 
2.1.1) [28]. Fragments per kilobase of exon per million 
reads mapped (FPKM) was used to quantify the expres-
sion level of mRNAs and lncRNAs, whereas transcripts 
per million (TPM) was used to determine the circRNA 
expression level. Differences between groups were deter-
mined using the DESeq2 R package.

LncRNA and circRNA prediction
LncRNAs were identified following six steps:

(1)	Paired-end clean reads were aligned to the macaque 
genome using HISAT2 (version 2.0.4) with “-rna-
strandness RF,” and the mapped reads of each sample 
were assembled using StringTie (version 1.3.1) [29], 
taking a reference-based approach.

Fig. 1  Comprehensive catalog of RNA genes and proteins in rhesus monkey blood. a. Illustration of the experimental design and bioinformatics analysis 
pipeline. b. Ages and numbers of monkeys used in the transcriptomics and proteomics analyses. The horizontal line represents the average age of differ-
ent groups of rhesus monkeys

 



Page 4 of 15Liu et al. BMC Genomics          (2024) 25:639 

(2)	Cuffcompare, embedded in Cufflinks, was used to 
combine all assembled transcripts.

(3)	Transcripts of < 200 bp in length or those with < 2 
exons were removed.

(4)	Transcripts exhibiting FPKM < 0.5 were also 
removed.

(5)	Cuffcompare was used to compare newly identified 
lncRNA transcripts with known macaque lncRNA 
transcripts, and novel transcripts in intergenic 
and antisense regions were reserved as candidate 
lncRNAs.

(6)	The coding potential of transcripts was assessed 
using four software programs: CNCI, CPC, Pfam, 
and phyloCSF [30–33], and transcripts lacking 
coding potential were classified as novel lncRNAs. 
Both novel lncRNAs and known lncRNAs were 
selected for the final analysis.

CircRNAs were detected and identified using find_circ 
(version 1.1) [34] and CIRI2 (version 1.2) [35].

DE mRNA, lncRNA, and circRNA analyses
DE mRNAs and lncRNAs were identified using Cuffdiff 
(version 2.1.1) [28], with DE transcripts defined as those 
with a q-value of < 0.05. DE circRNAs were analyzed 
using the DESeq2 R package (version 1.8.3). P < 0.05 was 
set as the threshold for significance. Different groups 
were compared to identify DE mRNAs, lncRNAs, and 
circRNAs, which were subsequently combined into 
one DE union set. Short Time-series Expression Miner 
(STEM) software was used to cluster DE RNAs according 
to their temporal expression profiles, and those profiles 
achieving p ≤ 0.05 were considered significantly enriched.

RT-qPCR and PCR
Total RNA was reverse-transcribed into first-strand 
cDNA using the High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems). RT-qPCR was per-
formed using SsoFast™ EvaGreen® Supermix (BIO-RAD), 
with validation conducted using three biological repli-
cates. The primer pairs used are presented in Additional 
file 18. Relative quantities of immunoprecipitated DNA 
fragments were calculated, referencing a standard curve 
generated using input DNA serial dilutions. Data were 
acquired from three independent amplifications. For 
circRNA junction sequence confirmation, PCR was per-
formed using Q5 Hot Start High-Fidelity 2X Master Mix 
(NEB) with the primer pairs presented in Additional file 
19. PCR products underwent gel purification and were 
submitted for Sanger sequencing.

Isolation of serum and SDEs
Serum samples were pooled and divided into four groups. 
Exosomes were isolated through ultracentrifugation 

(UC) with total exosome isolation reagent. Cell debris 
was removed from serum using UC at 2,000 g and 4  °C 
for 30  min. The supernatant was centrifuged at 12,000 
g and 4 °C for 40 min, filtered through a 0.22 μm mem-
brane filter, and diluted using an equal volume of phos-
phate-buffered saline (PBS). Diluted serum was then 
transferred into ultracentrifuge tubes, and UC (Beckman 
Optima L-100XP) was performed at 110,000 g and 4  °C 
for 120 min. The pellet was gently washed once with PBS 
without disturbance, after which it was dissolved in 50 µL 
of 8 M urea. Total protein concentration was determined 
using a NanoDrop 2000 spectrophotometer (Thermo Sci-
entific). Lysates from each group were diluted to 1 mg/mL 
using 8 M urea for tandem mass tag (TMT) labeling. For 
exosome isolation with total exosome isolation reagent, 
the required volume of pooled serum was diluted with an 
equal volume of PBS to decrease viscosity, and 0.2 vol-
umes of total exosome isolation reagent were added. The 
serum/reagent solution was vortexed until homogenized, 
followed by incubation at 4 °C for 30 min. Subsequently, 
samples were centrifuged at 10,000 g for 10 min at room 
temperature, and the supernatants were discarded. The 
pellet from every 100 µL serum sample was resuspended 
in 25 µL of PBS for western blot analysis. A fraction of 
the resuspended exosomes was lysed with radioimmuno-
precipitation assay (RIPA) buffer, and protein concentra-
tion was determined using a BCA Protein Assay Kit.

