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Abstract
Background Association testing between molecular phenotypes and genomic variants can help to understand how 
genotype affects phenotype. RNA sequencing provides access to molecular phenotypes such as gene expression and 
alternative splicing while DNA sequencing or microarray genotyping are the prevailing options to obtain genomic 
variants.

Results We genotype variants for 74 male Braunvieh cattle from both DNA (~ 13-fold coverage) and deep total 
RNA sequencing from testis, vas deferens, and epididymis tissue (~ 250 million reads per tissue). We show that RNA 
sequencing can be used to identify approximately 40% of variants (7–10 million) called from DNA sequencing, with 
over 80% precision. Within highly expressed coding regions, over 92% of expected variants were called with nearly 
98% precision. Allele-specific expression and putative post-transcriptional modifications negatively impact variant 
genotyping accuracy from RNA sequencing and contribute to RNA-DNA differences. Variants called from RNA 
sequencing detect roughly 75% of eGenes identified using variants called from DNA sequencing, demonstrating 
a nearly 2-fold enrichment of eQTL variants. We observe a moderate-to-strong correlation in nominal association 
p-values (Spearman ρ2 ~ 0.6), although only 9% of eGenes have the same top associated variant.

Conclusions We find hundreds of thousands of RNA-DNA differences in variants called from RNA and DNA 
sequencing on the same individuals. We identify several highly significant eQTL when using RNA sequencing variant 
genotypes which are not found with DNA sequencing variant genotypes, suggesting that using RNA sequencing 
variant genotypes for association testing results in an increased number of false positives. Our findings demonstrate 
that caution must be exercised beyond filtering for variant quality or imputation accuracy when analysing or 
imputing variants called from RNA sequencing.
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Background
High-throughput RNA sequencing (RNA-seq) has been 
frequently applied for measuring gene expression lev-
els [1], assembling de novo transcriptomes [2], detecting 
copy number alterations [3], and identifying genomic 
variants that influence gene expression [4]. Genotypes 
called from RNA-seq have also been used to determine 
population structure [5, 6]. Historically, RNA-seq has 
been viewed as unreliable input compared to DNA-seq 
for identifying genetic variation. Whole-genome DNA-
seq based studies often use between 200 and 500 million 
reads (corresponding to approximately 10-fold to 25-fold 
coverage of a mammalian genome), while RNA-seq based 
studies aim for between 30 million reads to measure gene 
expression and 100 million reads to quantify alternative 
splicing events and map splicing QTL (sQTL) [7]. Mes-
senger RNA (mRNA) is the most common source for 
RNA-seq, primarily containing coding and untranslated 
regions within genes which only represent a small frac-
tion of the genome. Conversely, total RNA-seq contains 
greater amounts of noncoding RNA and non-polyadenyl-
ated transcripts [8], representing more of the transcrip-
tome, but incurs higher cost than mRNA-seq.

RNA-seq variant callers are less common than their 
DNA-seq counterparts, but GATK [9] and a combination 
of preprocessing RNA-seq reads with Opposum [10] and 
calling variants with Platypus [11] have been the domi-
nant options. Recently, DeepVariant has been extended to 
provide an RNA-seq trained model [12], greatly improv-
ing the accuracy and quantity of variants called from 
RNA-seq compared to the previous state of the art. The 
improved DeepVariant model also reduces the number of 
variants called at sites subjected to A-to-I editing within 
the RNA-seq. Such RNA editing events warrant attention 
as they can have important functional effects [13].

As a consequence of these factors, as well as expres-
sion variability in different tissues, far fewer genetic 
variants are called with RNA-seq than DNA-seq, with 
earlier studies identifying only 100k variants from 7 cow 
transcriptomes [14] or 68k variants from 29 cow tran-
scriptomes [5]. Even large studies like the cattle Geno-
type-Tissue Expression (GTEx) project [15], could only 
confidently call 22k variants from 7,180 publicly available 
transcriptomes of diverse origin, which is several orders 
of magnitude less than called from similar sized cohorts 
with WGS data [16]. These variants can then be imputed 
to higher density using large reference panels, like that of 
the 1000 Bull Genomes project [16]. However, a strong 
depletion of non-coding variants in typical RNA-seq 
datasets results in a less reliable imputation of variants 
that are distant to transcribed regions. Similar obser-
vations have been made in chicken [17], pig [18], and 
human [19].

