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Abstract 

Background Effective population size (Ne) is a pivotal parameter in population genetics as it can provide informa-
tion on the rate of inbreeding and the contemporary status of genetic diversity in breeding populations. The popula-
tion with smaller Ne can lead to faster inbreeding, with little potential for genetic gain making selections ineffective. 
The importance of Ne has become increasingly recognized in plant breeding, which can help breeders monitor 
and enhance the genetic variability or redesign their selection protocols. Here, we present the first Ne estimates based 
on linkage disequilibrium (LD) in the pea genome.

Results We calculated and compared Ne using SNP markers from North Dakota State University (NDSU) modern 
breeding lines and United States Department of Agriculture (USDA) diversity panel. The extent of LD was highly 
variable not only between populations but also among different regions and chromosomes of the genome. Overall, 
NDSU had a higher and longer-range LD than the USDA that could extend up to 500 Kb, with a genome-wide aver-
age r2 of 0.57 (vs 0.34), likely due to its lower recombination rates and the selection background. The estimated Ne 
for the USDA was nearly three-fold higher (Ne = 174) than NDSU (Ne = 64), which can be confounded by a high degree 
of population structure due to the selfing nature of pea.

Conclusions Our results provided insights into the genetic diversity of the germplasm studied, which can guide 
plant breeders to actively monitor Ne in successive cycles of breeding to sustain viability of the breeding efforts 
in the long term.
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Introduction
Dry pea (Pisum sativum L.) is a diploid, cool-season leg-
ume and a member of the Leguminosae family [1]. Pea 
is one of the most important pulse crops grown in more 

than 100 countries, where 7,043,605 hectares of dry pea 
were planted around the world with a total production 
of 12,403,522 tonnes [2]. In the USA alone, the pea pro-
duction reached one million tonnes in 2019 [3]. In recent 
years, pea protein has become more popular in the mar-
ket for plant-based diets e.g., Beyond® Meat Burger [4]. 
Pea seeds have earned a reputation as a dietary goldmine 
with around 15 – 32% protein content, vitamins, folate, 
fibers, potassium and minerals, which is good for human 
health and helps prevent cardiovascular and specific can-
cer diseases [4, 5]. The increasing popularity of plant-
based proteins in the market has further propelled the 
demand for peas. Therefore, the study of genetic diversity 
should expand to accelerate the genetic gain of pea varie-
ties to meet future demands, maintaining the diversity in 
peas is the top priority for plant breeders [4, 6].
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Estimation of effective population size (Ne) determines 
the rate of inbreeding [7, 8] and genetic changes due to 
genetic drift [9]. Ne is an important parameter in popula-
tion genetics and breeding introduced by Sewall Wright 
in 1931, which helps breeders to maintain and monitor 
the level of genetic diversity in their species [10]. The 
estimated Ne is expected to be smaller than the census 
size (N), as it influences the rate at which genetic diver-
sity decreases within a population [11, 12]. Relatively 
smaller Ne indicates limited population diversity, which, 
in turn, can restrict genetic advancement within a breed-
ing program [13]. Moreover, Ne parameter retrieves the 
population dynamics of the genes [14].

The effective size of a population refers to the hypo-
thetical number of individuals in an idealized population 
that would exhibit a comparable genetic response to sto-
chastic processes, similar to that observed in a real-world 
population which is based on the Wright-Fisher model 
[15–17]. This model shows genetic drift as the main 
operating factor, and that changes in allelic and genotypic 
frequencies over generations are solely influenced by the 
population size (N) [15]. In real-world breeding popula-
tions, factors such as mutation, migration, natural selec-
tion, and non-random mating come into play [15]. These 
factors affect the actual rates of inbreeding and changes 
in gene frequency variance observed in a population 
[18]. This will indeed impact Ne and therefore, reduce the 
genetic variation and diversity. The most commonly used 
extensions for effective population size theory are vari-
ance effective size and inbreeding effective size [15]. The 
variance effective size reflects the rate of change in gene 
frequency variance, while inbreeding effective size corre-
sponds to the rate of inbreeding observed in a population 
[19]. These measures allow us to quantify the conse-
quences of genetic drift in a real population, based on 
the characteristics and dynamics of the idealized Wright-
Fisher population [15].