Depletion of high-abundance proteins from serum
A Seppro IgY14 LC-2 column (Sigma, USA) was used 
to remove high-abundance proteins (HAPs), including 
HSA, IgG, fibrinogen, transferrin, IgA, IgM, haptoglobin, 
alpha2-macroglobulin, alpha1-acid glycoprotein, alpha1-
antitrypsin, Apo A-I HDL, Apo A-II HDL, complement 
C3, and LDL (ApoB), from serum. Serum samples were 
diluted with Tris-buffered saline (TBS; 10 mM Tris-
HCl, 150 mM NaCl, pH 7.4) before injection (120 µL) 
into the column. HAP depletion and column reactiva-
tion were accomplished using the following chromatog-
raphy method: setting an initial flow rate of 0.2 mL/min 
for 17 min using TBS as a dilution buffer (10 mM Tris-
HCl, 150 mM NaCl, pH 7.4), washing the column at a 
flow rate of 1.5 mL/min for 5 min using stripping buffer 
(0.1 M glycine-HCl, pH 2.5), neutralizing the column at 
a flow rate of 1.5 mL/min for 14 min using neutralization 
buffer (0.1  M Tris-HCl, pH 8.0), and balancing the col-
umn at a flow rate of 1.5 mL/min for 6 min using dilution 
buffer. HAPs were held on the column, whereas proteins 
in the flow-through fraction were collected and concen-
trated using a 3 kD ultrafiltration tube (Millipore, USA). 
Concentrated serum flow-through fractions were diluted 
with an equal volume of 8 M urea lysis buffer, and 50 µg 
of protein from each group was used for subsequent MS 
detection.
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MS measurement and label-free analysis
TMT-labeled proteins underwent fractionation into 12 
fractions using an Xbridge BEH300 C18 column (Waters, 
MA, USA) on a Thermo UltiMate 3000 UPLC worksta-
tion (Thermo Fisher Scientific, MA, USA). Each fraction 
was dried and reconstituted in 0.1% trifluoroacetic acid 
before MS analysis. Liquid chromatography with tan-
dem mass spectrometry (LC-MS/MS) was performed 
on a Thermo Orbitrap Fusion Lumos mass spectrom-
eter (Thermo Scientific) in positive-ion mode. Raw MS/
MS data were collected and analyzed using Xcalibur 3.0 
software (Thermo Fisher Scientific). Protein identifica-
tion and quantification were performed using Proteome 
Discoverer 2.2 software (Thermo Scientific). The Macaca 
mulatta FASTA database (released on November 12, 
2018) was used for MS/MS spectrum matching, setting 
the credible threshold as exp. q-value: combined < 0.01 
for high confidence.

Western blot analysis
Approximately 20  µg of protein underwent sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis and 
electrotransfer to a polyvinylidene difluoride membrane 
(Millipore). Membranes were blocked with 5% nonfat 
milk in TBS-T (TBS plus 0.5% Tween) for 1 h, followed 
by incubation with monoclonal antibodies against A2M 
(1:1000; Abcam), SERPINA3 (1:1000; Abcam), and 
transferrin (1:10,000; Abcam). Subsequent incubation 
involved an horseradish peroxidase–conjugated rabbit 
anti-goat antibody (1:5000; ZSGB-BIO). ImageJ was used 
to quantify western blots.

KEGG enrichment analysis
KOBAS software [36] was used to identify enriched 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways in serum DEPs, SDE DEPs, DE mRNAs, DE 
lncRNAs, and DE circRNAs [37]. A hypergeometric 
p-value of < 0.05 was considered significant.

