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human-centric models to gain mechanistic insights into 
the development of adverse outcomes relevant to human 
safety assessment. To integrate such data into hazard and 
later risk assessment, it is essential to have a good under-
standing of the advantages and limitations of different 
technologies.

Chip technologies use probes to measure the hybrid-
ization of fluorescent markers - placed on arrays. These 
arrays can be customized, but manufacturers such as 
Affymetrix and Agilent, provide common layouts that 
cover the whole transcriptome of a species. The Clariom 
D Array from Affymetrix is available for use on human, 
rat, and mouse samples. It covers many non-coding and 
small transcripts, in addition to the coding transcrip-
tome. Chip technologies require RNA purification as a 

Introduction
In recent decades, technologies that analyze changes in 
the transcriptome, have advanced significantly. Several 
methods are now available, including microarrays as 
well as next generation sequencing methods [1]. Tran-
scriptome data can reveal early changes at the level of 
intracellular processes in both in vitro and in vivo assays 
and are, therefore, seen as a promising tool for next 
generation risk assessment (NGRA). NGRA relies on 
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Abstract
Next-generation risk assessment relies on mechanistic data from new approach methods, including transcriptome 
data. Various technologies, such as high-throughput targeted sequencing methods and microarray technologies 
based on hybridization with complementary probes, are used to determine differentially expressed genes (DEGs). 
The integration of data from different technologies requires a good understanding of the differences arising from 
the use of various technologies.

To better understand the differences between the TempO-Seq platform and Affymetrix chip technology, whole-
genome data for the volatile compound dimethylamine were compared. Selected DEGs were also confirmed using 
RTqPCR validation. Although the overlap of DEGs between TempO-Seq and Affymetrix was no higher than 37%, 
a comparison of the gene regulation in terms of log2fold changes revealed a very high concordance. RTqPCR 
confirmed the majority of DEGs from either platform in the examined dataset. Only a few conflicts were found 
(11%), while 22% were not confirmed, and 3% were not detected.

Despite the observed differences between the two platforms, both can be validated using RTqPCR. Here we 
highlight some of the differences between the two platforms and discuss their applications in toxicology.
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first step, and are, therefore, more time and cost- inten-
sive compared to recently developed targeted next- gen-
eration sequencing technologies (see next paragraph). 
However, they have proven to be robust and reproduc-
ible, and are thus widely used to identify biomarkers and 
transcriptional signatures for toxicological endpoints. For 
example, they have recently been used for the identifica-
tion of toxicological signatures of developmental toxi-
cants [2].

Meanwhile, next generation RNA-sequencing (NGS) 
methods are based on sequencing where labeled nucleo-
tides provide a base-by-base readout. Several platforms, 
such as Illumina and Ion Torrent (Thermo Fischer), scale 
this process by parallelization. NGS techniques include 
library preparation, cluster formation, sequencing, and 
alignment. In contrast, Templated Oligo-Sequencing 
(TempO-Seq) employs a „hybridization to detector oligo“ 
- step that simplifies library preparation. This technique 
has the advantage that only targeted sequencing is per-
formed, thus eliminating the need for RNA isolation. This 
adjustment not only reduces costs, but also resolves dif-
ficulties in reading depth [3]. The targeted techniques 
TempO-Seq and Affymetrix share the commonality that 
they are based on a pre-designed panel of oligonucle-
otides which target specific sequences. TempO-Seq 
aims to solve difficulties of hybridization specificity with 
a requirement of perfect alignment, of detector oligos 
to highly specific target sequences, before ligation [3]. 
In contrast, Affymetrix employs mismatch and control 
probes to allow for subtraction of noise and cross-hybrid-
ization computationally [4].

NGS methods allow high- throughput testing of sam-
ples and have, therefore, gained significant importance in 
screening of compounds to investigate gene expression 
changes in a time and concentration -dependent manner. 
Examples of this context include the ToxCast and Tox21 
projects, which recently published a large inventory of 
omics data from 120 in vitro and in vivo assays [5–7]. 
Dose- response data are of particular interest because 
these data allow for the derivation of benchmark concen-
trations that describe the onset of gene deregulation and 
pathway perturbation. In the near future, such data may 
be used for in vitro to in vivo extrapolation to set a point 
of departure for risk assessment [8].

Several studies have investigated the concordance 
between chip and next- generation sequencing technolo-
gies [9–11]. These studies showed consistencies between 
TempO-Seq analysis and other more established tech-
niques [9]. RNA-Seq has both advantages such as higher 
statistical power, and disadvantages, including more 
noise and expense. Two studies reported an overlap of 
about 80 to 90% differentially expressed genes (DEGs) for 
RNA-Seq and microarray techniques [11, 12].

Reverse- transcription quantitative PCR (RTqPCR) 
is considered the gold standard for measuring mRNA 
expression in both in vitro and in vivo studies. RTqPCR 
is a widely established technique for detecting mRNA 
expression. It enables the quantification of gene expres-
sion changes with a high dynamic range and high sensi-
tivity, and depending on probe design, high specificity. 
These properties make this technique applicable for a 
wide range of experimental conditions and comparisons 
[13].

This study compares the dose- dependent transcrip-
tome data obtained for the volatile compound dimeth-
ylamine- in a pulmonary cell line (A549 cells). A549 
cells were exposed to dimethylamine via an air-liquid-
interface (ALI) in an in vitro system. The results from 
Affymetrix and TempO-Seq approaches were compared 
for concordance in differential mRNA expression analy-
sis. Any differences due to technology used were identi-
fied using technique specific standard approaches. There 
was a high level of concordance in the dose-dependent 
up- and downregulation of genes measured by both tech-
niques, as quantified by fold change (FC). However, when 
comparing the overlap of DEGs derived from each tech-
nique, significant differences were observed. To deter-
mine which technique more comprehensively represents 
the cellular response at the gene level, a subset of 269 
genes was validated using RTqPCR.