The mapping of expression and splicing quantitative 
trait loci (e/sQTL) is increasingly performed to inves-
tigate the impact of regulatory regions on phenotypes. 
These loci can be detected through association testing 
between molecular phenotypes (e.g., gene expression 
and splicing levels quantified from RNA-seq) and genetic 
variation. Recent studies have identified e/sQTL in cattle 
affecting economically relevant traits, such as male fertil-
ity [4], milk production [20], and carcass yield [21]. These 
e/sQTL have proven highly valuable in prioritizing can-
didate causative variants for complex traits and diseases 
[15, 22].

In this work, we reanalyse deeper-than-usual 
(~ 250 million reads) total RNA sequencing across three 
tissues in a subset of 74 cattle samples previously anal-
ysed for e/sQTL using DNA-seq derived genotypes 
[4]. We compare variants called with DeepVariant from 
DNA-seq and RNA-seq from each tissue and examine 
RNA-DNA differences. These RNA-seq based variant 
calls are enriched for eQTL and their nominal p-values 
are strongly correlated with those from the WGS-derived 
eQTL. Even as RNA-seq coverage is subsampled down to 
100 and 30 million reads, we still observe strong variant 
calling precision and recall.

Methods
DNA and RNA alignment
We considered 74 bulls with publicly available whole-
genome DNA and total RNA (including ribosomal deple-
tion steps) sequence data from three male reproductive 
tissues previously used to characterize gene expression 
and splicing variability [4] (Supplementary Table  1). 
Adapter sequences and low-quality bases were trimmed 
from all DNA and RNA reads, while poly-A/G tails were 
filtered from RNA reads with fastp (v0.23.4) [23]. The 
DNA-seq data were aligned to the cattle reference (ARS-
UCD1.2) with bwa-mem2 (v2.2.1) [24, 25] with the flag 
“-M”. The alignments were deduplicated and sorted with 
SAMtools (v1.19.1) [26]. RNA-seq reads were aligned 
to the same reference and the Ensembl gene annotation 
(v108) using the splice-aware aligner STAR (v2.7.9) [27] 
with --waspOutputMode and heterozygous SNPs from 
DNA to account for allelic imbalance. Read depth was 
estimated with perbase (v.0.8.5) (https://github.com/ssta-
dick/perbase) and coverage per annotation classification 
was calculated with bedtools (v2.30) annotate [28] using 
the Ensembl v108 annotation.

Lower sequencing coverage was simulated by downs-
ampling with SAMtools view -s < fraction>, where the 
fraction was chosen to approximately sample one hun-
dred, thirty, and five million paired-end read subsamples.

https://github.com/sstadick/perbase
https://github.com/sstadick/perbase
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Variant calling and analysis
Variants were called from the aligned bam files using 
DeepVariant (v1.5) [29]. For the DNA samples, we addi-
tionally used the “insert_size” channel, while for the RNA 
samples we used “--split_skip_reads” and the v1.4 RNA 
checkpoint model. All samples for each set of DNA or 
RNA tissue were merged using GLnexus (v1.4.1) [30]. 
Sporadically missing genotypes were imputed using Bea-
gle (v4.1) [31] using the “gl” field. For analyses explicitly 
referencing an external reference panel, we imputed vari-
ants with Beagle (v5.4) using the “gt” field and an exist-
ing reference panel containing 501 cattle [32]. Variant call 
intersection sets were calculated with BCFtools (v1.19) 
[26] isec. Precision/recall/F1 were calculated with hap.py 
(v0.3.15) (https://github.com/Illumina/hap.py), stratify-
ing by region with a bed file containing annotated exon 
coordinates based on their expression level quantified in 
transcripts per million (TPM).

Principal components (PCs) were calculated with 
plink2 (v2.00a4LM) [33], using a minimum allele fre-
quency of 5% and treating half calls as missing. Each 
individual’s breed was assigned according to the Swiss 
Braunvieh herdbook. Variant effects were classified with 
VEP (v108) [34], using the flags ‘--tab --fields “Conse-
quence, IMPACT” --species bos_taurus’. Regions with-
out variants were identified by converting VCF to BED 
format, followed by merging blocks within 1 Kb of each 
other using BEDtools merge -d 1000. We then assessed 
uncovered regions using BEDtools genomecov.