GO enrichment analysis
GO functional enrichment analysis and dataset com-
parisons were performed using FunRich [38]. GO analy-
sis of annotated proteins was conducted to determine 
the involved cellular components. Enriched terms were 
ranked based on p-values (hypergeometric test) using 
FunRich. GraphPad Prism software (La Jolla, CA) was 
employed to plot graphs when comparing datasets. For 
comparisons of datasets within a single GO term, signifi-
cant protein distribution differences were assessed using 
the chi-square test via GraphPad Prism. Datasets with a 
p-value of < 0.05 were considered significant.

Results
Transcriptome atlas of rhesus monkey whole blood
Rhesus monkeys, aged 2–34 years (Fig. 1b), were catego-
rized into four age groups: 2–4 years, 5–10 years, 11–19 
years, and 20–34 years. Blood biochemical indexes and 
routine tests confirmed the good physical condition of 
the examined rhesus monkeys (Additional file 9). For an 
in-depth assessment of transcriptome variations, RNA-
seq was used to profile mRNA, lncRNA, and circRNA 
transcriptomes from 49 whole blood samples across the 
four groups. Using the Illumina sequencing platform, we 
generated 74.8 million high-quality pair-end reads, aver-
aging 18.7 million reads per group. Approximately 94.9% 
of these reads aligned to the rhesus monkey genome 
Ensemble Macaque 8.0.1 (Additional file 10).

In total, 31,620 mRNAs from 13,936 genes were 
detected, identified, and quantified (Additional file 11). 
Regarding lncRNA expression patterns, ab initio tran-
script assembly and sequential filtering steps (refer to 
the “Methods” section), were used to identify 13,274 
lncRNAs (Additional file 12), including 996 (9.7%) 
originating from antisense regions (Additional file 1). 
Dynamic changes in circRNA expression were char-
acterized based on theoretical predictions, with 3,616 
circRNAs detected using find_circ [34] and CIRI2 [35] 
(Additional file 13). Predominately, circRNAs were 
exonic (85.3%), with only a small proportion containing 
introns and unannotated intergenic regions (Additional 
file 1). Randomly selected circRNAs were subjected to 
PCR and Sanger sequencing, with the sequencing results 
being highly consistent with RNA-seq findings (Addi-
tional file 2).

LncRNAs are highly expressed in the key aging period
To investigate the expression patterns of mRNAs, 
lncRNAs, and circRNAs, pairwise comparisons were 
conducted among the four age groups. These revealed 
532 differentially expressed (DE) mRNAs, 250 DE 
lncRNAs, and 233 DE circRNAs between any two stages. 
As shown in the heatmap in Fig. 2a, unlike mRNAs and 
circRNAs, an abundance of highly expressed lncRNAs 
was observed (136; 54.4%) in  11-19 years, which repre-
sents a critical aging period. This suggests that lncRNAs 
play an important role in aging.

A correlation matrix was generated between 13,274 
lncRNAs and 31,620 mRNAs by computing Pearson cor-
relation coefficients for all pairwise combinations based 
on their expression in our transcriptomes. In total, 3,652 
coexpression pairs were detected between 136 lncRNAs 
and 1,103 mRNAs. KEGG pathway analysis for the 136 
lncRNAs interacting with mRNAs (p < 0.05) revealed 
their extensive involvement in renal cell carcinoma, pro-
teoglycans in cancer, cancer pathways, HIF-1 signaling, 
central carbon metabolism in cancer, cellular senescence, 
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breast cancer, axon guidance, and amyotrophic lateral 
sclerosis (Fig.  2b). Regarding proteoglycans in can-
cer (p = 1.08e-03), the vitronectin gene interacted with 
seven lncRNAs, and XLOC_031636 interacted with five 
mRNAs (Fig. 2c).

Dynamic transcriptome changes during aging in rhesus 
monkeys
Cluster analysis with STEM was used to categorize all 
DE mRNAs, lncRNAs, and circRNAs into six distinct 
groups [35], revealing linear patterns (clusters 1 and 6) 
as well as several nonlinear trajectories (clusters 2–5). 
KEGG pathway analysis for each cluster identified rep-
resentative KEGG terms (p < 0.05), highlighting distinct 
yet coordinated changes in biological processes during 
aging (Additional file 14 and 15). For DE mRNAs, clus-
ter 1 was prominent (168; 31.6%), with these mRNAs pri-
marily enriched in pathways including RNA transport, 
NF-kappa B signaling, and mTOR signaling (Fig.  2d). 
Clusters 4 and 5 were enriched in B cell receptor signal-
ing, insulin signaling, FoxO signaling, and p53 signaling. 
Among DE lncRNAs, clusters 3 and 6 were prominent 
(160; 64%), with these lncRNAs being mainly enriched 