While Ne of a population can be estimated either from 
demographic data or genetic markers, the latter is pre-
ferred [20–22]. Demographic data involves using census 
size and variance of reproductive success whereas genetic 
markers reveal changes in allele frequencies over time 
and are based on linkage disequilibrium (LD). When 
the pedigree or demographic data is not available, Ne 
can be estimated using genetic markers [23]. The most 
popular and widely-employed genetic approach has been 
the temporal method, which relies on temporal fluctua-
tions in allele frequencies observed on multiple samples 
collected from the same population [14]. Ne, however, 
can also be directly estimated using LD between loci 
at various distances along the genome [13, 24]. Recent 
advancements in high-throughput sequencing and 
the availability of high-density markers such as single 

nucleotide polymorphisms (SNPs) have increased over 
the past decade, contributing to the LD-based approach 
now being acknowledged as more reliable, robust [25], 
cost and time effective than the temporal approach [9].

Linkage disequilibrium (represented as r2) is a phe-
nomenon characterized by the non-random association 
of alleles at various loci [26] which became popular in 
recent years for predicting Ne [27]. Correlations between 
alleles are generated by genetic drift when it is inversely 
proportional to Ne [9], which changes the allele frequen-
cies in a population over time. The biggest advantage 
of LD over the temporal method [28], is the strength of 
associations between markers that can be used to cal-
culate Ne at any time (generations) from a single popu-
lation accurately without relying on longitudinal data. 
This makes LD a valuable tool for studying populations 
where temporal information may be limited or unavail-
able. Recombination and mutation rates are fundamental 
processes that shape the genetic landscape [29] and by 
analyzing LD, we can better understand their history and 
apply it to plant breeding and population genetics [30].

In this study, we estimated the extent of LD decay in the 
dry pea genome and utilized the relationship between LD 
and recombination frequency, as initially described by 
Sved J [24], to estimate Ne which is convenient as it only 
requires one sampling time [31, 32]. We used two sets of 
populations: 1) NDSU modern breeding lines, hereafter 
referred to as NDSU set, and 2) USDA diversity panel, 
hereafter referred to as USDA set.  Our objectives were 
two-fold: (i) to estimate Ne for these two germplasms 
set in dry pea and (ii) to compare the genetic variation 
between these germplasms. To achieve these goals, we 
developed a comprehensive R package that implements 
the Sved J [24] formula for Ne prediction. This package 
not only caters to the specific needs of dry pea research 
but can also be adapted for use in other crop species. 
Since there has been no information on Ne for peas, 
our findings serve as a valuable reference for research-
ers seeking to determine the minimum number of lines 
required for designing experiments. Furthermore, com-
paring the genetic variation between NDSU modern 
breeding lines and USDA multi-environmental lines 
provides valuable information about the diversity and 
potential of these germplasm collections. This knowledge 
can guide breeding programs and conservation efforts, 
ensuring the maintenance and enhancement of genetic 
resources in dry pea cultivation.

Methods
Plant materials
In this study, we used plant materials from two dis-
tinct germplasms pool. The first population comes from 
the NDSU Pulse Breeding Program (NDSU set) where 
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300 advanced elite lines were generated from multi-
ple bi-parental populations. The NDSU breeding lines 
represented a set of pre-selected, non-structured, elite 
advanced lines at the preliminary yield testing stage, 
which were carefully chosen and contained both contem-
porary and past elite germplasm [33, 34]. The breeding 
lines were built using modern and historical elite cul-
tivars and germplasm in the breeding program, which 
are representative of a decade of continuous genetic 
improvement. Further, these selected lines were created 
specifically with a focus on phenotypes including high 
yield, grain quality, resistance to disease and some other 
desirable agronomic traits [33, 34].

The second population is from a USDA diversity panel 
(USDA set), and contained 482 accessions, of which 292 
samples were from the Pea Single Plant Plus Collec-
tion (Pea PSP) [4, 35, 36]. The USDA set was composed 
of accessions that represent most of available diversity 
within the USDA pea germplasm collection based on 
the knowledge of geography, taxonomy, morphology and 
genotyping-by-sequencing data generated previously 
[35].

DNA extraction, sequencing and variant calling
Leaf tissues from the greenhouse were collected at differ-
ent stages for all NDSU elite lines and USDA accessions. 
The DNA from the lyophilized tissues were extracted 
using the DNeasy Plant Mini Kit (Qiagen). Detailed infor-
mation regarding the tissue collections and extractions 
are provided in Bari M [4, 33]. Both NDSU set and USDA 
set were sequenced using genotyping-by-sequencing 
(GBS). Using the restriction enzyme ApeKI, dual-indexed 
GBS libraries for both populations were prepared [37]. 
Samples were sequenced using NovaSeq S1 × 100  Illu-
mina sequencing technologies. The NDSU set sequenced 
libraries were retrieved with a quality score ≥ 30. For 
USDA set, FASTQC [38] was utilized to perform qual-
ity check and removed reads with lengths < 50 bases. All 
reads that passed the quality check were aligned with 
the reference genome [39] (https:// www. pulse db. org). 
Finally, the aligned reads were analyzed using SAMtools 
(v1.10) and generated the variant files (VCF) using Free-
Bayes (V1.3.2).

