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Abstract
Background  Integration of high throughput DNA genotyping and RNA-sequencing data enables the discovery of 
genomic regions that regulate gene expression, known as expression quantitative trait loci (eQTL). In pigs, efforts 
to date have been mainly focused on purebred lines for traits with commercial relevance as such growth and meat 
quality. However, little is known on genetic variants and mechanisms associated with the robustness of an animal, 
thus its overall health status. Here, the liver, lung, spleen, and muscle transcriptomes of 100 three-way crossbred 
female finishers were studied, with the aim of identifying novel eQTL regulatory regions and transcription factors (TFs) 
associated with regulation of porcine metabolism and health-related traits.

Results  An expression genome-wide association study with 535,896 genotypes and the expression of 12,680 genes 
in liver, 13,310 genes in lung, 12,650 genes in spleen, and 12,595 genes in muscle resulted in 4,293, 10,630, 4,533, and 
6,871 eQTL regions for each of these tissues, respectively. Although only a small fraction of the eQTLs were annotated 
as cis-eQTLs, these presented a higher number of polymorphisms per region and significantly stronger associations 
with their target gene compared to trans-eQTLs. Between 20 and 115 eQTL hotspots were identified across the 
four tissues. Interestingly, these were all enriched for immune-related biological processes. In spleen, two TFs were 
identified: ERF and ZNF45, with key roles in regulation of gene expression.

Conclusions  This study provides a comprehensive analysis with more than 26,000 eQTL regions identified that are 
now publicly available. The genomic regions and their variants were mostly associated with tissue-specific regulatory 
roles. However, some shared regions provide new insights into the complex regulation of genes and their interactions 
that are involved with important traits related to metabolism and immunity.
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Background
In the last two decades, genome-wide association studies 
(GWAS) have facilitated the discovery of genetic variants 
associated with traits and diseases in livestock species 
[1]. Most of these variants are located within non-coding 
genomic regions and are enriched for gene regulatory 
elements [2]. Among all genetic variants, Single Nucleo-
tide Polymorphisms (SNPs) have been extensively used to 
study their contribution to phenotype variability by reg-
ulating gene activity. SNPs associated with gene expres-
sion levels are known as expression quantitative trait loci 
(eQTLs) and are commonly identified through expression 
GWAS (eGWAS). Compared to GWAS, eQTL mapping 
can be more powerful in detecting statistically significant 
genetic effects and revealing inherent biological meaning 
for complex polygenic traits [3], which in breeding pro-
grams enables the identification of new selection targets 
[4].

Efforts in porcine eQTL mapping have been mostly 
focused on commercial relevant phenotypes such as 
growth, body composition, carcass, meat quality and 
reproduction. Those studies are mostly targeting a single 
tissue type including, for example, muscle [5–10], colon 
[11], liver [8, 12], adipose tissue [13, 14], and sperm [15]. 
Nevertheless, knowledge on genetic variation in other 
relevant organs such as spleen or lung with roles associ-
ated to disease resistance and animal robustness remains 
to be elucidated [16].

Understanding genome regulation to achieve a com-
plete picture of genotype-phenotype interaction has 
become a major focus of interest for the livestock scien-
tific community [17]. For this, efforts from recent projects 
[18] as well as the Farm animal Genotype-Tissue Expres-
sion (FarmGTEx) consortium have resulted in a com-
prehensive public resource of genetic regulatory effects 
across tissues and cells in pigs (PigGTEx) [19]. Using over 
9,000 public transcriptome datasets obtained from dif-
ferent tissue and cell types, sex and porcine breeds, hun-
dreds of key regulatory elements and genomic regions of 
interest have been pin-pointed in the pig genome [19]. 
This large resource also showed that genotype and tran-
scriptome of matching individuals remain scarce because 
gene expression changes with age, environment, sex, 
genetic background and experimental design, as well as 
that imputed variants from a limited number of animals 
can produce considerable noise [19].

Our study aims to provide additional resources to the 
community to understand pig genome regulation in tis-
sues relevant to production as well as for their involve-
ment in health and immunity. To achieve this, a total of 
100 female three-way crossbred pigs were analyzed to 
discover the association between genetic variants and 
changes of gene expression levels in four different tissues: 
liver, lung, spleen, and muscle. We identify novel putative 

regulatory regions and eQTL hotspot regions that show 
tissue-specific patterns as well as common regulatory 
polymorphisms. We also investigate putative regulatory 
pathways based on transcription factors (TFs) related to 
trans-eQTL hotspots.