Methods
Chemical
Chemicals were purchased at the highest purity available. 
Dimethylamine (DMA, purity > 99%, Dimethylamin 2.0) 
was purchased from Linde Gas.

Cell culture and exposure
The A549 cell line was purchased from a commercial 
supplier (ATCC; LGC Promochem). Cells were rou-
tinely taken from a stock pool and grown in 75cm2 flasks 
by use of Dulbecco´s MEM medium (Seromed, Berlin) 
supplemented with 10% FCS and antibiotics. Cells were 
passaged every 3 to 4 days. During each passage beside 
continuous microscopic observation, cell quality and 
quantity were checked by use of an electronic cell coun-
ter (CASY® Cell Counter + Analyser System; Schärfe Sys-
tem, Reutlingen, Germany). [14]

Set-up of the air-liquid-interface cell culture system
To mimic the exposure situation of the epithelium in the 
in vivo lung the most common approach used is the air-
liquid-interface (ALI) technique based on cell cultures 
on microporous membranes. Therefore, cells were ini-
tially cultivated under their cell type specific conditions 
in 75  cm² culture flasks using submerged conditions. 
Culture medium was changed every to 2–3 days. Before 
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reaching 80% confluence, cells were subcultivated. Dur-
ing a cell passage an aliquot of the cells was then seeded 
on microporous membranes (Inserts, BD Falcon; 0.4 μm 
pore size; growth area ~ 1  cm²). Cells were further cul-
tivated on the membranes for approximately 72  h until 
they reached a confluent monolayer as inspected by light 
microscopy. Serum was removed from the culture dur-
ing a medium change 18 h before exposure. Previous to 
the exposure with the model substances, residual liquid 
from the apical side of each cell monolayer was gently 
removed. During the treatment, cells were nutrified by 
culture media from beneath the membrane solely while 
being exposed to the test substances from the top. [14]

Cell exposure
A549 cells were exposed to dimethylamine under ALI-
conditions in 12-well plates (P.R.I.T.® ExpoCube®) [15]. 
Exposure took place for 60  min by applying exposure 
flows of 3 ml/min per 1 cm² ALI culture. The experimen-
tal design was based on 3 groups including 4 cultures / 
plate being exposed to the test substance, 4 cultures / 
plate being exposed to clean air as exposure control and 
the remaining wells / plate as non-exposure controls (no 
application of exposure flow). Vapor concentrations were 
set up by controlled in-line evaporation of the liquids 
using an impinger and dilution with clean air. Concen-
trations were monitored online using quantitative FT-IR 
analysis (Gasmet DX4000). High dose (HD) = 81.7 ppm, 
mid dose (MD) = 41.1 ppm, low dose (LD) = 14.9 ppm.

Exposure for one hour was followed by a 23  h recov-
ery period before the next exposure started. Within a 
72 h interval a total of 3 exposure and recovery periods 
were accomplished without medium change in between. 
For each exposure condition 3 biological replicates where 
tested, each was based on 2 pooled wells.

RNA isolation
For the TempO-Seq platform RNA isolation is not man-
datory but may benefit the analysis as it ensures a good 
quantity of free RNA in the samples. As RNA isolation 
is needed for Affymetrix analysis this step has been 
performed and purified RNA was aliquoted for fur-
ther analysis. RNA was isolated and purified using the 
RNeasy MiniKit (Qiagen) and treated with DNase (Qia-
gen). RNA concentration (A260) and purity (A260/A280 
ratio) were measured by spectrophotometry (NanoDrop™ 
2000 Spectrophotometer, software version 1.6.198, Ther-
moFisher Scientific). RNA integrity number (RIN) was 
evaluated using an Agilent 2100 Bioanalyzer® (Agilent 
Technologies). All RNA samples showed very good qual-
ity as indicated by high RIN values between 9.0 and 10.0. 
The identical RNA from each sample was examined on all 
three techniques.

Transcriptome microarrays analysis
Genome-wide transcriptome analysis was undertaken 
using the Affymetrix GeneChip™ Whole Transcript (WT) 
PLUS Reagent Kit and the GeneChip™ Human Clariom™ 
D Arrays according to the manufacturer’s recommenda-
tion (ThermoFisher). Total RNA (100 ng) was used as 
a starting material for target preparation. Microarrays 
were subsequently washed, stained, and scanned using 
the Affymetrix GeneChip™ Command Console Software 
with .cel files as data output.

TempO-Seq analysis
The TempO-Seq sequencing [3] has been carried out 
by BioClavis using the probe panel whole human tran-
scriptome v1 which comprises 21.110 probes designed 
to cover all human coding genes. Quality control of the 
samples confirmed that at least 50ng/µl RNA were found 
in each sample and the initial Read Count Analysis was 
conducted by BioClavis (Supplement 1).

Preprocessing of raw reads including alignment was 
performed by BioClavis using the TempO-SeqR work-
flow, providing the results in count matrix format. 
Samples counts were then normalized using counts per 
million (CPM) normalization and transformed using log2 
and an offset of 1. A principal component analysis (PCA) 
was carried out with the prcomp-function of the build-in 
R-Package “stats” version 4.1.1.

Differential expression analysis
The individual dose groups and untreated controls were 
compared to the clean air controls. The significant dif-
ferentially expressed genes (DEGs) are determined on a 
per condition bases (HD, MD, LD, UT) by application of 
the respective platform dependent techniques, as briefly 
described in the following.

Array data were analyzed with the Transcriptome 
Analysis Console (TAC) Software 4.0 (ThermoFisher). 
The microarray data were normalized by the robust 
microarray averaging (RMA) method, and subjected to 
quality control metrics, for instance, check of hybridiza-
tion controls and visual inspection of PCA and intensity 
distributions. Visualization methods of gene level differ-
ential expression were employed as recommended in the 
TAC software. The criteria for a given gene to be a DEG 
on the microarray platform was p-value < 0.05. Since lin-
ear fold changes span positive and negative space, the 
threshold for linear fold change absolute values was set to 
> 2 to cover both sides.