The amount of single nucleotide polymorphisms (SNPs) 
identified for the NDSU set was 28,832, while 380,527 SNP 
markers were identified in the USDA set [4, 34]. For these 
marker datasets, we filtered minor allele frequency (MAF), 
since alleles with < 5% could produce bias to the LD and Ne 
calculations [40, 41]. We also removed markers with more 
than 20% missing values using Plink v1.9 [42] and heterozy-
gosity > 20% using Tassel v5.0 [43]. The resulting marker 

sets consisted of 7,157 (NDSU set) and 19,826 (USDA set) 
SNP markers that were used for downstream analysis.

Calculation of linkage disequilibrium (r.2)
LD was calculated using Plink v1.9 [42] with a maximum 
distance of 750 kb. Using “ggplot2” R package, the genome-
wide and chromosome-wide LD-decay (r2) were visualized 
against the physical distance (kb) to show the recombina-
tion history (see Figs. 1 & 2).

LD scores were also estimated using Genome-wide Com-
plex Trait Analysis (GCTA) software for window size of 
1000 kb and r2 cutoff of 0 [44]. This approach was employed 
to visualize the distribution of mean LD throughout the 
genome.

Calculation of effective population size
Effective population size (Ne) for both the NDSU set and 
the USDA set were estimated based on LD using the Sved J 
[24] equation. The recombination rate (cM) was calculated 
using cM/Mb conversion ratio from a recent pea genetic 
linkage map [45] and then transformed to Morgan’s (c).

where, Ne = effective population size.
c = genetic distance in Morgan’s

The expected r2 was predicted by linear regression model 
using least square estimation (LSE),

Prediction of r2:
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Fig. 1 Genome-wide linkage disequilibrium—decay of NDSU set 
and USDA set
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The mean  r2 from the Y parameter was calculated by 
LD (r2) for the genetic distance ‘c’ using ‘group by’ mean 
function in R Environment [46]. Now with the availability 
of all required parameters, we finally estimated Ne from 
Eq. (1) using LSE.

According to the formula (Eq. 1), we assigned the vari-
ables as predictor (X) and response (Y) and calculated 
the coefficient β1 without the intercept term β0 , following 
Juma R [47].

Again, we used Eq.  (3) to calculate the coefficient β1 
which represents Ne.

Results
Linkage disequilibrium decay rate and scores
The decay of linkage disequilibrium (r2) was examined 
in both NDSU set and USDA set by utilizing 7,157 and 
19,826 SNP markers, respectively. This analysis allowed 
for the identification of the physical distance at which 
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the decay rate occurred. Supplementary Fig.  1 depicts 
the distribution of SNPs within and across chromo-
somes for both populations, providing an illustration of 
the marker density. The NDSU set’s genome-wide LD-
decay plot (Fig. 1) demonstrates that the r2 reached its 
peak value of 0.57 within the initial kilobases and sub-
sequently exhibited a gradual decline. The r2 showed a 
decrease from 0.3 to 0.25 when the genomic distance 
increased from 150 to 250  kb. Following that, the LD 
within each chromosome was observed visually in 
Fig. 2 in order to improve comprehension of the decay 
pattern. Chromosomes 1 and 6 exhibited a rapid decay 
at approximately 175  kb, while chromosomes 2 and 5 
demonstrated a comparatively slower decay rate of 
around 350  kb. Furthermore, it is worth noting that 
chromosome 5 had the higher r2 value of 0.61 com-
pared to other chromosomes. Whereas, the genome-
wide LD of USDA set showed that r2 started at a lower 
value of 0.34 and dropped rapidly and reached 0.2 and 
0.1 at 100  kb and 200  kb (Fig.  1). From the chromo-
some-wide LD-decay (Fig.  2), we observed that chro-
mosome 3 dropped faster around ~ 150  kb, but the r2 
decreased below 0.1 for chromosomes 4 and 7. Also, 
chromosomes 1, 5 and 6 decayed slowly (~ 250 kb) and 
reached r2 0.1. We also observed that chromosome 1 
exhibited a higher r2 of 0.37. LD-decay figures show the 
trend of the r2 decaying from LD to linkage equilibrium 
(LE).