Methods
Sample collection, RNA extraction and sequencing
A total of 100 gilts from a three-way cross breed 
((Landrace*Large White)*Synthetic boar line) from 
Topigs Norsvin were randomly selected from the study 
Luo et al., [20]. Piglets were raised on a conventional 
commercial farm and kept with the sows in farrowing 
pens until weaning at on average 4 weeks of age. Then, 
all piglets were housed in same sized pens (1.2 × 2.85 
m2) and fed with a standard commercial diet for grow-
ing pigs ad libitum [20]. Litter ID for family relatedness 
is included in Additional file 1. The animals were slaugh-
tered at two months old (7 to 9 weeks old) and were 
divided into two batches of 53 and 47 samples, based on 
slaughter day. Tissue samples from liver, lung, spleen, and 
skeletal muscle from each animal were collected imme-
diately after slaughter and stored in RNAlater (Thermo 
Fisher Scientific) at -80 °C until further use.

Total RNA was extracted from the 400 samples 
(100 samples x 4 tissues). For lung, liver, and spleen 
the QIAshredder homogenizer kit (Qiagen) was 
used, followed by the RNeasy kit (Qiagen) manufac-
ture’s guidelines. For muscle tissue, a preceding Qiazol 
(Qiagen)-chloroform RNA extraction method [21] was 
employed to improve the RNA amounts outcome, and 
followed by the RNeasy kit (Qiagen). Extracted RNA was 
then subjected to quality control parameters including 
quantification with NanoDrop 1000 (Thermo Fisher) and 
Qubit RNA BR Assay kit (Invitrogen), and their integrity 
validated with Bioanalyzer Agilent RNA 6000 Nano kit 
(Agilent Technologies). RNA isolation was successful for 
all samples, obtaining an average of 63.6 ng/µl for liver 
(min 23.2 ng/µl; max 98.8 ng/µl), 63.6 ng/µl for lung (min 
34.2 ng/µl; max 112.0 ng/µl), 71.1 ng/µl for spleen (min 
38.8 ng/µl; max 120.0 ng/µl) and 68.9 ng/µl for muscle 
(min 26.0 ng/µl; max 114.0 ng/µl). All samples presented 
RNA Integrity (RIN) values ≥ 7.

RNA was poly(A) enriched using NEBNext® Poly(A) 
mRNA Magnetic Isolation Module (New England Bio-
labs) and used for library preparation with the NEBNext® 
Ultra™ Directional RNA Library Prep Kit (New England 
Biolabs). Samples were sequenced as stranded 150  bp 
paired end reads in an Illumina NovaSeq 6000 sequenc-
ing platform.

Gene annotation and quantification
The bioinformatics pipeline of the study is summarized 
in Additional Fig.  1. RNA-seq reads were evaluated for 
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quality control with the FastQC 0.11.9 software (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
Low-quality reads and adaptors were trimmed with Trim 
Galore 0.3.7 (https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/) using default parameters. 
Filtered reads were then aligned to the Scrofa11.1 genome 
[22] using STAR 2.7.8 [23] with default parameters. 
Reads with an alignment MAPQ score less than 30 were 
removed using SAMtools 1.1.19 [24]. Genes annotated in 
the porcine genome (Ensembl 104) were quantified using 
htseq-count 0.11. 1 [25] with “--stranded = reverse”, fol-
lowed by TMM normalization with EdgeR [26]. Genes 
with a TMM-normalized count per million (CPM) equal 
to or above one, were considered expressed and used 
for further analysis. Quality control of expression data 
was conducted to assess overall variability, including 
batch effects evidenced by the clustering of samples. This 
assessment was performed with a Principal Component 
Analysis (PCA) across all samples and tissue types using 
the R package DESeq2 [27] (Additional Fig. 2).

DNA extraction, genotyping, and data filtering
DNA was extracted from spleen using a phenol-chlo-
roform based method [28]. Quality and quantity of the 
DNA were assessed with NanoDrop 1000 (Thermo 
Fisher) and Qubit DNA BR Assay kit (Invitrogen). DNA 
fragment integrity was validated using agarose gel elec-
trophoresis (1.5%, 120  V and 30  min). DNA was geno-
typed with the high-density (660  K markers) Axiom™ 
Porcine Genotyping Array (Thermo Fisher Scientific). 
The resulting genotyping dataset was stringently fil-
tered using PLINK 1.9 [29] by excluding SNPs that had a 
minor allele frequency lower than 0.01, strong deviation 
from Hardy–Weinberg equilibrium (P-value ≤ 1e-12), 
more than 10% missing genotypes, and SNPs located on 
the Y chromosome, scaffolds or unmapped positions. 
The SNP positions were updated from Sscrofa 10.2 to 
the Sscrofa11.1 reference genome assembly [22] using 
PLINK 1.9 [29].

