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Abstract 

Whole genome analysis for microbial genomics is critical to studying and monitoring antimicrobial resistance strains. 
The exponential growth of microbial sequencing data necessitates a fast and scalable computational pipeline 
to generate the desired outputs in a timely and cost-effective manner. Recent methods have been implemented 
to integrate individual genomes into large collections of specific bacterial populations and are widely employed 
for systematic genomic surveillance. However, they do not scale well when the population expands and turnaround 
time remains the main issue for this type of analysis. Here, we introduce AMRomics, an optimized microbial genomics 
pipeline that can work efficiently with big datasets. We use different bacterial data collections to compare AMRomics 
against competitive tools and show that our pipeline can generate similar results of interest but with better perfor-
mance. The software is open source and is publicly available at https:// github. com/ amrom ics/ amrom ics under an MIT 
license.

Background
Whole genome sequencing (WGS) of bacterial iso-
lates using the next-generation sequencing technology 
has progressively become the predominant method in 

clinical microbiology, public health surveillance, and 
disease control  [1–3]. The ability to study the com-
plete genetic information of a large number of bacterial 
genomes provides the potential to generate insights into 
the pathogenic genotype/phenotype relationships  [4–6], 
pathogenic virulence transmissibility [7, 8] and antibiotic 
resistance tracking  [9, 10]. The combination of genom-
ics information and epidemiological data has been fre-
quently used in disease control processes, such as rapid 
outbreak clustering investigation of the recent SARS-
CoV-2 pandemic  [11, 12] and evolutionary perspectives 
inference/prediction with regards to pathogenic diversi-
fication [13, 14]. The richness of current high-throughput 
genomic data has created a solid foundation to establish 
systematic studies for large cohorts of related genomes by 
applications of genome-wide methods such as cgMLST, 
phylogenetic, or pangenomic analyses. WGS approaches 
can generate insightful data to discern knowledge about 
existing pathogenesis and assist in unraveling the char-
acteristics of unknown ones [15, 16], which is critical in 
understanding and thus controlling disease outbreaks.
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To meet the demand for analysis tools, a number of 
computational pipelines have been developed to facili-
tate the analysis of microbial WGS data and to gener-
ate practical results of interest. Several have become 
well-established and widely used in the field, notably 
Nullarbor [17], Bactopia [18], and  ASA3P [19]. The first-
mentioned tool, Nullarbor, has been around as part of 
a standard process in public health microbial genomic 
procedure, while the latter two are relatively up-to-date 
with comprehensive and wide-spectrum functionali-
ties. However, these software pipelines usually require 
high-end computation infrastructures and take prohibi-
tively long running times to analyze when collection sizes 
reach beyond thousands of genomes. Furthermore, while 
it is typical for laboratories to collect and sequence new 
samples over time, none of the existing pipelines can effi-
ciently manage the growing collections where new sam-
ples are constantly added. In most cases, many parts of 
these pipelines need to be rerun every time new samples 
are added to the collection, resulting in additional high 
computation costs.

Here we introduce AMRomics, a lightweight open-
source software for analyzing and managing large collec-
tions of bacterial genomes. This tool offers the ability to 
generate essential genomic results for individual samples, 
together with a population analysis that outperforms 
other methods. Thanks to its optimal design, the perfor-
mance is significantly improved, making analyses of big 
collections of bacteria feasible on regular desktop com-
puters with reasonable turn-around time. AMRomics 
project source code is available at https:// github. com/ 
amrom ics/ amrom ics. git

Workflow and implementation
AMRomics is a software package that provides a compre-
hensive suite of genomics analyses of microbial collec-
tions in a simple and easy to use manner. It is designed 
to be performant and scalable to large genome collec-
tion with minimal hardware requirements without com-
promising the analysis results. To that end, we select the 
considered best practices tools in microbial genomics, 
and stitch them together via a well-structured workflow 
as described in the next section. For certain tasks in the 
workflow, AMRomics provides options for users to select 
among several alternative tools. The workflow is written 
in Python and is designed as a modular and expandable 
application with the standardized data formats flowing 
between the tools in the workflow.

The software flexibly takes in input data in various for-
mats including sequencing reads (with Illumina, Pacbio 
and Nanopore technologies), genome assembly, and 
genome annotations. It then performs assembly, genome 
annotation, MLST, virulome and resistome prediction, 

pangenome clustering, phylogenetic tree construction 
for each gene and core genes, and pan-SNPs analysis, all 
with a simple command line. AMRomics achieves this by 
building a pipeline consisting of the current best prac-
tice tools in bacterial genomics. It is also designed to be 
fast, efficient, and scalable to collections of thousands of 
isolates on a computer with modest hardware. Crucially, 
AMRomics supports the progressive analysis of a grow-
ing collection, where new samples can be added to an 
existing collection without the need to build the collec-
tion from scratch.

