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Abstract 

Background Heritability partitioning approaches estimate the contribution of different functional classes, such 
as coding or regulatory variants, to the genetic variance. This information allows a better understanding of the genetic 
architecture of complex traits, including complex diseases, but can also help improve the accuracy of genomic selec-
tion in livestock species. However, methods have mainly been tested on human genomic data, whereas livestock 
populations have specific characteristics, such as high levels of relatedness, small effective population size or long-
range levels of linkage disequilibrium.

Results Here, we used data from 14,762 cows, imputed at the whole-genome sequence level for 11,537,240 variants, 
to simulate traits in a typical livestock population and evaluate the accuracy of two state-of-the-art heritability parti-
tioning methods, GREML and a Bayesian mixture model. In simulations where a single functional class had increased 
contribution to heritability, we observed that the estimators were unbiased but had low precision. When causal 
variants were enriched in variants with low (< 0.05) or high (> 0.20) minor allele frequency or low (below 1st quartile) 
or high (above 3rd quartile) linkage disequilibrium scores, it was necessary to partition the genetic variance into mul-
tiple classes defined on the basis of allele frequencies or LD scores to obtain unbiased results. When multiple func-
tional classes had variable contributions to heritability, estimators showed higher levels of variation and confounding 
between certain categories was observed. In addition, estimators from small categories were particularly imprecise. 
However, the estimates and their ranking were still informative about the contribution of the classes. We also demon-
strated that using methods that estimate the contribution of a single category at a time, a commonly used approach, 
results in an overestimation. Finally, we applied the methods to phenotypes for muscular development and height 
and estimated that, on average, variants in open chromatin regions had a higher contribution to the genetic vari-
ance (> 45%), while variants in coding regions had the strongest individual effects (> 25-fold enrichment on average). 
Conversely, variants in intergenic or intronic regions showed lower levels of enrichment (0.2 and 0.6-fold on average, 
respectively).

Conclusions Heritability partitioning approaches should be used cautiously in livestock populations, in particular 
for small categories. Two-component approaches that fit only one functional category at a time lead to biased esti-
mators and should not be used.
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Background
In livestock species, the number of genotyped and 
whole-genome sequenced animals is steadily increasing. 
Combining these data with missing genotype imputa-
tion techniques allows genome-wide association studies 
and genomic selection to be performed at the sequence 
level in large cohorts. More recently, functional annota-
tions of the genome are becoming available for several 
livestock species [1, 2]. For example, transcriptome data 
[3, 4], chromatin accessibility maps [5, 6] or histone mark 
distributions [6, 7] are now available in cattle. In human 
genetics, such information has been used to study the 
genetic architecture of complex traits, including com-
plex diseases [8, 9]. More precisely, the contribution of 
different functional categories of variants to the genetic 
variance of these different traits has been estimated. Such 
approaches are referred to as variance partitioning or 
heritability partitioning approaches. They have for exam-
ple highlighted the importance of regulatory variants [8, 
9]. Fewer studies have been realized in livestock species, 
as functional annotation maps remain limited compared 
to humans, and are more recent. Nevertheless, similar 
approaches have been used, for instance, in cattle [10, 
11]. In this context, the identification of functional cat-
egories contributing to complex traits is also important 
for prioritizing variants to be used in genomic selection 
and improving its accuracy.

Most methods used for heritability partitioning have 
been developed and tested in the context of human 
genetics [9, 12, 13]. Although livestock species have spe-
cific characteristics at the genomic level, methods have 
often been transferred without additional testing. As a 
result of their demographic history, including domesti-
cation, breed creation and intensive selection, livestock 
species are indeed different in terms of effective popu-
lation size [14, 15], levels and extent of linkage disequi-
librium (LD) [16], relatedness between individuals and 
levels of inbreeding [17]. The higher selection intensity 
in livestock species often results in the fixation of large 
effect variants accompanied by large selective sweeps 
[18]. Importantly, previous studies in humans have relied 
on samples of unrelated individuals, discarding all pairs 
of individuals with a relatedness level above 0.025 [12], 
whereas in a typical livestock dataset these and higher 
relationships are common. For instance, with the use 
of artificial insemination, many individuals may have a 
common sire or grand-sire. Similarly, the importance of 
accounting for LD scores when estimating variance com-
ponents [12] has not been evaluated when high LD levels 
are present at long distances [19].

We herein used a genotyped population of 14,762 
Belgian Blue Beef (BBB) cows to evaluate the accu-
racy of heritability partitioning approaches in a typical 

livestock population. Belgian Blue cattle have indeed 
been intensively selected for muscular development. 
This has resulted in the fixation of an 11 bp deletion in 
the myostatin gene [20], accompanied by a large selec-
tive sweep [18]. Additional genetic variation for muscular 
development has been exploited to further improve this 
trait [21]. As in other livestock populations, the effective 
population size is small, around 100 [18], and individuals 
have high levels of recent inbreeding associated with long 
runs of homozygosity [22]. The objective of the present 
study was to use these data to perform realistic simula-
tions, with characteristics of a typical livestock popula-
tion, in order to evaluate two state-of-the-art methods, 
a variance component approach [12] and a Bayesian 
mixture model [13]. The simulations included scenarios 
where causal variants were enriched in specific allele fre-
quency, LD score or functional categories. An additional 
objective was to use these approaches to perform herit-
ability partitioning based on functional annotation for 
muscular development and height traits in Belgian Blue 
beef cattle.

Methods
Data
For the present study we used data from 14,762 Belgian 
Blue beef cows with imputed genotypes from 11,537,240 
SNPs and small indels [23]. Cows were genotyped with 
either low-density (9983 to 20,502 SNPs) or medium-
density (51,809 to 57,979 SNPs) arrays and genotype 
imputation to the sequence level was performed in suc-
cessive steps. The reference panels included 13,600, 890 
and 230 individuals at the medium-density (28,893 SNPs 
selected), high-density (572,667 SNPs selected) and 
sequence levels, respectively. Variants with low minor 
allele frequency (MAF) (< 0.01) or with lower imputa-
tion accuracy  (r2 < 0.90) were filtered out, resulting in 
the selection of 11,431,742 variants. More details on the 
imputation procedure and the data set can be found in 
Gualdrón Duarte et  al. [23]. We used phenotypes for 
muscularity traits (shoulder muscularity, top muscularity, 
buttock muscularity rear and side view) and height (with 
heritabilities of 0.30, 0.31, 0.42, 0.39 and 0.38, respec-
tively). The four muscularity traits are scores from 51 to 
100, given on the farm by a technician based on a visual 
assessment (available for 14,476 individuals), while height 
was measured for 12,904 individuals. In addition, a syn-
thetic score for muscular development was obtained as 
a linear combination of the four individual muscularity 
scores (with a weight of 1 for shoulder and top muscular-
ity and 2 for buttock muscularity scores). These pheno-
types were corrected for fixed effects from the evaluation 
model as described in Gualdrón Duarte et al. [23].
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Variant annotation
For variant annotation, we selected categories similar to 
those defined by Gusev et  al. [8]. Accordingly, six func-
tional categories were defined to classify the 11,431,742 
variants. First, we identified variants located in open 
chromatin regions (OCR). These regions were defined 
using an organism-wide catalog of 976,813 cis-acting 
regulatory elements for the bovine detected by the assay 
for transposase accessible chromatin using sequencing 
(ATAC-SEQ) described in Yuan et al. [5]. The catalogue 
was generated using data from 106 samples correspond-
ing to 68 tissue types. We annotated as OCR variants 
those variants located in the 976,813 peaks, which rep-
resented 10% of the genome space. Variants outside the 
OCR were classified into five additional groups cor-
responding to coding sequence (CDS), untranslated 
regions (UTR) including both 3’ and 5’ UTR, regions 
upstream (-1 kb) or downstream (+ 1 kb) of genes (UDR), 
intronic (IOR) and intergenic (IGR) regions. The number 
of variants per category is reported in Table 1. This anno-
tation was obtained from the General Transfer Format 
(GTF) file of the bovine genome assembly ARS-UCD1.2 
downloaded from Ensembl (v105). This file directly pro-
vides coordinates of genes, transcripts, exons, CDS and 
UTR. IORs were defined as non-exonic regions in genes. 
Transcription start and termination sites (TSS and TTS) 
were obtained using Homer [24] and all transcripts from 
the genes. Upstream and downstream regions were then 
defined as 1 kb upstream and downstream from TSS and 
TTS, respectively. IGR corresponded to the remaining 
unannotated regions.

