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Abstract 

Cold stress poses a significant threat to the quality and productivity of lychee (Litchi chinensis Sonn.). While previous 
research has extensively explored the genomic and transcriptomic responses to cold stress in lychee, the translatome 
has not been thoroughly investigated. This study delves into the translatomic landscape of the ’Xiangjinfeng’ cultivar 
under both control and low-temperature conditions using RNA sequencing and ribosome profiling. We uncovered 
a significant divergence between the transcriptomic and translatomic responses to cold exposure. Additionally, 
bioinformatics analyses underscored the crucial role of codon occupancy in lychee’s cold tolerance mechanisms. Our 
findings reveal that the modulation of translation via codon occupancy is a vital strategy to abiotic stress. Specifically, 
the study identifies ribosome stalling, particularly at the E site AAU codon, as a key element of the translation machin-
ery in lychee’s response to cold stress. This work enhances our understanding of the molecular dynamics of lychee’s 
reaction to cold stress and emphasizes the essential role of translational regulation in the plant’s environmental 
adaptability.
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Background
Lychee (Litchi chinensis Sonn.) is a key subtropical fruit 
known for its economic value, nutritional profile, exotic 
flavor, and visual appeal [1–5]. However, climate change, 
characterized by global warming and extreme tempera-
tures, poses significant challenges and increases the inci-
dence of abiotic stressors. These changes have profoundly 
affected global crop production [2, 6, 7]. Among these 
challenges, cold stress is particularly detrimental and 
affects both the survival and flavor quality of lychee [8, 9].

Cold stress can have several detrimental effects on 
lychee seedlings. Prolonged exposure to low tempera-
tures can hinder the growth and vitality of lychee seed-
lings, leading to stunted development and increased 
susceptibility to diseases [10, 11]. Extreme or prolonged 
cold can damage tissues, impair physiological functions, 
and disrupt metabolic processes in lychee seedlings, 
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resulting in overall reduced vitality. At the molecular 
level, cold stress can alter gene expression in lychee, lead-
ing to the accumulation of reactive oxygen species (ROS) 
and oxidative damage [12]. It can also affect the stabil-
ity and function of cellular membranes and proteins in 
lychee seedlings [13]. Insufficient cold accumulation 
due to unusually high winter temperatures can result in 
inadequate floral initiation and poor flowering in lychee, 
ultimately affecting fruit yield and quality [14]. Addition-
ally, the variability in cold requirements among different 
lychee varieties complicates effective management [15, 
16]. Balancing the right amount of cold stress is crucial, 
as excessive cold exposure pose significant challenges to 
the health and productivity of lychee seedlings [17–19]. 
Therefore, understanding the molecular mechanisms 
underlying these responses in lychee is essential for 
developing strategies to mitigate the negative impacts of 
cold stress.

Gene regulatory networks for lychee’s stress responses 
have been studied using high-throughput sequencing 
and bioinformatics tools, but the molecular response to 
low-temperature stress remains unclear [5, 8, 20]. The 
lack of precise genome annotation has further hindered 
the study of lychee’s transcriptome and translatome. 
Plant adaptation to stress involves complex regulation, 
including gene expression, post-transcriptional pro-
cesses, post-translational modifications, and metabolite 
feedback mechanisms [7, 9, 20–22]. Ribosome profiling, 
a high-resolution deep-sequencing technique, is cru-
cial for analyzing RNA translation dynamics in lychee 
(Litchi chinensis) [23–26]. This method involves quanti-
fies ribosome-protected mRNA fragments (RPFs) after 
RNase treatment, allowing detailed analysis of transla-
tion. Ribosome profiling has revealed shifts in transla-
tion dynamics under low-temperature stress, providing 
insights into ribosome coverage, translation efficiency, 
and codon occupancy [23–36]. High-quality data exhibit 
distinct 3-nt periodicity, essential for confirming the 
accurate translation measurement [23–35, 37, 38]. 
Applying ribosome profiling to lychee enables detailed 
investigation of translational mechanisms contributing 
to stress resilience. Comprehensive sequencing of the 
lychee genome provides an opportunity to study lychee’s 
response to cold stress with precision [39]. Utilizing this 
genomic resource, our study employs ribosome profil-
ing and RNA-seq technologies to survey the transla-
tional landscape of lychee. The methodologies advance 
our understanding of stress responses in higher plants 
and highlight the critical role of translational regula-
tion in lychee’s adaptation to a changing climate. This 
study, supported by the recent lychee genome sequence, 
allows for an in-depth investigation of lychee’s response 
to low-temperature stress [39]. Leveraging this genomic 