As a quality control step, genotypes of the crossbred 
animals included in this study were compared with their 
parental purebred lines (Large White, Landrace, and 
Synthetic boar line) [30]. PCA analysis was conducted 
in PLINK 1.9 [29] using the dimension reduction “--pca” 
option. Visualization was performed with the R package 
“ggplot2” [31].

eGWAS study
eGWAS included all 100 samples with filtered genotypes 
and normalized expression data using a mixed model. 
This was performed independently for each of the four 
tissues. Only genes with average expression ≥ 1 CPM 
across samples were included. Single-SNP association 

analysis was performed with GCTA 1.25 [32] with the 
following model:

	 Yijk = µ + Batchj + δSNP i + uk + eijk

where (Yi) is the CPM gene expression modeled as a 
function of the population mean (µ), correcting for the 
fixed effect batch (Batchj ) based on slaughter day; δ is 
additive effect of each candidate SNP to be tested for 
association, estimated as a regression coefficient on the 
corresponding (values 0, 1, 2) of the i SNP; uk  is the 
polygenic effect, that follow a normal distribution with 
u ∼ N

(
0, Gσ2

u

)
, where G is the genomic relationship 

matrix calculated using the filtered SNPs and based on 
the methodology of [32], and σ2

u  is the additive genetic 
variance; and eijk is the residual term.

The association between a SNP and gene expression 
was declared significant when Benjamini-Hochberg 
adjustment (q-value) ≤ 0.05 [33]. Significantly associated 
SNPs with consecutive distances shorter than 10 Mb were 
considered to belong to the same eQTL interval [12]. To 
reduce false positives calls, only eQTL with intervals ≥ 3 
significant SNPs were considered. Linkage disequilibrium 
(LD) across SNPs within the same eQTL interval was 
evaluated for a set of 5 random eQTL regions per tissue. 
The analysis was conducted with PLINK 1.9 [29] with 
default settings.

cis and trans-eQTLs
The SNPs identified were classified based on their 
genomic location. We assessed the distance between the 
most significant SNP of the eQTL and the transcriptional 
start position of its associated gene. Then, they were cat-
egorized into three groups: (i) cis-eQTL: the most sig-
nificant eQTL SNP and its associated gene were ≤ 1 Mb 
distance; (ii) trans-eQTL-I: the SNP and its associated 
gene were located > 1  Mb distance on the same chro-
mosome; (iii) trans-eQTL-II: the SNP and its associated 
gene were located on different chromosomes.

The variation in significance (q-value) for the distance 
between eQTL and its associated gene was analyzed 
using a one-way analysis of variation (ANOVA) and sub-
jected to multiple comparison tests with Fisher’s Least 
Significant Difference (LSD) (P-value < 0.05) using R 
1.1.10 [34] .

Gene ontology and pathway analysis and overlap with 
transcription factors
The software ShinyGO 0.77 [35] was used for Gene 
Ontology (GO) and KEGG pathway enrichment analy-
ses with default parameters, providing genes (CPM ≥ 1) 
as background for each tissue respectively and S.scrofa 
as background species. Only GO terms and KEGG 
pathways with a False Discovery Rate (FDR) ≤ 0.05 were 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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considered significant. Candidate hotspot eQTL asso-
ciated genes were queried against transcription factors 
(TFs) and cofactors (TcoFs) using the AnimalTFDB 4.0 
[3] database.

The putative regulatory role of trans-eQTL hotspots 
acting as TFs was also investigated. For this, DNA motifs 
were first extracted from the hotspot eQTL genes’ pro-
moters. The promoter sequence 900  bp upstream from 
the Transcription start site (TSS) of each gene [36] was 
extracted with BioMart [37] web tool. Sequences were 
then submitted to MEME Suite [38] web tool, with 
default parameters but with a maximum number of 10 
motifs. Then, using Tomtom tool [39], DNA sequences 
were queried to both JASPAR [40] and AnimalTFDB 4.0 
[3] TF and TcoFs databases for matching hits to minimize 
database limitations and their potential false positives 
or negatives queries. Only those hits with q-value ≤ 0.05 
were considered significant.