Allele-specific expression was calculated on the WASP 
filtered alignments with QTLtools (v1.3.1) [35] with 
the ase command and the “--both-alleles-seen” flag to 
remove monoallelic expression.

eQTL analysis
We used QTLtools quan to estimate gene expression in 
transcripts per million (TPM) and featureCounts (v2.0.4) 
[36]. We included genes with ≥ 0.1 TPM in ≥ 20% of sam-
ples and ≥ 6 reads in ≥ 20% of samples, and quantile nor-
malised the expression values. Principal components for 
LD-pruned variant calls and RNA expression were calcu-
lated with QTLtools pca.

We split multiallelic variants into multiple biallelic vari-
ants, then removed sites with < 1% minor allele frequency 
using BCFtools. We identified eQTL within 1 Mb of the 
transcription start site with QTLtools and the “--normal” 
flag. Bull age, RNA integrity number, the first 3 genotype 
PCs, and the top 10 PCs of the TPM matrix were used 
as fixed covariates. We performed 1000 permutations 
and used a false discovery rate of 5% to estimate per-gene 
significance thresholds, followed by a conditional pass to 
estimate independent eQTL signals.

Specific eQTL and nearby variants were visualised 
from alignment and variant call files with IGV (v2.17.4) 
[37].

Results
RNA sequencing alignment
We considered 74 mature Braunvieh bulls that had DNA-
seq as well as total RNA-seq from testis, epididymis, and 
vas deferens tissues [4]. The mean sequencing coverage 
for DNA was 13.3 ± 3.9-fold (approximately ~ 240  mil-
lion reads). The mean RNA-seq coverage for testis, epi-
didymis, and vas deferens tissues was 258 ± 33, 284 ± 36, 
263 ± 24  million reads, respectively. After aligning reads 
to the ARS-UCD1.2 bovine reference genome, an average 
of 99.6% of the autosomal bases were covered by at least 
2 reads with DNA-seq, while for testis, epididymis, and 
vas deferens RNA-seq the average was 26.7%, 40.4%, and 
34.8%, respectively (Fig.  1A). Coverage of the DNA-seq 
reads was even across different annotated regions of the 
reference genome while the coverage of RNA-seq reads 
was strongly enriched in genic regions (Fig. 1B; Supple-
mentary Fig. 1). As expected for total RNA-seq, we also 
identified elevated coverage in regions overlapping mis-
cellaneous micro/small/long noncoding RNA that are not 
typically enriched in mRNA-seq. We observed moderate 
coverage in intergenic regions, which is likely due to the 
incomplete annotation of the bovine genome [38], par-
ticularly of long noncoding RNAs or underrepresented 
tissue-specific genes.

We used DeepVariant to call variants for each sample 
on the DNA and each RNA tissue type separately. Across 
the autosomes, there were 21.5  M called variants for 
DNA and 6.6  M, 8.2  M, and 10.1  M variants for testis, 
vas deferens, and epididymis RNA, respectively. Com-
pared to the number of variants called from DNA-seq, 
the number of variants called from each tissue was nearly 
proportional to the fraction of the genome covered by 
RNA-seq for that tissue, respectively 31%, 38%, and 47%. 
This suggests that RNA-seq can be used to call variants at 
a similar rate to DNA sequencing wherever there is suf-
ficient coverage. The DNA-seq variants were more evenly 
distributed across the genome compared to RNA-seq 
variants, with almost 96% of autosomal bases within 1 Kb 
of a DNA-seq variant compared to 64–75% for RNA-seq 
variants (Supplementary Fig. 2), implying regions of the 
genome remain completely inaccessible from total RNA 
sequencing.

The ratios of transitions to transversions (Ti: Tv) for the 
total RNA-seq variants ranged from 2.19 in non-exonic 
or noncoding exons to 3.58 within coding exons (Table 1), 
broadly in line with the distinct expectations for genome-
wide or the more conserved coding regions [39]. Most 
DNA-specific variants were in intergenic regions, where 
there was less RNA coverage. RNA variants within 

https://github.com/Illumina/hap.py
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intergenic regions largely behaved as expected, although 
the increased Ti: Tv for epididymis and vas deferens may 
result from tissue-specific genes that are not yet correctly 
annotated. Using DNA-seq also resulted in proportion-
ally increased indel calls, accounting for 14% of vari-
ant calls compared to ~ 11% in total RNA-seq, as well 
as multiallelic calls (3.4% in DNA-seq versus ~ 1.3% in 
total RNA-seq). Approximately 3.5 million variants were 
present in all four datasets, indicating a large portion of 
regions are all expressed across the three examined tis-
sues. RNA genotypes from the three tissues captured the 
same population structure as the DNA (Fig. 1D-G), dem-
onstrating that the RNA variant calls contained meaning-
ful variation.