blueprint, we undertake research to scrutinize lychee’s 
translational landscape, extending our understanding 
of stress responses and emphasizing the pivotal role of 
translational regulation in lychee’s adaption to shifting 
climatic conditions.

In summary, lychee faces escalating challenges from 
climate change, with cold stress being a significant threat. 
By exploring lychee’s translatome, we aim to understand 
its response to cold stress, offering valuable insights for 
crop protection and enhancement. This study under-
scores the importance of using ribosome profiling and 
translational regulation in understanding lychee’s adapta-
tion to a changing environment.

Results
Library preparation and assessment of ribosome‑protected 
footprints in lychee leaves
To elucidate the translatome landscape of Litchi chinen-
sis under low-temperature stress, we conducted a com-
prehensive ribosome profiling study focusing on lychee 
leaves in the absence of low-temperature stress treatment 
(Fig.  1A). Employing rigorous experimental standards, 
we performed two replicates for each treatment condi-
tion. To identify translational differences, we employed 
polysome profiling (n = 3) to compare ribosome distri-
bution between control and samples subjected to low-
temperature stress (Fig. S1). As expected, translation was 
modestly suppressed under low-temperature conditions, 
resulting in a reduced polysome fraction (Fig. S1), con-
firming the temperature’s impact on translation regu-
lation. Ribosome profiling was excuted to ensure data 
quality and treatment efficacy, including the assessment 
of read lengths within the 29–31 nt range (Fig. 1B-D) and 
the presence of a 3-nt periodicity through metagene plots 
(Figs. 1E, 2A).

Preliminary processing of deep sequencing data dem-
onstrated high reproducibility for single replicates (Fig. 
S1B, C). Analysis of the length distribution of ribosome-
protected footprints (RPFs) in our samples revealed a pre-
dominant range of 28 to 31 nt (Fig. 1B, D). Notably, the 
characteristic RPF length was observed at 29 nt, indica-
tive of monosome-protected fragments. Metagene plots 
of our samples also displayed periodic peaks spaced at 
3-nt intervals (Fig. 1E). Previous research has confirmed 
that the bulk of translation footprints predominantly 
manifest within coding regions. However, an accumula-
tion of queuing ribosomes is typically anticipated preced-
ing translation initiation, along with instances of stalling 
near start and stop codons (Fig.  1E). This phenomenon 
was corroborated by the relatively heightened peaks 
proximate to the start and stop codons in our metagene 
plots. Collectively, these outcomes validate the creation 
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Fig. 1  Evaluation of ribosome profiling libraries from lychee leaves. A Schematic representation of the ribosome profiling procedure. B 
Distribution of ribosome protected footprint lengths across the entire sequencing dataset. C Footprint length distribution near the start codon. D 
Comparative analysis of read length distribution at the start codon versus the entire transcript length. E Metagene plot depicting P-site frequency 
along the transcript

Fig. 2  Comparison of global transcriptional and translational change. A P-site signal accumulation along footprint length in the regions of 5’ 
UTR, CDS, and 3’ UTR under normal conditions (CK). B P-site signal accumulation along footprint length in the regions of 5’ UTR, CDS, and 3’ UTR 
under cold stress (LT). C P-site signal distribution in the regions of 5’ UTR, CDS, and 3’ UTR under normal conditions (CK). D P-site signal distribution 
in the regions of 5’ UTR, CDS, and 3’ UTR under cold stress (LT). E Global changes in the transcriptome. F Global changes in the translatome

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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of robust libraries for lychee samples, which were suit-
able for downstream analyses.