Annotation groups were also defined based on MAF and 
linkage disequilibrium (LD) scores [12]. Three MAF groups 
were defined [0.01–0.05; 0.05–0.10; 0.10–0.50]. For each 
variant, LD scores were obtained using GCTA [25] as the 
sum of LD  r2 scores between the variant and all variants 
within a 200 kb window [12]. SNPs were then stratified into 

four LD score groups based on quartiles. These groups thus 
represent SNPs that have, for example, low or high LD lev-
els with other SNPs in the region. SNPs in high LD groups 
capture the effect of more SNPs, and potentially causal var-
iants, than SNPs in low LD groups.

Heritability partitioning methods
Two methods were applied to estimate the contribu-
tion of different annotation groups to the additive genetic 
variance. First, we used a genomic restricted maximum 
likelihood (GREML) approach to estimate the variance 
components with the following linear mixed model:

where y is the vector of individual phenotypes, 1µ is 
the intercept term (i.e. the mean effect), gs is the vector 
of individual polygenic effects associated to annotation 
group s, S is the total number of fitted annotation groups, 
and e is the vector of individual random error terms. 
Each polygenic component is normally distributed, 
g s ∼ N (0,Gsσ

2
s ) where Gs is the genomic relationship 

matrix (GRM) computed using the variants present in 
category s and σ 2

s  is the variance of polygenic effects from 
the annotation group. The GRM were computed with 
GCTA using centered and scaled genotypes as described 
in Yang et al. [25]. The residual error terms are independ-
ent and normally distributed, e ∼ N (0, Iσ 2

e ) where I is 
the identity matrix and σ 2

e  is the residual variance. The 
additive polygenic variance, σ 2

g  , is equal to the sum of the 
variances associated to each annotation groups:

y = 1µ+

S

s=1

g s + e

σ 2
g =

S
∑

s=1

σ 2
s

Table 1 Description of the number of variants in each functional category and their contribution to SNP heritability in the three more 
complex scenarios

CDS Coding sequence, IOR Intronic regions, UTR  5’ and 3’ untranslated regions, UDR Up- and down-stream regions, IGR Intergenic regions, OCR Open chromatin 
regions

Annotation Full genome Subset of the genome %SNP heritability

Number of variants Proportion of 
variants

Number of variants Proportion of 
variants

Scenario I Scenario II Scenario III

CDS 63,663 0.56% 4,161 0.43% 25 15 50

IOR 3,445,739 30.14% 278,021 28.80% 14 10 20

UTR 5,837 0.05% 412 0.04% 1 0.5 0

UDR 604,425 5.29% 40,423 4.19% 10 4.5 10

IGR 6,099,183 53.35% 547,980 56.76% 15 10 0

OCR 1,212,895 10.61% 94,429 9.78% 35 60 20
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The contribution of annotation group s to the genetic 
variance, called %SNP heritability, is estimated as:

Variance components were estimated using GCTA and 
the Average-Information (AI) algorithm (default option). 
When the AI-REML did not converge, we used the EM-
REML algorithm with a maximum of 500 iterations.

The second approach is a Bayesian model designed for 
large-scale genomic data and called BayesRR-RC [13]. 
The model is an extension of BayesR [26] and BayesRC 
[27]. Variant effects are described as a mixture of null 
effects (spike probability at zero) and Gaussian distri-
butions. The hyper-parameters vary for variants from 
different annotation groups. Accordingly, the variance 
explained by the markers and their mixture proportions 
are group-specific. Phenotypes are modeled as:

where Xs is the matrix of centered and scaled genotypes 
for markers in category s and βs is the vector of marker 
effect for category s. These effects are distributed accord-
ing to:

where j is the marker index, δ0 is a discrete probability 
mass at 0, L is the number of Gaussian distributions in 
the mixture, 

{

π0s ,π1s ,π2s , . . . ,πLs
}

 are the mixture pro-
portions for annotation group s, 

{

σ 2
1s
, σ 2

2s
, . . . , σ 2

Ls

}

 are 
the mixture variances for group s, proportional to σ 2

s  , the 
variance explained by the group which is directly esti-
mated from the data. In our study, we set L to 3, with var-
iances σ 2

ls
 respectively equal to 0.0001, 0.001 and 0.01 σ 2

s  . 
This model was run using the GMRM software [13] with 
a Gibbs sampling scheme for 5,000 iterations with a 
burn-in period of 2,000 iterations. This setting corre-
sponds to the values used by the software developers in 
their original study [13], and Orliac et al. [28] have shown 
that 2,000 iterations allow to obtain good approximations 
of the parameters.

Different definitions of annotation groups can be 
applied in both approaches. In two-component (TC) 
models, two functional annotation groups are selected 
(e.g., OCR versus non-OCR), whereas in multiple-com-
ponent (MC) models, multiple functional annotation 
groups are fitted simultaneously. Additional stratification 
levels can be added to these models [12]. In the MAF-
stratified (MS) and LD-stratified (LDS) models, groups 

%h2s =
σ 2
s

σ 2
g

y = 1µ+

S
∑

s=1

X sβs + e

βsj
∼ π0s δ0 + π1sN (0, σ 2

1s
)+ π2sN (0, σ 2

2s
)+ · · · + πLsN (0, σ 2

Ls
)

are defined as a function of the MAF and LD score cat-
egories described above, respectively, whereas an LDMS 
model fits all combinations of functional, MAF and LD 
categories. In this case, the total number of fitted com-
ponents is equal to the number of functional categories 
multiplied by the number of MAF groups and by the 
number of LD score groups. When a model is run with-
out correcting for MAF or LD score categories, we use 
the abbreviation "noLDMS" to distinguish it from the 
other models.

