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Abstract 

Since the introduction of next generation sequencing technologies, the field of epigenomics has evolved rapidly. 
However, most commonly used assays are enrichment-based methods and thus only semi-quantitative. Nucleosome 
occupancy and methylome sequencing (NOMe-seq) allows for quantitative inference of chromatin states with single 
locus resolution, but this requires high sequencing depth and is therefore prohibitively expensive to routinely apply 
to organisms with large genomes. To overcome this limitation, we introduce guidedNOMe-seq, where we combine 
NOMe profiling with large scale sgRNA synthesis and Cas9-mediated region-of-interest (ROI) liberation. To facilitate 
quantitative comparisons between multiple samples, we additionally develop an R package to standardize differential 
analysis of any type of NOMe-seq data. We extensively benchmark guidedNOMe-seq in a proof-of-concept study, 
dissecting the interplay of ChAHP and CTCF on chromatin. In summary we present a cost-effective, scalable, and cus-
tomizable target enrichment extension to the existing NOMe-seq protocol allowing genome-scale quantification 
of nucleosome occupancy and transcription factor binding at single allele resolution.

Keywords  NOMe-Seq, Cas9 enrichment, Chromatin, CTCF, ChAHP

Background
To determine the gene regulatory elements that are active 
in a cell at any given moment is a major challenge [1–4]. 
At the same time a deeper understanding of gene regula-
tory elements is of pivotal importance, since understand-
ing their activity during development will ultimately allow 
their specific manipulation, which could potentially open 
novel therapeutic avenues [5–9]. Epigenomic maps strat-
ify the genome-wide chromatin state with ever increasing 

resolution. For instance, ChIP-seq can be used to deter-
mine which part of the genome shows enhancer-like char-
acteristics or is bound by transcription factors (TFs) of 
interest. ATAC-seq and DNaseI hypersensitivity assays 
map regions of the genome that are “open” and therefore 
accessible to DNA binding factors and the transcriptional 
machinery, whereas MNase-seq is used to determine 
nucleosome positioning [10]. These techniques, initially 
used in bulk on hundreds-to-millions of cells, have all 
been adapted to measure chromatin states in single cells 
[9]. Unfortunately, these single cell measurements result 
in sparse datasets making reliable quantification of sin-
gle locus-TF combinations very challenging and due 
to the requirement of high sequencing depth also very 
expensive [11]. These techniques are enrichment based 
and report on the relative frequencies a certain locus is, 
for instance, TF bound, but lacks information about the 
number of times a locus is not bound. This makes the 
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data semi-quantitative. The semi-quantitative nature of 
such data sets results in the necessity to perform differ-
ent normalization methods for differential binding analy-
ses depending on the biological scenario. Importantly, the 
correct normalization method is not always obvious, but 
does greatly impact the outcome [12].

Nucleosome occupancy and methylome sequencing 
(NOMe-seq) is an elegant method that yields quantita-
tive genome-wide single DNA molecule information 
regarding nucleosome positioning, chromatin acces-
sibility, TF binding and endogenous DNA methylation 
[13, 14]. In the NOMe-seq protocol, nuclei are isolated 

from cells and incubated with a GpC methyltransferase 
(M.CviPI) (Fig.  1A). M.CviPI methylates cytosines only 
when present in the GpC context, which makes it possi-
ble to discriminate these sites from endogenous cytosine 
methylation that only occurs in the CpG context in ver-
tebrate cells. Upon addition of M.CviPI to the isolated 
nuclei, cytosines in the GpC context that are accessible to 
the methyltransferase will be methylated, whereas DNA 
bound by nucleosomes or TFs will not be accessible and 
therefore remain unmethylated. Following in situ M.CviPI 
methylation, genomic DNA is isolated and the methyla-
tion status of the cytosines is determined using bisulfite 

Fig. 1  NOMe-seq approaches. A Schematic overview of the in situ M.CviPI treatment that lays at the basis of the NOMe-seq protocol. From left 
to right. (1) Cells are harvested, and nuclei are isolated using a cell lysis buffer. (2) Intact nuclei are incubated with M.CviPI. M.CviPI specifically 
methylates cytosines present in the GpC context that are accessible (e.g. not TF or nucleosome bound). (3) After M.CviPI treatment the genomic 
DNA is extracted and bisulfite treated. Different experimental strategies that are currently used to process the genomic DNA before sequencing. 
(4) Schematic representation of guidedNOMe-seq using Cas9 in combination with sgRNA pools to liberate hundreds of ROI in parallel from intact 
genomic DNA. (5) Sequencing of bisulfite treated DNA is used to determine which cytosines are methylated and which are not. At this step 
endogenous methylation and M.CviPI mediated methylation can been distinguished as this occurs in different sequence contexts. (6) Next 
generation sequencing (NGS) of the guidedNOMe libraries followed by in depth analysis using differential NOMe R package. B (left) Schematic 
representation how different chromatin states (TF bound, Open and Nucleosome bound) of a single locus result in different M.CviPI methylation 
patterns. (right) Schematic representation of a single ROI with 24 single DNA molecule coverage. Using the observed protected and unprotected 
states of GpCs present in the three chromatin state quantification windows, the chromatin state of individual DNA molecules can be classified
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treatment and subsequent sequencing of either individual 
regions of interest (ROI) or genome-wide (Fig. 1A).

Reliable quantification of chromatin states with single 
ROI resolution requires high coverage, i.e., > 30-fold, and 
ideally long reads in order to quantify regions encom-
passing multiple nucleosomes and TF-binding sites. Due 
to the large size of vertebrate genomes, achieving such 
coverage genome-wide is very costly. Approaches reduc-
ing complexity and/or enriching for parts of the genome 
have been developed to achieve the required coverage at 
reasonable costs. For example, single ROI can be ampli-
fied using conventional PCR followed by Sanger or deep 
sequencing [15, 16]. Such PCR-based enrichments result 
in high ROI coverage with informative reads, but at the 
expense of throughput. Moreover, PCR amplification 
and primer design for bisulfite treated DNA is challeng-
ing and can result in unwanted biases [17]. Recently, 
Sönmezer et  al. circumvented the coverage issue by an 
enrichment strategy using commercially available cap-
ture arrays. This resulted in high coverage over a small 
(~ 2%) part of the genome [14]. While this strategy works 
well for TSSs and putative cis-regulatory elements and 
enhancers present on the capture-array, a major draw-
back of commercially available arrays is the lack of 
ROI flexibility, the restriction to the human and mouse 
genome, and inherent difficulties of assessing repetitive 
regions.

A second major limitation of this approach is the need 
for chromatin shearing, which results in heterogeneous 
fragments that cover the ROI only partially. Throughout 
this manuscript we infer the chromatin state of individ-
ual DNA molecules, i.e. nucleosome bound, TF bound 
or open, using the combined methylation information 
in three adjacent windows as introduced by Sönmezer 
et al. [14]. Hence, for this analysis to be meaningful, each 
single sequencing read needs to span all three windows 
which encompass at least hundred base-pairs (Fig.  1B). 
If DNA is randomly sheared, such as for whole-genome 
or array-capture NOMe-seq, this results mostly in DNA 
fragments that do not fully cover the ROI, which won’t 
be useful for analysis (see below). We note that this clas-
sification strategy precludes the identification of loci 
that are actively being remodeled and using our cut-offs 
these molecules are most likely classified as nucleosome 
bound.

Nevertheless, NOMe-seq has been demonstrated to 
be a very powerful technique. For instance, it was used 
to investigate the cooperativity of TF binding to chroma-
tin and quantification of endogenous DNA methylation 
in combination with TF binding at single molecule reso-
lution [14, 18]. Combined with long-read sequencing, 
NOMe-seq has been used to gain high-resolution allele-
specific chromatin state information for a hand full of 

loci [19]. NOMe-seq has also been used to quantify chro-
matin states in single cells [20, 21]. Yet, despite the high 
quality of data, NOMe-seq has so far not been widely 
adopted by the chromatin community, which might be 
in part due to the above discussed technological limita-
tions and the scarcity of computational tools to analyze 
NOMe-seq data.

To overcome some of these limitations and inspired by 
recent reports utilizing Cas9 as a specific programmable 
nuclease to enrich or deplete ROI in sequencing libraries, 
we developed guidedNOMe-seq [22–24]. guidedNOMe-
seq is a cost-effective extension of classical NOMe-seq 
that allows for enrichment of hundreds to thousands of 
ROI from the genome of any organism. This is achieved 
by making use of a custom ROI-specific sgRNA pool 
loaded in  vitro on recombinant Cas9 for efficient ROI 
liberation from genomic DNA (Fig. 1A). Further, we have 
developed a differential NOMe (dinoR) R package to 
facilitate data visualization and the statistical comparison 
of different NOMe-seq samples.

Taken together, guidedNOMe-seq is a quantitative, 
highly customizable and cost-effective assay to profile 
chromatin occupancy of nucleosomes and TFs at single 
molecule resolution that will help to decipher the mecha-
nistic and time-resolved steps of chromatin-templated 
events.

Results
Design of a guidedNOMe‑seq experiment
For guidedNOMe-seq we start out with a group of ROI, 
for example binding sites of a specific transcription fac-
tor (TF) that are subject to investigation in the respective 
study and, importantly, unrelated ROI, e.g. binding sites 
of an unrelated TF under the respective experimental 
conditions, that can be used as internal technical con-
trols. The guidedNOMe-seq procedure entails the fol-
lowing steps (Fig.  2A): 1) Computational identification 
of ROI including filtering for the presence of GpCs in 
the three chromatin quantification windows. 2) Selec-
tion of suitable Cas9 cut sites up and downstream of the 
ROI chromatin quantification windows. It is important 
to select the Cas9 cut sites in such a way that all three 
chromatin quantification windows are sequenced from a 
single DNA molecule. The precise parameters depend on 
the sequencing platform and modality used. In this study, 
we made use of Illumina paired-end 300 bp sequenc-
ing and thus were able to choose the ROI spanning 600 
bp surrounding the TF motif center, with Cas9 target-
ing a window of 80 bp at the 5’ and 3’ end of the ROI. 
This resulted in library insert sizes ranging from 440 to 
600 bp, covering 3 nucleosomes on average. 3) Execu-
tion of the standard NOMe-seq protocol [16] until the 
isolation of genomic DNA. 4) Performing custom Cas9 
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digest using the in silico designed sgRNA pool specific 
to the ROI. 5) Ligation of methylated adapters (compat-
ible with the respective sequencing technology used) 
containing unique molecular identifiers (UMIs) to the 
NOMe-treated Cas9-digested genomic DNA fragments. 
6) Bisulfite conversion of the library followed by PCR 
amplification and sequencing on the platform of choice. 
7) Alignment to bisulfite-aware reference genome and 
quantification of chromatin states.

Of note, this protocol results in a library containing 
a custom set of ROI with 5’ and 3’ ends defined by the 
Cas9 cut sites and thus allows simple estimation of ROI 
enrichment and hence quality of the acquired data.

Technical aspects of guidedNOMe‑seq
To benchmark guidedNOMe-seq, we generated two bio-
logical replicate guidedNOMe-seq libraries from wild-
type mouse embryonic stem cells (mESC) targeting 1226 
ROI with binding sites for the well-studied transcription 
factor CTCF and 274 ROI entailing binding sites for the 
transcription factor REST.

Visual inspection and computational analysis of the 
guidedNOMe-seq data showed that the ROI enrichment 
works efficiently and that the sequencing reads start at 
the expected Cas9 cut sites (Fig. 2B). Notably, only 1.3% 
of ROI (20 out of 1500) showed no read coverage in both 
replicates, while for the vast majority fragment cover-
age over ROI is relatively homogenous and comparable 
between replicates (Figs.  2C and S1A). Moreover, the 
high correlation between replicates shows that the Cas9-
sgRNA RNPs reproducibly enrich hundreds of ROI from 
a complex genome and that either ROI intrinsic or exper-
imental parameters (e.g. Cas9 cutting efficiency) dictate 
fragment coverage (see below). Of the 4 and 5.5 million 
paired-end reads (which equals genomic coverage of ~ 1) 

sequenced in the two replicates, we found 197 k and 186 
k reads spanning the selected ROI which corresponds to 
a 140- and 100-fold enrichment, respectively (see Meth-
ods). Importantly, due to the defined 5’ and 3’ cut sites 
in guidedNOMe-seq, 90% of reads that map to the ROI 
span all three chromatin quantification windows and are 
therefore usable to quantify chromatin states (Fig.  2B 
and D). The unique molecular identifiers (UMIs) present 
in the ligated adapters allow for the identification and 
removal of PCR duplicates. Plotting deduplicated frag-
ment counts versus duplicated fragment counts shows 
that there are indeed PCR duplicates, indicating that the 
libraries are sequenced to saturation and demonstrating 
that the addition of UMIs is essential for such quantita-
tive experimental approaches (Figure S1B). This analysis 
also confirms that UMIs are distributed equally over all 
ROI and scale proportionally to the coverage of the ROI, 
suggesting that there are no major locus-specific ligation 
or PCR biases for the over thousand different genomic 
regions.