Results
RNA-seq and bioinformatics analyses
The RNA-seq resulted in an average of 45.0, 42.3, 44.1 
and 44.6 Million reads per sample in liver, lung, spleen, 
and muscle, respectively, and 99.9% of them passed qual-
ity control filters. On average, 95.1%, 93.8%, 92.0% and 
94.7% of the reads mapped to the porcine genome in 
liver, lung, spleen, and muscle, respectively (Additional 
file 1). A total of 12,680, 13,310, 12,650, 12,595 genes 
were found expressed (average CPM ≥ 1 considering all 
100 samples) in liver, lung, spleen, and muscle, respec-
tively. Of these, less than a fifth presented high expres-
sion values (CPM ≥ 100) (Additional file 2). PCA analysis 
showed clear clustering based on tissue type, with lung 
and spleen being the closest, as expected due to their 
similar immunity response [41] (Additional Fig.  3). Tis-
sue-specific genes, that showed 4 times higher expres-
sion in a specific tissue compared to the other tissues, 
were identified: 1,107, 668, 362, and 952 in liver, lung, 
spleen, and muscle, respectively. These genes presented 
clear contributions to the main functions of their tissue 
as found in a gene ontology analyses (Additional file 3).

eGWAS analysis
After quality control, 535,896 SNPs and all 100 samples 
remained for the association analysis (Additional file 4). 
PCA clustering of the crossbred study samples and pure-
bred parental lines reflects the 3-way cross as expected 
(Additional Fig. 4).

Across the four tissues, the eGWAS identified over 
1  million significant associations, ranging from 200,076 
for muscle to 340,540 for spleen (Table  1). Significantly 
associated polymorphisms were merged into eQTL 
regions based on vicinity (see Methods section) resulting 
in 94.4, 92.1, 98.0, and 85.3% of these associations could 
be merged into eQTL regions in liver, lung, spleen, and 
muscle, respectively. The remaining associations were 
not considered, as they could potentially be spurious 
associations with only one or two significant variants.

For each tissue, over 4,000 eQTL regions were found 
with lung (10,630) and liver (4,293) as the highest and 
lowest, respectively (Table  1; Additional file 5). On 
average, 1,400 genes were found associated with eQTL 
regions, ranging from 969 in muscle to 2,405 in lung 
(Table  1). Most of the genes (> 90%) were annotated as 
protein coding (Table 1; Additional Fig. 5). Almost 50% of 
the eQTL-associated genes were found associated in two 
or more tissue types but only 85 of these eQTL-associ-
ated genes were found simultaneously in all four tissues 
(Additional Fig. 6). The proportion of genes found associ-
ated to eQTLs did not differ notably across the different 
expression bins (e.g. low, moderate or highly expressed; 
Additional file 6). Also, no difference was observed when 
comparing cis- and trans- classified eQTLs (Additional 
file 6).

The observed eQTL regions varied in lengths with 
the majority (72%) being less than 5 Mb (Additional file 
7; Additional Fig. 7). The average size of the eQTLs was 
3.2, 2.8, 3.9, and 3.6 Mb in liver, lung, spleen, and muscle, 
respectively. Regardless of their length, polymorphisms 
within randomly selected eQTLs showed moderate (R2: 
0.2) to high (R2: 1.0) LD between them, suggesting appro-
priate distance between two significant SNPs (see Meth-
ods) (Additional file 8).

Annotation of cis- and trans-eQTLs
On average, 10% of the most significant variants from the 
eQTL regions were annotated in cis, 19% as trans-I and 
71% as trans-eQTL-II (Table  2) (see Methods for defi-
nitions of cis- and trans-eQTL). Nevertheless, the pro-
portion of these annotated eQTLs varied widely across 
tissues. The lowest number of cis-eQTLs was found in 
muscle (5%) and lung (6%), followed by liver (12%), and 
the highest proportion in spleen (18%). Also, spleen 
presented the largest proportion (31%) as trans-eQTL-I 
compared to the other tissues which were more predomi-
nantly classified as trans-eQTL-II (Table 2).

Table 1  The number of associations, eQTL regions, and genes 
per tissue obtained in the eGWAS analysis
Tissue Number of 

associations
Number of 
eQTLs

Number of associ-
ated genes
Total Protein 

coding (%)
Liver 222,858 4,293 1,003 913 (91%)
Lung 322,386 10,630 2,405 2,284 (95%)
Spleen 340,540 4,533 1,258 1,156 (91%)
Muscle 200,076 6,871 969 881 (90.9%)
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The distance between the most significant variant in 
the eQTL and its associated gene was evaluated for each 
tissue (Fig.  1). For cis-eQTL, the average distance was 
similar across tissues, around 2.5 Kb. For trans-eQTL-I, 
the average was between 20 (liver) and 34 Mb (muscle). 
Yet, median values indicate that for half of the associa-
tions the distances were below 18 Mb for all tissues.

To identify the potential biological functions of the 
eQTL associated genes, gene ontology and pathway 
analyses were conducted. In these analyses, spleen was 
found significantly enriched for catabolic processes, 
while liver, lung, and muscle exhibited enrichment for 
genes involved in defense response to pathogens and 
(innate) immune response, among others. (Additional file 
10). All four tissues were found enriched for metabolic 
pathways as well as other immune-related pathways as 
cytokine receptor functions (in liver), autoimmune roles 
(liver and muscle) or oxidative phosphorylation (in lung) 
(Additional file 11). Zooming in to genes with high signif-
icant association acting as cis-eQTL in all four tissues, we 

identified TRAP1, IFT22 and TMPO with roles related to 
meat quality [42] and immunity [43] (Fig. 2).