Simulation study
Phenotype simulation
To obtain phenotypes with different architectures, we 
simulated them as:

where y is the vector of individual simulated phenotypes, 
S is the number of different annotation groups, Ms is the 
number of causal variants (CVs) in annotation group s, 
xsj is a vector of centered individual allele dosages for the 
jth variant from the sth group, βsj is the effect of the cor-
responding variant and e is a vector of individual errors 
terms. By default, CV effect sizes were sampled from 
normal distributions with variance equal to [2pj(1-pj)]−1, 
where pj is the allele frequency of variant j. This is equiva-
lent to assuming that each CV contributes equally to the 
genetic variance, as in Gusev et al. [8] and Yang et al. [12]. 
This corresponds also to the default rule used by GCTA 
to construct the GRM. We assessed the robustness to this 
assumption later (see below). To simulate variable contri-
butions of the annotation groups to the genetic variance, 
we selected the number of CVs,  Ms, proportionally to the 
simulated contribution.

In this model, the individual polygenic effects gi are 
equal to:

where g is the vector of individual polygenic effects and 
gs is the vector of individual polygenic effects associated 
to annotation group s. After simulating these polygenic 
terms, their variance was rescaled to obtain the simu-
lated contribution to the genetic variance, also defined as 
%SNP heritability. Finally, the individual error terms were 
normally distributed with a variance adjusted to obtain 
the simulated heritability. By default, M, the total num-
ber of CVs, was set equal to 10,000 and the heritability 
to 0.50. This simulation code is available at https:// github. 
com/ can11 sichu an/ Bov- hg/.

y =

S
∑

s=1

Ms
∑

j=1

xsjβsj + e

g =

S
∑

s=1

Ms
∑

j=1

xsjβsj =

S
∑

s=1

g s

https://github.com/can11sichuan/Bov-hg/
https://github.com/can11sichuan/Bov-hg/
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Simulations scenarios with causal variants enriched in OCR
In unstratified scenarios, CVs were randomly sampled. In 
other scenarios, higher proportions of variants were sam-
pled in certain annotation groups.

We started with simulations in which OCR contributed 
to 50% of the heritability, without stratification accord-
ing to MAF or LD scores. Accordingly, 5,000 CVs were 
selected within OCR and 5,000 outside OCR. We then 
ran simulations in which CVs were enriched in specific 
MAF classes, LD-score categories, or combinations of 
both (LDMS simulation scenarios). The enriched anno-
tation groups were defined as low MAF (MAF ≤ 0.05), 
high MAF (MAF > 0.20), low LD (LD scores below the 1st 
quartile) and high LD (LD scores above the 3rd quartile). 
In these simulations, 3,000 OCR SNPs were sampled in 
the enriched annotation groups and 2,000 OCR SNPs 
were sampled outside of these groups, and the same sam-
pling was applied outside of OCR. A total of six stratified 
scenarios were defined: 1) low MAF, 2) high MAF, 3) low 
LD, 4) high LD, 5) low MAF and low LD, and 6) low MAF 
and high LD.

Finally, we tested the robustness of the approaches to 
the relationship between SNP effects and their MAF. 
In the default scenario described above, CVs have the 
same contribution to the genetic variance (i.e. rare vari-
ants have larger effects). In the alternative scenario cor-
responding to the first rules proposed by VanRaden [29], 
the distribution of CV effects was independent of MAF 
(common variants would have a higher contribution to 
genetic variance).

Due to the high computational demands of BayesRR-
RC, we worked with a subset of the genome. To do this, 
we randomly sampled 200 positions in the genome and 
selected all variants within 500  kb of the position (we 
sampled fragments rather than variants to preserve some 
LD structure). This resulted in a selection of 191 Mb and 
965,428 variants (we have less than 200 Mb because some 
positions were less than 500 kb apart and their windows 
overlapped, while other positions were close to the chro-
mosome ends). Both BayesRR-RC and GREML were 
applied to these simulations to ensure fair comparisons.

In total, each simulation scenario was repeated 100 
times.

Simulation scenarios with variable contributions 
from different functional categories
We then used the six functional categories in our simula-
tions. These categories were similar to those used in the 
study by Gusev et al. [8]. As in their study, we ran simula-
tions where one of the functional categories contributed 
to 100% of the genetic variance, and then simulations 
without enrichment, where each category contributed 
proportionally to the number of variants present in the 

category. In addition, we simulated three more complex 
scenarios in which the different functional categories had 
variable contributions (Table  1). For these simulations, 
repeated 100 times per scenario, the heritability was set 
to 0.70 and we selected 2,000 CVs variants. In the scenar-
ios where a single class contributed to 100% of the her-
itability, the number of CVs was reduced to 500, as the 
number of SNPs in certain categories was limited.

Evaluation metrics
For each scenario, we reported summary statistics (mean, 
median, standard deviation, quantiles, minimum, maxi-
mum), measures of precision and accuracy (Root Mean 
Square Error – RMSE, and bias) of the estimators. We 
also reported the number of simulations without conver-
gence with the AI-REML and after 500 additional itera-
tions of the EM-REML.

Application to real data
Finally, we applied the approach to the five muscular 
development traits and height measured on the ~ 15,000 
genotyped Belgian Blue beef cows and imputed to the 
whole-genome sequence level. We used a MC model with 
the same partitioning of the genome as in the simulation, 
except that UTR was merged with CDS (as the variabil-
ity of estimates in the small category was too high). For 
the GREML approach, GRMs were computed using the 
rules described above [25] or the first rule proposed by 
VanRaden et  al. [29]. In addition, we also estimated the 
%SNP heritability associated with the different annota-
tion classes using a TC approach.

Results
Estimation of proportion of genetic variance associated 
with a single annotation class
We first assessed whether the approaches could esti-
mate the proportion of genetic variance associated with 
a specific category (also referred to as %SNP heritability) 
with TC models. For this purpose, we selected variants 
located in open chromatin regions (OCR) identified by 
ATAC-SEQ [5], which account for approximately 10% 
of the genome, and started with simulations in which 
these variants accounted for 50% of the genetic variance. 
The architecture was independent of both MAF and LD 
scores (i.e. CVs were randomly sampled within OCR and 
non-OCR). In Fig. 1, we show the proportion of genetic 
variance estimated with GREML or with the BayesRR-RC 
model (without correction for LDMS (noLDMS), MAF-
stratified (MS), LD-stratified (LDS) or LD- and MAF-
stratified (LDMS) approaches). Results for each scenario 
are provided in Additional File 1, including summary sta-
tistics, measures of precision and accuracy, and conver-
gence information.
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We observed that the %SNP heritability associated 
with OCR was accurately estimated with the different 
GREML approaches (mean = 49.7% (noLDMS), 49.7% 
(MS), 49.7% (LDS) and 50.4% (LDMS)), although with 
relatively high imprecision of the estimators (RMSE = 5.4 
(noLDMS), 5.7 (MS), 5.7 (LDS) and 5.6 (LDMS)) (Addi-
tional file 1: Table S1). For example, the estimated %SNP 
heritability ranged from 35.9 to 67.1% when running 
GREML without correction for LDMS (95% of the values 
were between 40.4 and 58.5%). BayesRR-RC also pro-
duced estimates close to the simulated values, but with 
slightly higher levels of variation than GREML with the 
noLDMS, MS and LDS approaches. In this first scenario, 
the bias was below 1% with both methods, except with 
BayesRR-RC for the LDMS approach.