We next generated single ROI plots to assess reproduc-
ibility between biological replicates. Reassuringly, both 
replicates produce very similar nucleosome and TF foot-
prints (Fig.  2E). Further, when globally comparing the 
chromatin states called based on the footprint patterns 
(TF, nucleosome occupied, or open, see Fig.  1B) in all 
suitable ROI with a coverage of at least 30 reads, we found 
that guidedNOMe-seq results in highly reproducible 
chromatin state classifications (Fig.  2F). To further vali-
date the chromatin state classifications, we compared the 
TF chromatin state quantification of all ROI with CTCF 
ChIP-seq signal. This has previously been reported to 
correlate, indicating that CTCF ChIP-seq enrichment is 
a reasonable proxy for TF occupancy at individual bind-
ing sites [14]. As expected, the control group consisting 

(See figure on next page.)
Fig. 2  Benchmarking guidedNOMe-seq. A Overview of the guidedNOMe-seq protocol. (1) Computationally determine which ROI contain 
GpC in the required windows. (2) Design pairs of sgRNAs targeting your ROI. (3) Perform in situ M.CviPI treatment, extract genomic DNA 
and perform sgRNA-Cas9 mediated custom digest. (4) Ligate methylated adapters to the digested DNA, perform bisulfite conversion, PCR 
amplify and check size distribution on bioanalyzer. B Genome browser view of a ROI showing from top to bottom: (top) the position of the 4 
sgRNAs designed up and downstream of the ROI, (middle) guidedNOMe-seq read coverage at the target locus and (bottom) CTCF ChIPseq. C 
Violin plot showing the distribution of fragment coverage over individual ROI in the two guidedNOMe-seq replicates. D Density plot showing 
the percentage of informative (spanning the three chromatin state quantification windows) reads when performing guidedNOMe-seq. E Single 
ROI guidedNOMe-seq example of a CTCF binding site and its surrounding (~ 250 bp ±). Top plot shows the average protection value of the GpCs 
at the indicated location. Bottom plot shows protected and unprotected state of the GpCs in individual DNA molecules. DNA molecules are sorted 
based on the chromatin state they are in, as indicated in the barplot on the right. F Scatterplots showing the reproducibility between replicates 
of the chromatin state classification. Every ROI is depicted as a single dot. Only ROI with at least 30 informative fragments are shown. G Scatter 
plot showing the guidedNOMe-seq inferred fraction of TF bound DNA molecules per ROI split by replicate (x-axis) and CTCF ChIPseq signal in ChIP 
replicate 1 (y-axis). H Comparing the average protection profiles as observed with the Array capture and guidedNOMe-seq data. The y-axis shows 
the average protection a GpC position has against exogenous methylation by M.CviPI (1-mGpC). LOESS line is added through the individual data 
points and ROI are split on TF. Only ROI that are shared between the two enrichment techniques are used. I Comparing the TF chromatin state 
classification as observed in the array capture and guidedNOMe-seq data. ROI are split on TF. Only ROI that are shared between the two enrichment 
techniques are used
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of REST ROI shows no correlation with CTCF ChIP-seq 
enrichment, whereas the CTCF ROI show a linear corre-
lation between the TF state quantified by guidedNOMe-
seq and CTCF ChIP-seq (r = 0.72) (Fig. 2G).

From these analyses we conclude that guidedNOMe-
seq is a robust, specific, and versatile extension of existing 

NOMe-seq protocols that allows unique customization 
at a medium throughput.

Comparison with other ROI enrichment methods
We next set out to compare guidedNOMe-seq to other 
locus specific or genome-scale approaches. NOMe fol-
lowed by locus-specific PCR-based analysis achieves 

Fig. 2  (See legend on previous page.)
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high specificity and coverage and is therefore considered 
the gold standard (Figure S1D). It also results in defined 
5’ and 3’ ends and thus a high percentage of informative 
reads, as observed for guidedNOMe-seq (Fig. 2D). How-
ever, it suffers from two major drawbacks: First, it is not 
easily scalable to hundreds or thousands of ROI. Sec-
ondly, it is prone to PCR biases and artifacts as primer 
design and PCR amplification using bisulfite treated 
DNA is inherently difficult [17, 25].

Another strategy to reduce complexity and thus 
sequencing costs is to combine NOMe-seq with com-
mercial array capture-based enrichment as introduced 
by Sönmezer et  al. [14]. This strategy is comparable to 
guidedNOMe-seq but offers less flexibility and customiz-
ability. For example, the commercial array capture probes 
used in the Sönmezer et al. study target ~ 2% of the mouse 
genome with a focus on regulatory regions such as tran-
scription start sites (TSSs) and cis-regulatory elements 
(CREs) but were not specifically designed to enrich TSS 
distal ROI or TF binding sites. The ROI coverage between 
replicates is comparable with guidedNOMe-seq (Figure 
S1C), but the percentage of mapped reads overlapping 
with ROI is considerably higher when using array capture 
(90%) as compared to Cas9-mediated enrichment (23%; 
Figure S1D). However, many of those on-target sequenc-
ing reads from the array capture approach cannot be used 
for inferring chromatin states of individual loci because 
they do not span the three quantification windows. This 
is due to a simple technical reason: The array capture 
protocol relies on shearing of genomic DNA prior to 
hybridization, which is commonly performed by sonica-
tion. This leads to randomly sheared genomic fragments 
without defined 5’ and 3’ ends. Because of this, ~ 80% of 
the on-target reads do not span all three chromatin quan-
tification windows. Consequently, these reads cannot be 
used for chromatin state quantification (Figure S1E). In 
addition, the inflexible commercial array design results 
in the enrichment of regions that are not necessarily of 
value to address a particular research question.

Taken together, whereas the guidedNOMe-seq pro-
tocol generates more off-target reads, array capture 
NOMe-seq yields more non-usable reads on target, 
which ultimately results in comparable percentages of 
reads that can be used for chromatin state quantification 
between techniques. To put this in numbers for our spe-
cific set of ROI and when we only look at the 465 ROI 
shared between the guidedNOMe-seq generated here 
and the published array capture NOMe-seq dataset [14]. 
If we wanted to achieve that ~ 60 percent of the ROI 
shared between guided and array capture libraries have 
at least 30 × informative read coverage, we would need 
to sequence ~ thirty times more reads (125–150 million 
vs 4–5.5 million reads) in an array capture approach in 

comparison to guidedNOMe-seq due to the high number 
of non-informative ROI when studying a specific TF like 
CTCF.

The 465 ROI that are shared between our guided-
NOMe-seq data and the array capture NOMe-seq have 
a similar amount of reads at the different sequencing 
depths used (~ 50 k for guided, ~ 50 k-150 k for array). 
When comparing average protection profiles over CTCF 
and REST binding sites, the two methods reveal very 
similar average protection patterns over all ROI (Fig. 2H). 
Compared to methods like ChIP-, MNase- or ATAC-seq, 
an advantage of NOMe-seq is the ability to quantify chro-
matin states with single DNA molecule resolution. To 
determine if guidedNOMe-seq also compares well with 
the array capture NOMe-seq at this level, we quantified 
chromatin states with single DNA molecule and single 
ROI resolution. Reassuringly, both enrichment strate-
gies again agree very well (Fig.  2I). Pearson correlation 
coefficients between experimental approaches (Open 
r = 0.59 (REST) and 0.78 (CTCF), nucleosome r = 0.79 
(REST) and 0.83 (CTCF) and TF r = 0.85 (REST) and 
0.92 (CTCF)) further corroborate the visual inspection 
of the data. In conclusion, NOMe-seq results in highly 
reproducible classification of chromatin states irrespec-
tive of the selected enrichment protocol, the respective 
experimenters, or even laboratories. Notably, when solely 
considering oligo synthesis costs (sgRNA oligos versus 
capture oligos), guidedNOMe-seq is more cost effective 
up to ~ 5000 ROI. For larger ROI numbers, designing a 
custom capture array would be more economical (Figure 
S1F). NOMe profiling, with and without Cas9-mediated 
enrichment of ROI has also been employed in combina-
tion with long-read Oxford Nanopore sequencing [19, 
26, 27]. This method referred to as nanoNOMe-seq, pro-
duces much longer reads at the expense of throughput. 
Due to the long-read length, nanoNOMe is perfectly 
suited to study nucleosome positioning and TF binding 
spanning hundreds of nucleosomes for a handful of ROI 
while array-capture and guided-NOMe can only query 
2–4 nucleosomes in a single sequencing read but for hun-
dreds to thousands of ROI. Due to difference in studied 
organism (human/yeast vs mouse), we could not directly 
compare nanoNOMe with guidedNOMe inferred chro-
matin states.

We conclude that guidedNOMe-seq, array capture 
NOMe-seq and nanoNOMe-seq are nicely complemen-
tary both with their own strengths and weaknesses (see 
also Discussion).

sgRNA design principles for guidedNOMe‑seq
As outlined above, the usability of ROI depends on the 
presence of at least one GpC in all three chromatin quan-
tification windows (Fig.  1B). Therefore, we determined 
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the fraction of ROI that fulfil this criterium. When 
bootstrapping random genomic regions, on average 20 
percent of ROI in the mouse genome are suitable for 
quantification by guidedNOMe-seq. Focusing on ROI 
containing a REST or CTCF ChIP-seq peak and binding 
motif we found that approximately 50 percent of these 
regions are suitable (Fig.  3A). The observed higher per-
centage of suitable REST and CTCF associated ROI can 
be explained by the presence of GpCs in their binding 
motifs [28, 29]. The non-uniform distribution of GpCs 

throughout the genome and relative to a specific set of 
ROI is an inherent caveat of NOMe-seq that cannot eas-
ily be changed and hence needs to be taken into account 
when designing an experiment.

Further, the fraction of ROI that can be targeted 
depends on the stringency of sgRNA design parameters. 
Namely, the target space allowed for Cas9 surrounding 
the ROI and the chosen cutoffs regarding on- and off-tar-
get scores of the identified sgRNAs. In this study we used 
an 80 bp target space at 5’ and 3’ ends of each ROI, did 

Fig. 3  Strengths and limitations of guidedNOMe-seq. A Shows the fraction of Ctcf, Rest bound and Random genomic ROI that contain GpCs in all 
three chromatin state quantification windows. For the random genomic ROI we sampled 10,000 loci. B (top) Schematic representation of the in 
silico analysis (bottom) We randomly sampled 10 times 100 ROI and determined the fraction of ROI that can be targeted by Cas9 in every 100 ROI 
separately with three different sgRNA target spaces, as indicated. C Scatter plot showing the sgRNA on target scores predicted by the Azimuth 
algorithm versus the observed associated Cas9 cut site read start counts D Stacked barplot displaying the relationship between the sequenced 
reads and on- and off-target Cas9-sgRNA predictions. E ROI are split on TF and aligned on the center of the TF binding motif, as indicated. The y-axis 
shows the average protection a GpC position has against exogenous methylation by M.CviPI (1-mGpC). Loess line is added through the individual 
data points. We subsampled the reads, as indicated above the average plot (F) Line graphs depicting the read coverage over the ROI with increasing 
numbers of sampled reads in both replicates. G Shows the Pearson correlation score between replicates of the TF and nucleosome state 
classification with increasing numbers of sampled reads
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not select for GpCs in the chromatin quantification win-
dows because of the GC-rich binding motifs of the TFs of 
interest, neglected on-target scores and omitted sgRNAs 
with a very poor off-target score (see Methods).