in carbon metabolism, the pentose phosphate pathway, 
extracellular matrix–receptor interaction, the cell cycle, 
and HIF-1 signaling (Fig.  2e). Regarding DE circRNAs, 
in clusters 1 and 2, which accounted for over half of all 
DE circRNAs (118; 50.6%), pathways associated with Fc 
gamma R-mediated phagocytosis, pantothenate and CoA 
biosynthesis, transcriptional misregulation in cancer, and 
signaling regulating stem cell pluripotency were enriched 
(Fig. 2f ). These results emphasize the distinct yet orches-
trated transcriptome changes that occur during aging.

Exosomal proteins as the main components of serum 
proteins
For a comprehensive understanding of protein level 
changes, parallel to RNA-seq, TMT-based quantita-
tive MS was employed on serum and SDEs. Electron 
microscopy images confirmed the intact morphology of 
SDEs used in our study (Additional file 3) Raw spectral 
data were interpreted using Proteome Discoverer 2.2, 
with 1,270 and 2,162 proteins found to have at least one 
unique peptide in serum and SDEs, respectively, given a 
false discovery rate (FDR) of < 0.01 (Additional file 16 and 
17).

Fig. 2  Expression patterns of mRNAs, lncRNAs, and circRNAs. a. Hierarchical clustering heat map of all DE mRNAs, lncRNAs, and circRNAs across the four 
experimental groups. b. Enriched categories for highly expressed lncRNAs in 11–19 years. c. Coexpression network of lncRNAs and mRNAs associated with 
the proteoglycans in cancer KEGG pathway. Circles represent lncRNAs, rhombuses represent mRNAs, and shape size represents statistical significance. d-f. 
DE mRNAs, DE lncRNA and circRNA were clustered into six groups using STEM, with the colors in each cluster indicating statistical significance (p ≤ 0.05; 
red, upregulated; blue, downregulated). Expression values, representative KEGG pathways, and corresponding enrichment p-values are shown
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The total number of proteins identified was higher in 
SDEs than in serum, with an overlap of 902 gene symbols 
between the two (Fig. 3a). Functional enrichment analysis 
of cellular components using FunRich 3.1.3 [38] revealed 
a high percentage of proteins in both serum and SDEs 
associated with various Gene Ontology (GO) terms, such 
as “cytoplasm,” “exosomes,” and “extracellular” (Fig.  3b). 
To assess the impact of overlapping proteins identified in 
the enrichment analysis, we compared nonoverlapping 
proteins (368 and 1,260 in serum and SDEs, respectively) 
with the proteins identified in the entire sample (1,270 
and 2,162 in serum and SDEs, respectively). Excluding 
overlapping proteins from the GO analysis significantly 
reduced the number of serum and SDE proteins associ-
ated with the term “exosomes,” indicating that overlap-
ping proteins, i.e., most proteins in the serum, are likely 
derived from exosomes, whereas 368 proteins unique 
to the serum are likely unassociated with exosomes. 
This indicates that SDEs are a more suitable option than 
serum for blood proteome studies.

Dynamic SDE protein changes during aging in rhesus 
monkeys
Given the crucial role of exosome proteins in systemic 
aging [39], we investigated dynamic changes in SDE pro-
teins during aging. Comparisons of the 2,162 SDE pro-
teins with those in the Vesiclepedia database [40] and 
ExoCarta database [41] identified 1,487 reported pro-
teins, including 675 novel proteins (Fig. 4a).

In total, 654 differentially expressed proteins (DEPs; 
cutoff ratio ≥ 1.50 or ≤ 0.67) between any two stages 
were identified in SDEs (Fig.  4b). Using the web-based 
STRING tool (http://string-db.org) to create compre-
hensive DEP networks with an FDR < 0.05 based on the 
KEGG pathway analysis and Cytoscape [42] for network 
visualization, we visualized protein–protein interac-
tions. Five major clusters emerged in the SDEs (Fig. 4c). 
Cluster 1 was enriched in complement and coagulation 
cascades related to immunity; cluster 2 was enriched in 
the PI3K-Akt signaling pathway, a hallmark of aging and 
cancer [43]; cluster 3, the largest cluster, included 65 