We used the variant effect predictor (VEP) to assess 
potential consequences for the called variants. The 
RNA-seq proportionally called more variants annotated 
as low/moderate/high impact (Supplementary Fig.  3), 

with the strongest enrichment (nearly 2-fold) observed 
in testis. On average across the tissues, between 70 and 
75% of low/moderate/high impact variants called from 
DNA were present in the RNA variants, again suggest-
ing the RNA called variants are primarily missing inter-
genic variants for which functional consequences are not 
immediately apparent.

RNA variant calling accuracy
We examined the accuracy of RNA-seq variants, taking 
the DNA sequencing variants as the truth set. Although 
DNA-based variant calls are regarded as the gold-stan-
dard, the average depth of coverage over the 74 samples 
(13x) is lower than typically recommended for accurate 
calls (20-30x). Consequently, some false positives/nega-
tives may be due to an imperfect truth set, particularly 
in heterozygous genotypes. We observed SNP precision 
and recall had a substantial but expected dependency on 

Table 1 Median number of biSNPs (biallelic SNPs) in coding exons, noncoding exons (e.g., pseudogenes, lncRNA, etc.) and non-exon 
regions per sample with the associated Ti: tv rate for variants called from DNA-seq or the three RNA-seq tissues

Coding exons Noncoding exons Not exons
biSNPs Ti: Tv biSNPs Ti: Tv biSNPs Ti: Tv

DNA 39,657 3.13 10,113 2.16 6,652,085 2.20
Testis 35,458 3.53 5,669 2.19 1,427,805 2.20
Epididymis 34,396 3.53 6,082 2.21 2,265,030 2.41
Vas deferens 31,913 3.58 5,409 2.25 1,933,053 2.43

Fig. 1 Alignment and variant calling from DNA and RNA sequencing data. (A) Fraction of the autosomal bases covered by at least two reads for DNA-seq 
and the three RNA-seq tissues. (B) Coverage depth normalised by the total size of the features across different annotated regions for DNA and the three 
RNA tissues. Intergenic regions have low coverage in RNA-seq while other categories are enriched, like long noncoding (lnc) and small nuclear (sn) RNA. 
DNA coverage is consistent across all categories. (C) Overlap of called variants based on exact position and REF/ALT matches, stratified by SNPs, indels, 
and multiallelic (MA) variants. (D-G) Principal component analyses using variants called from DNA-seq or RNA-seq from one of the three tissues. Braunvieh 
refers to animals of ambiguous or mixed Brown Swiss or Original Braunvieh ancestry, and cross refers to Brown Swiss or Original Braunvieh crossed with a 
different breed. The percentages above each plot refer to the total variance explained by the top 10 principal components
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gene expression levels, with highly expressed genes (tran-
scripts per million [TPM] ≥ 10; Supplementary Fig.  1) 
achieving 97.7% precision and 91.8% recall averaged 
across the three tissues, while genes with less than 0.1 
TPM averaged 41.3% precision and 5.1% recall (Fig. 2A). 
Recall in genes with less than 0.1 TPM was lower than 
that in non-exonic regions, likely due to RNA read align-
ments overlapping unannotated intronic or intergenic 
features. Indel calling accuracy demonstrated a similar 
dependency on expression levels (Fig. 2B) but with over-
all reduced precision and recall.

We also investigated the effect of allele-specific expres-
sion (ASE) on RNA-seq variant calling. Affected RNA-
seq variants show a deviation from the expected 1:1 ratio 
of reference and alternate alleles, which results in missed 
variant calls (if the alternative allele is less expressed) or 
incorrect homozygous alternate genotyping (if the ref-
erence allele is more expressed). We observe both these 
effects after excluding monoallelic expression, causing 
heterozygous DNA-seq variants to be missed or geno-
typed as homozygous alternate (Fig. 2C). Between 56 and 
73% of ASE-variants were genotyped correctly, whereas 
extreme ASE cases (> 85% allelic imbalance) were pri-
marily responsible for erroneous calls.