To assess the impact of the above parameters, we per-
formed in silico analyses with different settings. First, we 
investigated the relationship between Cas9 target space 
size and the number of targetable ROI for REST, CTCF 
and random genomic regions. Already with the small-
est target space (50 bp) Cas9 can, depending on the ana-
lyzed ROI group, liberate between 1/5 -1/3 of the ROI. 
As expected, the fraction of targetable ROI increases 
when Cas9 target space increases. Notably, with a target 
space of 100 bp, Cas9 can target half or more of the ROI 
analyzed (Fig. 3B). Using these numbers, in combination 
with the GpC distribution analysis described above, we 
estimated that we can target between 9 and 26 k out of 
the 70 k CTCF ChIP-seq peaks depending on the chosen 
cut offs.

Thus, not surprisingly, increasing target space for 
sgRNA selection improves the number of targetable loci 
in the genome. Yet, this comes at the expense of corre-
spondingly shortening the length of quantifiable DNA 
around the TF motif and must thus be considered care-
fully and adjusted to the read-length of the available NGS 
sequencing platform.

Next, we determined if in silico predicted sgRNA on- 
and off-target scores can be used to optimize sgRNA 
selection and read coverage uniformity of ROI. Surpris-
ingly, this analysis making use of the 1500 ROI in our 
experimental set up revealed a very poor correlation 
between sgRNA on-target scores and observed read cov-
erage over ROI. Towards this end, we employed seven 
different sgRNA prediction algorithms but none of them 
could predict cutting efficiency, respectively read cover-
age, satisfyingly (Figs. 3C and S2A) [30]. Nevertheless, we 
would still recommend in silico prediction of sgRNA on-
target scores because our analyses revealed that sgRNAs 
with very poor predicted on-target scores and the pres-
ence of simple repeats in ROI should be avoided when 
possible (Figure S2B).

Lastly, we analyzed potential adverse effects of retain-
ing sgRNAs with predicted off-targets. We first deter-
mined the percentage of reads associated with the 
on-target Cas9 cleavage activity. In both replicates we 
found ~ 10% of reads precisely originating from the pre-
dicted on-target sgRNA-Cas9 cleavage sites, but also 
noticed that another ~ 4% of reads were within 600 bp of 
the intended cleavage site (Fig. 3D and S2C). We attribute 
this to the combined effect of targeted digestion by Cas9 
in combination with random breakage of genomic DNA 
on the other side, which stochastically results in DNA 
fragments of suitable sizes for NGS library generation. 

In addition, ~ 7 percent of reads are associated with pre-
dicted off-target sites, which is three times more than 
expected by chance (Fig.  3D). Consistent with litera-
ture, we found that predicted off-targets without PAM 
sequence contribute minimally to off-target reads (Figure 
S2D) [31].

In summary, the sgRNA analysis revealed that on-
target score predictions vary considerably between used 
algorithms and correlate poorly with the observed ROI 
read count distribution. We therefore assume that ROI 
sequence features (e.g. simple repeats (Figure S2B)) and 
potential biases in the library preparation outweigh the 
selection of sgRNA on their predicted on-target score 
except for sgRNAs with a very low score. The sgRNA off-
target analysis showed that using only perfect sgRNAs 
without off-targets will most probably decrease off-target 
sequencing reads. However, the gain will likely be mini-
mal, as the majority (> 65%) of the reads not associated 
with a ROI are not linked to predicted sgRNA off-target 
sites but arise due to random genome breakage during 
the NOMe-seq protocol. Thus, careful handling of nuclei 
and isolated DNA, as recently optimized by Battaglia 
et al., is an effective precaution to reduce off-target reads 
[19].

Strengths and limitations of guidedNOME‑seq
Despite the steadily decreasing costs for next-generation 
sequencing, financial constraints are still a major bottle-
neck for large experiments such as time-courses or com-
parative studies with dozens of samples. To determine 
the minimal sequencing depth that is required for reliable 
quantification of chromatin states by guidedNOMe-seq, 
we systematically down-sampled the guidedNOMe-seq 
libraries and subsequently performed analysis at different 
resolutions.

We first generated average profiles plotting the frac-
tion of GpCs that are protected from methylation 
by M.CviPI per nucleotide, while keeping the CTCF 
and REST ROI separate. As expected, using 4 million 
guidedNOMe-seq reads, we observed M.CviPI protec-
tion footprints for the TF bound to its motif and for 
positioned nucleosomes up and downstream of the 
TF binding site (Fig.  3E). At this sequencing depth, 
almost all individual GpC protection values (grey dots) 
nicely align with the LOESS smoothed curve. When 
serially down sampling total read numbers, the aver-
age protection pattern indicated by the LOESS line 
persists throughout while the noise level of individual 
data points increases. However, even with as little as 
50,000 reads, TF and nucleosome footprints were still 
detectable (Fig.  3E). To quantify the increase in single 
nucleotide noise we computed the Pearson correla-
tion between the fraction of protection per nucleotide 
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position with decreasing read numbers versus the full 
4 million total reads sample. This revealed correlation 
coefficients ranging from 0.92–0.64, indicating that 
with as little as 50 k reads, reproducibility is still very 
high (Figure S2E).

We next focused our analysis on the chromatin state 
quantification of single ROI by assessing the GpC pro-
tection state of individual DNA molecules (according to 
Figs.  1B and 2F). We followed a similar down-sampling 
approach as described above to determine how chro-
matin state classifications perform under limited cov-
erage conditions. In contrast to the average plots, the 
accuracy of the individual ROI chromatin state classifi-
cation rapidly deteriorates with decreasing read num-
bers (Figure S2F). This is likely caused by an increase 
in sampling noise due to the lower coverage per ROI at 
lower sequencing depths (Fig.  3F). To determine the 
required sequencing depth, we compared Pearson corre-
lation coefficients of inferred ROI chromatin states (TF-
bound and Nucleosome-bound) between replicates with 
increasing subsampled read counts. In line with the repli-
cate scatterplots for the TF chromatin state, this showed 
a steep increase in correlation coefficient with increasing 
read numbers, which starts to flatten out between 1 and 
4 million reads. That is, sequencing more than 4 million 
reads for 1500 ROI can increase reproducibility, albeit 
only relatively small improvements are likely (Fig. 3G).

In summary, we establish the experimental bounda-
ries of guidedNOMe-seq and find that biological repro-
ducibility of the protocol is excellent, without applying 
any normalization steps. Hence, guidedNOMe-seq is an 
important extension to existing NOMe-seq protocols, 

enabling researchers to quantify how perturbations influ-
ence chromatin states on hundreds of loci in parallel.

guidedNOMe‑seq reveals asymmetric nucleosome 
patterns at ChAHP‑bound loci
To exemplify the power of guidedNOMe-seq to quanti-
tatively measure how chromatin states change upon per-
turbations, we used genetic inactivation of the ChAHP 
complex as a case study. We have previously shown that 
the ChAHP complex, consisting of the chromatin remod-
eler CHD4, the zinc-finger protein ADNP, and hetero-
chromatin protein HP1gamma, binds over 15,000 loci 
in mESCs [32]. These ChAHP-bound loci often reside in 
a repetitive SINE B2 element and are also enriched for 
CTCF. When ChAHP function is perturbed (e.g. through 
the removal of ADNP), chromatin accessibility and CTCF 
binding increases specifically at ChAHP-bound sites, 
suggesting that ChAHP competes with CTCF for binding 
on chromatin and/or restricts chromatin accessibility at 
those sites [32, 33]. However, the molecular mechanisms 
behind ChAHP function and its interplay with CTCF are 
not well understood. We thus set out to quantify nucleo-
some occupancy and TF binding in Adnp−/− mESCs and 
compared this to the guidedNOMe-seq data set from 
wild type and CTCF-depleted mESCs. To address the 
interplay between ADNP/ChAHP and CTCF, we subdi-
vided the CTCF ROI into two groups: group 1 contains 
ROI where both ADNP/ChAHP and CTCF are enriched 
and group 2 consists of ROI where only CTCF is bound 
based on ChIP-seq data (Fig. 4A) [33]. Reassuringly, the 
protection profile in the REST-bound control group is 
very similar between all conditions, further validating the 

(See figure on next page.)
Fig. 4  guidedNOMe-seq quantifies chromatin state changes upon ChAHP perturbation. A Heatmaps displaying ChIP-seq signal for ADNP, 
CTCF and REST in the three ROI groups, as indicated. B ROI are split on TF (REST and CTCF) and the CTCF group is further divided on its relation 
to Adnp, as indicated. ROI are aligned on the center of the TF binding motif, as indicated. The y-axis shows the average protection a DNA position 
has against exogenous methylation by M.CviPI (1-mGpC). Loess line is added through the individual data points. Average plots were generated 
under wild type conditions, after 24H Ctcf depletion, and in the absence of Adnp, as indicated. C Boxplots summarizing the observed fraction 
of TF and nucleosome chromatin states in the ROI under wild type, Ctcf depletion and Adnp loss conditions, as indicated. D Example of a single 
ROI where CTCF co-binds with Adnp and its surrounding (~ 250 bp ±). Top plot shows the average protection value of the GpCs at the indicated 
location. Bottom plot shows protected and unprotected state of the GpCs in individual DNA molecules. Single ROI plots were generated under wild 
type conditions and in the absence of Adnp, as indicated. E Ctcf ROI co-bound by Adnp are split on Ctcf levels as observed by ChIP-seq, as indicated 
on the right. ROI are aligned on the center of the TF binding motif, as indicated. The y-axis shows the average protection a DNA position 
has against exogenous methylation by M.CviPI (1-mGpC). Loess line is added through the individual data points. Average plots were generated 
under wild type conditions, after 24H Ctcf depletion, and in the absence of Adnp, as indicated. F (top) A schematic overview of the TALENs 
mediated genome engineering performed at the endogenous Adnp locus. (bottom) FACS analysis of the dTAG-13 treatment and recovery time 
course. On the y-axis the time after dTAG-13 addition or dTAG-13 wash-out is indicated. On the x-axis the measured green fluorescence. G ROI are 
split on TF (REST and CTCF) and the CTCF group is further divided on its relation to Adnp. ROI are aligned on the center of the TF binding motif, 
as indicated. The y-axis shows the average protection a DNA position has against exogenous methylation by M.CviPI (1-mGpC). Loess line is added 
through the individual data points. Average plots off 8 selected timepoints from the Adnp depletion and recovery time course. H (left) Heatmap 
displaying the TF chromatin state dynamics of all individual ROI throughout the Adnp depletion and recovery timecourse. (right) Heatmap 
displaying all nucleosome chromatin state dynamics of the individual ROI throughout the Adnp depletion and recovery timecourse. I Stacked 
barplot showing the three different ROI groups and the amount and direction of ROI that display significantly changes in their TF chromatin states 
as determined by DESeq2 throughout the Adnp depletion and recovery time course
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high reproducibility of guidedNOMe-seq between exper-
iments and conditions (Fig. 4B). At loci where both CTCF 
and ADNP/ChAHP are enriched, we find a pronounced 
increase of positioned nucleosome upon ADNP loss. 
Loci only bound by CTCF do not show a different pro-
tection/nucleosome positioning pattern in the absence 
of ADNP/ChAHP. In contrast, the protection pattern of 

CTCF-associated groups is markedly changed following 
24 h of CTCF depletion. Here, the characteristic GpC 
protection pattern in wild type cells is lost. Of note, the 
GpC protection after CTCF depletion is at a similar level 
as the protection elicited by + 1/-1 nucleosomes in wild 
type cells, indicating that the ROI are not in an open, 
nucleosome free state when CTCF is depleted, but rather 

Fig. 4  (See legend on previous page.)
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occupied by non-positioned nucleosomes (Fig. 4B). This 
random nucleosome positioning is supported when 
inspecting individual ROI where we observe large (> 100 
bp), seemingly randomly located stretches of protected 
GpCs in individual DNA molecules (Figure S3A). When 
quantified at the single ROI level, we find that around 
20% of DNA molecules are TF bound in the two CTCF-
associated groups at any given moment in wild type cells. 
Specifically, in the CTCF group associated with ADNP/
ChAHP, this increases to ~ 50% in the absence of ADNP, 
whereas upon CTCF depletion TF binding decreases 
to nearly 0 percent in both CTCF-associated groups 
(Fig. 4C).