The differential expression analysis of the normal-
ized count data from TempO-Seq was carried out with 
a customized workflow in the R-statistical program-
ming language (Version 3.6), comprising the DESeq2-
package (Version 1.26.0). Read count distributions per 
sample as well as binomial distribution of counts per 
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transcript were checked in preparation of contrasting. 
The DESeq2 normalization step was done by setting nor-
malization factors corresponding to the CPM factors 
per sample. The criteria for DEGs where false discovery 
rate (FDR) < 0.05 and an absolute of log2 fold change 
(log2FC) > 0.5.

DEG Comparison
To enable comparisons between different technologies, 
Probe-IDs of both the TempO-Seq and Affymetrix pan-
els were mapped to Ensemble transcript IDs (human 
genome version 38). For Affymetrix the Ensembl map-
ping provided was used in version (na36.hg38). For 
TempO-Seq the probeset was aligned to the version 
GRCh38v100 of the Ensembl genome to find the targeted 
transcripts. Transcript id could then be joined to find 
the probe-to-probe mapping. The linear fold changes 
for Affymetrix were transformed to log2FC. Spearman 
Correlation analyses of the different platforms were per-
formed with the stat_cor function of the ggpubr R-Pack-
age (version 0.4.0).

Quantitative RTqPCR
Single gene expression analyses were performed using 
customized RT2 profiler PCR arrays (Qiagen) in a 384-
well format as described in detail by Schwotzer et al. 
[4]. In total, 294 genes were analyzed, consisting of tar-
get genes and stable expressed reference genes from 
the Affymetrix and TempoSeq transcriptome data sets. 
cDNA synthesis was performed using the RT2 first strand 
kit (Qiagen). RT2 profiler PCR arrays were conducted 

with an RNA equivalent of 2ng using the PCR system 
Applied Biosystems® ViiA™7 (ThermoFisher Scientific). 
During the qPCR an individual cycle threshold (CT) 
value was generated per well. Genes were categorized as 
“non detected” if no fragment was detected. NormFinder 
for R version 5; [16] was used to identify two genes with 
most stable expression amongst all samples to be used as 
normalization genes out of the included reference genes. 
Data analysis of exported and normalized CT values was 
performed based on the comparative ∆∆CT method 
described by Schmittgen and Livak [17]. For additional 
statistics a linear model described by [18] was employed 
using the pcr package (version 1.2.2) implementation 
[19].

Results
Initial analysis of Affymetrix and TempO-Seq data
Quality control
We used a Principal Component Analysis (PCA) on both 
the Affymetrix and TempO-Seq data to identify possible 
outliers, as shown in Fig. 1. The PCA results indicate that 
the variability observed in both platforms correlates with 
the dosed concentrations of dimethylamine (Fig. 1).

In the TempO-Seq dataset, one sample was identified 
as outlier in the PCA and was subsequently removed 
from all further analysis (Supplement 3, SF 1).

A higher overlap of samples from different dosed 
groups is observed in the PCA on Affymetrix data. This 
serves as a first indication that the treatment effect is 
less pronounced for microarray data (Fig. 1A) compared 
to TempO-Seq data (Fig.  1B). One explanation for the 

Fig. 1  Principal component analysis (PCA) shows a separation of samples that correlates with their respective concentration levels: high dose (HD), 
mid dose (MD), low dose (LD), clean air control (CA), and untreated (UT). For the labelling of the individual samples a table is included in Supplement 2. 
One sample (S_6_B5_3) from the TempO-Seq mid dose group was removed as an outlier, due to its large distance from other samples. The outlier is not 
included in the plot for better visibility of the remaining samples in the PCA. See the Supplement 3 for PCA with outlier sample included. The clusters 
formed by the treatment conditions, (colored circles) show more overlap for the microarray experiment (A) compared to TempO-Seq (B). This indicates 
that the treatment-related differences among the samples are less pronounced in the microarray experiment
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observed difference is the larger amount of non-coding 
sequences, as well as small- and precursor-microRNAs 
on the Affymetrix chip (see below Table 1). This assumes 
that coding genes are more affected by the treatment 
compared to other sequences.

However, the trend is the same for both platforms. 
The PCA shows a clear clustering of samples by tested 
concentration, resulting in a separation of samples in a 
concentration- dependent manner as the dose increases 
(Fig. 1A and B). Untreated and clean air controls form a 
joint group, indicating that there are minimal changes at 
the gene level due to treatment with clean air.

DEG Analysis
The analysis of Affymetrix microarrays showed signifi-
cant DEGs for UT, LD, MD, and HD relative to air con-
trol. The fold change for individual DEGs - generally 
increased or decreased in a dose-dependent manner. In 
the HD group, 1421 DEGs (694 up / 727 down) had a 
p-value below 0.05 and an absolute linear fold change > 2. 
This represents about 1% of the measured probes. The 
MD group had 1029 DEGs (414 up / 615 down), while 
the LD group had 1196 DEGs (605 up / 591 down). The 
UT showed 977 DEGs (570 up/ 407 down), but these 
were later discarded because they were not found in the 
overlap of probes between the two platforms (Table  1 
below). The counts of DEGs within the overlap are shown 
in Table 2 below. Using the FDR-criteria for DEGs anal-
ogous to the TempO-Seq analysis, only 59 sequences in 
the HD condition were found. As a result, no multiple 

test correction was applied in the Affymetrix selection of 
DEGs, which is consistent with the default criteria in this 
version of the TAC software. The analysis of TempO-Seq 
data revealed an average of 6.2 million counts per sample. 
When comparing samples treated with dimethylamine 
at different concentration levels to air control samples, 
there was an increase in the total number of DEGs with 
increasing test concentration.