Functionally, the AMRomics pipeline can be split into 
2 stages: single sample analysis and collection analysis 
as depicted in Fig. 1. In the single sample analysis stage, 
every sample is processed based on the type of input 
data. Specifically, for Illumina sequencing data, fastp [20, 
21] is employed for quality control, adaptor trimming, 
quality filtering and read pruning. The pre-processed 
reads are then subject to sequence assembly to generate 
a genome assembly. SKESA [22] is the method of choice 
for assemblying Illumina sequencing data for its speed, 
but the user can optionally choose to use SPAdes [23, 24] 
for slightly better N50 with the extra computation time. 
If long read data (Nanopore and Pacbio) are provided, 
the sample genome is assembled by Flye [25]. The assem-
bly step can be skipped if the user provides the genome 
assembly in FASTA format as input to the pipeline. 
AMRomics then standardizes the sample IDs and the 
contig names to ensure their uniqueness in the collection. 
Next, the genome assembly is annotated with Prokka [26] 
unless the annotations are provided by the user. The gene 
sequences are extracted and stored in files at predefined 
locations. The genome sequence is also subject to multi-
locus strain typing with pubMLST database of typing 
scheme for bacterial strains [27], antibiotic-resistant gene 
identification with AMRFinderPlus database  [28], viru-
lent gene identification with the virulence factor database 
VFDB [29, 30], and plasmid detection with plasmidfinder 
database [31]s. All the results of the single sample analy-
sis are organized in a standard manner.

In the second stage, AMRomics performs a pange-
nome comparative analysis of the genome collection. The 
annotations of all the genomes in GFF format are loaded 
into a pangenome inference module for gene cluster-
ing. PanTA [32] is the method of choice for pangenome 
construction for its speed and scalability, but users can 
optionally choose Roary  [33] as the alternative. AMRo-
mics then classifies gene clusters into core genes (genes 
clusters that present in at least 95% of genomes in the 
collection) and accessory genes. In addition, AMRomics 
identifies shell genes, which are those present in at least 
a certain number of genomes in the pangenome. The 
threshold for shell genes is defaulted at 25% but can be 
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adjusted by users. AMRomics then performs multiple 
alignments (MSA) of all the identified shell genes using 
MAFFT  [34]. The MSAs of these shell genes are then 
used to construct phylogenetic trees of these gene fami-
lies using FastTree 2 [35] or IQ-TREE 2 [36]. In addition, 
AMRomics builds the phylogeny of the collection from 
the concatenation of the MSAs of all core genes using the 
chosen tree-building method.

AMRomics introduces pan-SNPs, a novel concept to 
represent genetic variants of the samples in the collec-
tion. Existing variant analysis methods usually rely on a 
reference genome, and can only identify variants in the 
genes presenting in the reference genome. This severely 
limits the analysis to only a fraction of the genome of 
interest because of the high variability between iso-
lates within a clade. In addition, it is often not possi-
ble to have a reference genome that can represent the 
whole collection, especially if the collection is diverse 
and growing. AMRomics addresses this by building 
the pan-reference genome for the collection which is 
the set of representative genes from each gene cluster. 

It then identifies the variants of all genes in a cluster 
against the representative gene directly from the MSA. 
The variant profile of a sample is the concatenation of 
the variations of all its genes, reported in a VCF file.

The representative gene for a gene cluster is set to 
be the one that comes from the earliest genome in the 
collection list. With this selection strategy, if the users 
have a preferred reference genome, they can place the 
reference genome first in the collection list so that 
genes from the reference genome will be the repre-
sentatives in their perspective clusters. Moreover, as 
AMRomics supports adding new samples into a col-
lection, the selection strategy also ensures that the rep-
resentative gene for a cluster does not change as the 
new samples are added into the collection, and that a 
new representative gene is added to the pan-reference 
genome only if a new cluster is created as the result of 
the collection expansion.