Next, we investigated whether the methods were 
robust to MAF- or LD-dependent architectures (MS 
and LDS simulations, respectively). To this end, we 
performed simulations in which CVs were enriched in 
specific MAF classes (e.g., MAF ≤ 0.05 or MAF > 0.20), 
LD-score categories (i.e., SNP with LD score in the lower 
or upper quartile), or in combinations of both features 
(LDMS simulation scenarios). Although the noLDMS-
GREML approach provided unbiased estimates of OCR 
%SNP heritability in some scenarios, such as the low 
MAF (Fig. 2A) and high MAF (Additional file 2: Figure 
S1A) scenario, high levels of bias were observed when 

CVs were enriched in certain LD classes (Fig. 2B-C and 
Additional file  2: Figure S1B). LDS-GREML was biased 
in MS simulations and vice versa. Overall, only LDMS 
models were robust in most scenarios (Fig. 2A-C; Addi-
tional File 1: Tables S2-7; Additional file 2: Figure S1), in 
agreement with previous studies [12, 30]. In this case, 
the estimators obtained with BayesRR-RC deviated more 
from the simulated values than the GREML approach. 
However, convergence was not systematically achieved 
with the GREML approach (with both the AI-REML 
algorithm and after 500 iterations of the EM-REML algo-
rithm). This occurred mainly with the LDMS-GREML 
(Additional file 1: Tables S1-7), when a higher number of 
GRMs was fitted, and has also been reported in previous 
studies [9, 31].

In these first simulations, each CV had the same 
expected contribution to the genetic variance because 
its effect variance was proportional to the inverse of pj 
(1- pj) (where pj is the reference allele frequency at SNP 
j). This architecture is consistent with the default rule 
used to construct the GRM in GCTA (i.e., the same 
architecture was used in the simulation and in the par-
titioning approach). We also investigated whether the 
accuracy of heritability partitioning would be different if 
different rules were used to simulate the CV effects and 
to construct the GRMs used in the partitioning approach. 
Therefore, we performed the partitioning using GRMs 

Fig. 1 Estimation of %SNP heritability when variants in open chromatin regions (OCR) accounted for 50% of heritability. There was no additional 
MAF (MS) or LD stratification (LDS) in the simulations. The %SNP heritability was estimated with GREML and BayesRR-RC. The methods were applied 
without correction for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDMS) and both MAF and LD stratified (LDMS) 
approaches
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constructed with the first rules proposed by VanRaden 
[29], assuming that the CV effect variance is independ-
ent of allele frequency. In addition, we used these sec-
ond rules to simulate a new scenario in which common 
variants contribute more to the genetic variance. In the 
analyses, we observed a modest bias with the noLDMS 
and LDS approaches when the rules used to estimate the 
GRM did not match those used in the simulation (Addi-
tional file  2: Figure S2). Interestingly, this bias could be 
reduced by using the MS and LDMS approaches.

Estimation of proportions of the genetic variance 
associated with multiple annotation classes
In the second part of the study, we simulated more com-
plex scenarios in which six different annotation classes 
contributed to the total genetic variance to varying 
degrees. The selected categories were coding regions 
(CDS), 3’ and 5’ UTR (UTRs), regions upstream and 
downstream of genes (± 1  kb) called UDR, intronic 
regions (IOR), intergenic regions (IGR) and variants 
in OCR. For each simulation, we assessed whether the 
model was able to estimate %SNP heritability and herit-
ability enrichment, defined as the ratio of the percentage 
of heritability contributed by the category to the percent-
age of SNPs in the category. To do this, we fitted the six 
categories simultaneously with a MC model, without cor-
recting for LDMS structure for computational reasons. 

We started with simulations where all the genetic vari-
ance was associated to a single class (Fig.  3A-B; Addi-
tional file  1: Tables S8-12; Additional file  2: Figure S3). 
The GREML approach identified the class contributing 
to the genetic variation, but with relatively low precision 
and some bias (for instance, estimates ranged from 0.943 
to 0.997 for CDS and from 0.657 to 0.979 for OCR). The 
BayesRR-RC approach was more accurate, with excep-
tionally low levels of variation in estimates across simu-
lations, except when OCR variants accounted for 100% 
of the genetic variation. In this case, other categories 
such as CDS or UDR captured some of the variation, 
suggesting some confounding between these categories. 
We then ran simulations without heritability enrich-
ment, with the proportion of CVs per category equal to 
their genomic proportions. For most classes, the cor-
rect levels of enrichment were estimated by both meth-
ods (Fig. 4; Additional file 1: Table S13), but some classes 
showed either high levels of variation or even some bias. 
The level of variation was inversely related to the size of 
the class, with the highest levels for the estimation of 
%SNP heritability for variants in UTRs and CDS. Over-
all, the %SNP heritability associated with each class and 
the ranking between classes was well estimated. We then 
simulated more complex and realistic scenarios with 
variable contributions from the different functional cat-
egories (see Table 1). In these scenarios, CDS and OCR 

Fig. 2 Estimation of %SNP heritability when causal variants are enriched in specific MAF or LD score categories. Variants in open chromatin 
regions (OCR) accounted for 50% of heritability. Causal variants were enriched in A) low MAF variants (MAF < 0.05), B) Low LD variants (LD score 
in the 1st quartile), and C) low MAF and low LD variants. The %SNP heritability was estimated with GREML and BayesRR-RC. The methods were 
applied without correction for MAF or LD score (noLDMS), and with MAF stratified (MS), LD stratified (LDMS) and both MAF and LD stratified (LDMS) 
approaches
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Fig. 3 Estimation of %SNP heritability when causal variants are enriched in a single functional annotation class. Causal variants were located 
in A) coding sequences (CDS) and B) open chromatin regions (OCR). The %SNP heritability was estimated using GREML and BayesRR-RC 
with the following functional classes: CDS, 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), intergenic regions 
(IGR) and OCR

Fig. 4 Estimation of heritability enrichment in simulations where SNPs from different functional classes had equal contribution. Heritability 
enrichment was estimated using GREML and BayesRR-RC with the following functional classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), 
upstream and downstream regions (UDR), intronic regions (IOR), intergenic regions (IGR) and open chromatin regions (OCR)