In the HD group, 587 DEGs (325 up / 262 down) were 
identified, representing 2% of measured sequences. In 
the MD group, 65 (30 up / 35 down) DEGs were found 
-, while in the LD group, there were 61 DEGs (23 up / 
38 down). In the UT group, 4 downregulated DEGs 
where found. DEGs from the UT group were not to be 
considered DEGs in any other dose group, and the same 
4 genes were also not found to be DEGs in any of the 
other groups. The number of DEGs in each condition 
was almost equally split between up- and downregulated 
genes.

Concordance of DEGs within the Affymetrix and TempO-
Seq data
The number of probes and the sequence segments mea-
sured differed significantly between the two sequencing 
techniques. Thus, probes may have different specificities 
when matching a given transcript and number of vari-
ants. The probe panels of the Affymetrix and TempO-Seq 
technologies showed a 1-to-N mapping of the probe-
sequence to Ensembl transcript ID, meaning one probe 
can capture multiple transcripts, typically from the same 

Table 1  Table of probe labels and overlap of both platforms Affymetrix and TempO-Seq. The largest overlap of probes is found with 
the label of Multiple_Complex and coding genes
probelabel No. of probes 

Affymetrix
No. of 
probes 
TempO-Seq

No. of probes 
mapped to 
Ensembl ID 
(Affymetrix)

No. of ensembl 
transcripts 
covered by 
Affymetrix

No. of probes 
mapped to 
Ensembl 
(TempO-Seq)

No. of ensembl 
transcripts cov-
ered by TempO-
Seq panel

Over-
lapping 
probes 
(N-to-N)

Coding 18,858 3846 7422 3339 5230 3589
Multiple_Complex 29,510 24,729 145,197 16,445 38,763 16,824
Non-coding 66,845 13,943 19,621 19 33 31
Precursor_microRNA 3297 1168 1168 - - -
Pseudogene 4340 3573 3613 62 89 89
Ribosomal 507 103 103 - - -
Small_RNA 2386 411 414 - - -
tRNA 6 - - - - -
Unassigned 10,001 21,110 486 491 - - -
Total 135,750 21,110 48,259 178,029 19,865 44,115 20,533

Table 2  Overlap and union of DEGs in HD condition for both Affymetrix and TempO-Seq platforms
Affymetrix TempO-Seq Overlap

Affymetrix – TempO-Seq
All DEGs

Whole genome (20,533 genes) total 414 584 153 845
up 267 330 95 454
down 147 254 58 295
conflicting 96
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gene. Both panels were joined using Ensembl IDs and 
consolidated by keeping only unique probe-to-probe 
mappings. A total of 20,533 probes were identified that 
target the same 18,037 transcripts in both systems. As 
shown in Table 1, these 20,533 mapped probes represent 
the full set of comparable measurements.

The Affymetrix probeset includes additionally 52,902 
Non-coding genes, 2129 precursor-microRNA, 1975 
small RNA, 404 ribosomal RNA and 6 tRNA, which are 
not referenced by Ensembl transcript IDs (Table 1). Con-
sequently, they cannot be mapped to the TempO-Seq 
panel.

The two platforms were compared based on shared 
measured probes corresponding to the above described 
20,533 mapped probe IDs. In this dataset, Affyme-
trix reported 414 DEGs with 267 upregulated and 147 
downregulated. TempO-Seq showed 584 DEGs with 330 
upregulated and 254 downregulated. Only 153 DEGs 
intersected between the two platforms with 95 upregu-
lated and 58 downregulated. This corresponds to 37% 
and 26% of the DEGs measured for Affymetrix and 
TempO-Seq, respectively (Table 2).

A correlation of fold changes from all obtained DEGs, 
stratified by their origin (either Affymetrix, TempO-Seq, 
or consistent across both) show high concordance in 
terms of up- and downregulation within both platforms. 
The majority of DEGs (88.6%) fall in the bottom left 
(downregulated) and top right quadrant (upregulated) of 
the plot, with few conflicting DEGs (11.36%, N = 96; top 
right and bottom left quadrant, Fig. 2; Table 2).

Validation of the platforms DEGs using RTqPCR
The small number of overlapping DEGs in both plat-
forms motivated us to investigate the “true number of 
DEGs” more closely. For this analysis, we used RTqPCR 
to validate DEGs in a smaller dataset of 294 genes. 
These genes represent (i) DEGs in both platforms at HD 
(N = 91, geneset I), (ii) DEGs only in the Affymetrix plat-
form (N = 33, geneset II) or in the TempO-Seq platform 
(N = 122, geneset III) and (iii) genes which are not DEGs 
in either platform (N = 48), including reference genes for 
normalization. Four genes of geneset I and II, as well as 
four from geneset III, were not detected in RTqPCR. The 
dataset of DEGs in either TempO-Seq or Affymetrix with 
validation data totals 238 DEGs, excluding not detected 
(n.d.) genes.

Dose dependency
The effect of dose on the validation geneset was assessed 
using three sub- cytotoxic dose levels. The genes that 
were found to be differentially expressed at the low dose 
(LD) were largely also found to be DEGs in the MD and 
HD conditions. The largest absolute fold change value for 
these genes, indicating the most pronounced effect, was 

found at HD condition. Figure 3 displays a dose-depen-
dent increase in DEGs and their associated log2FC values 
per platform.

The stronger color intensity in the heatmap indicates 
that the HD conditions can be distinguished due to their 
high fold change values. The dendrogram at the top of 
the heatmap shows the distance between the different 
conditions, as determined by hierarchical clustering with 
complete linkage. While the LD and MD conditions clus-
ter well across the different techniques, the Affymetrix 
HD shows a slight deviation from its group. Since the HD 
effects are most pronounced and consistent with what is 
observed in MD and LD conditions, we focused on vali-
dating the HD condition.

Confirmation of DEGs by RTqPCR
The dynamic range, as expressed by log2FC values, varies 
between the Affymetrix, TempO-Seq, and RTqPCR tech-
niques. The scale limits for TempO-Seq range from − 5 to 
7.5, while those for RTqPCR from − 2 to 6. In contrast, 
the values for Affymetrix range from between − 3 and 
3, suggesting a lower dynamic range for the Affymetrix 
platform.