There were 960k, 1,960k, and 1,520k variants called for 
testis, epididymis, and vas deferens RNA-seq, respec-
tively, which were not called by DNA-seq.  We also 
identified 150,011 (577,839) RNA-seq variants called 
uniformly across all three (two) tissues but not in the 
DNA-seq.  Given these variants occur in different, inde-
pendently sampled tissues, they potentially correspond to 
RNA editing or other RNA modification events that are 
not detectable from DNA-seq and thus appear as RNA-
DNA differences (RDDs) [40], rather than erroneous 
variant calls. Furthermore, approximately 98% of RDDs 
did not overlap variants from a larger panel of 501 ani-
mals of similar breeds [32], while only 8% of DNA-seq 
variants did not overlap, demonstrating the RDDs are 
not simply missed genomic variants. Indeed, genotyp-
ing errors attributable to ASE only explained approxi-
mately 6% of RDDs at heterozygous DNA-seq variants, 
and so are limited contributors to the overall observed 
error rate. The RDDs follow a highly biased distribution 
(Fig.  2D), suggesting a high prevalence of A-to-I edit-
ing (A→G & T→C) and to a lesser degree C-to-U edit-
ing (G→A & C→T), two commonly reported forms of 
post-transcriptional RNA modifications [41]. However, 
some of these RDDs have nearly a 100% conversion rate, 

Fig. 2 Variant precision and recall for SNPs (A) and indels (B) called from RNA-seq using DNA-seq variants as truth, stratified by non-exonic, noncoding 
exons, and different levels of coding exon expression. (C) Heterozygous variants misgenotyped as homozygous reference/missing or homozygous alter-
nate displayed strong allelic imbalance, where positive (negative) ASE indicates the reference allele was more (less) expressed. Outliers are not plotted. 
(D) Variant calls present in all three RNA sequencing sets but not DNA were highly biased towards known patterns of RNA editing, whereas variants found 
in both DNA and RNA sets displayed the expected Ti: Tv behaviour. (E) F1 score decreases slowly as coverage is downsampled from approximately 250 M 
reads to 100 M, 30 M, and 5 M reads. F1 score is averaged separately for WGS or more expressed genes (TPM ≥ 2) and less expressed genes (TPM < 2), 
noncoding exons (NCE), or intergenic/intronic (I/I)
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suggesting this may be caused by biological mechanisms 
other than RNA editing or technical artefacts.

Imputing the RNA-seq variants with an external ref-
erence panel containing 501 samples [39] resulted in an 
overall average improvement of 10% to F1, where the 
24% gain of recall was offset by a 17% drop in precision. 
Regions with little RNA-seq coverage, and thus sparse 
RNA-seq variants, had low imputation accuracy as there 
were insufficient markers to impute confidently (Supple-
mentary Fig.  4). However, even in regions with dense 
RNA-seq variants, we still observed missed or poorly 
imputed variants.

The 74 total RNA-seq samples have unusually high 
coverage. We downsampled the RNA-seq samples to 
approximately 100 M, 30 M, and 5 M reads, roughly cor-
responding to typical sequencing depths suggested for 
splicing phenotypes, expression phenotypes, and low-
pass analyses, and reperformed variant calling. The frac-
tion of autosomal sequence covered by at least two RNA 
reads decreased sublinearly (Supplementary Fig. 2), sug-
gesting coverage is entirely lost in lowly expressed genes 
but highly expressed genes are still sufficiently covered 
even at 5 M reads. Similarly, roughly 65%, 54%, and 23% 
of the autosomal sequence was within 1 Kb of an RNA 
variant at 100 M, 30 M, and 5 M reads (Supplementary 
Fig.  2). The precision of called variants decreased more 
quickly in non-exonic or lowly expressed regions, but the 
precision of variants called within moderately to highly 
expressed exons was minimally affected down to 30  M 
reads and only noticeably dropped at 5  M reads. Recall 
decreased slightly more rapidly than precision as cover-
age was reduced, but 30 M RNA reads were still enough 
to capture over 70% of DNA-seq variants in moderately 
to highly expressed exons. We also downsampled the 
DNA-seq samples to 100 M and 30 M reads, correspond-
ing to genome-wide coverages of 5.3- and 1.6-fold. SNP 
precision and recall were slightly higher for DNA-seq at 
100  M reads compared to the RNA-seq (Fig.  2e). How-
ever, at 30  M reads, the RNA-seq outperformed DNA-
seq for both SNP precision and recall, although 1.6-fold 
DNA-seq is far below a typical variant calling depth and 
requires processing with low pass imputation approaches 
to achieve sufficiently accurate genotypes [32].