To determine which ROI show significant changes 
in their chromatin state, we used an implementation of 
edgeR in our dinoR package. This revealed that indeed 
many ROI undergo a statistically significant chroma-
tin state change from nucleosome bound to TF-bound 
between wild type and Adnp KO samples (Figure S3B-E). 
Accordingly, the increase in TF-bound chromatin states 
in Adnp−/− cells is coupled to a decrease in nucleosome 
bound DNA molecules and a small increase in open 
chromatin. Further, these results indicate that the nucleo-
some and TF protection patterns observed in wild type 
cells are largely dependent on CTCF, as positioning is 
nearly completely lost upon CTCF depletion.

Of note, when comparing the wild type protection 
patterns between CTCF bound and CTCF and ADNP/
ChAHP co-bound loci, we noticed an asymmetry in the 
ADNP-bound group in some single ROI plots which we 
never observed in the CTCF or the REST single ROI 
plots (Fig.  4D). To further explore this, we split this 
group of ROI based on CTCF ChIP enrichment (high – 
medium – low) and generated average protection pro-
files (Fig. 4E). The asymmetry is primarily visible in the 
two groups with medium and low CTCF levels. Inter-
estingly, the maximum GpC protection is similarly high 
on both sides of the binding motif, indicating that the 
fuzzier downstream region is occupied by nucleosomes, 
which however are not well-positioned in contrast to 
the upstream region. Upon Adnp loss the asymmetry 
is lost in all groups, indicating that the fuzzy nucleo-
some positioning downstream of the binding site might 
indeed be due to ChAHP. Hence we wanted to quantify 
the observed asymmetry with single ROI resolution. To 
do this we adapted the chromatin quantification win-
dow approach and introduced two novel states, namely 
“upstream positioned nucleosome” and “downstream 
positioned nucleosome” (Figure S4A). Analyzing these 
two additional chromatin states revealed that ~ 30% of 
the ADNP/CTCF co-bound ROI significantly lose DNA 
molecules classified as positioned nucleosome upstream 
in the absence of Adnp (Figure S4B and C). At present we 

do not know how the observed asymmetry is established 
and if it has a functional role in reducing CTCF binding. 
But this likely results from the chromatin remodeling 
activity of CHD4, which has previously been shown to 
reduce access to chromatin by increasing nucleosome 
densities in a non-positioned manner at its target loci 
[34–37]. These data confirm that CTCF only and REST-
bound sites show symmetric nucleosome positioning, 
whereas CTCF and ADNP enriched ROI show asymme-
try in their nucleosome positioning that correlates with 
the presence of ChAHP.

guidedNOMe‑seq reveals insights into the interplay 
between ChAHP and CTCF with temporal resolution
Most of our knowledge regarding the function of genes 
in biological systems is through the generation of consti-
tutive gene knock-out models and subsequent observa-
tion of loss-of-function phenotypes. These studies have 
proven very powerful, but measure endpoint situations 
without temporal resolution and can therefore be prone 
to secondary effects. With the recent development of 
small-molecule inducible degradation tags that allow 
rapid and specific degradation of endogenously tagged 
proteins, high-resolution time course measurements of 
biological processes became feasible [38, 39]. Such exper-
iments have for example been performed to measure the 
temporal dependency of 3D genome organization on 
the presence of the cohesin subunit RAD21 [40]. Also, it 
proved to be a powerful approach to assess the relevance 
of chromatin remodelers like BRG1 for TF binding to 
DNA [40, 41].

Unfortunately, high resolution time course experi-
ments coupled to genome-wide read-outs such as ChIP-
seq, HiC, ATAC-seq, or RNA-seq are still very expensive 
and often require complex normalization procedures for 
data analysis due to sparsity of data-points. As described 
above, guidedNOMe-seq requires relatively low sequenc-
ing depth to achieve excellent reproducibility without any 
normalization and therefore appears to be ideally suited 
to measure chromatin state dynamics during time course 
experiments.

To test if guidedNOMe-seq can provide insight into 
chromatin state dynamics, we established an endogenous 
gene fusion of Adnp with FKBP12F36V and mNeon-Green 
(Fig.  4F; top). The FKBP12F36V tag allows for rapid deg-
radation of ADNP upon addition of the dTAG-13 com-
pound, whereas mNeon-Green allows for the direct 
quantification of ADNP protein levels by flow cytometry 
[38]. Furthermore, the FKBP12F36V degradation system 
is reversible. Upon dTAG-13 wash-out, ADNP levels 
should slowly restore, making it also possible to perform 
Adnp recovery time-course experiments as well. We first 
established the depletion and recovery kinetics of ADNP 
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after dTAG-13 treatment and wash-out (Fig. 4F; bottom). 
In agreement with studies on other proteins, we found 
that the FKBP12F36V tag leads to rapid and near complete 
depletion of ADNP upon addition of dTAG-13 [38, 41]. 5 
min after dTAG-13 addition, a small decrease in mNeon-
Green signal was already observable. After 1 h of treat-
ment, fluorescence intensity was close to background 
levels (untagged control). Recovery of protein levels after 
dTAG-13 wash-out is largely dependent on protein syn-
thesis rates. In the case of Adnp recovery started 2 h after 
wash-out and steadily increased to about 35% after 8 h 
and recovery was complete 24 h after wash-out. We next 
generated guidedNOMe-seq libraries for these 16 time 
points in biological duplicates throughout the ADNP 
depletion and recovery time course. Utilizing the same 
three ROI classes as before, the GpC protection pat-
tern changed as early as 15 min after initiation of ADNP 
depletion specifically at ROI where ADNP is present 
(Fig. 4G). The methylation protection at the CTCF motif 
and the positioning of nucleosomes steadily increased 
during the first hour of ADNP depletion and was com-
parable to that of Adnp−/− cells at later time points 
(Fig. 4B and G). Upon reversal of the depletion (dTAG-
13 wash-out), we observed first signs of recovery towards 
the untreated state after 8 h. Reversion was completed 
within 24 h. These results show that ChAHP bound ROI 
are converted into CTCF bound sites upon ADNP deple-
tion within an hour. In the other direction, although the 
reversal of CTCF bound sites to ChAHP controlled loci is 
constrained by ADNP protein synthesis rates, we observe 
the first signs of the reversal 8 h after dTAG-13 wash-out 
when ADNP protein levels are back to 35% compared to 
untreated cells (Fig. 4F).

We next set out to quantify chromatin state dynam-
ics, as introduced in Fig. 1B, with single DNA molecule 
resolution throughout the time course. The ROI present 
in the ADNP/CTCF group showed a marked increase 
in TF-bound chromatin state already after 15–30 min of 
Adnp depletion while the number of nucleosome-bound 
molecules reduced correspondingly (Fig.  4H and I). On 
the other hand, CTCF only and the REST control group 
showed minimal dynamics throughout the time-course, 
in line with the above average analysis. To statistically 
stratify these observations dinoR was used. This revealed 
that after 15 min of ADNP depletion we already find the 
first ROI to show a significant increase in TF chromatin 
state. The number of significant changes increases dur-
ing the first hour and then remains constant thereafter. 
Intriguingly, this increase in TF chromatin states is com-
pletely reverted 24H after dTAG wash-out (Fig. 4I).

Of note, the ADNP associated asymmetric nucleo-
some positioning that we identified in wild type vs 
Adnp−/− ESCs (Fig.  4D, E and S4B, C), follows ADNP 

levels throughout the depletion and recovery time course, 
which again supports the idea that the downstream loss 
of precise nucleosome positioning is due to the presence 
of functional ChAHP complex (Figure S4D). However, 
further experiments will be required to unequivocally 
attribute this effect to a specific activity of ChAHP and to 
investigate its consequence for CTCF binding.

These data demonstrate that the ChAHP complex is 
continuously required to counteract CTCF binding at its 
target sites. The ADNP recovery experiments show that 
there are no signs of long-term epigenetic memory that 
would reduce ChAHP activity at CTCF loci. This strongly 
suggests that the ChAHP-CTCF binding landscape is 
established cell autonomously in a rapid and reversible 
manner.

Taken together, we conclude that guidedNOMe-seq is 
a powerful technique to quantify how genetic or small-
molecule induced perturbations influence the chromatin 
state at hundreds of individual ROI either at steady-state 
conditions or in time-course series with many samples 
requiring minimal amounts of NGS sequencing.

Discussion
Despite its many advantages, NOMe-seq is currently 
not widely used [14, 16, 18, 19, 27, 42–45]. We hope 
that this study and the extension of the NOMe-seq 
tool kit presented here will help to position guided-
NOMe-seq as a cost-efficient, highly accurate alterna-
tive to whole-genome or microscopy based single cell/
molecule methods. The protocol can be completed 
within two days with standard molecular biology labo-
ratory equipment omitting the requirements for highly 
specialized set-ups. We show that NOMe-seq based 
experiments result in very reproducible data even 
when executed in different laboratories, without the 
need for complex high-dimensional analysis, nor any 
normalization steps. Furthermore, analyzing our inter-
nal control (the REST bound ROI) shows that guided-
NOMe-seq has a false positive rate of only 0.7% (Fig. 4I 
and Methods). As with all methods, also NOMe-seq 
has inherent limitations. For instance, not every TF is 
equally suitable for NOMe profiling. Previous work by 
Sönmezer et  al. showed that REST and CTCF bound 
sites are suitable for NOMe profiling, whereas other 
TFs (e.g. SOX2 and STAT2) show weaker signals. This 
is likely caused by different binding modes/affinities, 
resident times and/or TF abundance within the cell. 
Another limitation is the need for naturally occurring 
GpCs (Fig. 3A). Krebs et al. mitigated this problem by 
performing foot printing using two methyltransferases 
that target cytosines present in two different (GpC and 
CpG) sequence contexts, but this only works in organ-
isms without endogenous CpG methylation, or in cells 
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that allow the deletion of the endogenous DNA meth-
ylation machinery [42, 46]. A promising development 
has been the recent identification and characterization 
of three cytosine methyl transferases (MTase) with 
complementary sequence context specificities (TCTG, 
CC and CNG) [47]. Combining these three MTases 
with the GpC MTase M.CviPI could thus significantly 
increase the median resolution and the number of 
genomic loci amendable to NOMe-seq.

Another major hurdle towards utilizing current sin-
gle-cell/allele methods are the complex bioinformatic 
analysis required once the data are collected. Since 
NOMe-seq is a normalization-free direct read out of 
chromatin occupancy of TFs and nucleosomes, it is 
much simpler to analyze. In order to also facilitate this 
step and to enable more researchers to employ NOMe-
seq approaches, we have developed an R-package 
called differential NOMe (dinoR). dinoR allows easy 
visualization and quantification of individual NOMe-
seq samples, as well as the statistical stratification of 
chromatin state differences between two conditions. 
This analysis framework utilizes a standardized data 
structure suitable for any type of NGS data of bisulfite 
converted DNA and therefore allows evaluation of 
whole genome, array capture and guided NOMe-seq 
data and ultimately should facilitate using different 
R-packages without the need to change data structure. 
Together, this makes the elegant NOMe-seq technol-
ogy variants accessible to a wide range of experimental 
biologists and helps to establish stringent data analy-
sis standards for reproducibility and exchange across 
laboratories.

In this manuscript we present guidedNOMe-seq and 
compared it to array capture NOMe-seq, which both 
use short read sequencing to infer local chromatin 
states [14]. Another related approach uses Cas9 enrich-
ment of NOMe treated DNA followed by long read 
sequencing (nanoNOME-seq) [19]. Here we will briefly 
recap the results section and further discuss the pros 
and cons of these three approaches.

guidedNOMe‑seq vs array capture NOMe‑seq
For an experimental set up that primarily focuses on 
TSSs and common/predicted cis-regulatory elements 
(CREs) in human or mouse, the array capture NOMe-
seq protocol is the method of choice. When working 
with different species and/or when the focus is rather 
a specific transcription factor with binding sites distal 
to TSSs and predicted CREs or repetitive regions, guid-
edNOMe-seq is the preferred method because it allows 
investigation of thousands of custom defined ROI with-
out relying on commercially available tools.