This effect is exemplified by the gene IL1RL1. In 
RTqPCR and TempO-Seq, IL1RL1 shows the high-
est upregulation with 5.6 log2FC and 7 log2FC, respec-
tively. In Affymetrix, it is among the most upregulated 
with a 2.5 log2FC. Despite these quantitative differences 
in fold change, IL1RL1 it is detected as DEG in all three 
techniques.

The validation dataset comprises 238 genes, excluding 
those n.d., which are DEGs in one of the two sequenc-
ing platforms. Of these 238 DEGs, 186 were initially 
confirmed as DEGs by RTqPCR in the HD group before 
identifying 27 genes with conflicting expression direc-
tion. A total of 159 DEGs were confirmed to have a 
similar fold change direction across all three systems 
(Table  3). However, 11 DEGs had an opposing fold 
change direction determined by RTqPCR in all systems. 
Additionally, for 9 genes, the fold change direction deter-
mined by RTqPCR did not show the same direction 
change as Affymetrix, and for 7 genes, it did not show the 
same direction change as TempO-Seq.

Of the 238 DEGs in the validation set, Affymetrix 
contributed 120 genes from genesets I and II. RTqPCR 
confirmed 92 of these DEGs, while 2 DEGs showed the 
opposite fold change (conflicting), and 26 were not dif-
ferentially expressed (not confirmed).

TempO-Seq contributed 205 genes from genesets I 
and III to the validation set of 238 DEGs. RTqPCR con-
firmed 144 DEGs, while 15 DEGs showed the opposite 
fold change, and 46 were not differentially expressed (not 
confirmed).
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Of the 87 genes in geneset I (both platforms), 66 were 
confirmed by RTqPCR. One gene showed a similar direc-
tion between Affymetrix and TempO-Seq, but the oppo-
site direction for RTqPCR at HD condition. A total of 20 
genes were not confirmed as DEGs in RTqPCR at HD 
condition. However, 16 of these were DEGs in either the 
MD or LD conditions for the RTqPCR validation.

The fold changes for both platforms shows very good 
correlation coefficients of 0.88 to 0.89 with the RTqPCR 
validation (Fig.  4A, B). A good correlation of the fold 
changes is also observed for genes that were differen-
tially expressed in either Affymetrix or TempO-Seq but 

were not confirmed by RTqPCR as significantly changed 
(Fig. 4, C and D).

Despite the high correlation coefficients, some genes 
considered to be differentially expressed in either plat-
form show fold changes of opposite direction in the 
RTqPCR validation. This is seen for 2 genes that were 
upregulated in Affymetrix but downregulated in RTqPCR 
(Fig. 4A), and for 15 genes in TempO-Seq with the same 
trends (Fig. 4B).

Pathway enrichment analyses are often performed 
using a shortlist of “top” regulated DEGs. However, a 
comparison of three different datasets demonstrates 

Fig. 2  Scatterplot of the log2 transformed fold changes for genes differentially expressed in Affymetrix and/or TempO-Seq at the HD: red – DEG in Af-
fymetrix only; blue – DEG in TempO-Seq only, green – DEG in both platforms. DEGs significant in both platforms (green) show consistency in terms of 
direction. Whereas some DEGs of either platform (red & blue) can be found expressed in opposing direction (top-left, bottom-right) albeit not being 
significant for one platform or direction
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that the absolute value of FC alone is not always a reli-
able descriptor for ranking DEGs. For example, the gene 
IL1RL1 has a very low absolute expression in control 
samples, with 4 log intensity (Affymetrix), 9.5 mean CPM 
(TempO-Seq), and 35 ct (RT-qPCR). As a result, - a slight 
increase in expression levels due to treatment, can easily 
result in a higher fold change. On the other hand, genes 
with already high expression levels in controls, such as 
S100A6, which has a log intensity value of 10 in Affyme-
trix, 80,000 mean CPM in TempO-Seq, and 16 ct in 
RTqPCR, require a relatively large change in expression 
to achieve a significantly high (in our study 1.5) or similar 
fold change. Therefore, in addition to p-values and fold 
change, base expression should also be considered when 
selecting genes of interest, taking into account platform 
differences.

These results indicate that both the Affymetrix and 
TempO-Seq platforms detected DEGs with some margin 
of error. To summarize, 24% of the 246 genes were either 
not confirmed or not detected by RTqPCR. Addition-
ally, 11% of the genes showed conflicts in the direction of 
fold change. Of these, RTqPCR conflicted with the fold 
changes of DEGs that agreed between Affymetrix and 
TempO-Seq (n = 11; 1 from geneset I, 1 from geneset II, 
9 from geneset III). Furthermore, RTqPCR could not con-
firm the direction of fold change for Affymetrix (n = 9; 9 

from geneset III) and for TempO-Seq (n = 7; 2 from gen-
eset II, 5 from geneset III).

A minority of 26 DEGs for the Affymetrix platform 
and 46 DEGs for the TempO-Seq platform were not con-
firmed by RTqPCR. Of these, 2 and 15 genes had signifi-
cant changes but in opposing direction to RTqPCR. The 
overlap of Affymetrix and TempO-Seq shows that one 
gene (HMGA1) was agreed by both platforms but showed 
opposite fold change direction in RTqPCR. A total of 20 
genes were concordant in Affymetrix and TempO-Seq 
but could not be confirmed by RTqPCR.

An inspection of the individual gene expression values 
showed similar fold changes for genes overlapping in the 
two platforms which were not confirmed by RTqPCR 
(n = 20; Table  3). These genes showed similar response 
to dose in terms of fold change and often a significant 
change for MD in RTqPCR, but the significance was not 
achieved at HD in the RTqPCR platform. These genes are 
shown in the supplement (Supplement 3, SF 2). To better 
understand the inconsistencies a closer look at individual 
genes is shown in the next section, highlighting the dif-
ferent types of conflicts between the three techniques by 
example of individual gene expression values.