eQTL mapping with DNA and RNA variants
We next investigated if the quantity and quality of vari-
ants called directly from RNA-seq is sufficient to identify 
expression QTL (eQTL). We conducted eQTL mapping 
using only the RNA-seq to both genotype genomic vari-
ants and estimate gene expression. We then com-
pared against a “truth set” which used the conventional 
approach of calling genomic variants from DNA-seq 
and estimating gene expression with RNA-seq.  We ran 
both permutation and conditional passes to identify 

independent eQTL, adjusting for hidden and known 
covariates. We assessed significance for 20,620, 21,271, 
and 20,097 genes expressed in testis, epididymis, and 
vas deferens, respectively. The RNA-only approach was 
able to identify 78.9%, 77.6%, and 73.6% of genes with at 
least one independent-acting eQTL (eGene), respectively, 
compared to the DNA + RNA truth approach (Fig. 3A).

Many of the eGenes identified exclusively in either 
DNA- or RNA-seq variant mapping were of lower signifi-
cance and close to the discovery threshold, with the other 
variant set (RNA- or DNA-seq respectively) typically 
within an order of magnitude of the significance thresh-
old (Fig. 3B). Only 10 and 15 unique eGenes with p-val-
ues below 1 × 10− 10 were found in DNA- and RNA-only 
association mappings, respectively. Mutual eGenes found 
in both DNA and RNA sets were substantially closer to 
the transcription start site on average (Fig. 3C), as well as 
more significant on average compared to DNA- or RNA-
only eGenes. RNA-only eGenes had substantially larger 
and more variable effect sizes compared to DNA-only or 
RNA-DNA overlapping eGenes (Supplementary Fig. 5).

For RNA-DNA overlapping eGenes, we found moder-
ate-to-strong correlation (Spearman ρ2 of 0.56–0.66) of 
the most significant p-value for each eGene when using 
DNA- or RNA-seq variants (Fig.  3D-F). However, only 
approximately 9% of the RNA-DNA overlapping eGenes 
shared the same lead candidate variant, suggesting that 
while the significances were comparable, we rarely could 
recover the DNA-seq top eQTL using RNA-seq vari-
ants. The DNA-seq variants also had slightly more inde-
pendent signal compared to using RNA-seq variants, 
although the effect was minor (1.13 versus 1.09 for testis, 
1.07 versus 1.06 for vas deferens, and 1.03 versus 1.03 for 
epididymis).

We also conducted association mapping with the RNA-
seq downsampled to 100 M, 30 M, and 5 M reads, using 
the reduced coverage for both the RNA-seq variants 
and molecular phenotypes. Due to the decrease in reads 
used for determining gene expression, fewer genes were 
expressed above filtering thresholds (Supplementary 
Table 2), and so fewer eQTL were identified even when 
using the full coverage DNA-seq variants. At 100  M 
RNA reads, there was minimal loss (1%) of QTL detec-
tion compared to using DNA-seq variants (Supplemen-
tary Fig. 6), and a minor loss (5%) of detection at 30 M 
RNA reads. Due to the substantial drop in RNA-seq vari-
ants called with 5 M reads, there was a larger loss (20%) 
of QTL detection at this coverage relative to using the 
DNA-seq variants.

RNA DNA differences in eQTLs
We further examined several compelling eGenes identi-
fied using only DNA- or RNA-seq variants, which typi-
cally had different distributions of RNA-seq variants 
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and imputation accuracies compared eGenes found 
with both sets of variants (e.g., ENSBTAG00000000261; 
Fig. 4A, B). ENSBTAG00000000597 was a strongly asso-
ciated eGene in epididymis when using DNA-seq vari-
ants (p = 5.3 × 10− 14), but not significant with RNA-seq 
variants (p = 1.4 × 10− 4). The same top SNP variant was 
called in both DNA and RNA variant sets (Fig.  4C, D), 
but was poorly genotyped in epididymis RNA (allele 
frequency of 0.26 in DNA-seq and 0.07 in RNA-seq) 

resulting from a low ENSBTAG00000000597 transcript 
abundance (average TPM 0.23). The poor genotyping 
in epididymis RNA-seq was also evident from the sig-
nificant deviation from Hardy-Weinberg proportions 
(p = 9.2 × 10− 7) while the DNA-seq variants followed 
Hardy-Weinberg proportions (p = 0.86). Consequently, 
no significant association between RNA-called variants 
and ENSBTAG00000000597 expression was found. Simi-
larly, an eQTL for ENSBTAG00000033056 was missed in 