Comparative analysis of lychee transcriptome 
and translatome landscapes under cold stress
To explore translational initiation responses across differ-
ent translational features, we analyzed P-site positioning 
from ribosome profiling data. A strong translational sig-
nal was observed within the CDS region in both control 
and low-temperature groups (Fig. 2C, D), consistent with 
protein synthesis initiation within the coding region of 
RNA. Furthermore, heatmap analysis (Fig. 2A, B) showed 
superior periodicity of the P-site signal in the CDS com-
pared to the 5’ UTR and 3’ UTR. We also compared 
P-site signals between control and cold stress groups. No 
significant differences were found, indicating that low-
temperature treatment did not significantly affect global 
translation initiation.

In addition, we compared transcriptome fold changes 
using RNA-seq data with two replicates alongside ribo-
some profiling (Fig. S2A, B). With a significance thresh-
old of P-value < 0.05, we identified genes differentially 
expressed at transcriptional and translational levels. 
Surprisingly, the transcriptome was more affected by 
low-temperature stress than the translatome (Fig.  2E, 
F). RT-qPCR validation confirmed that the three most 
down-regulated genes (highlighted as purple in Fig.  2E) 
had significantly lower expression than controls (Fig. 
S2D). This suggests that translation dynamics are less 
affected by low-temperature stress in lychee. Our find-
ings indicate a potential disparity between transcriptome 
and translatome responses to cold stress, warranting 
further investigation into regulatory mechanisms. Gene 
Ontology (GO) analysis on transcriptome data revealed 
a significant enrichment of transaltion-related pathways 
in samples exposed to low-temperature stress (Fig. S3A), 
including "mRNA cap binding complex" and "RNA cap 
binding complex". This suggests that cold stress broadly 
impacts translation processes, particularly affecting 
mRNA cap binding complexes. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis revealed 
perturbations in energy supply pathways, such as the Tri-
carboxylic Acid (TCA) cycle (Fig. S3B), suggesting altered 
energy metabolism under cold stress. These insights into 
translation and energy metabolism pathways highlight 
the multifaceted molecular impact of low-temperature 
stress, providing a deeper understanding of the biological 
response to environmental challenges.

Effects of cold stress on coding features in lychee
Understanding plants’ responses to abiotic stresses 
through coding feature dynamics is vital for compre-
hending their adaptive strategies. This study focused on 

coding events in lychee under cold stress, a significant 
environmental factor. We analyzed P-site signal meta-
heatmaps to examine translational activity across mRNA 
transcripts (Fig. 3A). The metaheatmaps showed uniform 
signal patterns with distinct three-nucleotide periodicity, 
confirming the accuracy of our ribosome profiling data 
and providing a solid foundation for predictive modeling 
of translation events. Our analysis highlighted signifi-
cant trends in coding localization, predominantly in the 
coding sequence (CDS) region, emphasizing its role in 
protein synthesis. In contrast, the 5’ untranslated region 
(5’ UTR) displayed the fewest coding events, suggesting 
it primarily contains regulatory elements. This insight 
underscores the complexity of translational control in 
Litchi chinensis. We also examined the independent cod-
ing distribution for each treatment, revealing a strong 
alignment between our prediction model and calculated 
values (Fig.  3B, C). This consistency underscored the 
robustness of our approach, Interestingly, no significant 
alterations in coding features were observed under of 
cold stress, which indicated the remarkable resilience and 
adaptability of lychee to environmental challenges.

Although no significant coding changes were found 
under cold stress, we thoroughly examined translation 
efficiency for potential genes and pathways. that may 
have been affected. Unlike transcriptome, only a few 
genes were impacted at the translational level (Fig. S2C). 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses (Fig. 3D, E) revealed sig-
nificant perturbations in ribosome function under low-
temperature stress, particularly in substructures like the 
’peribosome’, ’90S peribosome’, and ’nuclear dicing body’. 
This raises questions about how low-temperature stress 
regulates ribosomes, possibly due to ribosome stall-
ing on specific codons. In summary, our examination of 
coding features in lychee under low-temperature stress 
highlights the plant’s translational responses and adap-
tive strategies. The consistency of our findings and the 
absence of significant coding events alterations under-
score the plant’s robustness and ability to withstand envi-
ronmental stressors, revealing intriguing aspects of its 
adaptability.