Genes can exhibit differences in fold change and sig-
nificance across the different platforms. This observation 
is exemplified in Fig.  5, which compares the individual 

Fig. 3  The heatmap shows the log2 fold changes for 238 genes, which have been shown to be differentially expressed in either the Affymetrix or 
TempO-Seq platforms. Generally, both platforms show similar expression direction with the lower dose showing little change overall with 28 genes being 
significantly differentially expressed
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expression values for a selection of genes in Affymetrix, 
TempO-Seq and RTqPCR. The column for genes con-
firmed by RTqPCR displays expression values for genes 
that were concordant between platforms and confirmed, 
as well as genes individually detected and confirmed by 
each platform. While not all differences in gene expres-
sion are shown, three distinct cases are highlighted: poor 
probe design, values just below an arbitrary cutoff, and 
high data variability.

For FN1, all three systems agree on a dose-dependent 
downregulation, which is shown to be significant starting 

with the MD. For DCLK1, a gene detected by Affyme-
trix and confirmed with RTqPCR, TempO-Seq showed 
no significant differential expression. The low num-
ber of counts for this gene in the TempO-Seq data sug-
gests that the design of the probe by BioClavis is flawed. 
EMP1 shows high concordance in all three systems, with 
all showing a significant dose-dependent upregulation, 
except for the HD in Affymetrix where high variabil-
ity was observed. Similar variability can be observed for 
conflicting genes in the second column of Fig. 5. Similar 
trends can be observed for LD and MD with RTqPCR 

Fig. 4  The scatterplots show DEGs of the two platforms for Affymetrix (n = 120) and TempO-Seq (n = 205) stratified for being DEG at HD in RTqPCR plat-
form. The individual panels show (A) Affymetrix DEGs with significance in RTqPCR, (B) TempO-Seq DEGs with significance in RTqPCR, (C) Affymetrix DEGs 
without significance in RTqPCR, and (D) TempO-Seq DEGs without significance in RTqPCR validation. Correlation scores are shown as R in the scatterplots. 
Correlations between the fold changes of the individual platform with the validation dataset of 238 genes comparing the two test platforms
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showing unexpected downregulation at HD with large 
error bars. In addition to not being confirmed at HD by 
RTqPCR, S100A11 shows an upregulation of 0.4 log2FC, 
which is just below the cutoff for DEGs in TempO-Seq 
(log2FC > 0.5). S100A11 showed an average signal (log2) 
of 14.7 in Affymetrix and a mean normalized count of 
22,117 in TempO-seq for the CA samples, considering 
the high absolute expression of S100A11, this gene needs 
to be evaluated for its biological relevance, despite the 
low observed fold change.

Another reason for the low direct overlap of DEGs 
in both platforms might be due to different isoforms of 
genes being targeted. In the analysis probe signals are 
summarized to a gene level. In this summarization dif-
ferent sets of gene isoforms may be considered. This is 
exemplarily illustrated for the gene DCLK1.

The gene DCLK1 has a total of 8 transcript annotations 
in ensembl GRCh38.

The TempO-Seq probe-set matches 3 transcripts 
for DCLK1. Two probe signals (DCLK1_20678 and 
DCLK1_27096) are combined for the read-out of DCLK1. 
Both probes perfectly match to exon-regions of the 
ENST00000615680.4 transcript (not shown). Each probe 
additionally matches one ensembl-transcript of this gene 
namley ENST00000460982.1 (Exon ENSE00001931884) 
and ENST00000360631.8 (Exon ENSE00003737572) 
respectively. Five transcripts out of 8 total annotated 
for DCLK1 are not covered by the TempO-Seq probes 
(Fig. 6).

The Affymetrix array contains 265 probes that target 
DCLK1 and possible exon-exon junctions. In the Affyme-
trix analysis the signal of these probes is summarized to 

Table 3  Differentially expressed genes in HD condition of Affymetrix and TempO-Seq platforms confirmed by RTqPCR validation: the 
columns show the validation gene set, DEGs from the two platforms Affymetrix and TempoO-Seq and the overlap of both

Union of DEGs
(N = 246)

DEG Affymetrix
(N = 124)

DEG TempO-Seq
(N = 213)

DEG Affymetrix + TempO-Seq
(N = 91)

Confirmed DEG* 159 (64.6%) 92 (74.2%) 144 (67.6%) 66 (72.5%)
DEG with conflicting FC** 27# 2 15 1
Not confirmed*** 52 26 (22%) 46 (22%) 20
Not detected 8 4 8 4
*Confirmed – DEG with significant difference to control determined by p-value is given for the corresponding platforms and RTqPCR; the direction of the differential 
expression, expressed as FC (up or down regulated) is similar.

**conflicting FC - DEGs with opposite FC directions.

***Not confirmed: Genes which do not show significant differential expression in RTqPCR are labelled as not confirmed.
#Subset includes DEG with similar FC direction in Affymetrix and TempO-Seq but opposite FC observed in RTqPCR (N = 11); union DEGs with similar FC direction in 
RTqPCR and TempO-Seq but conflict for Affymetrix (N = 9) and union DEGs with similar FC direction in RTqPCR and Affymetrix but conflict in TempO-Seq (N = 7).

Fig. 5  Comparison of individual gene expression for a selection of genes between all systems. The bars represent the log2 fold change for selected genes 
at LD, MD and HD. This selection exemplifies confirmation of DEGs using RTqPCR as well as conflicting results. Padj refers to p-value for Affymetrix and 
RTqPCR and to FDR for TempO-Seq (< 0.05)
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one gene level, however intensities indicate that individ-
ual exons of 7 transcripts are not detected in any condi-
tion, leaving ENST00000477664.1 as candidate to drive 
the high up-regulation of DCLK1.