Additionally, we performed calculations of LD scores 
as an alternative metric for inferring LD. The analysis 
of local LD in the NDSU set indicates a notable rise 
in the average r2 of 0.6 across all chromosomes. The 
average r2 of chromosomes 5 and 6 was the high-
est with 0.8. The genomic interval encompassing the 
centromeric region of chromosome 2 was missing. In 
contrast, the USDA set exhibited low average r2, with 
chromosome 2 hardly reaching 0.4, and chromosomes 
1, 4, and 7 having few sets that reached 0.3. It is worth 

Fig. 2 Chromosome-wide linkage disequilibrium—decay of NDSU set and USDA set
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noting that the LD density of the NDSU set is compar-
atively lower than the USDA set (Fig. 3).

With respect to recombination rate (centimorgans—
cM), the genome-wide r2 on average decayed from 0.54 
to 0.27 at 0.7 cM for the NDSU set, indicating a mod-
erate level of correlation within this specific genetic 
distance across the genome. In contrast, the USDA set 
had lower average r2 (0.28) which dropped within a 
shorter genetic distance (0.5 cM). This implies that as 
the distance between the markers increases to 0.5 cM, 
they tend to be less correlated with each other (Sup-
plementary Fig. 2).

The level of LD exhibited significant variation across 
distinct genomic regions and populations of dry peas. 
The impracticality of conducting whole-genome scan-
ning can be attributed to the excessive number of 
markers required for such studies, particularly in cases 
where there is a low level of linkage disequilibrium 
[48]. The USDA set reported a low LD value, indicat-
ing a higher occurrence of recombination events. In 
contrast, the NDSU set showed a higher LD score, sug-
gesting a greater frequency of linked markers presum-
ably due to limited recent recombination to date [49].

Effective population size (Ne)
Based on LD, the estimated effective population size (Ne) 
for both the populations are shown in Fig. 4. The smaller 
Ne and high LD in NDSU set indicates that it has under-
gone selective pressures leading to reduced diversity and 
increased correlation between the markers. Given NDSU 
set’s population history and marker density, it is accept-
able to state that despite lower Ne, it holds a reasonable 
level of diversity that may help maintain its genetic varia-
bility which is essential for long-term viability and adapt-
ability. The USDA set resulted in lower LD and higher 
Ne, meaning it has more diversity and has encountered 
relatively fewer instances of selective pressures or genetic 
bottlenecks. It is important to note that the low LD can 
also be observed in a population with high Ne. Thus, it 
was expected to see NDSU set with lower Ne compared 
to USDA set. These estimates explain how genetic drift 
and selections have shaped these populations over time.

Discussion
The importance of Ne has become increasingly recog-
nized in plant breeding as it describes the rate of inbreed-
ing and can reflect the contemporary status of genetic 
diversity in breeding populations [50]. When Ne is low, 
the population can become quickly inbred with little 

Fig. 3 The Mean LD scores estimated in 1000 kb windows. There is a significant increase in LD of NDSU set compared to USDA set
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potential for genetic gain making long-term selection 
ineffective. Therefore, plant breeders should be cogni-
zant of the effective population size of their breeding pro-
gram [10]. Actively monitoring Ne in successive cycles of 
breeding can enhance the viability of the breeding efforts 
and help sustain long-term genetic gain. In this study, we 
presented the first estimation of Ne in dry pea using two 
distinct germplasm sets: 1) the NDSU set consisting of 
elite breeding lines within the NDSU breeding program, 
and 2) the USDA set comprised of landraces and plant 
introductions collected all over the world [35, 36]. The 
former represents breeding lines and germplasm in an 
active breeding program that releases new modern culti-
vars, while the latter represents germplasm accessions in 
a repository. As expected, the estimated Ne for the USDA 
set (Ne = 174) was higher than the NDSU set (Ne = 64). 
The selection and derivation of closely related breeding 
lines from multiple breeding populations likely resulted 
to a lower Ne estimation in the NDSU set, presumably 
due to increased inbreeding. The genetic diversity for the 
USDA set is higher than the NDSU set as it represents 
most of the available diversity in the USDA pea germ-
plasm collection [35, 36].