Codon usage analysis in Litchi chinesis coding sequences
We investigated codon utilization patterns using ribo-
some profiling data to understand how cold stress influ-
ences codon usage. Ribosome-protected reads were 
aligned to the lychee coding sequences, allowing direct 
comparisons of codon usage preferences. The diversity 
in codon usage across detected codons was standard-
ized by considering the total number of codons, leading 
to the calculation of a codon index. A ranking plot was 
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Fig. 3  Comparison of coding features. A Metaheatmap of P-site signal concentrated on start and stop codon. B P-sites distribution along coding 
features evaluated from predicted model (RNAs) and transcriptome data under CK. C P-sites distribution along coding features evaluated 
from the predicted model (RNAs) and transcriptome data under low-temperature stress. D GO analysis for translationally affected genes under cold 
stress. E KEGG analysis for translationally affected genes under cold stress
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generated to provide a comprehensive overview of codon 
utilization (Fig. 4). Our analysis unveiled intriguing find-
ings. The codon GUG (coding for Valine), the initiation 
codon AUG, and UUG (coding for Leucine) predomi-
nantly occupied the A, P, and E sites of the ribosome, 
respectively. In contrast, the termination codons UAG, 
UAA, and UGA exhibited relatively lower occupancy 
levels.

Notably, this codon preference remained consistent 
irrespective of low-temperature treatment, suggesting it 
as an inherent characteristic of lychee translation unal-
tered by external factors. However, some differences in 
codon usage were observed between the control (CK) 
and low-temperature (LT) treatment groups. For exam-
ple, the start codon AUG occupied moved from the fifth 
position in the A site of the control group to the fourth 
position in the low-temperature treatment group.

Cold stress facilitates AAU readthrough at E site of Litchi 
chinesis ribosome
We investigated variations in codon frequency across the 
E, P, and A sites of ribosomes under CK and cold stress 
conditions. Correlation analysis revealed high coef-
ficients of 0.986 for the A site, 0.993 for the P site, and 
0.98 for the E site. The correlation plot showed similar 
ribosome occupancy patterns at the A sites (Fig.  5A), 
while distinct profiles emerged for the P (Fig. 5B) and E 
sites (Fig.  5C). The analysis of codon usage under low-
temperature stress revealed a notable enrichment of the 

AAU (Asparagine) codon within the E site of the control 
group, with reduced occupancy of AAU and CAA (Glu-
tamine) codons at the P and E sites. This suggested that 
low temperature facilitates AAU readthrough at the E site 
while reducing the decoding of AAU and CAA codons at 
the P and E sites (Fig. 6).

To validate this finding, we conducted a reporter assay 
using lysates from previous harvests as the source of 
translation factors. Lysates incubated with reporter genes 
containing AAU repeats (5x), showed a pronounced lucif-
erase signal in lysates from low-temperature conditions, 
consistent with our codon occupancy data (Fig. 5D). This 
indicates that low-temperature stress enhances AAU 
readthrough, resulting in more robust translation. The 
incubation period was limited to five minutes to mitigate 
freeze–thaw cycle effects. Additionally, when performing 
the reporter assay for CAA, we observed no significant 
change, indicating that the readthrough of AAU on the E 
site is predominantly orchestrated by the primary trans-
lational machinery (Fig. 5E). This suggests that different 
mechanisms might be influencing codon occupancy at 
the P site.

Discussion
Lychee, a tropical fruit known for its distinct flavor, is 
commercially grown in over twenty countries. Its pro-
ductivity is limited by vulnerability to low temperatures 
[5, 40], posing a challenge to agricultural improve-
ment. The lack of genomic sequencing has hindered 

Fig. 4  Codon usage in A, P, E Sites. Start codons are highlighted in blue, and stop codons are marked with an asterisk
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Fig. 5  Correlation analysis of codon occupancy in A-site (A), P-site (B), and E-site (C). Reporter assay for reporter genes containing (AAT)5 (D) 
and (CAA)5 (E)
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Fig. 6  Proposed model of translational regulation under low-temperature stress in lychee
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understanding the molecular response to cold stress. 
The advent of the lychee genome sequence allows us to 
study these stress adaptation mechanisms [39]. We used 
deep sequencing of the lychee translatome to explore 
responses to cold stress. We found conserved transla-
tional dynamics in coding feature distribution, initiation 
site selection, and codon usage frequency. These changes 
suggest a conserved molecular response to environmen-
tal stress. Comparative analysis showed a significant 
transcriptional response to low temperatures, with 170 
genes upregulated and 180 genes downregulated in the 
transcriptome, with 28 genes upregulated and 13 down-
regulated. This indicates a rapid transcriptional response, 
with some upregulated genes downregulated at the trans-
lational level, possibly due to mRNAs sequestration by 
stalled ribosomes [21, 41, 42].