For each eQTL, the association value of the eGWAS 
(q-value) and its annotated group distance (cis or trans) 
was assessed. The closest associations, classified as cis-
eQTL, presented significantly lower q-values than those 
classified as trans-eQTL-I and trans-eQTL-II (Additional 
file 9; Additional Fig. 8). Moreover, significant differences 
between trans-eQTL-I and trans-eQTL-II were also 
detected in liver, lung, and spleen (Additional Fig. 8).

eQTL map and trans-eQTL hotspots
The relationship of regulatory variation across the 
genome can be visualized with an eQTL map depicting 
each significant eQTL association as a dot (Fig.  3). The 
dots located on a diagonal line represent cis-eQTLs. A 
horizontal line indicates the association between many 
top eQTL polymorphisms and a single gene, most of 
them annotated as trans-eQTL. And last, multiple dots 
displayed as a vertical line suggests several genes asso-
ciated with a single genomic locus, potentially an eQTL 
hotspot that could point towards a shared regulatory 
region or pathway (e.g. TF). Overall, the eQTL map, 
revealed different profiles for each tissue studied (Fig. 3).

Depending on the tissue, 13 to 22% of the eQTLs 
were found significantly associated with more than one 
gene (Table 3). A total of 20 (spleen) to 115 (lung) eQTL 
regions were associated with ten or more genes, defined 
as eQTL hotspots (Table  3; seen as a vertical line in 
Fig.  3). Each eQTL hotspot region was associated with 

Table 2  Classification of cis- and trans-eQTLs (I and II) per tissue 
type
Tissue Number of cis-eQTL (%) Number of trans-eQTL (%)

I II
Liver 495 (12%) 872 (20%) 2,926 (68%)
Lung 595 (6%) 1,371 (13%) 8,664 (81%)
Spleen 800 (18%) 1,395 (31%) 2,338 (51%)
Muscle 346 (5%) 815 (12%) 5,710 (83%)

Fig. 1  Density plot of the distance between the position of the most significant SNP and its associated gene. Density plots divided by cis-eQTL (a-d) and 
trans-eQTL-I (e-h) across the four tissues (see materials and methods for definition of eQTLs)
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up to 54, 56, and 82 genes for liver, spleen, and muscle, 
respectively. However, in lung, an eQTL hotspot was 
identified affecting a total of 639 genes. Among all of the 
eQTL hotspot regions (Table  3), most of the associated 
genes were annotated as trans-eQTL and only a few pre-
sented genes acting as cis-eQTL: 1 eQTL region with 1 
gene (in liver), 5 eQTL with 19 genes (in lung), 1 eQTL 
region with 4 genes (in spleen), and 2 eQTL regions with 
2 genes (in muscle) (Additional file 12). Remarkably, only 
two of these genes acting as cis-eQTL in spleen were 

annotated also as TFs (Additional file 12). They were ERF 
and ZNF45 (Fig. 4), from the TF family ETS and zf-CH2, 
respectively. The region on SSC5:50,380,082:54,714,416 
in lung affecting 639 genes did not show any candidate 
TF gene acting as cis-eQTL (Additional file 12).

The role of the genes within eQTL hotspot regions 
was further assessed. Overall eQTL hotspot genes 
were enriched for regulation of immune response and 
response to viruses, in all four tissues, as well as for 
the mitochondrial respiratory chain complex (in lung), 

Fig. 2  Boxplots with the association of genotypes and gene expression for genes identified. The difference in genotype (0 homologous for the reference 
alle; 1 heterozygous; 2 homologous for the alternative allele) is mediating gene expression (as CPM) across all the four tissues for the genes TRAP1 (a), IFT22 
(b) TMPO (c). Each dot represents one sample. CPM: Counts Per Million
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among others (Additional file 13). Secondly, potentially 
shared TFs binding sites were queried through motif 
analysis of the promoter sequence for each of the genes 
within the eQTL hotspot. For this, 7 eQTL hotspots 
shared across the four tissues were used (Additional file 
14). Between 2 and 4 known motifs were found for each 
eQTL hotspot (Additional file 14). A total of 56 TFs were 
detected in the vertebrate dataset of which 38 were also 
annotated in pig [3] (Additional file 14). Nevertheless, 
none of these matched TFs was found close to its eQTL 
hotspot region.