Both platforms target different regions of a gene. 
Depending on splicing, a specific gene isoform can be 
differently abundant. In the presented data the upregula-
tion of DCLK1, observed in Affymetrix is clearly driven 
by a gene variant, not covered by TempO-Seq.  A better 
overlap between the two platforms could be archived 
by discarding Affymetrix probes with the consequence 
of both platforms not accurately representing DCLK1 
expression.

Discussion
Transcriptome data are widely generated and used in tox-
icological research to assess pathways and mechanisms 
that lead to adverse outcomes. This resulted in the rapid 
increase in sample and data volumes, through research 
initiatives such as ToxCast [20], RiskHunt3r [21], Preci-
sionTox [22] and PARC [23]. Furthermore, the significant 
reduction in sequencing costs in recent years, along with 
the development of new high throughput technologies 
such as TempO-Seq, has contributed to an increase in 
data. As a result, there is great interest in comparing and 
integrating datasets into subsequent analyses.

Integrating “omics” data from different platforms 
requires a good understanding of their similarities, dif-
ferences, and their associated uncertainties. In this study, 
we compared the TempO-Seq and Affymetrix platforms 
and validated a subset of genes using RTqPCR assays on 
identical RNA samples. The aim of this comparison was 
not to exclude either platform for use in toxicology, but 
to carefully examine their differences.

The Principal Component Analysis (PCA) showed that 
the treatment influenced individual samples. Samples 
with similar treatment conditions clustered together and 
were distinguishable along the first principal component. 
However, the separation of samples by treatment condi-
tion was less pronounced for the Affymetrix platform. 
This could be due to many more probes that contribute 
to the variability of the Affymetrix Clariom D samples. 
Since most of these probes are not affected by the treat-
ment, they add noise to the PCA. Additionally, even 
affected genes may contribute little to the separation 
due to the lower dynamic range achieved by fluorescent-
based read-out of the microarray technique.

In our analysis, a high dynamic range was achieved 
using TempO-Seq. This is a commonly observed benefit 
of RNA-Seq compared to microarray-based techniques. 
The higher dynamic range allows, for example, for more 
accurate evaluation of dose responses.

One major difference between the tested platforms 
is the large number of non-coding transcripts captured 
within the Affymetrix Clariom D panel target. Formerly, 
the ability to detect novel sequences was an advantage of 
using RNA-Seq over microarray-based transcriptomics 
analysis, such as Affymetrix. In the meantime, the human 
Clariom D panel represents all non-coding and cod-
ing sequences identified by RNA-Seq.  The TempO-Seq 
platform employs a targeted approach through probe 
hybridization step to reduce cost per sample, simplify 
library preparation, and enable high throughput. Despite 
using an RNA sequencing at its core, the probe set for 
coding genes in a whole-genome analysis generated by 
TempO-Seq is more limited compared to the Affyme-
trix Clariom D panel. In addition to the scope of probe 
coverage of genes, differences in the length and specific 
target sequence of probes exist. While TempO-Seq aims 

Fig. 6  Individual transcripts of DCLK1 and alignment sites of TempO-Seq probes DCLK1_27096 and DCLK1_20678. The Affymetrix probes for DCLK1 were 
combined on one row at under TC1300008609.hg.1. Some Affymetrix probes align to multiple sites within the DCLK1 gene, the first occurrence per probe 
is indicated in the plot. The current version (.5) of ENST00000615680 is no longer covered by the TempO-Seq probe
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to target multiple isoforms of a gene with a single probe, 
Affymetrix has extended its probe-set in newer panels 
to include non-coding regions, junctions and predicted 
transcript regions. The inclusion of control and mismatch 
probes results in an increase of complexity in the analy-
sis. Still the Affymetrix platform identified fewer DEGs 
compared to TempO-Seq (414 / 584), due to the lower 
dynamic range of florescence-based techniques and noise 
resulting from shorter and less specific probes. Affyme-
trix is not able to pick up signals of low abundant genes.

At the moment analysis of alternate splicing events 
is not possible using the TempO-Seq technology as no 
probes are included to target specific junction regions.

As exemplarily shown for the DCLK1 some probes 
require optimization to cover all transcript variants 
and BioClavis is continuously improving and updating 
the TempO-Seq probe panel. While the ensembl refer-
ence genome - transcript annotations are being updated 
as well. With the update of ENST00000615680.4 to 
ENST00000615680.5 in the latest ensembl version, 
the two DCLK1 probes no longer target this transcript 
sequence.

The number of measured probes can influence the anal-
ysis outcome because statistics such as adjusted p-values 
are affected by the number of probes when multiple test-
ing is considered [24]. After identifying DEGs, we applied 
a correction for multiple testing to the TempO-Seq data-
set to determine significant changes. But this correction 
is not part of the standard analysis of the much larger 
Affymetrix Clariom D probe panel. Since this study only 
considers the coding genes of the Affymetrix Clariom 
D probe panel, it could be useful to recalculate adjusted 
p-values for only mapped probes. We did not perform 
this adjustment using Benjamini-Hochberg correction 
because we wanted to compare DEGs derived using typi-
cal standard criteria for each procedure.

The comparison of the fold change of DEGs between 
the two investigated platforms Affymetrix and TempO-
Seq, showed a high concordance. In the HD condition, 
about 89% of all DEGs agree in the direction of fold 
change. However, only 18% of these DEGs are considered 
significant by both platforms, representing 26% and 34% 
of DEGs for Affymetrix and TempO-Seq, respectively. A 
similar trend was observed across different concentration 
levels.

At LD condition, the directions of fold change also 
showed a high correlation, but for fewer DEGs as the 
overlap shrank to only 10 DEGs out of a total of 216 
DEGs (165 DEGs for Affymetrix and 61 DEGs for 
TempO-Seq). Despite the high concordance in regulation 
of genes, the number of identified DEGs varied between 
the two platforms.

In order to archieve a higher overlap between the two 
platforms a comparison based on target regions of probes 

could be used, this however would require highly cus-
tomized analysis workflows for each platform.