Our ribosome profiling data reveal biased at the P 
and E sites, suggesting certain may facilitate or impede 
translation under cold stress [43]. This suggests lychee 
may adapt its translational response to environmental 
changes. While translation initiation is a key regulatory 
step, our findings and other evidence highlight the roles 
of ribosome stalling and elongation in responding to cold 
stress [24, 26, 29, 30, 35, 36]. We found no significant dif-
ferences in translation initiation events between treat-
ments, suggesting ribosome stalling is a major response 
to low-temperature stress. Specific ribosome stalling 
during cold stress may result from alterations in par-
ticular aminoacyl tRNAs or restricted amino acid avail-
ability. Lychee might accumulate specific codons during 
cold stresses to support stress tolerance. This aligns with 
previous research indicating plants often accumulates 
specific amino acids during abiotic stress. For exam-
ple, proline accumulates in response to drought stress, 
helping maintain cell turgor and water balance [44]. 
Glutamate and arginine are linked to nitric oxide (NO) 
production, a crucial signaling molecule during stress 
responses [45]. Tryptophan accumulation is associ-
ated with the auxin pathway, involved in stress-induced 
growth modulation [46]. These amino acids assist in miti-
gating stress and are tried to signaling pathways that con-
trol plant growth, development, and defense.

Translation regulation is traditionally centered on ini-
tiation, but recent research emphasizes the significance 
of ribosome stalling and elongation [47–54]. We ana-
lyzed P-site signal distribution across treatment groups 
and found no significant impact on initiation events, sug-
gesting ribosome stalling is the main response to low-
temperature stress in lychee. Ribosome stalling under 
stress is well-documented and involved in a various cel-
lular responses. For instance, oxidative stress causes ribo-
some stalling at tryptophan codons in fission yeast [35], 
and similar mechanisms regulate metabolism during 

ribotoxic stress in mice [36]. In plants, ribosome stalling 
is crucial for small RNA function [29] and epigenetic con-
trol of transposons [30]. Additionally, stalled ribosomes 
can also affect the cell cycle, particularly after genotoxic 
stress. This study provides new evidence that low-tem-
perature stress in lychee leads to specific and genome-
wide ribosome stalling at certain codons, highlighting an 
important aspect of the plant’s stress response.

In this study, we utilized lychee seedlings to inves-
tigate the effects of cold stress on ribosome profiling, 
which provides insights into the dynamics of translation 
under stress conditions. The use of seedlings allows for 
controlled and reproducible experimental conditions, 
essential for the high sensitivity of ribosome profil-
ing. Seedlings offer uniform and high-quality samples, 
minimizing variability and ensuring reliable data. This 
approach also helps us understand how early exposure to 
cold stress influences physiological and molecular pro-
cesses that set the stage for flowering and fruit produc-
tion. However, using seedlings instead of mature plants 
presents limitations. Seedlings do not fully replicate the 
complex interactions encountered by mature plants in 
field conditions, such as soil composition, water avail-
ability, and biotic interactions. Despite these limitations, 
understanding the early stress responses in seedlings is 
crucial, as it provides insights into optimizing conditions 
for better flowering and fruit production in lychee plants.

Conclusions
In sum, our comprehensive study maps the transcrip-
tional and translational landscape of lychee under 
low-temperature stress, revealing key insights into its 
molecular stress response (Fig.  6). These findings pro-
vide a valuable framework for future research aimed at 
enhancing cold tolerance in lychee, which could extend 
its cultivation range and boost agricultural productivity.