Short read NOMe‑seq vs long read nanoNOMe‑seq
When performing nanoNOMe-seq long (~ 100 kb) 
DNA molecules are sequenced [19]. This allows inter-
rogation of individual TF binding sites, the nucleosome 
positioning in their flanking sequences and even the 
chromatin state relationship between more distal ele-
ments. This makes nanoNOMe a very versatile and 
powerful approach for studying individual loci to in 
detail while in turn suffering from the following limita-
tions: 1) the scale at which nanoNOMe has so far been 
executed and currently is feasible in a cost-efficient man-
ner is almost two orders of magnitude smaller as com-
pared to guidedNOMe-seq or array capture NOMe-seq 
(10–30 vs >  = 1500 ROI). (2) nanoNOMe requires large 
quantities of input DNA precluding the analysis for low 
input samples. (3) The obtained on-target percentage of 
nanoNOMe is approximately 40 times lower as compared 
to guidedNOMe-seq when keeping the tenfold lower 
read counts obtained when performing Cas9 enrichment 
followed by nanopore sequencing in mind [22].

Given this, we conclude that, at present, nanoNOMe is 
the technique to interrogate the relationship of chroma-
tin states between distal elements within a single DNA 
molecule with low ROI throughput. In contrast, when 
the interest is to quantify local chromatin states at near 
genome-scale, array-capture NOMe or guidedNOMe are 
the preferred methods of choice.

Conclusions
The field of genomics has experienced the emergence 
of a plethora of high resolution and single-cell/allele 
methods that are pivotal for a more quantitative analy-
sis of the molecular mechanisms underlying genome 
regulation. Most of the protocols available to date either 
require highly customized set ups, such as for high-res-
olution and single-molecule microscopy, or very high 
read depth, in the case of next-generation sequencing 
based techniques, to achieve the necessary sensitivity for 
single-locus quantification. Moreover, single-cell omics 
approaches are expensive and challenging to analyze and 
reproduce because of the inherent high levels of tech-
nical noise in the data. NOMe-seq coupled with array 
capture, or Cas9-mediated target enrichment described 
here, can make up for several of these shortcomings. This 
however comes at the expense of throughput and the 
need to select ROI. Nevertheless, it is feasible to acquire 
quantitative data for hundreds to thousands of individual 
loci at single allele resolution in one experiment, includ-
ing multiple conditions, perturbations, and replicates. 
In our study we used a pool of 6000 sgRNAs to perform 
target enrichment. Recently, depletion experiments were 
successfully done with a pool of ~ 500 000 sgRNAs in a 
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single Cas9 digestion experiment [48]. This indicates that 
the number of sgRNAs and therefore ROI can be signifi-
cantly increased for guided-NOMe-seq as well.

Methods
Wetlab
Oligo pool amplification
The sgRNA oligo pool (see supplemental tables) was 
ordered at Twist Bioscience and amplified according 
to their recommendations with some minor modifica-
tions. Briefly, the oligo pool was dissolved in 10 mM 
Tris buffer, pH8 to a concentration of 5 ng/ul. We used 
the recommended KAPA HiFI PCR kit (Roche Cat # 
KK502) according to the manufacturer instruction. PCR 
mix was as follows: 12.5 ul KAPA HiFI HotStart Ready 
Mix, 0.75ul 10uM Fwd Primer, 0.75ul 10uM Rev Primer, 
2ul oligo pool (5 ng/ul) and 9ul H2O (see Table  1 for 
primer sequences used). We performed PCR with the 
recommended cycling protocol: using 56 °C annealing 
temperature, 15 s extension and performed 16 cycles 
of amplification. PCR product was purified using 1.8 
V Ampure beads (Beckman) and resuspended in 25ul 
of H2O. DNA concentration was measured using the 
qubit dsDNA HS kit (Thermo Fisher Scientific) and cor-
rect size was confirmed once by running an appropriate 
PCR aliquot on a High Sensitivity DNA bioanalyzer chip 
(Agilent).

NOMe treatment
NOMe was performed essentially as described in Grand 
et al. [16] with two minor modifications. (1) After count-
ing the cells, we processed ~ 0.8 × 10^6 cells throughout 
the initial lysis and washing steps. After washing, the 
nuclei pellet was resuspended in 189ul 1 × M.CviPI buffer, 
resuspended and 94.5 ul (0.4*10^6) cells was used for 
M.CviPI profiling. (2) Lysis of the cells to obtain nuclei 
was performed for 7.5 min (instead of 10 min) on ice.

In vitro sgRNA transcription
For in  vitro sgRNA synthesis the EnGEN sgRNA syn-
thesis kit (NEB) was used according to manufacturing’s 
recommendation, with minor modifications. We used 
1uM (82 ng) PCR product of the amplified oligo pool and 
in vitro sgRNA reaction was performed for 2 h @ 37 °C 
to increase yield. After DNAseI treatment in vitro tran-
scribed RNA was purified using the zymo RNA purifica-
tion kit (ZY-R1013) and eluted in 40ul of nuclease free 
H20. RNA yield was determined using Qubit RNA BR 
reagents (Thermos Fisher scientific) (typical yield 500-
700 ng/ul).

guidedNOMe‑seq library preparation
After purification of the NOMe treated genomic DNA 
we quantify DNA concentration using hs/brDNA qubit 
kit (Thermo Fisher Scientific). For our guidedNOMe-seq 
libraries the first steps are performed in technical quad-
ruplicates to increase library complexity. (1) 100–150 ng 
of genomic DNA is dephosphorylated by additional of 
1ul rSAP (NEB M0371L), 1.5ul NEB3.1 buffer in a total 
volume of 15ul. rSAP treatment is performed at 37 °C 
for 30 min and reaction is thereafter heat inactivated 
for 10 min at 65 °C. (2) Sample is subsequently digested 
and a-tailed by addition of Cas9 loaded with the in vitro 
transcribed sgRNA pool as follows: 0.5ul Cas9 (20uM/
ul, NEB M0386M), 700 ng in vitro transcribed sgRNAs, 
2.5ul Neb3.1, 1ul 10 mM dATP, 1ul Klenow Fragment 
(3´ → 5´ exo–) (NEB, M0212L), 1 ul Taq polymerase 
(NEB M0267L), H2O up to 25ul. Samples are incubated 
at 37 °C for 12H—> 5 min at 72 °C—> and stored at 4 °C, 
(3) The technical quadruplicates are merged at this step. 
1ul RNAseA (20 mg/ml) is subsequently added, and sam-
ple is incubated at 37 °C for 15 min, 1ul protK (20 mg/
ml), 1ul 10% SDS and 3 ul H20 is added and incubate at 
55 °C for 1 h. Digested DNA is cleaned up by perform-
ing 1 V Ampure purification and eluted in 28ul H2O). 
(4) xGen Methyl UDI-UMI Adapters (IDT) were ligated 
to the Cas9 digested DNA using the NEBNext® Ultra™ 
II DNA Library Prep Kit (NEB E7645L) while omit-
ting the end repair step. The ligation reaction: 26.5 ul 
Cas9 digested DNA, 3.5ul end repair buffer, 15 ul Liga-
tion master mix, 0.5 ul ligation enhancers, 1.25ul 1.5uM 
xGen Methyl UDI-UMI Adapters (IDT). Samples were 
incubated at 20 °C for 30 min. 0.75 volume Ampure bead 
purification was performed, and DNA was eluted in 22ul 
H20. (5) Bisulfite conversion was performed with the EZ 
DNA METHLYATION-DIRECT™ KIT (Zymo) accord-
ing to manufacturing recommendations. (6) Bisulfite 
converted DNA is thereafter amplified using KAPA HiFi 
Uracil + (Roche) in combination with P5 and P7 specific 
primers (see Table 1 for oligo sequences). We were hav-
ing issues with the presence of adapter dimers in our 
PCR reaction. To overcome this, we performed 12 PCR 
cycles followed by a 0.6 V Ampure clean-up to remove 
adapter dimers. Subsequently, the sample was subjected 
to an additional 6–9 cycles of PCR again followed by a 
0.6 V Ampure clean-up. Size distribution and DNA con-
centration was checked by running a DNA High Sensi-
tivitybioanalyzer Chip (Agilent) and by dsDNA HS Qubit 
measurements (Thermo Fisher Scientific). Final libraries 
were pooled and sequenced on an Illumina MISeq in 300 
bp PE mode.
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Table 1    Oligos used for genome editing and PCRs

NOMe PCR Amplicons strand sequence
chr4:135534271-135535026 Fwd_1 ttgtttttataatattaggtttagggt

Fwd_2 tagggttatagatttatatttgtgg

Rev_1 AaACT​CAA​CCC​CAC​CACAaATA​TCT​CAA​

Rev_2 aTCT​TTA​AaAaTAAaAAaaTTTCTaAaAAC​

chr5:103691073-103691705 Fwd_1 AtAtTTTtTGGATtTTATtTTtAATAtAAtt

Rev_1 ACA​AAA​aTCA​CTT​ACTTAaATA​AAC​TAT​CCA​aTa

Rev_2 CTA​TCC​AaTaTCTAaaaAAAAaAaTAT​AAT​a

chr5:113963199-113963929 Fwd_1 GGTtAAA​ATT​TAG​GAA​AAtAGAtAGAGTt

Fwd_2 GGG​GAG​TtttAGG​TAG​AAT​ATG​AGTtTGG​

Rev_1 TTTaTTT​CTC​CTaaaTCC​CTC​TaTCCCTaTaaT

Rev_2 CAaTaTCT​CCC​TATTaAaACCCTaT

chr8:64676254-64677021 Fwd_1 GTTTtAtTGAtAAA​ATG​AAAATtTGAtAGTG​

Fwd_2 ttAAAtTGG​GGA​tAAAtAGGTtAAT​ATG​

Rev_1 taaaattcataaaaatccacctacttca

Rev_2 ttcctaaatactaaaattaaaaatat

chr8:123132736-123133458 Fwd_1 tttttgagtgttgggaatttaagtgtga

Fwd_2 tTGT​ATG​TAtgtagatggttgtga

Rev_1 tcttacaaaaaaccaaaatttaattctca

chr9:118708066-118708565 Fwd_1 TGTtTGTtTAT​ATG​GTT​AAA​GAA​AAT​TAG​

Fwd_2 GTTAtTTT​TAG​TAA​GTT​TAT​TAA​AAT​TGA​G

Rev_1 aTCTaAAaAAT​TTC​CCC​AAA​aTCAaAa

chr10:81577506-81578424 Fwd_1 Atttatttaattttatatgtatgggtgttttg

Fwd_2 atgtatgggtgttttgtttatatatttgt

Rev_1 aaaatatctcaataaataaaaatatt

chr11:19860509-19861184 Fwd_1 ttAAGGAtttTAttTGTTTttAgtagtgg

Fwd_2 tgtaattttattagttaggaggttga

Rev_1 cattcttaattaaaattcttaactaAAaaTaaa

chr13:37461486-37462258 Fwd_1 gggagattttattttatttaaaataGTAT​

Fwd_2 AtTtTTTTtttTAtAAAttAAA​GTT​ttAAGAA​

Rev_1 aATaaAAA​ACA​ACA​ACA​ACA​ACA​AAA​ATT​aTC

Rev_2 AaTAaACATaaTAaaTAATAaaAaaACA​CAT​C

chr18:34114859-34115360 Fwd_1 GTT​GGA​ATttTGAttAAG​AAG​AGT​ATG​

Fwd_2 GAT​TTT​tAtAAA​TAA​TTttAtAtAtTTA​AGG​G

Rev_1 CaTTTTAaAAA​ACA​CAA​CAA​AAA​CCA​TAACA​

Rev_2 TAA​TTA​CCTTTaaaATaTTTAAaTCT​TAA​

Chr15:97952351:97952777 Fwd_1 TGT​TAT​GTT​TTT​GGG​ATT​TAT​TGA​AT

Rev_1 CCT​TTC​CCA​ATC​CTA​AAC​TAACT​

Chr2:32912400:32912825 Fwd_1 ATT​GGG​GGT​TTA​TGG​GAT​TAA​TAG​

Rev_1 TAT​TCA​CAT​CTC​TCT​ACA​AAA​ACC​A

chr8:70873668:70874090 Fwd_1 TGT​TTA​ATT​ATT​TTT​GAG​ATA​GTG​TT

Rev_1 CCA​TCT​CAA​ATA​TTA​ATA​AAC​AAA​AA

chr11:62756820:62757164 Fwd_1 ATG​AAG​AGT​TTT​TGA​ATG​AAG​GTT​AA

Rev_1 CTT​AAA​TTA​TCC​ACC​CTC​CTC​TCT​AA

chr4:130138383:130138741 Fwd_1 AGG​GAG​ATA​TTA​AAG​ATT​TAG​GTT​T

Rev_1 CAT​CCT​CTT​AAC​ACC​AAT​CTA​AAA​T

oligos for generating gRNA pools strand sequence
to amplify guidedNOMe libraries from ends of p5 and p7 (this is P5) fwd AAT​GAT​ACG​GCG​ACC​ACC​GAGAT​

to amplify guidedNOMe libraries from ends of p5 and p7 (this is P7) rev CAA​GCA​GAA​GAC​GGC​ATA​CGAGA 