Fig. 3  Comparison of serum and SDE proteomes. a. Venn diagram comparing uniquely identified and shared proteins between serum and SDEs. b. 
Functional annotations of cellular components for the identified proteins, comparing all 1,270 proteins identified in serum with 368 proteins identified 
exclusively in SDEs. Additionally, all 2,162 proteins identified in SDEs were compared with 1,260 proteins identified exclusively in the sample. Enriched 
terms were ranked according to p-values (hypergeometric test) for both datasets. GO terms not significantly enriched are indicated by “ns.” Within indi-
vidual GO terms, the distribution of annotated proteins was compared using the chi-square test. Datasets exhibiting a significant difference are indicated 
by “*.” P < 0.05 was considered significant for both the hypergeometric test and chi-square test
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genes and was enriched in various metabolic pathways, 
including NAMPT, which supplements eNAMPT-con-
taining exosomes isolated from young mice and signifi-
cantly extends the lifespan of aged mice [44]; and cluster 
5, enriched in RNA transport, included 14 genes, with 12 
encoding eukaryotic translation initiation factors (EIF1, 
EIF2B5, EIF2S1, EIF2S3, EIF3A, EIF3D, EIF3E, EIF3F, 
EIF3G, EIF3H, EIF3J, and EIF5B). These results indicate 
that SDEs regulate aging primarily through metabolic 
pathways.

DE mRNA and protein correlations in the blood
Exosome proteins were identified as the primary com-
ponent of total protein in the blood (Fig. 3a). Ten genes 
(AMPD2, DEK, DSP, EEF1D, HP, MMP8, NOSTRIN, 
PIBF1, PITPNB, and TUBA1A) showed significant dif-
ferences at both mRNA and SDE protein levels (Addi-
tional file 3). The genes DEK, MMP8, NOSTRIN, PIBF1, 
PITPNB, and TUBA1A also differed at the mRNA and 
protein levels (Additional file 3), suggesting that these 
levels were not well-correlated [45]. Four genes (AMPD2, 
DSP, EEF1D, and HP) showed similar trends in mRNA 
and protein levels during aging (Additional file 3). Nota-
bly, HP was significantly upregulated in 20–34 years 
compared with 5–10 years (mRNA: 449-fold change, 
q-value = 4.25e-04; protein: 6-fold change), aligning with 

previous studies reporting that HP protein expression is 
increased in the plasma of aged humans and rats [46]. 
The antioxidant role of HP protein, preventing hemoglo-
bin-driven oxidative damage [47], provides further sup-
port for HP’s important role in aging.

Biomarkers of aging at the transcriptional level and 
verification in the brain
To identify aging biomarkers from mRNAs, lncRNAs, 
and circRNAs, age-associated upregulated and down-
regulated genes were filtered from the DE RNAs. In total, 
36 DE mRNAs (upregulated: 11; downregulated: 25), 24 
DE lncRNAs (upregulated: 21; downregulated: 3), and 
24 DE circRNAs (upregulated: 12; downregulated: 12) 
(Fig.  5a) were detected. Intersection analysis performed 
between the age-related candidate genes identified in 
our study and those from previous human, animal, and 
cell studies (Fig.  5b) revealed seven overlapping genes: 
TADA3, SLC38A1, and NUCB2 in HPB (the transcrip-
tional landscape of age in human peripheral blood [48]); 
CLU and YWHAZ in GenAge (the aging gene database); 
and SENP7 and SGK1 in CellAge (the cell senescence 
gene database). TADA3 stimulates p53 acetylation and 
cell senescence induction [49, 50]; SLC38A1 mediates 
insulin-regulated glucose metabolism [51]; NUCB2 plays 
a crucial role in the hypothalamic pathways regulating 