Methods
Sample collection and preparation
In our study, we focused on cultivable seedlings of the 
lychee (Litchi chinensis) cultivar ‘Xianjinfeng’. The seeds 
of the cultivar ‘Xianjinfeng’ were provided by the South 
Subtropical Crops Research Institute, Chinese Academy 
of Tropical Agricultural Sciences (Zhanjiang, Guangdong 
Province, China). These seeds were sown in a controlled 
environment, which involved growing the seedlings in 
a greenhouse with meticulously regulated conditions to 
ensure optimal germination and growth. The controlled 
environment included maintaining a constant tempera-
ture of 25 °C ± 2 °C, humidity levels between 60–70%, and 
a 16-h light/8-h dark photoperiod using full-spectrum 
grow lights to simulate natural sunlight. Humidity was 
controlled using automated misting systems, and the 



Page 11 of 14Chen et al. BMC Genomics          (2024) 25:686 	

temperature was regulated with heating and cooling sys-
tems to prevent fluctuations. Soil moisture levels were 
monitored and adjusted using a drip irrigation system to 
ensure consistent hydration without waterlogging. The 
seedlings were grown under these conditions to promote 
healthy development, including regular monitoring and 
adjustment of environmental factors. After reaching an 
appropriate size, marked by the development of a robust 
root system and several sets of true leaves, the seedlings 
were transplanted to the trial site, which had been pre-
pared to match the controlled conditions as closely as 
possible. Post this initial phase, half of seedlings were 
relocated to a chamber with a reduced temperature of 
15 °C, while ensuring consistent hydration. After a dedi-
cated cultivation span of 35  days, we meticulously har-
vested leaves from a consistent apical leaflet position. 
These leaves were then segregated randomly into two sets 
and promptly frozen in liquid nitrogen, ensuring the pres-
ervation of their molecular attributes. Characteristically, 
these lychee trees possess a semi-circular canopy with an 
open structure and exhibit moderate vigor. They belong 
to the late-ripening category, with their fruits maturing 
primarily in the upper to middle part of July. The soil at 
our experimental site presented the following nutrient 
profile: pH 4.85, available nitrogen 43.71 mg·kg−1, avail-
able phosphorus 108.81  mg·kg−1, available potassium 
27.47 mg·kg−1, and organic matter 10.61 mg·kg−1.

Polysome profiling
Polysome profiling was conducted following established 
protocols [24–26]. To summarize, the collected leaf sam-
ples were homogenized and transferred to 1  mL of ice-
cold extraction buffer composed of 100  mM Tris–HCl 
(pH 7.5), 20 mM NaCl, 40 mM KCl, 20 mM MgCl2, 1 mM 
DTT, 100  µg/mL cycloheximide, and 10 U/mL DNase 
I. The supernatant containing the lysate was obtained 
by centrifugation at 2000  g and 4  °C for 2  min. Subse-
quently, polysome profiling was initiated by loading the 
sample onto a sucrose gradient ranging from 15 to 60% 
(w/v). The extracted RNAs were then subjected to high-
speed centrifugation at 160,000 g using an SW-55 rotor 
(BECKMAN, USA) at 4℃ for 3 h. Fractionation, absorb-
ance measurement, and data acquisition were carried out 
using a gradient station system (BRANDEL, USA).

Ribosome profiling and RNA‑seq
Library construction for ribosome profiling followed 
the manufacturer’s instructions, employing the Ribo-
some Profiling Kit (GeneRbiotek). To deplete rRNA, 
the RiboRNA Depletion Kit (GeneRbiotek) was utilized. 
Dephosphorylation was achieved by adding T4 PNK 

(polynucleotide kinase) and ATP, followed by incuba-
tion at 37  °C for 30  min. RNA purification was per-
formed using the RNA Clean & Concentrator kit (Zymo 
Research), and the purified RNA was used for library 
construction with the QIAseq miRNA Library kit (QIA-
GEN). Both Ribo-seq and RNA-seq libraries were sub-
jected to sequencing on an Illumina HiSeq4000 platform 
using a paired-end 150-bp sequencing strategy.