Fwd In vitro sgRNA Twist Oligo pool amplification fwd aagcTAA​TAC​GAC​TCA​CTA​TAG​G

Rev In vitro sgRNA Twist Oligo pool amplification rev AAA​AGC​ACC​GAC​TCG​GTG​
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Table 1  (continued)

oligos for genome editing strand sequence
Adnp-avi-FLAG-FKBP12-Neongreen HR donor gBLOCK aaaGGC​TAC​AGT​GCA​AGA​TGA​CAC​AGA​GCA​GTT​AAA​ATG​GAA​GAA​TAG​TTC​

CTA​TGG​AAA​AGT​TGA​AGG​GTT​TTG​GTC​CAA​GGA​CCA​GTC​ACA​GTG​GGA​AAA​
TGC​ATC​TGA​GAA​TGC​AGA​GCG​CTT​ACC​AAA​CCC​ACA​GAT​TGA​GTG​GCA​GAA​
TAG​CAC​AAT​TGA​CAG​TGA​GGA​CGG​GGA​GCA​GTT​TGA​CAG​CAT​GAC​TGA​CGG​
AGT​TGC​TGA​TCC​CAT​GCA​TGG​CAG​CTT​AAC​TGG​AGT​GAA​GCT​GAG​CAG​CCA​
GCA​AGC​CcctggtGGC​CTG​AAC​GAC​ATC​TTC​GAG​GCT​CAG​AAA​ATC​GAA​TGG​
CAC​GAAgctgactataaggaccacgacggagactacaaggatcatgatattgattacaaagac-
gatgacgataagGGA​GTG​CAG​GTG​GAA​ACC​ATC​TCC​CCA​GGA​GAC​GGG​CGC​
ACC​TTC​CCC​AAG​CGC​GGC​CAG​ACC​TGC​GTG​GTG​CAC​TAC​ACC​GGG​ATG​CTT​
GAA​GAT​GGA​AAG​AAA​GTT​GAT​TCC​TCC​CGG​GAC​AGA​AAC​AAG​CCC​TTT​AAG​
TTT​ATG​CTA​GGC​AAG​CAG​GAG​GTG​ATC​CGA​GGC​TGG​GAA​GAA​GGG​GTT​GCC​
CAG​ATG​AGT​GTG​GGT​CAG​AGA​GCC​AAA​CTG​ACT​ATA​TCT​CCA​GAT​TAT​GCC​
TAT​GGT​GCC​ACT​GGG​CAC​CCA​GGC​ATC​ATC​CCA​CCA​CAT​GCC​ACT​CTC​GTC​
TTC​GAT​GTG​GAG​CTT​CTA​AAA​CTG​GAA​ATG​GTC​TCC​AAG​GGC​GAG​GAG​GAT​
AAC​ATG​GCC​TCT​CTC​CCA​GCG​ACA​CAT​GAG​TTA​CAC​ATC​TTT​GGC​TCC​ATC​
AAC​GGT​GTG​GAC​TTT​GAC​ATG​GTG​GGT​CAG​GGC​ACC​GGC​AAT​CCA​AAT​GAT​
GGT​TAT​GAG​GAG​TTA​AAC​CTG​AAG​TCC​ACC​AAG​GGT​GAC​CTC​CAG​TTC​TCC​
CCC​TGG​ATT​CTG​GTC​CCT​CAT​ATC​GGG​TAT​GGC​TTC​CAT​CAG​TAC​CTG​CCC​TAC​
CCT​GAC​GGG​ATG​TCG​CCT​TTC​CAG​GCC​GCC​ATG​GTA​GAT​GGC​TCC​GGA​TAC​
CAA​GTC​CAT​CGC​ACA​ATG​CAG​TTT​GAA​GAT​GGT​GCC​TCC​CTT​ACT​GTT​AAC​
TAC​CGC​TAC​ACC​TAC​GAG​GGA​AGC​CAC​ATC​AAA​GGA​GAG​GCC​CAG​GTG​AAG​
GGG​ACT​GGT​TTC​CCT​GCT​GAC​GGT​CCT​GTG​ATG​ACC​AAC​TCG​CTG​ACC​GCT​
GCG​GAC​TGG​TGC​AGG​TCG​AAG​AAG​ACT​TAC​CCC​AAC​GAC​AAA​ACC​ATC​ATC​
AGT​ACC​TTT​AAG​TGG​AGT​TAC​ACC​ACT​GGA​AAT​GGC​AAG​CGC​TAC​CGG​AGC​
ACT​GCG​CGG​ACC​ACC​TAC​ACC​TTT​GCC​AAG​CCA​ATG​GCG​GCT​AAC​TAT​CTG​
AAG​AAC​CAG​CCG​ATG​TAC​GTG​TTC​CGT​AAG​ACG​GAG​CTC​AAG​CAC​TCC​AAG​
ACC​GAG​CTC​AAC​TTC​AAG​GAG​TGG​CAA​AAG​GCC​TTT​ACC​GAT​GTG​ATG​GGC​
ATG​GAC​GAG​CTG​TAC​AAA​TGA​GGC​CCT​GGC​GTG​CCA​TAG​CAT​ATG​CAT​ATG​
GGC​CGT​GTT​GCA​TCC​TGG​ACT​TCT​GCT​CTC​CTT​CCA​GTC​TGA​CTG​CAA​AGC​
TGT​CTT​CTA​ACT​GGC​ACT​ACC​TTG​CAA​GGA​CTG​GTC​AGT​CAG​CAG​GCT​GTG​
GGG​ATG​TGT​GAC​CAC​TGT​AGT​CTC​AGT​GGT​TAT​TTC​CAA​GTC​TAT​GAT​AGA​TGA​
CTG​GTT​GAT​CTT​TGT​TCA​GAC​TCT​

Adnp 3’ tagging genotyping primer FWD fwd GGT​CCA​AGG​ACC​AGT​CAC​AG

Adnp 3’ tagging genotyping primer REV rev CTG​ACC​AGT​CCT​TGC​AAG​GT

Ctcf-FKBP12-2xHA HR donor gBLOCK TGT​CAG​TAT​TTG​GTA​TCT​GAC​AAT​TTC​TAG​CCT​TTT​GGG​ATT​TTA​TGT​GTG​GCC​
ACT​TAA​CGT​TCG​CAG​GGC​TGT​TTT​GTT​TCT​GCT​GAC​TTG​GGC​ATC​ACT​GCT​
GAG​GCT​TTC​TTG​TTG​CTG​CAT​CCC​ATT​CAT​TGT​CAG​CAT​CGG​GAA​CAA​TGC​
CTG​TGC​TCG​CTG​GGG​GCT​TTA​ATG​TAC​GTA​CCC​TTT​GTT​TTG​TTC​CTG​CCC​
TTC​TTT​GCC​AGC​AAC​AGC​CAT​CAT​TCA​GGT​CGA​AGA​TCA​GAA​TAC​AGG​TGC​
AAT​TGA​GAA​CAT​TAT​AGT​TGA​AGT​CAA​AAA​GGA​GCC​AGA​TGC​CGA​GCC​TGC​
GGA​GGG​GGA​AGA​AGA​GGA​GGC​TCA​GGC​AGC​CAC​CAC​AGA​CGC​CCC​CAA​
CGG​AGA​CCT​CAC​GCC​TGA​GAT​GAT​CCT​CAG​CAT​GAT​GGA​CCG​GGG​GGG​AGC​
AGG​AGG​CGT​CGA​CGG​TAT​CGA​TGG​AGT​GCA​GGT​GGA​AAC​CAT​CTC​CCC​AGG​
AGA​CGG​GCG​CAC​CTT​CCC​CAA​GCG​CGG​CCA​GAC​CTG​CGT​GGT​GCA​CTA​CAC​
CGG​GAT​GCT​TGA​AGA​TGG​AAA​GAA​AGT​TGA​TTC​CTC​CCG​GGA​CAG​AAA​CAA​
GCC​CTT​TAA​GTT​TAT​GCT​AGG​CAA​GCA​GGA​GGT​GAT​CCG​AGG​CTG​GGA​AGA​
AGG​GGT​TGC​CCA​GAT​GAG​TGT​GGG​TCA​GAG​AGC​CAA​ACT​GAC​TAT​ATC​TCC​
AGA​TTA​TGC​CTA​TGG​TGC​CAC​TGG​GCA​CCC​AGG​CAT​CAT​CCC​ACC​ACA​TGC​
CAC​TCT​CGT​CTT​CGA​TGT​GGA​GCT​TCT​AAA​ACT​GGA​Aggcggctacccctac-
gacgtgcccgactacgccggctatccgtatgatgtcccggactatgcaggctccggaTAA​TGA​
TGC​TGG​GGC​CTT​GCT​CGG​CAC​CAG​GAC​TAT​TGG​GCT​GTG​TTT​AAA​CGG​CCC​
AAA​TCT​TAA​tttttctcttttttttCTT​TGG​CTT​TGG​GAA​CGG​CAT​AAT​TTT​ACA​CCA​
TTT​TAC​CAA​ACA​TAC​TGA​GAA​CGA​AAA​CTT​CAA​GGA​TGA​TGT​TAG​AAA​AAT​
GTG​ATT​TAA​CTA​GAA​CTT​GTT​TGA​TGT​TAG​CAA​ATC​ATG​GAA​TGT​TCT​AAG​TCT​
CTG​AGG​GTT​TAC​TGT​GAA​GTG​TTG​AGG​ACA​GTG​TTG​ATG​CCT​AAC​TAG​TTT​
TCT​TAG​ATG​GAA​ACA​GAG​ACA​TTG​AGC​CCT​CTC​TCT​TGA​TCG​TAA​ACC​ACT​
CCA​GAA​CGG​CCA​CGG​GTT​TCC​CAG​AGT​TCT​ATG​GTC​TTC​CCA​AGA​GAA​TTT​
TTA​ATT​GTA​AAT​GCA​GAC​TTG​GGA​AGG​ACT​

Ctcf genotyping fwd GCA​TGC​CAT​CCT​ACT​GGT​GTGC​

Ctcf genotyping rev GCA​TGC​CAT​CCT​ACT​GGT​GTGC​

Ctcf gRNA oligo fwd aaacCAG​CAT​GAT​GGA​CCG​GTG​ATc

Ctcf gRNA oligo rev caccgATC​ACC​GGT​CCA​TCA​TGC​TG
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Amplicon NOMe
Primers pairs for selected ROI were manually designed 
(see Table  1 for oligo sequences). ROI were amplified 
from bisulfite converted NOMe treated DNA using 
KAPA HiFi Uracil + (Roche). PCR products were purified 
using the QIAquick PCR Purification Kit (Qiagen) and 
equimolarly pooled. Sequencing libraries were generated 
using the NEBNext® Ultra™ II DNA Library Prep Kit and 
sequenced on an Illumina MISeq.

Cell culture
Mouse embryonic stem cells (129 × C57BL/6 back-
ground) were cultured on gelatin-coated dishes in ES 
medium containing DMEM (GIBCO 21969–035), sup-
plemented with 15% fetal bovine serum (FBS; GIBCO), 
1 × non-essential amino acids (GIBCO), 1 mM sodi-
umpyruvate (GIBCO), 2 mM l-glutamine (GIBCO), 0.1 
mM 2-mercaptoethanol (Sigma), 50 mg/ml penicillin, 
80 mg/ml streptomycin, 3 mM glycogen synthase kinase 
(GSK) inhibitor (Calbiochem, D00163483), 10 mM MEK 
inhibitor (Tocris, PD0325901), and homemade LIF, at 37 
°C in 5% CO2.