Discussion
Investigating the genomic regions and molecular pro-
cesses associated with porcine health and robustness has 
become a major focus of interest due to its increasing rel-
evance for the sustainability of pig breeding and produc-
tion [44]. Remarkably, most efforts to date have focused 
on a single tissue type and purebred lines. Yet, studying 
different tissues can provide a comprehensive under-
standing of complex phenotypes. Moreover, commercial 
female pigs are mostly a cross of two purebred sow lines 
whereby crossbred animals can benefit from heterosis 
[45], and even be used in genetic evaluations to maximize 

the genetic response of purebred lines [46–48]. The fin-
isher pig for meat production is the offspring of the 
crossbred sows mated to a third line, a sire line, mainly 
selected for high growth and feed efficiency. Thus, in 
this study, an exhaustive eGWAS was performed in 100 
samples in four tissues to identify regulatory variants in 
young prepubertal female animals of this three-way cross 
in four different tissues with key roles in body energy 
homeostasis and immunity [49–52].

mRNA profiles across liver, lung, spleen, and skeletal 
muscle
The RNA-seq analysis resulted in over 12,000 genes 
expressed across the four tissues with clearly differenti-
ated profiles (Additional Fig.  3), most likely as a result 
from their distinct embryonic origins, immune response, 
and physiological functions [41, 53, 54].

In liver, in agreement with previous studies [49, 55], its 
critical role was confirmed in producing enzymes and 
proteins necessary for the metabolism of sterol, alco-
hol, lipid, organic, and amino acid as well as other sub-
stances (Additional file 3). The most highly expressed 
genes included ALB which codes for albumin, the most 
abundant protein in liver [56], APOE (Apolipoprotein E) 
and APOC3 (Apolipoprotein C3), both involved in cho-
lesterol metabolism [57] and COX1 (Cytochrome C oxi-
dase subunit 1), involved in contributing to inflammatory 
responses [58].

In lung, porcine studies have mostly focused on dif-
ferential expression after challenge with viruses [59]. In 
lung, we found several tissue specific genes including 
DNAAF1, mainly involved in the structure and func-
tion of cilia [60], which play a vital role in transporting 
mucus, pathogens and toxins out of the airways [61]. The 
highest expression in lung was found for the gene SFTPC 

Table 3  Number of eQTLs associated with a single gene or 
multiple genes
Tissue Number of eQTLs 

associated with 1 
gene

Number of eQTLs 
associated with 
> 1 gene

Number of 
eQTLs asso-
ciated with 
≥ 10 genes

Liver 2,273 340 46
Lung 2,351 484 115
Spleen 3,024 443 20
Muscle 2,425 685 111
Number of eQTLs associated with ≥ 10 genes are thus also included also in the 
second column (> 1 gene)

Fig. 3  eQTL map across the four tissues. The genomic position of associated genes (y-axis) versus genomic position of the top polymorphism from the 
eQTL (x-axis). Each black dot represents a significant association between an associated gene and the most significant SNP of the eQTL region. Diagonal 
dots represent cis-eQTLs and off-diagonal dots represent trans-eQTLs. The presence of a vertical band suggests that numerous expressed associated 
genes are linked to a single genomic locus, indicating trans-eQTL hotspots. Conversely, a horizontal band indicate the association between many top 
polymorphisms from eQTLs and a single gene
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(Surfactant Protein C), which has a role in maintaining 
the stability of pulmonary tissue in pigs [62].

Spleen, as a lymphoid organ, was predominantly 
enriched for immune system processes (Additional file 
3), aligning with its role in innate and adaptive immunity 
[36, 53]. IGHM was the most highly expressed gene and 
encodes the C region that defines the immunoglobulin 
isotype. Immunoglobulins are responsible for identifying 
and neutralize invading pathogens, bacteria or viruses 
[63].

Skeletal muscle has been extensively studied using 
RNA-seq [18, 64–66]. Most expressed genes are involved 
in muscle function and maintenance, including muscle 
contraction, movement, development, differentiation, 
structure and organization (Additional file 3). Two of 
the highest expressed genes were MYH2 (Myosin-2) 
and ACTA1. MYH2 is involved in skeletal muscle con-
traction [67] and its lncRNA expression has been found 
differentially expressed in back fat tissue from differ-
ent growth stages in pigs [68]. ACTA1 (Actin Alpha 1, 

Skeletal Muscle), is a member of the actin family of pro-
teins which are the major constituents of the assembly of 
muscle filaments, development of skeletal muscle fiber 
and cell motility [69].