All results obtained from running AMRomics can be 
ultimately aggregated as the final output for reporting 
or customized visualizations for end users. Details of the 

Fig. 1 AMRomics workflow. A The workflow framework includes modules for single sample analysis and for collection analysis. B Details 
of the single sample analysis module. The genome assembly sequence of the sample is generated by genome assemblers if the input data are 
in sequencing reads (FASTQ); or by standardization of the input genome sequence. The genome assembly sequence is then subject to MLST, 
genome annotation, resistome and virulome detection, and plasmid detection. C Details of the collection analysis module. The annotation (GFF) 
files from single sample analysis are the input of the pangenome analysis step. The gene cluster information from the pangenome step is used 
for creating MSA, phylogeny for each gene, and species phylogeny for samples in the collection
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third-party bioinformatics tools and databases used by 
AMRomics are listed in Supplementary Table 1 and 2.

Results
Comparison with other pipelines
To the best of our knowledge, at the time of writing, 
there are four existing open source software pipelines for 
end to end microbial genomics analysis, namely Nullar-
bor  [17], TORMES  [37],  ASA3P  [19] and Bactopia  [18]. 
While AMRomics and these software tools share the 
overall functionalities, they differ in the underlying phi-
losophies. Here, we present a high level discussion of 
AMRomics features and highlight the principles behind 
the design of AMRomics.

Overall, AMRomics and the existing tools support 
a wide variety of input formats except Nullarbor and 
TORMES which are designed to run on Illumina paired-
end reads only as per their specific public health routine. 
AMRomics and the more recent methods,  ASA3P  [19] 
and Bactopia accept raw reads from third-generation 
sequencing technology such as Oxford Nanopore Tech-
nology or PacBio long reads. A range of genomics analy-
ses are included in all pipelines. They are common tasks 
for bacteria genomics such as sequence typing (MLST), 
AMR/virulence factor scanning, and genome annotation 
for an isolate. While all of the tools provide SNP analy-
sis results, AMRomics outputs variants (in VCF files) by 
the core gene alignment from the pangenome analysis 
instead of snippy  [38] core alignment as in other meth-
ods. Table 1 summarizes the key features across the soft-
ware tools.

The primary principle of AMRomics is to extract the 
highest quality and most informative statistics from 
the input data. For example, AMRomics constructs 
the phylogeny tree of the collection using the multi-
ple alignment of core genes. This provides a higher 

resolution of evolutionary information than SNPs infor-
mation or the multiple alignment of 16S genes [39], the 
two techniques applied by the existing tools. In addi-
tion, AMRomics utilizes the population information to 
call variants across the pangenome instead of from a 
chosen reference genome and hence provides a bigger 
picture of genetic relations among the isolates in the 
collection. The users can still use one or more preferred 
reference genomes by placing the reference genomes at 
the top of the list.

AMRomics’s second and perhaps equally important 
design principle emphasizes on the scallability of the 
software, aiming to enable the analysis of large collec-
tions without the need to scale up hardware infrastruc-
tures. While AMRomics uses the same underlying core 
tools (e.g., BLAST+, SPAdes, SKESA, Flye, Prokka etc) as 
other pipelines, we chose to reimplement the helper and 
pre-processing modules such as Shovill and Dragonflye. 
In the process, we pay attention to the data structures 
to manage large amount of data flowing between steps 
of the pipeline. As a result, AMRomics is significantly 
faster and requires only a fraction of memory usage in 
comparison with its counterparts (shown in the follow-
ing section). While speed is the paramount, AMRomics 
offers the flexibility for users to choose between alterna-
tives to fit their need when there are more than one core 
algorithms for the same step (such as SPAdes and SKESA 
for assembling short reads, or FastTree and IQ-TREE for 
phylogenetic tree construction). AMRomics also takes 
advantage of progressive analysis; when new samples 
are added into an existing collection, AMRomics only 
performs the extra computation related to the new sam-
ples, instead of recomputing scratch. This strategy offers 
a scalable solution practically suitable for analysis of the 
large growing collections of bacteria in the sequencing 
ages.

Table 1 Functional comparison between AMRomics and other bacterial genomics pipeline