Genome editing
For homozygous endogenous tagging, an Avi-3xFLAG-
FKBP12(F36V)-mNeonGreen tag was introduced at the 
Adnp locus and a FKBP12(F36V)-2xHA tag was inserted 
at the Ctcf gene, both c-terminally. The Adnplys407 mutant 
was generated by inserting a homology donor at the 
endogenous Adnp locus leading to a frameshift after 
Valine 406, insertion of a 3xFLAG-V5 tag and premature 

termination of the Adnp ORF. This mutation behaves like 
an Adnp knock-out and mimics a human patient muta-
tion Adnp-Lys408Valfs*31 leading to Helsmoortel-van-
der-Aa syndrome [49].

The gBlocks encoding the homology donor constructs 
for the above genome editing were ordered from IDT, 
dissolved in H2O and cloned in a modified version of the 
pCRIS-PITCh plasmid [50] using NEBuilder (cat# NEB 
E2621S).

Adnp was homozygously tagged in mESCs by transfect-
ing a mixture containing 400 ng each of the TALEN plas-
mids [32], the targeting vector and a plasmid expressing 
mCherry using Lipofectamine 3000 (thermoFisher Scien-
tific). CtcfFKBP12(F36V)−2xHA and Adnplys407were generated 
by transfecting a mixture containing 400 ng Cas9-p2A-
mCherry and 800 ng of the targeting vector using Lipo-
fectamine 3000 (thermoFisher Scientific). 2–3 days after 
transfection 96 single cells were FACS sorted (mCherry 
high) into a 96-well plate. Single clones were genotyped 
by PCR, and correct homozygous insertion was con-
firmed by sanger sequencing and western blot analysis. 
gRNA oligos, homology donor constructs and cell lines 
used can be found in Tables 1 and 2.

guidedNOMe‑seq timecourse
ADNP depletion and recovery time course combined 
with flow cytometry (BD LSRII SORP flow cytometer) 
and NOMe profiling was done as follows: 2–4 × 105 
Adnp-avi-3x-FLAG-FKBP12F36V mNeon-Green mESC 
were seeded per 6-well plate well. dTAG-13 compound 
was added at final concentration of 0.5 μM (Tocris, 

Table 1  (continued)

Adnplys407 mutation HR donor gBLOCK GAT​AGC​TCC​CAA​ACC​TCA​AGA​CAA​AAA​GGG​CAT​GGG​ACT​CCC​ACC​ACG​AAT​
CAG​CTC​CCT​TGC​TTC​TGG​AAA​TGT​CCG​GTC​GTT​GCC​ATC​ACA​GCA​GAT​GGT​
AAA​CCG​ATT​GTC​AAT​ACC​AAA​GCC​CAA​CTT​AAA​TTC​AAC​GGG​AGT​CAA​CAT​
GAT​GTC​CAA​TGT​TCA​CCT​GCA​GCA​AAA​CAA​CTA​TGG​AGT​CAA​ATC​TGT​GGG​
CCA​GAG​CTA​TGG​TGT​TGG​CCA​GTC​AGT​GAG​GCT​GGG​ACT​AGG​TGG​CAA​TGC​
TCC​AGT​TTC​CAT​CCC​TCA​ACA​GTC​TCA​GTC​CGT​GAA​ACA​GTT​ACT​TCC​AAG​
TGG​GAA​TGG​GAG​GTC​TTT​TGG​GCT​AGG​TGC​TGA​GCA​GAG​GCC​CCC​AGC​AGC​
AGC​CAG​GTA​CTC​CCT​GCA​GAC​TGC​CAA​CAC​CTC​TCT​ACC​aCCA​GGC​CAA​GTG​
GTC​TCC​CTC​TGT​GTC​TCA​GTC​ACA​GGC​ATC​gactataaggaccacgacggagacta-
caaggatcatgatattgattacaaagacgatgacgataagGGG​AAG​CCT​ATC​CCT​AAC​CCT​
CTC​CTC​GGC​CTC​GAC​TCG​ACG​TAG​AGT​ATT​AGG​TCA​GTC​CAG​TTC​TAA​ACC​
TCC​ACC​AGC​CGC​CAC​AGG​CCC​TCC​TCC​AAG​CAA​CCA​CTG​TGC​CAC​TCA​GAA​
GTG​GAA​AAT​CTG​TAC​AAT​CTG​TAA​CGA​GCT​TTT​CCC​TGA​GAA​TGT​CTA​TAG​
CGT​TCA​CTT​CGA​AAA​GGA​GCA​TAA​AGC​TGA​GAA​AGT​CCC​AGC​CGT​AGC​TAA​
CTA​CAT​TAT​GAA​AAT​ACA​CAA​TTT​TAC​TAG​CAA​ATG​CCT​CTA​CTG​TAA​TCG​CTA​
TTT​GCC​TAC​AGA​TAC​CCT​ACT​CAA​CCA​TAT​GTT​AAT​TCA​TGG​TCT​GTC​TTG​TCC​
GTA​TTG​CCG​TTC​CAC​CTT​CAA​TGA​TGT​AGA​GAA​GAT​GGC​AGC​ACA​CAT​GCG​
AAT​GGT​

Adnplys407 genotyping fwd GAG​GAC​CAT​GAA​CGG​ATA​GG

Adnplys407 genotyping rev ACT​TTT​GGT​TGT​GGC​TTT​GG

Adnplys407 gRNA oligo fwd caccgGGG​AGA​CTT​CAC​TTG​GCC​TG

Adnplys407 gRNA oligo rev aaacCAG​GCC​AAG​TGA​AGT​CTC​CCc
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1:1000 dilution of 0.5 mM stock solution in DMSO). Flu-
orescence intensity, as a proxy for ADNP abundance, was 
measured at the indicated time points in biological dupli-
cates. For the wash-out time course, mESC were cultured 
for 24 h in the presence of 0.5uM dTAG-13 compound. 
After 24 h cells were washed with PBS, dissociated from 
the culturing dish by incubation with TrypLE™ Express 
(Thermo fisher Cat# 12,605,010) and washed 3 times 
using culturing medium. Cells were thereafter seeded 
at appropriate density and processed at the indicated 
time points. For accurate FACS analysis of Adnp lev-
els, cells were briefly fixed in 4% Paraformaldehyde for 
5 min at room temperature and then stored in PBS at 
4ºC. Timepoints indicated throughout the Adnp deple-
tion timecourse indicate the moment at which we started 

harvesting the cells. The actual NOMe profiling of the 
nuclei started ~ 15 min after the start of the harvesting.

Computation
Design ROI plus sgRNAs
We used the CTCF ChIP-seq peaks and Ctcf motif files 
from our previous work [33]. REST ChIP-seq data gen-
erated by Baricic et  al. were downloaded from GEO 
(GSE112136) [51] and peaks were called using MACS 
[52]. We used bedtools to count the number of motifs 
under a peak and retained only peaks with a single motif 
for the guidedNOMe-seq [53].

sgRNA design was performed using CRISPRseek [54]. 
The TF binding motif was taken as center of the ROI and 
extended up and downstream by 300 bp. sgRNA were 

Table 2  Cell lines used in this study

Name Genotype Clone
wt_1 mES159-Rosa26(tg)Cre-ERT2/(tg)BirA-V5

wt_2 mES159-Rosa26(tg)Cre-ERT2/(tg)BirA-V5 Cbx3FLAG-Avi/FLAG-Avi clone 32

Adnp-3FV5 1 mES159-Adnp3xFLAG-V5/3xFLAG-V5 clone 1.2

Adnp-3FV5 2 mES159-Adnp3xFLAG-V5/3xFLAG-V5 clone 6F

Adnp KO 1 mES159-AdnpLys408Valfs*31-3xFLAG-V5/Lys408Valfs*31-3xFLAG-V5 clone 2B

Adnp KO 2 mES159-AdnpLys408Valfs*31-3xFLAG-V5/Lys408Valfs*31-3xFLAG-V5 clone 6F

CTCF-dTAG 1 mES159-CtcfFKBP12F36V-2HA/FKBP12F36V-2HA Adnp3FLAG-V5/3FLAG-V5 clone 8a

CTCF-dTAG 2 mES159-CtcfFKBP12F36V-2HA/FKBP12F36V-2HA Adnp3FLAG-V5/3FLAG-V5 clone 9c

Adnp-dTAG​ mES159-AdnpAvi-3xFLAG-FKBP12(F36V)-mNeonGreen/Avi-3xFLAG-FKBP12(F36V)-mNeonGreen clone 1.1

Name Description
wt_1 ES cells with heterozygous knock-in of BirA and Cre-ERT into Rosa26 locus

wt_2 ES cells with heterozygous knock-in of BirA and Cre-ERT into Rosa26 locus and homozygous c-terminal FLAG-Avi tag on endogenous 
Cbx3.

Adnp-3FV5 1 ES cells with endogenous c-terminal 3xFLAG-V5 tag on Adnp (homozygous)

Adnp-3FV5 2 ES cells with endogenous c-terminal 3xFLAG-V5 tag on Adnp (homozygous)

Adnp KO 1 ES cells with homozygous truncation of Adnp at lysine 407 leading to premature termination and an Adnp fragment that does 
not bind chromatin similar to a full knock-out.

Adnp KO 2 ES cells with homozygous truncation of Adnp at lysine 407 leading to premature termination and an Adnp fragment that does 
not bind chromatin similar to a full knock-out.

CTCF-dTAG 1 ES cells with endogenous c-terminal 3xFLAG-V5 tag on Adnp and a c-terminal FKBP12(F36V)-2xHA tag on Ctcf, 
both homozygous.

CTCF-dTAG 2 ES cells with endogenous c-terminal 3xFLAG-V5 tag on Adnp and a c-terminal FKBP12(F36V)-2xHA tag on Ctcf, 
both homozygous.

Adnp-dTAG​ ES cells with a homozygous c-terminal Avi-3xFLAG-FKBP12(F36V)-mNeonGreen tag on endogenous Adnp.

Name Origin Internal reference
wt_1 Ostapcuk et al, 2018 cMB063

wt_2 Ostapcuk et al, 2018 cMB254

Adnp-3FV5 1 Kaaij et al, 2019

Adnp-3FV5 2 Kaaij et al, 2019

Adnp KO 1 this study

Adnp KO 2 this study

CTCF-dTAG 1 this study

CTCF-dTAG 2 this study

Adnp-dTAG​ this study
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identified in the first and last 80 bp separately. Only sgR-
NAs with a predicted off-target score < 25 were retained 
for further consideration. ROI for which at least 1 sgRNA 
in the up and downstream 80 bp could be designed were 
retained. When there were > 1 sgRNAs targeting a single 
80 bp region two sgRNAs with the highest predicted effi-
cacy were kept. When only one sgRNA could be designed 
in the 80 bp region it was retained twice in the final 
oligo pool. In case a sgRNA started with a Guanine we 
removed it, because we add two Guanines in the T7 pro-
moter and NEB recommends two Guanines as three may 
result in 5’ transcript heterogeneity. Next the final oligo 
was assembled by addition of the T7 promoter (includ-
ing two guanines) and the sgRNA scaffold. aagcTAA​TAC​
GAC​TCA​CTA​TAG​G––-sgRNA sequence––-GTT​TTA​
GAG​CTA​GAA​ATA​GCA​AGT​TAA​AAT​AAG​GCT​AGT​
CCG​TTA​TCA​ACT​TGA​AAA​AGT​GGC​ACC​GAG​TCG​
GTG​CTT​TT.

guidedNOMe‑seq enrichment
To estimate the enrichement for ROI by guidedNOMe-
seq, we first calculated the expected read coverage of all 
ROI at the given sequencing depth and then divided this 
by the actual observed read overlap, which revealed a 139 
enrichement for replicate 1 and a 100-fold enrichment 
for replicate 2.

guidedNOMe‑seq FDR
Here we assumed that REST binding is independent of 
ChAHP/ADNP activity. To determine the empirical FDR 
of guidedNOMe-seq we calculated the number of times a 
REST bound ROI was statistically tested in all our Adnp 
associated comparisons (Adnp KO vs WT and in our 
Adnp depletion timecourse) (n = 1541) and in how many 
cases this resulted in a significant change in REST bind-
ing (n = 11).

guidedNOMe‑seq suitable ROI
In Fig. 3A we classified ROI suitable for NOMe profiling 
when all three chromatin quantification windows con-
tained at least 1 GpC, but we advise, if there is the option, 
to use ROI with as many GpCs ideally spread throughout 
the ROI.