eGWAS analysis, cis and trans-eQTLs
The eGWAS resulted in over 1  Million significant asso-
ciations across the four tissues and significant poly-
morphisms were annotated for over 26,000 eQTLs. 
Although our sample size can be considered small with 
high number of associations, it should be noted that out 
of the more than 6.7 B SNP-gene associations per tis-
sue performed, less than 0.005% were found significant. 
The nature of our eGWAS results are in line with similar 
studies in porcine [10, 18]. The strength in our study is 
potentially amplified by the nature of the population used 
– cross breed animals that are likely present a higher 
degree of genetic diversity than in a purely bred popula-
tion [70]. The eQTLs were associated with a total of 4,262 
different genes of which only 2% were shared across the 

Fig. 4  Manhattan plot of eGWAS for (a) ZNF45 and (b) ERF in spleen. The x-axis represents chromosome positions (Mb), and the y-axis displays the - 
log10(P-value) of the genetic association. The horizontal red line is added to represent the genome-wide significance level (FDR ≤ 0.05)
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four tissues. In agreement with previous studies [18], 
common regulatory variants are less frequent than tis-
sue-specific variants. Lung and spleen shared the biggest 
proportion of eQTL associated genes, as expected due to 
their shared role in the immune response [41]. Remark-
ably, lung presented the largest number of eQTL regions 
(10,630) and the majority were annotated as trans-eQTL-
II (similar pattern as the other three tissues). Although 
no previous work has been done in porcine lung eGWAS, 
in human eGWAS, similar results with high number of 
eQTL regions have been reported [71], potentially indi-
cating distal and complex genome regulation. Muscle 
presented the second largest number of eQTLs, with the 
biggest average trans-eQTL-I length (34 Mb) and the sec-
ond largest for cis-eQTL (2.5 Kb). This could be related to 
the genetic difference between the sire and the sow lines. 
The terminal sire line has been selected for high growth, 
feed efficiency, and lean meat percentage, thereby influ-
encing muscle growth and structure [72], whereas the 
sow lines show high fertility and mothering ability. In this 
three-way cross, especially variants fixed in the sire line 
will result in large eQTL regions due to high extent of LD.

Although the total number of cis-eQTLs was lower 
than trans-eQTLs (I and II) (Table  1), cis-eQTLs pre-
sented more significant polymorphisms per eQTL (aver-
age of 67 polymorphisms across tissues) compared to 
trans-eQTLs (15). Moreover, cis-eQTL regions exhib-
ited significantly lower q-values between their most sig-
nificant variant and its associated gene. This is in line 
with previous studies [10, 18, 73] and can be explained 
by the fact that the variant directly impacts the expres-
sion of the corresponding cis-eQTL associated gene or is 
in close linkage disequilibrium to the causal variant [74]. 
Moreover, trans-eQTL associated genes may involve an 
additional intermediate step, such as a regulatory gene, 
which could cause additional noise and lead to less signif-
icant differences explaining the higher q-values observed 
[74]. Another hypothesis is that these trans-eQTL could 
be distant enhancers playing a role in adjusting optimal 
expression. Therefore, variation in these regions is less 
likely to have a large impact.

Considering the genes within the top 10% cis-regu-
latory associations, 5 were acting across all four tissues 
and are involved in porcine meat production and immu-
nity traits. This includes HUS1, recently reported in an 
eGWAS porcine study [18], which has been correlated 
with porcine intramuscular fat [75]. Similarly,  TRAP1 
which plays a role in intracellular calcium concentra-
tion [76] has been reported as a candidate gene for pork 
meat pH [42] (Fig. 2). Other shared genes include IFT22, 
which contributes to intraflagellar transport, crucial for 
the assembly, maintenance, and function of cilia, cellular 
structures that serve as sensory and regulatory organelles 
[77] (Fig. 2) and CCDC125, which regulates cell motility 

particularly within the immune system and is predomi-
nantly expressed in lymphoid tissues (as spleen) [78]. 
The last shared gene was TMPO, which plays a critical 
role in regulating cell cycle progression, encoding a key 
component of the nuclear lamina, essential for maintain-
ing nuclear stability and regulating gene expression [79] 
(Fig. 2).

To identify other interesting regulated genes per tissue, 
the focus was placed on cis-eQTLs that presented the 
highest ratio of significant variants after correcting for 
eQTL length. Genes identified included BSCL2 in spleen, 
mutations in BSCL2 have been associated with fat depo-
sition in pigs [80], TRAPPC9 in the liver, which has been 
implicated in porcine backfat thickness [81] as well as 
nutrient absorption and body size [82], and in in muscle, 
CLCA2, which is involved in mediating the calcium con-
traction response [83]. CLCA2 has been earlier found in 
a haplotype region subject to strong opposite selection 
between Duroc (a sire line) and Large White (a sow line) 
pigs [84]. As well as the gene TAOK1 in muscle, which in 
humans is related to muscle hypotonia and growth disor-
ders [85], and in a previous GWAS study in pigs [86], it 
has been pointed as a candidate gene associated with the 
number of mummified Landrace animals.