The Ne estimate for the NDSU set was within the same 
range as those reported in other self-pollinating crops 
such as rice (Oryza sativa) and soybean (Glycine max), 
with calculated Ne ranging from 20 to 60. Juma R [47] 
estimated the Ne in rice to be 22 using an elite core panel 
comprised of 72 lines, but Ne may have been underesti-
mated due to limited marker information used in the 
analysis. Similar studies in rice also had the same range 
of Ne, with calculated values ranging from 23–57 and 

40–60; these were estimated based on breeding popula-
tions from recurrent selection programs [51] and pedi-
gree data [52]. The estimated Ne of USDA set was within 
the range of Ne values reported in studies conducted on 
other crops. In soybean, Xavier A [53] estimated Ne for 
the USDA soybean germplasm collection comprised 
of 19,652 accessions from Bandillo N [54] and reported 
it to be 106 individuals. Recent studies have shown that 
soybean possess several genetic bottlenecks [55] and 
its genetic diversity has been reduced [56, 57]. The Ne 
estimate of USDA set is relatively higher than soybean, 
implying greater diversity. Zhao Y [58] estimated Ne in 
wild rice using 11 Chinese Oryza rufipogon populations 
including 32 landraces and reported it between 96–158, 
which is in a similar range to the USDA set. Thus, the Ne 
of USDA set offers greater potential for adaptation, main-
taining rare alleles, population stability, and reduced risk 
for inbreeding.

The results of our study also suggest that the use of 
GBS holds good potential for making inferences of Ne 
regardless of the germplasm type. Using GBS-based 
markers, we approximated the LD pattern within and 
across chromosomes of both germplasms and then 
used the LD information for estimation of Ne. Genome-
wide LD (r2) of the USDA set decayed from lower LD 
at 200  kb, while the NDSU set had the highest LD 
declined at a longer distance of around 250  kb. These 
results provided consistency of higher genetic varia-
tions of the former over the latter. Similar LD findings 
have been observed in previous studies conducted on 
peas, wherein both wild and spring peas exhibited a 
decay distance of approximately 200 kb, whereas wild/

Fig. 4 Estimated effective population size (Ne) for NDSU set is 64 and USDA set is 174
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landrace peas were around 100  kb [49] which is a bit 
lower than the USDA set. Comparing the LD of USDA 
set and the NDSU set to other selfing crops such as 
rice, soybeans, and barley, the physical distances found 
were more or less similar depending on the popula-
tions. For instance, Huang X [59] estimated LD using 
O. indica and O. japonica landraces of rice at 123 and 
167 kb, respectively, with r2 declining to 0.25 and 0.28. 
Additionally, soybean landraces extended from 90 to 
500  kb [60] while improved cultivars hit 133  kb [61] 
which is similar to the USDA set. Alternatively, a recent 
LD analysis from soybean USDA germplasm revealed 
that the r2 dropped intragenically within a few kilo-
bases [61] and the one in barley’s landraces hit 90  kb 
[62], both shorter than the USDA set. The LD-decay of 
the NDSU set was also found to be in a similar range 
with elite varieties of barley which extended to at least 
212 kb [62] and O. japonica elite lines at ~ 318 kb [63], 
but had a higher distance compared to O. indica elite 
lines (~ 124 kb) [63]. The LD-decay rate of a crop does 
depend on the genetic background of the populations 
being studied, and it can be affected due to mutations, 
genetic drift, non-random mating, and a small Ne [64].

Effective population size helps breeders preserve and 
remodel their selection strategies to enhance the stability 
and variability in their breeding populations [10]. Breed-
ers can also implement marker-based mating experi-
ments known as optimum contribution selection (OCS) 
[47] in order to maintain diversity in selection candi-
dates for long-term gain. As pulse crop breeders navi-
gate through challenges in their breeding programs, the 
information from this study provides valuable insights 
by demonstrating the strength of contemporary popula-
tions and possibly contributing to the long-term goal of 
increasing genetic gain while maintaining diversity in 
breeding programs.

Conclusions
We provided insights of effective population size (Ne) in 
field pea which can guide plant breeders to actively mon-
itor Ne in successive cycles of breeding to sustain viability 
of the breeding efforts in the long term. Our estimations 
revealed that the Ne of USDA set (174) was larger than 
the NDSU set (64), providing insights into the extent of 
inbreeding and available genetic diversity in both germ-
plasm pool. For future estimation of Ne, researchers could 
incorporate additional biological information (e.g., gene 
expression, metabolomics, etc.) along with DNA mark-
ers and demographic history, that will likely increase the 
understanding of plant breeders regarding the population 
dynamics and potential for adaptation to different ever-
changing environments.
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