Page 9 of 17Yuan et al. BMC Genomics          (2024) 25:690  

were always enriched in causal variants, whereas inter-
genic and intronic regions harbored proportionally fewer 
causal variants. In the first scenario, five categories con-
tributed 10% or more of the heritability, whereas OCR 
and CDS accounted for 50% or more of the genetic vari-
ation in the second and the third scenario, respectively. 
Results for the three scenarios are shown in Fig.  5A-C 
and Additional file 1: Tables S14-16. The standard devia-
tions of the estimators were around 0.04, but higher val-
ues were observed for OCR (over 0.08). The estimators 
showed some bias, with deviations generally around 
0.01–0.04. The largest biases were observed for OCR and 
UDR, which were underestimated and overestimated 
respectively, confirming the confounding between these 
categories. In most cases, the estimators obtained with 
BayesRR-RC were less variable and associated with lower 
biases. The average RMSE, combining variation and bias, 
was equal to 0.063 and 0.053 for GREML and BayesRR-
RC, respectively (Additional file  1: Table  S17). The 
ranking of the different categories according to their con-
tribution to genetic variance was not always correct, with 
the largest errors associated with UDR, whose contribu-
tion was systematically overestimated, and OCR. Never-
theless, the estimators provided information about which 
classes contributed most to genetic variation (for exam-
ple, the relative importance of CDS or intergenic variants 

was generally close to their simulated values). Compari-
sons of estimators from the same category across differ-
ent scenarios (Fig.  6) indicate that these estimators are 
informative despite their low precision. The coefficient 
of determination from the regression of estimated versus 
simulated values was 0.941 for CDS, 0.760 for intronic 
regions, 0.959 for intergenic regions and 0.804 for OCR 
with GREML, and 0.947 for CDS, 0.708 for intronic 
regions, 0.965 for intergenic regions and 0.855 for OCR 
with BayesRR-RC. Note that for these analyses, we did 
not include scenarios where classes contribute to 100% of 
the genetic variance, and results for UDR are not shown 
because its simulated values remained low in all scenar-
ios. We repeated this analysis using estimated heritability 
enrichment levels (Additional file 2: Figure S4).

We then evaluated the properties of the estimators 
obtained with models that estimate the contribution of 
only one functional category, using a model that fits a 
second category that includes all other functional classes 
(TC models). This approach is commonly used because it 
reduces computational requirements and thus allows MS, 
LDS or LDMS models to be applied. The approach was 
evaluated in the four scenarios where several categories 
contribute to the genetic variance, and not for UTR as the 
estimator was shown to be highly inaccurate due to the 
small size of the category. This strategy gave poor results 

Fig. 5 Estimation of %SNP heritability in complex simulation scenarios where SNPs from different functional classes had variable contributions. 
The contribution for each category is shown in Table 1. Heritability enrichment was estimated using GREML and BayesRR-RC with the following 
functional classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), intergenic regions 
(IGR) and open chromatin regions (OCR)



Page 10 of 17Yuan et al. BMC Genomics          (2024) 25:690 

as %SNP heritability was most often overestimated for all 
categories (OCR, UD, CDS, and IOR), even when LDMS 
methods were used, while biases were lower for inter-
genic regions (Fig. 7A-D; Additional file 1: Table S18-21; 
Additional file 2: Figure S5-8). The estimators showed no 
bias mainly in simulations without enrichment or when 
the category had a null contribution in the simulation. 
Bias was greater for OCR than for intergenic regions. In 
the vast majority of cases, heritability partitioning with 
multiple annotation groups gave better results, for exam-
ple in terms of RMSE (Additional file 1: Table S22). This 
can also be observed when comparing estimates for a sin-
gle category across multiple scenarios (Additional file 2: 
Figure S9). This behavior could occur because the fitted 
class captured variance associated with other classes 
due to their similarity (for example, in terms of GRM). 
We measured the correlations between the off-diago-
nal elements from GRM of each category (Additional 
file  1: Table  S23) and observed, for example, that the 
GRM from IGR variants was less correlated with other 

GRMs, consistent with the fact that less confounding 
was obtained for this category. Other GRMs were highly 
correlated with the exception of the UTR GRM, prob-
ably because it was the smallest category. However, the 
correlation between GRMs from OCR and UDR was not 
the highest, even though they appeared to be the most 
confounded indicating that other parameters influence 
the confounding level. For example, relative distribution 
of effect sizes is probably important as we don’t observe 
confounding when enrichment levels are uniform across 
categories.

Heritability partitioning for traits related to muscular 
development and height in cattle
Finally, we applied the approach to the real phenotypes, 
as described in Material and methods. %SNP heritabili-
ties from the different categories were relatively variable 
across traits. For instance, the contributions of inter-
genic or CDS-UTR variants estimated by BayesRR-RC 
were not consistent across traits, ranging from 10 to 

Fig. 6 Scatterplot of estimated versus true %SNP heritability across simulation scenarios where SNPs from different functional classes contribute 
to genetic variance. The comparison is made separately for each functional class. %SNP heritability was estimated using GREML and BayesRR-RC 
with the following functional classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions (IOR), 
intergenic regions (IGR) and open chromatin regions (OCR)
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30% of the genetic variation (Fig.  8; Additional file  1: 
Table  S24). Similarly, relatively large differences were 
observed between BayesRR-RC and GREML estimates 
(for instance, the estimated %SNP heritability associ-
ated with OCR was equal to 85.5 and 45.0% for height). 
Nevertheless, some trends were consistent across traits 
and methods. OCR contributed to more than 30% of the 
genetic variance for all traits with BayesRR-RC (25% with 
GREML) and most often had the largest value of %SNP 
heritability (Fig. 8). The contribution of UDR was gener-
ally low, while intergenic variants had a modest contribu-
tion despite accounting for more than 50% of SNPs and 
indels. As in other studies, we averaged the contribu-
tions across traits [8, 9] (Table 2). For CDS-UTR, OCR, 
IGR and IOR, the average estimated contributions were 
similar with GREML and BayesRR-RC: over 45% for 
OCR, around 16–19% for CDS-UTR, 17% for IOR and 
10–13% for IGR. UDR had a small contribution with both 
approaches, but almost zero with GREML (indicating 
possible problems in estimating the contribution of UDR 
with GREML). Except for CDS-UTR, the relative ranking 
of the different functional categories were consistent with 
both methods. In terms of heritability enrichment, some 
trends were also consistent (Fig.  8; Table  2; Additional 
file 1: Table S25). CDS-UTR had the largest enrichment 
(around 25 to 30-fold), followed by OCR (around fivefold 
on average), whereas intronic and intergenic variants had 

values below 1 (0.6-fold and 0.2-fold, respectively). Parti-
tioning with a GREML using GRMs computed with the 
first rules proposed by VanRaden [29] was relatively simi-
lar to the first GREML results (Table 2; Additional file 1: 
Tables S24-25). The estimated contributions to heritabil-
ity of CDS-UTR were on average smaller, while those of 
the OCR were even larger. When we repeated the herit-
ability partitioning with TC approaches without LDMS 
stratification, we obtained higher contributions for all 
functional categories (Table  2; Additional file  1: Tables 
S24-25). For example, when using GREML, the follow-
ing increases were observed: + 14% for CDS-UTR, + 45% 
for IOR, + 29% for UDR, + 5% for IGR and + 28% for 
OCR. These values are 1.5 times higher or more for all 
categories. The sum of the contributions estimated with 
TC approaches corresponded to more than 200% of the 
total genetic variance (Table  2). Similar results were 
obtained using a TC-GREML with LDMS stratification 
but convergence was not systematically achieved with the 
GREML approach.