The p-values for each platform were used to determine 
if there was a significant difference from the control. The 
outcome was then used to compare the platforms. For the 
validation using RTqPCR, the significance of difference 
for a gene compared to control is not as critical as the 
direction and size of expression change. RTqPCR results 
for validation are commonly accepted without statistical 
analysis. The high similarity of expression in the 20 genes 
concordant between Affymetrix and TempO-Seq, but not 
significantly confirmed by RTqPCR could be explained 
by the different analysis strategies used for each system. 
These differences are determined by the underlying tech-
niques used, such as the binomial distribution of NGS 
data versus the linear model employed for array-based 
and PCR- based techniques. In this study, the goal was 
not to harmonize analysis strategies, but to compare the 
results of differential expression analysis as it would be 
the preferred approach for each given platform.

Our findings are consistent with previous publications, 
which reported a low overlap of DEGs when the effects 
of treatment are minimal. For example, 12.5% overlap of 
DEGs was observed for the compound diclofenac across 
the microarray and RNA-Seq platforms, with a total of 
210 DEGs. In contrast, a much larger overlap of 78.5% 
was observed for the more active compound carbon tet-
rachloride, which induced 2,275 DEGs in both platforms 
[12].

Our analysis of dimethylamine showed an overlap of 
153 DEGs (18%) for a total of 845 DEG across the two 
platforms (Table 2).

The Spearman correlation between the two platforms 
was R = 66% (Fig. 2). This correlation is negatively affected 
by genes with non-significant changes from either plat-
form due to the union combination. The correlation of 
overlapping genes showed, however, a higher correla-
tion coefficient of 89% (Supplement 3, SF 3). This find-
ing is also in agreement with a recent study of Rao and 
colleagues [12], in which the correlation coefficients 
increased for overlapping DEGs compared to unfiltered 
fold changes from R = 44–67% to 60–83%.

The comparison presented in this paper is based on 
a more evenly weighted differential expression analy-
sis as compared to the data of Rao et al. The ratio of 
DEGs found in Affymetrix over the number of DEGs in 
TempO-Seq in our data was closer to 0.7, compared to 
10 (DEGs in RNA-Seq over DEGs in microarray) for the 
comparison of microarray with RNA-Seq published by 
[12]. In the study of Rao et al. the GeneChip Rat Genome 
230 2.0 Array was used. This microarray had captured 
only about a tenth of the DEGs captured with RNA-
Seq.  Whilst in the present study the number of DEGs 
found with the Affymetrix Clariom D probe panel and 
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TempO-Seq whole transcriptome probe panel is much 
closer to a ratio of 1.

Like previous studies [12, 25], our analysis show that 
the concordance of two platforms depends on the tran-
script abundance and additionally highlight the impor-
tance of selecting a probe-set covering the biological 
space fit for the scientific question. It is also important to 
use the same version of the reference genome for map-
ping probe signals when comparing platforms.

The validation system using RTqPCR to confirm the 
overlap of DEGs showed that 22% of results from either 
platform were false positives. Of the genes selected for 
Affymetrix, 76% were confirmed, while 70% of genes 
were confirmed for TempO-Seq.  Even among the over-
lap of DEGs from both Affymetrix and TempO-Seq, only 
76% were confirmed, suggesting some uncertainty inher-
ent in RTqPCR. None of the platforms could be validated 
to 100% by RTqPCR, and some probability of false posi-
tive is expected for any platform. The variable results per 
platform indicate a need for better standardized analysis 
frameworks for application of transcriptomics data in 
toxicology. As observed in the correlation of fold changes 
between the Affymetrix and TempO-Seq platforms, the 
directions for most DEGs agree and often the amounts 
coincide. Similar findings are presented in a technical 
note by Affymetrix which showed a good correlation of 
fold changes between Affymetrix and RTqPCR validation 
[26, 27].

Since the criteria for statistical significance differ 
between platforms and yield different DEGs, standardiz-
ing the analysis approach would be beneficial for achiev-
ing more consistent results, better reproducibility, and 
the ability to integrate various datasets, such as those for 
a chemical stressor. Additionally, transparent mapping of 
probes to target regions, harmonizing the probe designs, 
which differ between the two platforms and the RTqPCR 
technique, could help improve concordance.

Further pathway analysis will improve our understand-
ing of the relevance of changes in gene transcription. Rao 
et al. showed that there was an improved concordance 
when comparing platforms on a pathway level instead 
of the DEGs. This is expected to some degree, as known 
pathways tend to feature well studied genes or gene prod-
ucts, which are more likely to have been reproducibly 
measured in the past. Therefore, they are more likely to 
yield concordant results in a platform comparison.

In other words, pathway analyses are inherently biased 
by previous knowledge towards genes with little base-
line variability. Moreover, the results of pathway analysis 
results depend on the set of pathways chosen. Less biased 
techniques include weighted-gene correlation networks 
(WGCNA), which can be used to extract more biologi-
cally interpretable results in future analysis.

Conclusion
By using these very sensitive techniques, differences 
were observed by performing analyses on different plat-
forms. Each of the three systems used, yielded additional 
DEG candidates with statistical significance. Nonethe-
less, only about 10% of the detected genes in the overlap 
of Affymetrix and TempO-Seq were inconclusive due to 
conflicting results.

For a very accurate measure, the low-throughput tech-
nique RTqPCR is still needed for validation. The require-
ments for a platform will vary depending on the research 
question, from high-throughput covering many genes for 
screening to covering more specifically selected genes (in 
many testing conditions) for regulation.

TempO-Seq can enable targeted sequencing for dose-
response analysis with high-dynamic range in a cost-
effective manner for testing many compounds/samples. 
For identification of new pathways and processes driven 
by transcripts (including miRNA), platforms with appro-
priate probe panels or capable of discovering novel tran-
scripts are still imperative.

In toxicology there is a requirement for a vast amount 
of data given the size of the chemical domain, the need to 
incorporate concentration ranges, as well as several cell 
lines in the case of in vitro testing. Thus, strategies need 
to be developed to integrate different types of data.
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