To determine the number of CTCF bound ROI that 
are suitable for guidedNOMe-seq we combined two 
parameters. (1) the presence of GpCs in the three quan-
tification windows (approximately 50%) (Fig.  3A) and 
(2) the allowed target space to design sgRNAs (ranging 
from ~ 25% to ~ 74%) (Fig. 3B).

So the lower bound number of suitabel CTCF ROI 
using these cut-offs is 70,000*0.5*0.25 = 8750 and the 
upper bound number is 70,000*0.5*0.74 = 25,900.

Simple repeat analysis
The annotation of repeat overlap of ROI is based on 
the Repeat masker table (update 2012–02-07). Overlap 
was determined using bedtools using the complete ROI 
length.

On‑ and Off‑target score
Off-targets of individual sgRNAs were identified with 
the CRISPRseek package without modifications [54]. To 
identify sgRNA on-target scores we used the crisprScore 
package with default setting [30].

Read UMI deduplication and alignment
We used umi_tools (version 1.0.1) to remove reads that 
contain identical UMIs [55]. To this end we first added 
the UMI sequences to the read names (using umi_
tools extract with the option –bc-pattern = CCC​CCC​
CCNNNNNNNNN). After mapping the reads, we used 
umi_tools dedup (discarding any unpaired reads) to 
remove reads that map to the same genomic location and 
contain identical UMIs. Bisulfite aware read mapping was 
performed using Biscuit (version 0.3.16) (https://​huish​
enlab.​github.​io/​biscu​it/), and the mouse mm10 genome 
as a reference (with the options -b 1 -f 0 -K NAGA​TCG​
GAA​GAG​CAC​ACG​TCT​GAA​CTC​CAG​TCA -J NAGA​
TCG​GAA​GAG​CGT​CGT​GTA​GGG​AAA​GAG​TGT) and 
read2 as the first and read 1 as the second input.

For aligning array capture data we used Biscuit (ver-
sion 0.3.16) [14], and the mouse mm10 genome as a 
reference (with the options -b 1 -f 0 -J NAGA​TCG​GAA​
GAG​CAC​ACG​TCT​GAA​CTC​CAG​TCA -K NAGA​TCG​
GAA​GAG​CGT​CGT​GTA​GGG​AAA​GAG​TGT) and read 
1 as the first and read 2 as the second input. For align-
ing PCR data, we used Biscuit (version 0.3.16), and the 
mouse mm10 genome as a reference (with the options -b 
0 -f 1 -J NAGA​TCG​GAA​GAG​CAC​ACG​TCT​GAA​CTC​
CAG​TCA -K NAGA​TCG​GAA​GAG​CGT​CGT​GTA​GGG​
AAA​GAG​TGT) and read 2 as the first and read 1 as the 
second input.

To randomly subsample reads from the alignments 
(bam files), we used samtools view (version 1.10) [56].

GCH methylation calling
To extract the methylation calls in GCH context from the 
alignment files, we used the get_data_matrix_from_bams 
function from the fetchNOMe R package (E. Ozonov 
et al., unpublished, https://​doi.​org/​10.​5281/​zenodo.​84027​
85). Briefly, this function filters the reads based on map-
ping quality (we keep reads with mapping quality above 
30), bisulfite conversion rate (fragments where the frac-
tion of non GCH and non WCH Cytosines that are meth-
ylated is > 0.1 are removed, if there were at least 10 non 

https://huishenlab.github.io/biscuit/
https://huishenlab.github.io/biscuit/
https://doi.org/10.5281/zenodo.8402785
https://doi.org/10.5281/zenodo.8402785
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GCH and non WCG Cytosines present in the fragment). 
Then it returns a matrix of protection from methylation 
calls (1 for protected, 0 for not protected) for each GCH 
position across the whole ROI and each fragment, for 
each ROI-sample combination. For array capture or PCR 
data, which do not contain UMIs, we kept only unique 
(in their genomic positions and methylation pattern 
across all Cytosines) fragments.

NOMe‑seq data analysis
All data analysis was performed using R/Bioconductor 
and a custom made R package (dinoR) and scripts [57].

We first converted the list of GCH protection matri-
ces as returned by the fetchNOMe package into a new 
NOMe-seq specific data structure: a single cell experi-
ment object that contains information about the ROI 
in rowData, information about the samples in colData, 
and several assays. Some assays describe the number of 
fragments that were analyzed for each ROI, as well as 
the number of fragments that were filtered out for vari-
ous reasons (see above). The “reads” assay contains a 
Genomic Position object with an entry for each posi-
tion within the ROI, and metadata columns describing 
the methylation and protection from methylation status 
for each fragment as a sparse logical matrix. We used 
dinoR::metaPlots() to generate plots of the average pro-
tection across ROI of the same type. This function first 
calculates the mean protection for each position across 
reads in all ROI-sample combinations, then calculates the 
mean protection for each sample across ROI of the same 
type.

To count the number of fragments that repre-
sent a certain pattern, dinoR::footprintCalc() and 
dinoR::footprintQuant() select 3 windows (default is -50:-
25, -8:8, 25:50) around the center of each ROI and calcu-
late the average GpC methylation protection for a given 
fragment across all GpCs in each window. If it is above 
0.5 the window is deemed protected, below 0.5, unpro-
tected. Depending on the protection pattern in all win-
dows, a read is put into one of 5 footprint categories: tf 
bound (0—1—0), open chromatin (0—0—0), upstream 
nucleosome (1—1—0), other nucleosome (1—1—1, 
1—0—0, 0—0—1, 1—0—1), and downstream nucleo-
some (0—1—1). For some analyses the three nucleosome 
categories were combined. If a fragment does not have 
methylation protection data in all three windows needed 
for classification, the fragment will not be assigned a 
pattern.

To find significant differences in pattern abundances 
between conditions, we used dinoR::diNOMeTest(). This 
function uses edgeR::calcNormFactors (with TMM nor-
malization) on the total fragment counts per sample 
to calculate library sizes, which are then used as library 

sizes for each sample-pattern combination [58]. After 
estimating dispersions we used edgeR::glmQLFit to fit a 
quasi-likelihood negative binomial generalized log-linear 
model to the pattern counts, and conducted statistical 
tests for each ROI, checking for differences in abundance 
between wild type and knock-out or dTAG treated sam-
ples for each pattern fragment count compared to the 
total fragment counts. p-value correction was performed 
using the Benjamini–Hochberg method.

In addition, we used dinoR::footprintPerc() and 
dinoR::fpPercHeatmap() to calculate the percentage of 
fragments in each pattern, cluster the ROI based on pat-
tern percentages (using Euclidian distance and the ward.
D2 method), and draw a heatmap for all samples of per-
centages across patterns and ROI.

Price comparison guided and oligo capture
To compare the price between custom guidedNOMe 
vs custom oligo capture we took a simplistic approach. 
In both cases we toke the catalogue price of the lowest 
synthesis scale and only compared the price from one 
vendor (Twist bioscience from December 2022). For the 
guidedNOMe we assumed 4 sgRNA encoding oligo’s of 
123 bp length per ROI. For the oligo capture we assumed 
1 × tiling and in case of TWIST capture oligo’s this means 
we need 5 oligo’s of 120 bp to target 600 bp of genomic 
DNA.

ChIP‑seq data analysis
To split the ADNP bound ROI into three groups based 
on Ctcf binding, we used Rsubread::featureCounts() to 
determine the number of CTCF ChIP reads overlapping 
the innermost 300 bp of the ROI, and calculated counts 
per million based on the total number of mapped reads 
[59]. We used only uniquely mapping reads and counted 
only the 5’ ends of each read after shifting downstream by 
80 bp. We then split all ROI with a CTCF motif into three 
groups based on quantiles of enrichment.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​024-​10625-3.

Supplementary Material 1.

Supplementary Material 2: Figure S1. Benchmarking guidedNOMe-seq. (A) 
Scatter plot comparing fragment number over ROI between replicates of 
guided NOMe-seq libraries (B) Scatter plot comparing fragment number 
over ROI before and after UMI correction (C) Scatter plot comparing frag-
ment number over ROI between replicates of two array capture NOMe-
seq libraries (D) The percent of mapped reads that cover the assay specific 
target regions between 3 different target enrichment approaches. Array 
capture data from Sönmezer et al (E)Density plot showing the percentage 
of informative (spanning the three chromatin state quantification win-
dows) reads when performing Array capture and guidedNOMe-seq. (F) 
Line graph comparing oligo synthesis prices when performing either array 
capture NOMe or guidedNOMe targeting different numbers of loci, as 

https://doi.org/10.1186/s12864-024-10625-3
https://doi.org/10.1186/s12864-024-10625-3
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indicated. Figure S2. Basic NOMe-seq analysis. (A) Scatter plot showing the 
sgRNA on target scores predicted by 6 different algorithms, as indicated 
versus the observed associated ROI read counts Violin plots showing 
the sgRNA on target scores predicted by. (B) Line graphs showing the 
running mean smoothed levels of simple repeats and low complexity 
regions in the 1500 ROI ordered by the observed fragment counts per 
ROI. (C) Genome browser view of a ROI showing from top to bottom: (top) 
the position of the 4 sgRNAs designed up and downstream of the ROI, 
(middle) guidedNOMe-seq read coverage of the intended ROI flanked by 
the sgRNAs (left) and background reads originating most likely from Cas9 
cutting at the 5’ end and DNA breakage at the 3’ end (right) (D) Barplot 
showing presence of off target reads that can be linked to predicted off 
target sgRNA target sites. Individual bars show read linkage split on sgRNA 
off targets with and without PAM sequence and random controls, as 
indicated. (E) Shows correlation plots of two wild type replicates depicting 
the average observed GpC protection per position between the 4x10^6 
reads and all other subsampled amounts, as indicated. ROI TF relationship 
is highlighted by different colors, as indicated (F) Scatterplots showing the 
reproducibility between replicates of the TF chromatin state classifica-
tion. Every ROI is depicted as a single dot. We subsampled the reads, as 
indicated above the average plot. ROI with two or more informative frag-
ments are shown. Figure S3. Quantification of chromatin state changes 
using guidedNOMe-seq upon ChAHP perturbation. (A) guidedNOMe-seq 
example of a CTCF binding site and its surrounding (~250bp +/-). Top plot 
shows the average protection value of the GpCs at the indicated location. 
Bottom plot shows protected and unprotected state of the GpCs in indi-
vidual DNA molecules. DNA molecules are sorted based on the chromatin 
state they are in, as indicated in the barplot on the right. Single ROI plots 
were generated under wild type conditions and after 24H Ctcf depletion, 
as indicated. Putative nucleosome protected regions, here assumed to 
results in stretches of DNA larger then >100bp protected from methyla-
tion by M.CviPI have been manually highlighted in grey (B) guidedNOMe-
seq example of a CTCF-Adnp co-bound ROI and its surrounding (~250bp 
+/-). Top plot shows the average protection value of the GpCs at the 
indicated location. Bottom plot shows protected and unprotected state of 
the GpCs in individual DNA molecules. DNA molecules are sorted based 
on the chromatin state they are in, as indicated in the barplot on the right. 
Single ROI plots were generated under wild type and Adnp-/- conditions, 
as indicated. (C) Scatterplot showing changes in chromatin state between 
wild type and Adnp-/- conditions. ROI are colored on TF (REST, CTCF no 
ADNP and CTCF with ADNP), see right side of the plots. Every symbol is a 
ROI and the x-axis and y-axis show the fraction of DNA molecules under 
wild type and Adnp-/- conditions that is in the chromatin state indicated 
on top of the plot. edgeR was used to identify ROI that significantly 
change between wild type and Adnp-/- conditions and the shape of the 
individual ROI corresponds to the edgeR output as indicated on the right 
hand site of the plots. (D) Scatterplot showing changes in chromatin state 
between wild type and Ctcf depleted conditions. ROI are colored on TF 
(REST, CTCF no ADNP and CTCF with ADNP), see right side of the plots. 
Every symbol is a ROI and the x-axis and y-axis show the fraction of DNA 
molecules under wild type and Ctcf depleted conditions that is in the 
chromatin state indicated on top of the plot. edgeR was used to identify 
ROI that significantly change between wild type and Ctcf depleted 
conditions and the shape of the individual ROI corresponds to the edgeR 
output as indicated on the right hand site of the plots.  (E) Stacked barplot 
showing the three different ROI groups and the amount and direction of 
significantly changed chromatin states as determined by edgeR between 
the wild type and Adnp-/-.
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