Discussion
Limitations of heritability partitioning approaches 
in livestock species
We herein evaluated the accuracy of GREML and 
BayesRR-RC in partitioning heritability according to 
functional classes, defined mainly on the basis of their 

Fig. 7 Estimation of %SNP heritability of variants in open chromatin regions (OCR) using a two-component strategy. Estimation was performed 
in complex simulation scenarios in which SNPs from multiple functional classes contribute to genetic variance (Panel A for the scenario 
without enrichment and Panels B-D for complex scenarios 1 to 3, respectively). Heritability enrichment was estimated using GREML and BayesRR-RC 
with the following two functional classes (OCR versus other categories). In addition, methods were run with unstratified (US), MAF stratified (MS), LD 
stratified (LDS) and both MAF and LD stratified (LDMS) approaches
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position relative to genes and transcripts. Importantly, 
we evaluated the methods in a typical livestock popula-
tion with reduced effective population size, high levels 
of relatedness and inbreeding, under intensive selection, 
and with high levels of long-range LD. The GREML 

approach has already been used in such livestock popula-
tions, for example in cattle [10, 11, 32–34]. Most often, 
this partitioning method was applied without an evalu-
ation of its bias and accuracy in such context. However, 
differences in population structure and their impact 

Fig. 8 Estimation of %SNP heritability and heritability enrichment in real data sets. Estimates were obtained using GREML and BayesRR-RC 
with the following functional classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions (UDR), intronic regions 
(IOR), intergenic regions (IGR) and open chromatin regions (OCR). Solid bars show %SNP heritability estimated when fitting simultaneously all 
the functional classes, while parameters estimated using a two-component approach, which only fits one functional category at a time, are shown 
with open bars

Table 2 Average %SNP heritability and heritability enrichment estimated for five functional groups and for six traits measured 
in Belgian Blue beef cattle. Values were estimated by fitting all components simultaneously with multiple classes (MC) or each 
component in turn with two component (TC) models and without correction for LDMS, and using BayesRR-RC or GREML (values in the 
parentheses correspond to the GREML partitioning when the GRMs were computed using the first rules from VanRaden [29])

CDS Coding sequence, IGR Intergenic regions, IOR Intronic regions, OCR Open chromatin regions, UDR Up-stream and down-stream regions, UTR  3’ and 5’ UTR 

CDS and UTR classes were merged

Annotation %SNP heritability (MC) Heritability enrichment (MC) %SNP heritability (TC) Heritability enrichment (TC)

GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC GREML BayesRR-RC

CDS-UTR 18.8 (14.0) 16.1 30.9 (23.0) 26.4 33.0 33.8 54.3 55.6

IOR 16.9 (16.0) 17.4 0.6 (0.5) 0.6 62.2 58.8 2.1 1.9

UDR 0.0 (1.2) 8.5 0.0 (0.2) 1.6 28.7 28.1 5.4 5.3

IGR 10.4 (9.0) 12.7 0.2 (0.2) 0.2 15.5 18.4 0.3 0.3

OCR 53.9 (59.8) 45.3 5.1 (5.6) 4.3 82.1 70.9 7.7 6.7

Sum 100.0 100.0 221.5 210.0
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on genome structure (e.g. LD patterns) could affect the 
precision and accuracy of the methods. For example, in 
humans, the methods have been evaluated by carefully 
filtering out pairs of individuals with levels of related-
ness greater than 0.025 [12]. In livestock, a large fraction 
of pairs of individuals would have levels above such a 
threshold. Recently, Cai et  al. [35] conducted a study to 
evaluate different GREML approaches for estimating 
heritability enrichment in a cattle population. They used 
data from 2,000 Holstein bulls imputed for about 700,000 
markers, and mainly evaluated the accuracy of the esti-
mators for three different MAF categories. Although 
some models gave unbiased results, biased estimators 
were observed when parameters from the simulated 
and fitted models did not match [35]. In particular, they 
found that estimated enrichment values were biased 
when CVs were enriched in rare alleles and that using LD 
scores calculated in too large windows resulted in biased 
estimates. We herein performed a simulation approach 
based on a large cohort of individuals. Importantly, our 
data were imputed at the whole-genome sequence level, 
providing a finer resolution for annotation. Compared 
to the study by Cai et  al. [35], we included more func-
tional annotation groups, including information from a 
recently published ATAC-SEQ peak catalogue [5], and 
we explored more scenarios (CVs could be enriched 
as a function of MAF, LD score and functional annota-
tion). Using this approach, we first observed that in rela-
tively simple scenarios (no stratification by MAF or LD, 
with CVs enriched for a single functional category), the 
methods were unbiased, but that the estimates showed 
high levels of variation. Note that when simulations were 
performed using the whole genome, even higher levels 
of variation were observed with the GREML approach 
(data not shown). When CVs were enriched in a par-
ticular MAF or LD score category, it was necessary to 
stratify the GREML or BayesRR-RC accordingly to obtain 
unbiased results (i.e., using a LDMS approach), consist-
ent with findings in humans [12]. When GRMs were not 
defined for different MAF or LD groups, biased parti-
tioning was indeed obtained. Importantly, the LD or MS 
groups fitted in the partitioning methods should match 
those that are truly enriched in CVs, an information that 
is rarely known. Other elements could further bias the 
results, such as the relationship between the MAF or LD 
scores of CVs and the magnitude of their effects, as pre-
viously highlighted by Speed et al. [31] or Cai et al. [35]. 
For example, the fitted GRMs could assume equal SNP 
contribution to the genetic variance (rare alleles hav-
ing then larger effects) or comparable effect sizes for all 
SNPs regardless of MAF (common SNPs having higher 
contribution to the genetic variance), whereas the true 
relationship between CVs and MAF could be different. 

Simulation results indicated that such differences 
between simulated and fitted architecture can sometimes 
be compensated by the use of an LDMS approach. Next, 
we ran simulations in which multiple functional catego-
ries contributed to the phenotypic variation with dif-
ferent levels of enrichment. The estimators still showed 
high levels of variation, especially for the classes with 
few variants, but we also observed systematic biases due 
to confounding between some functional categories, the 
strongest between OCR and UDR. Estimators were bet-
ter for variants in IGR, as their GRM was less similar to 
the GRM of other categories. This is important because it 
implies that confounding is higher for functional catego-
ries that are expected to contribute most to the genetic 
variance, and thus their estimates are less precise. We 
also tested a strategy estimating the %SNP heritability of 
each category individually (running one TC-GREML per 
category) and observed very strong biases, probably due 
to confounding. The estimated %SNP heritabilities were 
greatly overestimated for most categories. Although this 
two-component strategy reduces computational costs 
and allows fitting a LDMS model, it is therefore not rec-
ommended. This is an important observation as this is a 
common strategy [10, 11, 32, 33, 35–37].