Fig. 4  Proteome landscape of SDEs in rhesus monkeys. a. Venn diagram showing the overlap between the SDEs identified in the present study and those 
from the ExoCarta and Vesiclepedia databases. b. Hierarchical clustering heat map of all DEPs in SDEs across four age groups. c. Four clusters of DEPs in 
SDEs were enriched in KEGG pathways
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Fig. 5  Integrative analyses of the rhesus monkey transcriptome with aging. a. DE mRNAs, lncRNAs, and circRNAs according to chronological age. b. Venn 
diagram of aging-associated genes among 36 novel DE mRNAs and those found in CellAge, GenAge, and HPB. c. Age-associated genes among 36 novel 
DE mRNAs. d. Barplots of CLU, ITSN1, PPM1A, XLOC_007571, circ_0002743, circ_0005016, circ_0010527, and circ_0008814 expression levels in blood and brain 
samples across four age groups. *p < 0.05, **p < 0.01, and ***p < 0.001 (two-way ANOVA).
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food intake and energy homeostasis [52]; CLU serum 
levels increase with age in humans, and CLU overex-
pression extends Drosophila melanogaster lifespan [53, 
54]; YWHAZ regulates insulin sensitivity [55]; SENP7 
is required to promote a permissive chromatin environ-
ment for DNA repair [56] and the repression of senp7-
induced cell senescence [57]; and SGK1 overexpression 
can delay endothelial senescence through the activation 
of telomerase and reduction of reactive oxygen species 
levels [58]. Additionally, 13 of the 36 significant age-
associated DE mRNAs are involved in pathways related 
to p53 (STRAP [59], PPM1A [60], and UNG [61]), insu-
lin (CHN2 [61] and PGK1 [62]), Alzheimer’s disease or 
Parkinson’s disease (SNX12 [63], FRMD4A [64, 65], and 
SLC18A2 [66]), and neurodevelopment (DST [67], CIC 
[68], KCNQ5 [69], THOC2 [69], and ITSN1 [70]) (Fig. 5c).

The expression levels of 16 mRNAs, 4 lncRNAs, and 12 
circRNAs, abundant in the blood, were assessed for their 
potential roles in aging. Both quantitative reverse-tran-
scription PCR (RT-qPCR) and RNA-seq analyses con-
firmed age-related gene upregulation or downregulation 
in macaque blood across the four age groups (Additional 
file 4 and 5). We also investigated these gene expres-
sion changes in 2–4 years and 10–19 years macaque 
brains (Additional file 6 and 7). Interestingly, eight genes 
(CLU, ITSN1, PPM1A, XLOC_007571, circ_0002743, 
circ_0005016, circ_0010527, and circ_0008814) exhib-
ited consistent changes in both blood and brain analyses 
(Fig. 5d).

Identification and verification of aging biomarkers at the 
protein level
To identify aging biomarkers from blood proteins, age-
associated upregulated and downregulated proteins were 
filtered by their expression levels in serum and SDEs. In 
serum, 35 and 32 upregulated and downregulated DEPs, 
respectively, were associated with aging, whereas in 
SDEs, 42 and 54 upregulated and downregulated DEPs, 
respectively, were linked to chronological age (Fig.  6a). 
Intersection analysis between the age-related candidate 
proteins in serum and SDEs identified in our study and 
the age-related candidate genes identified in previous 
human, animal, and cell studies (Fig.  6b) revealed that 
10 candidate serum proteins have already been reported: 
ORM1, NCAM1, HP, DPP4, LGALS1, and CR2 in HPB; 
CHL1, IGF1, and A2M in GenAge; and AGT in CellAge. 
The absence of CHL1 shortens yeast cell lifespan [71]; 
reduced IGF1 expression extends lifespan in rats, and low 
IGF-1 levels predict life expectancy in exceptionally long-
lived individuals [72, 73]; A2M serves as an aging bio-
marker of human fibroblasts [72, 73]; AGT significantly 
induces the premature senescence of human vascular 
smooth muscle cells via the p53/p21-dependent path-
way [74]; and NCAM1 is one of the most well-described 

T-cell aging markers [75, 76]. Additionally, 47 novel can-
didate aging biomarker DEPs were identified through 
serum proteomic analysis.

Similarly, in SDEs, 12 candidate proteins were pre-
viously reported: ORM1, CHORDC1, RPL4, S100A8, 
GNG2, EVL, and DPYSL2 in HPB; and XRCC5, GPX4, 
FN1, GSS, and A2M in GenAge. Mice with XRCC5 dele-
tion exhibit premature aging and a shortened lifespan 
owing to the protein’s induction of a p53-mediated DNA 
damage response [75, 76]; RPL4 affects p53 stabiliza-
tion and activation [77]; GPX4 is an antioxidant defense 
enzyme that plays a vital role in mitigating the effects 
of oxidative damage on membrane lipids, and reduced 
GPX4 levels increase lifespan [77]; GSS is a glutathione 
synthetase involved in redox regulation and oxidative 
defense [78]; a lack of FN1 shortens life expectancy [78]; 
and S100A8 induces autophagy and apoptosis [79]. Addi-
tionally, 74 novel candidate aging biomarker DEPs were 
identified through SDE proteomic analysis. Furthermore, 
12 DEPs were shared between serum and SDEs, exhibit-
ing consistent expression trends, possibly owing to their 
exosome origin (Fig. 6c).