AMRomics Nullarbor Bactopia ASA3P

Input Long/short reads Short reads Long/short reads Long/short reads

Assemblies Assemblies Assemblies

Annotated genomes Annotated genomes

Output Genotype Genotype Genotype Genotype

AMR/Virulence AMR/Virulence AMR/Virulence AMR/Virulence

Annotations Annotations Annotations Annotations

SNP analysis SNP analysis SNP analysis SNP analysis

Pangenomes Pangenomes Pangenomes Pangenomes

Phylogenetics Phylogenetics Phylogenetics Phylogenetics

Install conda+pip/docker conda/docker conda/docker conda/docker

Progressive Yes No Yes No
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Case study
We demonstrate the utility of AMRomics on a large and 
heterogeneous set of Klebsiella pneumoniae genomes 
collected from various public sources. In particular, we 
designed a case study that reflects a practical use case 
and highlights the ease of use, flexibility and scallabil-
ity of AMRomics. The input data of the case study con-
sisted of three batches of genome data. The first batch 
contained the sequencing data of 89 K. pneumoniae iso-
lates from Patan Hospital in Kathmandu, Nepal between 
May and December 2012 [40]. These samples were multi-
drug resistant isolates, in the form of Illumina paired-
end short read data. While AMRomics did not require a 
reference genome for variant calling, we included in the 
batch four genome assemblies obtained from RefSeq (two 
in the genome assembly fasta format and two in annota-
tion GFF format) for the other workflows to use as the 
reference. In the second batch, we included 11 samples 
that were collected from Hospital Universitario Ramon y 
Cajal, exhibiting Carbapenem resistance and harboring 
the pOXA-48 plasmid  [41]. The input data for these 11 
samples were Oxford Nanopore sequencing data. Finally, 
we included a third batch of 1000 samples; the genomes 
in the batch were previously assembled and annotated by 
NCBI PGAP, and they were in GFF format. The data for 
the case study are provided in the Supporting data.

Despite the commonalities among the analysis pipe-
lines, having a direct comparison can be challenging due 
to the variations in the processing steps and the selec-
tion of different analysis tools within each pipeline. For 

simplicity, we used the default settings to run all exist-
ing pipelines that would cover essential analyses as 
shown in Table 1. We also with the best effort to use the 
parameters that the most compatible with AMRomics 
(Supporting data). We did not include TORMES in the 
comparison because of its resemblance to its predecessor, 
Nullarbor. The experiments were conducted on a cloud 
server with moderate performance, equipped with a 
6-core 12-thread E-2286G processor, 32GB of RAM, and 
a 960GB SSD drive.

Table  2 shows the running time and resource con-
sumption using the four pipelines. For the first batch, 
AMRomics took only 4.32 hours for performing single 
sample analysis on 89 samples, significantly faster than 
Bactopia and Nullarbor with 8.82 hours and 11.09 hours 
respectively even though the three pipelines use similar 
underlying algorithms (SKESA for Illumina read assem-
bly, Prokka for annotation and BLAST for virulome and 
resistome calling). This is likely due to better process 
management and parallelization implemented in AMRo-
mics software.  ASA3P took much longer, 22.24 hours as 
a result of using a slower assembly algorithm SPAdes 
that typically produces higher N50 quality assemblies. 
Of note, AMRomics, Bactopia and Nullarbor could 
optionally use SPAdes as the short read assembler. It is 
also worth noting that variation calling was part of sin-
gle analysis in Bactopia,  ASA3P and Nullarbor which also 
contributed to the extended single analysis time of these 
tools. AMRomics took under 1 hour for collection analy-
ses, including pangenome inference, multiple alignment 

Table 2 Running times and memory usages of AMRomics, Bactopia,  ASA3P and Nullarbor in the case study

- denotes the cases that the software was not possible or not practical to run. Bactopia failed to complete collection analysis for Batch 3 due to running out of 
memory;  ASA3P was not practical to analyze Batch 3 because of the excessive time required to reanalyze the previous batches. Nullarbor did not support long read 
data in batch 2 and assembly sequences in batch 3

AMRomics Bactopia ASA3P Nullarbor

Wall time 
(Hours)

Max 
memory 
(Gb)

Wall time 
(Hours)

Max 
memory 
(Gb)

Wall time 
(Hours)

Max 
memory 
(Gb)

Wall time 
(Hours)

Max 
memory 
(Gb)

Batch 1
     Sample analysis 4.32 3.44 8.82 5.83 22.24 6.71 11.09 7.91

     Collection analysis 0.95 0.84 2.32 5.02 12.24 20.86 0.19 2.14

     Total 5.27 3.44 11.14 5.83 34.48 20.86 11.28 7.91

Batch 2
     Sample analysis 2.74 9.93 1.86 10.10 28.66 6.16 - -

     Collection analysis 0.94 0.89 3.99 5.74 26.10 28.87 - -

     Total 3.69 10.93 5.85 10.10 54.76 28.87 - -

Batch 3
     Sample analysis 4.17 1.22 67.72 4.21 - - - -

     Collection analysis 2.44 3.92 - - - - - -

     Total 6.61 3.92 - - - - - -

Accumulated 9.06 10.93
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of cloud genes, phylogenetic analyses of organisms and 
of every cloud gene, and SNP analysis. Nullarbor per-
formed collection analysis in much shorter time, 0.19 
hours albeit producing only pan-genome and core-gene 
phylogeny. Bactopia and  ASA3P took significantly longer, 
2.32 hours and 12.24 hours respectively. Taking together, 
AMRomics required less than half of the time of the 
other tools for the whole pipeline. It also consumed only 
3.44Gb of memory, comparing with 5.83Gb by Bactopia, 
20.86Gb by  ASA3P and 7.91Gb by Nullarbor.