The high levels of variation in heritability enrichment 
estimates could also be due to the similarity between 
GRMs from different functional or LDMS categories, or 
due to LD between neighboring SNPs from different cat-
egories. This problem is likely to be more severe in live-
stock species because the additive genetic relationships 
rxy between pairs of individuals x and y are spread over 
a wider range, including unrelated individuals (rxy = 0), 
half-sibs (rxy = 0.25), full-sibs (rxy = 0.5), parent-offspring 
(rxy = 0.5) and even monozygotic twin (rxy = 1) pairs. 
The high levels of relatedness will drive the correlations 
between elements from the different GRMs and may 
mask more subtle correlations due to short-range LD 
between SNPs. It has been shown that the properties of 
heritability estimators are different when individuals are 
unrelated and LD is high only at short distances [38]. 
When GRMs from different fitted categories are more 
distant, the problem of bias due to confounding between 
categories is likely to be less. This would be the case, for 
example, in studies evaluating the contribution from each 
autosome separately [34, 39, 40], or from specific chro-
mosomes of interest such as the sex chromosomes [41]. 
For example, GRM from sex chromosomes are based on 
different segregation rules and are less correlated with 
GRMs obtained from autosomes [39, 42]. Similarly, rela-
tionship matrices could be estimated for mitochondria or 
chloroplasts in plants to assess their contribution to the 
genetic variance.
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Comparison of evaluated methods
Our evaluation focused on two methods, GREML and 
BayesRR-RC. For GREML, we estimated the GRM using 
the rules from Yang et al. [25]. Different GRM construc-
tion rules can lead to different estimators. For exam-
ple, the GRM may be based on different relationships 
between the variance of marker effects and their MAF 
(by defining a parameter called “α”), LD score, or their 
genotyping accuracy [31, 43]. The accuracy of GREML 
with different values of α has previously been evalu-
ated in a livestock population by Cai et al. [35]. In pre-
liminary tests, we obtained less accurate estimates with 
the LDAK-Thin model recommended for non-human 
organisms [43], and therefore selected original rules 
from Yang et al. [25], assuming that each marker has an 
equal expected contribution to heritability (i.e., inde-
pendent of MAF), to construct our GRM. Nevertheless, 
in additional simulations, we observed that a mismatch 
between the function used to compute the GRM and 
the simulated relationship between CV effects and 
their MAF or LD scores could bias the results, more 
so when the relationship with LD scores was subopti-
mal and with GREML (data not shown). Unfortunately, 
the relationships remain unknown and, based on our 
results, the use of BayesRR-RC and LDMS models is 
recommended in such situations. The LD score regres-
sion (LDSR) is another method that allows heritability 
partitioning [9]. It is computationally efficient because 
it relies on summary statistics. Nevertheless, heritabil-
ity estimates from LDSR have higher standard errors 
than those from GREML [31, 44], and the approach has 
not been shown to be more efficient than GREML or 
BayesRR-RC in several studies [13, 45]. The properties 
of LDSR need to be evaluated in livestock populations, 
where the extent of LD is very different from humans 
and where markers may be in linkage equilibrium with 
CVs due to the presence of high levels of relatedness. 
For instance, Xiang et  al. [37] obtained poor results 
with LDSR in dairy cattle. In addition, obtaining sum-
mary statistics in livestock populations is more compu-
tationally demanding because LMM must be used for 
GWAS to correct for stratification and polygenic back-
ground. Due to these high computational requirements 
and based on previous comparison results, we did not 
evaluate LDSR in our study. Compared to BayesRR-RC, 
GREML produced more accurate results in the first set 
of simulations where OCR variants accounted for 50% 
of the heritability. In similar cases, LDMS models are 
recommended to obtain unbiased results. However, 
with many different fitted components, 500 iterations 
of the EM algorithm were sometimes insufficient to 
achieve convergence. These problems could be reduced 
by fitting a two-component model, but this produced 

biased results (see above). When we fitted models with 
multiple functional categories, BayesRR-RC outper-
formed the GREML approach. However, Bayes-RR-RC 
has higher computational costs and the number of itera-
tions that can be run is relatively small. Convergence 
diagnostic plots and comparisons with longer chains 
suggest that this number of iterations already provides 
good estimates for most parameters although these 
had high levels of variation (see Additional file  2: Fig-
ures  S10 and S11). This is consistent with the results 
of Orliac et al. [28] who concluded that less than 5,000 
iterations are required to estimate variance components 
and for genomic predictions. In the most complex sce-
narios, the estimator for some parameters was not fully 
stabilized after 5,000 iterations (Additional file 2: Figure 
S11). This suggests that more iterations may be required 
for livestock species due to the higher LD and related-
ness levels. Nevertheless, comparisons of the results 
obtained with 5,000 versus 50,000 iterations for 25 sim-
ulations from 2 scenarios show that the distributions of 
the estimated parameters are very similar. Overall, we 
observed that, with a total of 5,000 iterations, Bayes-
RR-RC performed better than GREML, but we cannot 
exclude that longer chains could further improve the 
results.

Heritability partitioning for muscularity and height 
in Belgian Blue beef cattle
Despite the high standard errors in the simulations, 
the estimated heritability enrichments and their rank-
ing remain informative, especially when averaged over 
multiple traits, as done in other studies [8, 9]. With both 
GREML and BayesRR-RC, variants present in OCR had 
by far the largest contribution to heritability (> 45%). 
Regulatory regions have also been shown to have the 
largest contribution to genetic variance for complex 
traits in humans [8] and to be important in cattle [10, 
11]. Recently, Xiang et al. [37] evaluated that regulatory 
variants explained on up to 70% of the genetic variance 
in cattle. In terms of heritability enrichment, variants in 
coding regions had the highest average per-variant 
contribution to the heritability (> 25-fold on average), 
variants in the OCR also showed substantial enrich-
ment (~ fivefold), whereas intronic and intergenic vari-
ants had enrichment values below 1 (0.6 and 0.2-fold, 
respectively). This ranking is in line with expectations 
and is consistent with results obtained in several studies 
of complex traits in humans [8, 9]. The observation of 
large effects associated with variants  in coding regions 
is in agreement with the findings of Gualdrón Duarte 
et al. [23], who identified several coding variants associ-
ated with the same traits and accounting for a large pro-
portion of the genetic variance. Heritability partitioning 
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could be refined by using more specific functional 
classes such as coding variants or eQTLs, but care must 
be taken as we have shown the limitations of partition-
ing approaches when too small or too many categories 
were fitted. Similarly, heritability enrichment could be 
applied to other types of categories such as conserva-
tion scores, differentiation scores, evidence of selection, 
or age of alleles.

Conclusions
Here we have shown that heritability partitioning 
approaches should be used cautiously in livestock pop-
ulations and that accuracy assessment is strongly rec-
ommended. Estimators were particularly imprecise for 
small categories, so models with too many and small 
functional categories should not be used. In addition, 
two-component approaches that fit only one functional 
category at a time produced biased estimates and should 
not be used. Nevertheless, the estimates and their rank-
ing were still informative about the contribution of the 
functional classes we fitted. We therefore applied the 
methods to real phenotypes for muscular development 
and height. We estimated that, on average, variants in 
open chromatin regions had a higher contribution to 
the genetic variance, while variants in coding regions 
had the strongest individual effects. Conversely, vari-
ants in intergenic or intronic regions showed lower lev-
els of enrichment. The results are consistent with those 
obtained in humans.
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functional classes had variable contributions (scenario I). Table S20. %SNP 
heritability estimation with a two-component approach in complex 
simulation scenarios where SNPs from different functional classes had 
variable contributions (scenario II). Table S21. %SNP heritability estimation 
with a two-component approach in complex simulation scenarios where 
SNPs from different functional classes had variable contributions (scenario 
III). Table S22. Mean Absolute Error of %SNP heritability estimates using a 
two-component approach across the three complex simulation scenarios 
where SNPs from different functional classes had variable contributions. 
Table S23. Correlations between genomic relationship matrices from 
different functional categories. Table S24. %SNP heritability estimation for 
the measured phenotypes. Table S25. Heritability enrichment estimation 
for the measured phenotypes. Table S26. %SNP heritability and heritability 
enrichment estimation using a LDMS two component approach for the 
measured phenotypes.