To validate the candidate aging biomarker proteins, 
proteins identified in serum and SDEs were subjected 
to western blot analysis. Based on the bioinformatics 
analysis and the antibodies available in our laboratory, 
we selected the A2M and SERPINA3 proteins, both DE 
in serum and SDEs. Validation was conducted using the 
pooled samples used in quantitative proteomic analyses. 
In serum and SDEs, A2M exhibited downregulation with 
chronological age, whereas SERPINA3 showed upregula-
tion during aging (Fig.  6d, e, additional file 8). Western 
blot data aligned with the proteomics findings.

Discussion
The average age of rhesus monkeys is approximately 20 
years old, at the same time, we referred to the group-
ing situation of the age of rhesus monkeys in the article 
published by Liu et al. [26] and two reports about rhe-
sus monkeys [80, 81]. Published literature combined with 
our experience in raising rhesus monkeys, we consider 
that before the age of 4 is the development stage of young 
monkeys, from the age of 5 to 10 they begin to have fer-
tility and reach the peak of reproduction, from the age 
of 11 the reproductive ability starts to decline, and at the 
age of 19 most monkeys begin to die naturally. The oldest 
monkey that we can collect is 34 years old. Therefore, we 
divide them into 4 groups.

Advances in our understanding of the molecular mech-
anisms of aging have emphasized the complex nature 
of this process, although many mechanisms remain 
unclear [82]. Examining age-related molecular changes in 
blood offers insights into aging biology [18]. Our analy-
sis of monkey peripheral blood, encompassing mRNAs, 
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lncRNAs, circRNAs, serum proteins, and SDE proteins, 
revealed novel molecular mechanisms and aging-related 
biomarkers. The resulting RNA and protein atlas stands 
as a valuable public resource for researchers.

Certain lncRNAs involved in the induction and mainte-
nance of human aging exhibit highly specific spatial and 
temporal expression patterns [26, 83, 84]. Comparing 
gene expression profiles in blood samples, we found that, 

Fig. 6  Integrative analyses of serum and SDE proteomes over time in rhesus monkeys. a. DE serum and SDE proteins according to chronological age. 
b. Venn diagram of aging-associated genes in serum and SDEs (novel) and in CellAge, GenAge, and HPB. c. Twelve DEPs shared among serum and SDEs 
exhibited the same expression trends. d. Western blot analysis of A2M and SERPINA3 in serum, with transferrin used as the loading control. e. Expression 
of A2M and SERPINA3 in SDEs was assessed via western blot analysis
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unlike mRNAs and circRNAs, highly expressed lncRNAs 
were abundant in 11–19 years. KEGG pathway analysis 
indicated the association of these lncRNA coexpression 
genes with several cancer pathways (Fig. 2b), suggesting 
their more substantial role during aging.

Deep mining of aging transcriptomes revealed undu-
lating changes during aging in monkeys, consistent with 
findings in humans [18]. Although linear patterns have 
received extensive attention, nonlinear trajectories are 
less well-studied [18]. However, our KEGG analysis 
showed both linear and nonlinear patterns enriched in 
aging-related biological pathways. For example, among 
mRNAs, the mTOR signaling pathway was enriched in 
linear patterns, whereas the insulin signaling pathway 
and FoxO signaling pathway were enriched in nonlinear 
patterns (Fig. 2d). The inclusion of both types of changes 
enhances the analysis of aging in longitudinal datasets.