eQTL maps across tissues
The majority of eQTLs identified in this study were asso-
ciated with a single gene (between 78 and 87% across the 
four tissues), but eQTLs associated with multiple genes 
are particularly interesting. These could point towards 
genomic loci affecting several genes, potentially involved 
in the same pathway, or highlight TFs or transcription co-
factors (TcoFs) acting as regulators of gene expression. 
Among all of the eQTL hotspots identified, only 2 cis-
eQTL in spleen were annotated as TF: ERF and ZNF45. 
The ERF (ETS2 Repressor Factor) protein belongs to the 
ETS TF-family and is present in several tissues in humans 
[87]. ERF has a strong transcriptional repressor activity 
and downregulates expression of genes involved in cel-
lular proliferation [88]. ZNF45 is also a transcriptional 
repressor. It belongs to the family of Zinc-finger proteins 
(ZNFs) which is a diverse group of proteins that contain 
one or more zinc-finger domains, enabling them to inter-
act with DNA, RNA, and other proteins. ZNFs have a 
variety of molecular functions and are among the most 
abundant groups of proteins [89].

We also attempted to find potential TF and TcoF 
shared across genes within eQTL hotspots by analys-
ing DNA motifs in their promoter sequences. Although 
several TFs were identified, none were located close to 
their respective eQTL hotspot region. This lack of com-
mon regulatory regions could indicate that regulation of 
gene expression regulation occurs preferentially in a tis-
sue-specific manner rather than a coordinated regulation 
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across all tissues [19]; and/or that other regulatory ele-
ments may be playing a role in gene expression regula-
tion, as long non-coding RNAs or micro RNAs [90, 91]; 
and/or that using whole genome sequencing data instead 
of genotypes can outperform the detection of TF and 
TcoFs [18].

Nevertheless, it is important to note that some genes 
may be under the influence of one or multiple other 
genes or genetic variants [92, 93]. Thus, even if not anno-
tated as TFs, they might still play important roles in 
regulating specific pathways and modifying other genes’ 
expression [92]. This is the case for some cis-eQTL asso-
ciated genes within eQTL hotspots. For example ADSS2 
in liver, encoding an enzyme that catalyses the initial step 
in AMP synthesis, has been significantly associated with 
average daily gain and loin muscle area traits in pigs [94]. 
Likewise, FUT2 in lung, encoding an enzyme catalyz-
ing the final step in the synthesis of the H antigen, has 
been linked to E. coli resistance in weaned pigs [95]. 
Two other examples are the LIPE gene in spleen, that in 
humans plays a critical role in the mobilization of cellu-
lar fat stores [96] and SESN3 in muscle, a stress-sensitive 
gene that regulates lipid metabolism, directly controlling 
skeletal muscle fat metabolism [97] and found to play an 
important role in porcine skeletal muscle growth [97].

Our results point towards candidate regulatory variants 
of genes of interest for certain phenotypic traits. How-
ever, the role of many candidate variants on phenotypes 
remain to be elucidated. For this, future work includes 
breeding companies genotyping a subset of these SNP 
and study if there is an association between these 
genomic variants and phenotypes of interest, including 
immunity, metabolism, feed-efficiency, etc. In addition, 
overlapping eQTLs with QTLs can be particularly valu-
able in pinpointing functional mutations responsible for 
phenotypic variation. This overlap can help identify can-
didate genes and variants that are functionally relevant, 
thereby enhancing our understanding of the genetic basis 
of complex traits. Moreover, our study will also provide 
additional resources for the PigGTEx community [19], 
helping to close knowledge gaps between the expres-
sion of genes for each tissue and external factors, as age, 
sex, environment, genetic background or experimental 
design.

Conclusions
Despite the unprecedented progress in identifying 
genetic loci that play a role in porcine traits, there is 
a lack of mechanistic understanding of how porcine 
traits like immunity or robustness are regulated in pigs. 
Here, we provide a unique dataset to investigate regula-
tory regions using 100 animals in four different tissues. 
Interestingly, the largest variability in regions affecting 
gene expression was found in the lung with more than 

10,000 eQTLs. This newly cataloged repertoire of regula-
tory regions in the pig genome effective in young growing 
female finishers is now publicly available alongside with 
this manuscript in supplementary material. Our findings 
underscore the importance of tissue-specific regulation, 
interactions between loci and expression differences due 
to selection for different trait complexes in specialized 
sow and sire lines. These results provide a basis in under-
standing the complex genotype-phenotype interaction 
for further exploration in sustainable pig breeding and 
production.
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