Fig. 4 (A, C, E) Zoom plots for an eGene identified with both variant sets, DNA-seq variants only, and RNA-seq variants only respectively. The grey bar 
between the DNA and RNA associations represents the gene, while the marker colour represents imputation accuracy (DR2). The marker style indicates if 
the variant is present in both DNA-seq and RNA-seq variants or if it is an RDD. (B, D, F) TPM plots for their respective three genes. The same lead variant is 
used for as the genotype in B and D for testis and epididymis respectively, while the lead variant for C is an RDD and can only be examined for RNA-seq 
but is present in all three tissues

 

Fig. 3 (A) eGenes found in both DNA and RNA variant sets or eGenes only found with RNA or DNA variants across three tissues. (B) The majority of 
eGenes found in only DNA or RNA mapping were typically close to the significance thresholds, with very few highly significant eGenes found in only one 
set. (C) eGenes found mutually (m) in both DNA and RNA sets tended to have the most significant variants closer to the TSS compared to eGenes found 
exclusively (e) in only one set. (D-F) P-values for the most significant variant was strongly correlated across all three tissues between the DNA and RNA 
variant sets for eGenes found in both
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testis, with only 5 low quality variants within a 5 Kb win-
dow of the lead DNA SNP. In general, almost all DNA-
only eQTL were due to the lack of well genotyped RNA 
variants near the lead DNA SNP. We did not observe any 
DNA-only QTL where the missing RNA variants could 
be explained by ASE.

Unexpectedly, some eGenes are only identified when 
mapping RNA-seq variants and not with DNA-seq vari-
ants. For example, ENSBTAG00000020116 was sig-
nificant in epididymis tissue, but primarily because the 
significance threshold was moderately lower for RNA-
seq variants. Fewer RNA-seq variants within the cis-win-
dow led to a significance threshold of 3.5 × 10− 6 (versus 
a DNA threshold of 7.9 × 10− 7), and the top RNA variant 
had p = 2.2 × 10− 6 (versus DNA top variant p = 5.0 × 10− 6). 
These marginal examples could be removed by setting a 
uniform stricter significance threshold, especially in the 
case of sparse variants.

Out of the 15 highly significant (p < 1 × 10− 10) RNA-seq 
only eGenes, only nine are annotated as protein cod-
ing, while the other six are e.g., pseudogenes or lncRNA 
(Supplementary Table 3). Genome-wide, protein cod-
ing genes make up 80% of the annotation, compared 
to only 60% of these RNA-only eGenes. Most of these 
highly significant RNA-seq only eGenes appear in all 
three examined tissues, suggesting this is not a tissue-
specific observation but potentially something affect-
ing RNA analyses more generally. Almost all these genes 
have multiple paralogues (Supplementary Table 3), which 
can lead to low-quality or ambiguous RNA alignments 
and thus degraded variant calling. However, we find, for 
example in ENSBTAG00000053969 (Fig. 4E, F) and ENS-
BTAG00000027962 (Supplementary Fig.  7), that RNA-
seq coverage can be largely missing or highly expressed 
in a portion of the annotated exon region (Supplemen-
tary Fig.  8). The top associated variants appear within 
these differentially covered regions, and some homozy-
gous reference samples have sufficient coverage to be dis-
tinguished from a missing genotype. The lack of variants 
in the DNA-seq and the distinct RNA coverage dropout 
suggest these eQTL cannot simply be explained by para-
logue mismapping for the RNA reads, although it is not 
clear if there is an alternative artefactual explanation or a 
mechanism beyond the genome (e.g., RNA editing/modi-
fication, epigenome, etc.)

Discussion
RNA sequencing is critical to examine mechanisms 
underpinning variation in gene expression or splicing, 
but its utility for variant calling had not been character-
ised extensively. We find deep total RNA sequencing with 
~ 250  M reads covers one third of the genome, leaving 
many (primarily intergenic) regions inaccessible. From 74 
cattle transcriptomes, we call 7-10 M variants per tissue, 

approximately only 40% of that from matched DNA 
sequencing, but still two orders of magnitude more than 
previously reported for cattle RNA variant calling from 
primarily mRNA [14]. Particularly in coding regions that 
are highly expressed (TPM ≥ 10), we recover over 92% 
of DNA-seq variants with precision of approximately 
98%. Precision and recall are reduced at more typical 
RNA coverage levels, with 76% precision and 26% recall 
genome-wide at 30 M reads. Testis, epididymis, and vas 
deferens express substantially more genes at detectable 
levels compared to other tissues [4, 42], meaning that our 
recall values likely represent an upper bound and might 
be lower for most other tissues. RNA-specific effects, like 
allele-specific expression or RNA editing, are detrimental 
to variant calling accuracy but only affect a limited num-
ber of sites.