Exosomes are widespread throughout the body and 
implicated in aging [85, 86]. We found a considerable 
overlap of proteins between the serum proteome and 
SDE proteome, with these overlapping proteins derived 
primarily from exosomes, indicating that exosome pro-
teins are the main components of serum proteins. Inte-
grating serum and SDE proteomes, we established a 
relatively comprehensive rhesus monkey blood pro-
teome database. We discovered 1270 and 2160 proteins 
in serum and SDEs respectively. Even though the number 
of proteins in serum is lower than that in SDEs, which 
appears counterintuitive as serum contains SDEs. How-
ever, since the content of SDEs in serum is extremely low, 
it is not necessarily possible to detect SDEs proteins. The 
SDEs proteins used for detection are obtained via separa-
tion and concentration, so it is comprehensible that the 
number of proteins in SDEs is higher than that in serum. 
Additonally, in the work of Yang et al. [87] , the research-
ers compared the protein changes in serum and serum 
exosomes. 271 and 430 proteins were screened and 
identified in serum and serum exosomes respectively, 
and further differential analysis indicated that the num-
ber of differential proteins in serum exosomes was more 
than that in serum. This is similar to the results of our 
proteomics analysis of serum and SDEs, although there 
are differences in the number of proteins, which might 
be caused by factors such as sample source, experimental 
methods and techniques. Given the limitations of current 
proteomic techniques in detecting trace proteins in blood 
samples, and considering that SDE proteins play key roles 
in the blood [88], SDEs may be more suitable than serum 
for blood-based proteome studies.

Assessing the aging process and intervention efficacy 
requires biomarkers, with the blood serving as a sensitive 
indicator of functional aging [89, 90]. This study aimed to 
identify aging biomarkers in blood samples, considering 
a broad range of circRNAs, lncRNAs, and SDE proteins, 

unlike previous mRNA-focused or plasma protein-cen-
tric approaches [25, 48, 91]. Ultimately, 84 RNAs and 
163 proteins emerged as candidate aging biomarkers. Of 
these, 27 genes have been associated with aging in HPB, 
GenAge, and CellAge. The remaining genes and pro-
teins align with functions associated with known aging 
mechanisms, including metabolic function, the p53 path-
way, DNA repair, insulin signaling, and the mTOR path-
way [92]. Notably, changes in eight genes (CLU, ITSN1, 
PPM1A, circ_0002743, circ_0005016, XLOC_007571, 
circ_0010527, and circ_0008814) were consistent 
between blood and brain analysis (Fig.  5d) according to 
RT-qPCR results. The work of Trougakos et al. [53] and 
Baralla et al. [93] have demenstrated an increase of CLU 
protein in plasma sample during aging occurs until 99 
years in population, but decreased in centenarians. This 
may be related to the CLU function as a sensitive biosen-
sor of oxidative stress [94]. CLU involvement in reverse 
cholesterol transport and it shows a positive correlation 
with total cholesterol and low-density lipoprotein, which 
may be due to the increasing cardiovascular risk with age. 
ITSN1 plays an important role in brain development. 
Knockout mice show defects in neuronal migration and 
synaptic plasticity in the hippocampus and cortex, as well 
as abnormal secretion and transportation of synaptic ves-
icles [95], and changes also occur in spatial learning and 
memory [96]. In the population, ITSN1 is associated with 
the progression of several neurodegenerative disorders. 
PPM1A dephosphorylates and inactivates the AMPK 
pathway [97]. The characteristic of degenerative brain 
disease is the abnormal activation of AMPK, which can 
affect the synaptic function related to AD [98], and the 
progression of amyotrophic lateral sclerosis (ALS) [99] 
and Huntington’s disease (HD) [100]. Although the rela-
tionship between ITSN1 and PPM1A and aging has not 
yet been explored, diseases related to it, such as Alzheim-
er’s disease, usually occur along with aging, which may 
indicate that ITSN1 and PPM1A has a certain correlation 
with aging. RNA or protein changes in the blood reflect 
various aspects of aging in different cell types and tis-
sues [18]. Through retrieval, we found the CLU gene in 
the database related to human or cellular aging. The CLU 
gene has a close relationship with aging, and the plasma 
CLU protein level in the population shows a positive 
correlation with age. This result support the screening 
of the CLU gene as an aging marker, indicating that the 
aging marker screening process we established is reliable. 
Meanwhile, we have discovered several genes that are not 
in human aging databases, including ITSN1 and PPM1A, 
one lncRNA, and four circular RNAs, suggesting that 
they may become new potential aging markers. There-
fore, these eight genes may serve as blood biomarkers for 
detecting brain aging. However, larger-scale blood- and 
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brain-based studies, especially in humans, are necessary 
to validate these genes.

Conclusions
This study provides novel insights into the molecular 
mechanisms underlying aging in healthy blood through 
comprehensive transcriptome and proteome analyses. 
Additionally, eight genes serving as potential blood bio-
markers for detecting brain aging are identified. Overall, 
this research enhances our understanding of the molecu-
lar basis of aging and offers new aging biomarkers.
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