Additional file 2. Supplementary Figures Figure S1. Estimation of%SNP 
heritability when causal variants are enriched in specific MAF or LD score 
categories. Variants in open chromatin regions (OCR) accounted for 50% 
of heritability. Causal variants were enriched in A) common variants 
(MAF > 0.20), B) high LD variants (LD score above the 3rd quartile), and 
C) low MAF (MAF < 0.05) and high LD (LD score above the 3rd quartile) 
variants. The %SNP heritability was estimated with GREML and BayesRR-
RC. The methods were applied without correction for MAF or LD score 
(noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both 
MAF and LD stratified (LDMS) approaches. Figure S2. Estimation of %SNP 
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heritability using different GRM computation methods and for the 
two scenarios where SNP effect size is a function of allele frequency. 
Simulation rule 1: SNP effects increase as allele frequencies decrease 
(corresponding to the default rule). Simulation rule 2: SNP effects are 
drawn from the same distribution regardless of allele frequency (cor-
responding to the rules proposed by VanRaden [29]). Partitioning GRM 
rule 1: GRMs used in the heritability partitioning are computed using 
the default rules from GCTA. Partitioning GRM rule 2: GRMs used in 
heritability partitioning are computed using the VanRaden rules from. 
Figure S3. Estimation of %SNP heritability when causal variants are 
enriched in a single functional annotation class. Causal variants were 
located in A) upstream and downstream regions (UDR), B) intergenic 
regions (IGR), and C) intronic regions (IOR). The%SNP heritability was 
estimated using GREML and BayesRR-RC with the following functional 
classes: coding sequence (CDS), 3’ and 5’ UTRs (UTR), UDR, IOR, IGR 
and open chromatin regions (OCR). Figure S4. Scatterplot of estimated 
versus true heritability enrichment across simulation scenarios where 
SNPs from different functional classes contribute to genetic variance. 
The comparison is made separately for each functional class. Herit-
ability enrichment was estimated using GREML and BayesRR-RC with 
the following functional classes: coding sequence (CDS), 3’ and 5’ UTRs 
(UTR), upstream and downstream regions (UDR), intronic regions (IOR), 
intergenic regions (IGR) and open chromatin regions (OCR). Figure 
S5. Estimation of %SNP heritability of variants in intergenic regions 
(IGR) using a two-component strategy. Estimation was performed in 
complex simulation scenarios in which SNPs from multiple functional 
classes contribute to genetic variance (Panel A for the scenario without 
enrichment and Panels B-D for complex scenarios 1 to 3, respectively). 
Heritability enrichment was estimated using GREML and BayesRR-RC 
with the following two functional classes (IGR versus other categories). 
In addition, methods were run with unstratified (US), MAF strati-
fied (MS), LD stratified (LDS) and both MAF and LD stratified (LDMS) 
approaches. Figure S6. Estimation of %SNP heritability of variants in 
coding sequence (CDS) using a two-component strategy. Estima-
tion was performed in complex simulation scenarios in which SNPs 
from multiple functional classes contribute to genetic variance (Panel 
A for the scenario without enrichment and Panels B-D for complex 
scenarios 1 to 3, respectively). Heritability enrichment was estimated 
using GREML and BayesRR-RC with the following two functional classes 
(CDS versus other categories). In addition, methods were run without 
correction for MAF or LD score (noLDMS), and with MAF stratified (MS), 
LD stratified (LDS) and both MAF and LD stratified (LDMS) approaches. 
Figure S7. Estimation of %SNP heritability of variants in intronic regions 
(IOR) using a two-component strategy. Estimation was performed in 
complex simulation scenarios in which SNPs from multiple functional 
classes contribute to genetic variance (Panel A for the scenario without 
enrichment and Panels B-D for complex scenarios 1 to 3, respectively). 
Heritability enrichment was estimated using GREML and BayesRR-RC 
with the following two functional classes (IOR versus other catego-
ries). In addition, methods were run without correction for MAF or LD 
score (noLDMS), and with MAF stratified (MS), LD stratified (LDS) and 
both MAF and LD stratified (LDMS) approaches. Figure S8. Estimation 
of %SNP heritability of variants in upstream and downstream regions 
(UDR) using a two-component strategy. Estimation was performed in 
complex simulation scenarios in which SNPs from multiple functional 
classes contribute to genetic variance (Panel A for the scenario without 
enrichment and Panels B-D for complex scenarios 1 to 3, respectively). 
Heritability enrichment was estimated using GREML and BayesRR-RC 
with the following two functional classes (UDR versus other categories). 
In addition, methods were run without correction for MAF or LD score 
(noLDMS), and with MAF stratified (MS), LD stratified (LDS) and both 
MAF and LD stratified (LDMS) approaches. Figure S9. Scatterplot of 
estimated versus true %SNP heritability when using a two-component 
strategy. Estimates were compared across simulation scenarios where 
SNPs from different functional classes contribute to genetic variance. 
The contribution for each category is shown in Table 1. The compari-
son is made separately for each functional class. %SNP heritability 
was estimated using GREML and BayesRR-RC with the following two 
functional classes (one versus other categories) and a MAF and LD 
stratified (LDMS) approach. Fitted functional categories were coding 

sequence (CDS), 3’ and 5’ UTRs (UTR), upstream and downstream regions 
(UDR), intronic regions (IOR), intergenic regions (IGR) and open chromatin 
regions (OCR). Figure S10. Comparison of BayesRR-RC results obtained 
with 5,000 versus 50,000 iterations in a simple scenario. The model was 
run on data from a simple scenario where OCR contributed to 50% of the 
genetic variance. The 5,000 iterations correspond to the values used in 
the present study (burn-in from iterations 1–2,000), while 50,000 iterations 
correspond to a longer run (burn-in from iterations 1–5,000). A) Estimated 
%SNP heritability per iteration. Iterations used for parameter estimation 
in the standard run are delimited by the two blue dashed lines located at 
iterations 2,001 and 5,000. B) Distribution of %SNP heritability estimates 
in iterations 2,001–5,000 (standard run) and 5,001–50,000 (long run). C) 
%SNP heritability estimates for 25 simulations estimated using BayesRR-RC 
with 5,000 versus 50,000 iterations. Figure S11. Comparison of BayesRR-RC 
results obtained with 5,000 versus 50,000 iterations in the first complex 
scenario. The 5,000 iterations correspond to the values used in the present 
study (burn-in from iterations 1–2,000), while 50,000 iterations correspond 
to a longer run (burn-in from iterations 1–5,000). A) Estimated %SNP herit-
ability per iteration for the six components. Iterations used for parameter 
estimation in the standard run are delimited by the two blue dashed lines 
located at iterations 2,001 and 5,000. B) %SNP heritability estimates for 
the six components estimated using BayesRR-RC with 5,000 versus 50,000 
iterations in 25 simulations.
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