The second batch consists of 11 Nanopore sequencing 
data, that was not supported by Nullarbor.  ASA3P did not 
support progressive analysis hence all samples in the first 
batch and second batch had to be analyzed from scratch 
leading to a total of 54.76 hours. Bactopia took 1.86 
hours for single sample analysis which was shorter than 
AMRomics that took 2.74 hours though both tools used 
Flye as underlying assembly. Upon examining the runt-
imes, we noticed that Bactopia performed subsampling 
of sequencing reads to 50x resulting in the speed-up. 
AMRomics took less than one hour for collection anal-
ysis thanks to the use of progressive mode of its under-
lying pangenome method PanTA. On the other hand, 
Bactopia took 3.99 hours.

The genomes in the third batch were already annotated 
in GFF format. We did not run  ASA3P on the third batch 
because of the excessive time required to re-analyze the 
samples in the previous batches. Bactopia did not have 
the function to extract the annotations in the GFF files, 
and instead re-annotated the input genomes. In addition, 
Bactopia simulated sequencing reads from the assembled 
genomes, and mapped the simulated reads back to the 
reference to call SNPs. These steps, while could produce 
the intended analysis results, took 67.72 hours to analyze 
1000 genomes. On the other hand, AMRomics reused 
the existing annotations from the input genomes, leading 
to substantially shorter single sample analysis running 
time, only 4.17 hours. Similarly, the pangenome analy-
sis strategy employed by AMRomics reused the existing 
pangenome computation, requiring only 2.44 hours to 
add 1000 genomes into the existing pangenome. Bactopia 
ran pangenome analysis for more than 20 hours before 
crashing due to out of memory.

Discussion
We introduce AMRomics, a lightweight and scalable 
computational pipeline to analyze bacterial genomes 
and pan-genomes cost-effectively. Our method’s main 
focus is optimizing the workflow and selected sub-
modules for microbial genomic studies, especially 
comparative genomics, and most importantly, sup-
porting progressive analysis for growing big data col-
lections. AMRomics provides flexible input scenarios 

by supporting a wide range of data formats, such as 
different types of raw reads, assemblies, or annotated 
genomes for each sample depending on data availabil-
ity or pipeline settings from end users. It can generate 
fundamental genomic properties sample-by-sample by 
conducting routine analyses for bacteria isolates, and 
comparative genomics for the whole big collection i.e. 
pangenome evaluation and the corresponding phylo-
genetic results. Analysis results from AMRomics can 
be directly imported into AMRViz [42], a visualization 
tool for viewing and visually inspection of the analysis 
results.

AMRomics leverages the wealth of bioinformatics 
and genomics tools available to develop an end-to-end 
analysis workflow. While focusing on efficacy and scal-
ability, opportunities exist for enhancing and broaden-
ing its functionality. We are continuously updating the 
pipeline with new methods to provide alternative options 
for each available function, or novel ones, to meet the 
various needs of end-users. For instance, the default 
genome annotation module in the community has been 
Prokka  [26], but recent tools such as Bakta  [43] and 
PGAP  [44] are becoming prominent; such tools will be 
incorporated into the pipeline to provide the alternatives 
to tailor to users’ needs. Another direction to enhance 
the application of AMRomics is to consider species-
specific downstream analyses besides the core general-
purpose modules. This extra practice is required in many 
scenarios of microbial genomics surveillance, especially 
in public health settings. Exemplars of such tools include 
various bug-specific serotyping methods: SISTR  [45] 
for Salmonella, Shigatyper  [46] for Shigella and Pneu-
moCAT [47] for Streptococcus pneumoniae.

In summary, AMRomics is a useful tool that can man-
age and enable the scale-up of large bacterial collections 
with modest computational resources. Continuing sup-
port for new modules and workflow maintenance will 
make it another practical option for the booming era of 
microbial genomics data.
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