Despite total RNA-seq variant calling only capturing 
approximately 40% of variant sites compared to DNA-seq 
variant calling, it identifies roughly 75% of eGenes, and 
so is nearly 2-fold enriched for eQTL. This trend holds 
when downsampling to 30 M reads before sharply drop-
ping at 5 M reads. Interestingly, when downsampling to 
30 M reads, we find only 10–15% fewer expressed genes 
but roughly 50% fewer significant eGenes (Supplemen-
tary Table 2), suggesting that deep sequencing is required 
for comprehensively mapping eQTL [4]. The majority of 
eGenes identified by DNA-seq but missed by RNA-seq 
variants are due to eQTL being extremely distant to the 
TSS (> 300 Kb) or, to a lesser degree, located within lowly 
expressed regions leading to poor RNA-seq variant geno-
typing accuracy. On the other hand, highly significant 
eGenes unique to RNA-seq variants are mostly associ-
ated with RDDs (12 out of 15) with few variants in linkage 
disequilibrium which would likely fail manual curation. 
However, the leading RNA-only eQTL variants have high 
variant qualities and imputation scores (Supplementary 
Table 4), comparable to those in agreement with DNA-
seq variant calls, and so cannot be easily filtered a priori. 
Furthermore, the low agreement we observed for the top 
associated variants between DNA-seq and RNA-seq vari-
ants would weaken downstream analyses like colocaliza-
tion of putative causal variants [4] if depending only on 
RNA-seq variants.

Livestock GTEx consortia rely on RNA-seq for vari-
ant calling (e.g., cattle [15], chicken [17], and pig [18]) 
to enable molecular QTL mapping as most RNA-seq 
samples don’t have matched DNA-based genotypes or 
sequences. This is different to the equivalent human 
GTEx [19] which uses transcriptomes that have matched 
DNA whole-genome sequencing. We have compre-
hensively shown that RNA-seq variant calling accu-
racy is highly dependent on gene expression levels 
(~ 98% precision for TPM ≥ 10 versus ~ 75% precision 
for 2 > TPM ≥ 0.1) and hundreds of thousands of RDDs 
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exist in each tissue examined. While these livestock 
GTExs impute RNA-seq variants into large reference 
panels, likely avoiding the false positive RNA-seq variant 
eGenes, our results demonstrate that caution is needed 
when using RNA-seq variants as a replacement for DNA-
seq or genotyping array variants. This is especially true 
for regions with sparse RNA-seq variants, which remain 
largely inaccessible even when imputing with large refer-
ence panels. In addition, RDDs can potentially disrupt 
the haplotype consistency necessary for accurate imputa-
tion with large reference panels, leading to worse preci-
sion compared to just the RNA-seq variants themselves.

Considerable uncertainty remains over the origins of 
RDDs, and whether they are technical artefacts or biolog-
ical modifications [43–45]. Over 150k variants are called 
in all three RNA-seq tissues but not in DNA-seq, many of 
which had high allele frequencies and allele depth, dem-
onstrating that RDDs are pervasive regardless of their 
true origin, and cannot be simply addressed by conser-
vative filtering. Analogous to improvements in align-
ment uniqueness for long read over short read DNA [46], 
aligning to genes with highly similar paralogues likely will 
likely benefit from long read RNA approaches and dis-
entangle potential causes like paralogue or pseudogene 
alignments [47] for some RDDs.

Conclusions
With recent improvements to RNA variant calling algo-
rithms, it is possible to call millions of variants of total 
RNA sequencing. However, we find substantially different 
genotyping accuracy between highly and lowly expressed 
genes, as well as hundreds of thousands of high-quality 
RNA variants not supported by matched DNA sequenc-
ing. As such, using RNA sequencing to predict genomic 
genotypes may be justifiable for downstream applica-
tions, but may introduce more false positives than using 
DNA sequencing or genotyping arrays.
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