RT‑qPCR
RT-qPCR was performed to quantify the expression of 
genes in lychee leaves from control and low-temperature 
(LT) treated samples. Total RNA was extracted from each 
sample and cDNA was synthesized from the extracted 
RNA. The cDNA was then used as the template for 
qPCR, which measures the amount of LITCHI012237.
m1, LITCHI013690.m1, and LITCHI007308.m1 mRNA 
in each sample. The relative expression was calculated 
using the ΔΔCt method [55, 56], and β-Actin was used as 
the housekeeping gene. Statistical analysis revealed that 
the expression of genes was significantly down-regulated 
in the LT compared to the control (p < 0.05). The prim-
ers used for quantifying the above 3 genes are listed as 
below:

 Primers for RT-qPCR

Name Forward primer Reverse primer

LITCHI012237.m1 5’-ATG​ATC​TTT​TGG​
ACA​TCT​TTG​TTG​TT-3’

5’-CTG​TTG​CTT​CTG​ACT​
TGT​ATC​TGT​CCC​AAA​T-3’

LITCHI013690.m1 5’-ATG​AAA​GGA​GAT​
GGG​TAT​GTGCC-3’

5’-GTG​TTT​CCT​TCT​CCG​
CTT​TCTT-3’

LITCHI007308.m1 5’-ATG​GGT​TCA​GAA​
TTG​GCA​GCAA-3’

5’-CAG​CAC​AAG​GCC​TGT​
TAT​GG-3’

Reporter assay
For the in vitro translation assay, 30 µL of the crude plant 
lysate harvested during ribosome profiling was incubated 
with 0–10  µM of a luciferase reporter DNA oligo (Syn-
thesized by IDT) in a 50 µL translation buffer, and the 
mixture was then incubated at 25  °C for 10  min. Lucif-
erase activity was assessed using the Promega Luciferase 
Assay System (Promega, E1501). Specifically, 10 µL of 
the translation reaction was combined with 90 µL of the 
luciferase assay reagent from the kit, and the resulting 
luminescence was immediately quantified with a lumi-
nometer. Data were analyzed by normalizing luciferase 
activity against total protein concentration, as deter-
mined by the Bradford assay. All measurements were 
performed in triplicate, and data are presented as the 
mean ± standard deviation. Statistical significance was 
determined using a t-test, with a threshold of p < 0.05.
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Data processing and analysis
Raw reads from the ribosome profiling and RNA-seq 
experiments were aligned to the reference genome 
using STAR and subsequently trimmed using the fastp 
tool [27]. Identification of rRNA contamination uti-
lized an rRNA reference predicted from the genome 
reference with HMMER2 [28]. Reads contaminated 
with rRNA were excluded from downstream analy-
sis, and FPKM (Fragments Per Kilobase Million) 
values were quantified using RSEM [32]. Differen-
tially expressed genes, both upregulated (log2(fold 
change) > 1, P-value ≤ 0.05) and downregulated 
(log2(fold change) < 1, P-value ≤ 0.05), were deter-
mined with the R package edgeR [34]. To gain insights 
into translational dynamics and codon usage, vari-
ous analyses were conducted. These included assess-
ing length distribution, generating metagene plots to 
illustrate 3-nt periodicity, examining codon frequency, 
determining ribosome stalling rates, and assessing the 
correlation of codon occupancy. All these analyses 
were performed using the R package "riboWaltz" [31]. 
Codon frequency and occupancy were computed by 
comparison with genome-wide usage.

Experimental replicates and statistical analysis
For robust statistical analysis, biological replicates 
were collected and processed independently. Data 
are presented as means ± standard error of the mean 
(SEM), and statistical significance was assessed 
using appropriate statistical tests, as indicated in 
the respective analyses. The chosen significance 
threshold was a p-value of ≤ 0.05, denoting statistical 
significance.

Quality control and preprocessing
Prior to downstream analysis, quality control steps 
were implemented to ensure the reliability of the 
data. This included filtering low-quality reads, 
assessing sequencing depth, and checking for poten-
tial batch effects or outliers. All preprocessing steps 
were conducted using widely accepted bioinformatics 
tools and scripts.

Data visualization
The presentation of results was facilitated through the 
use of various data visualization techniques. Graphs, 
heatmaps, and other visual representations were gener-
ated using specialized bioinformatics and statistical soft-
ware to provide a clear and comprehensive illustration of 
the findings.
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