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Abstract

Background In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence
of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-
trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse
panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial
inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a
total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS).

Results GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined.
Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated
with genes: bzip23, NAGS1, CDPK?, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their
roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating
phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential
candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens.
Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating
the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico

studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and
demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis
revealed the association of 13 common significant haplotypes at Bonferroni < 0.05. The phenotypic variance explained
by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple
resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to
consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE).

Conclusion The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of
allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
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Introduction

Maize stands as a cornerstone among global cereal crops,
holding particular significance in regions like Sub-Saha-
ran Africa, Latin America, and key Asian nations, con-
tributing over 20% of food calories [1]. Notably, Asia,
boasting eight major maize-producing countries, plays
a pivotal role, producing 28% of the world’s maize [2].
However, maize cultivation in the Asian tropics faces
formidable challenges, particularly during the monsoon
season, where diseases such as Maydis Leaf Blight (MLB)
pose a substantial threat. MLB, caused by the necrotro-
phic fungus Bipolaris maydis also known as Drechslera
maydis, has emerged as a major economic concern,
inducing yield losses of up to 30% in warm and humid
conditions [3]. The historical significance of MLB, nota-
bly its devastating outbreak in the USA in 1970, under-
scores its global impact [4].

The fungus responsible for MLB exhibits three physi-
ological races, with race ‘O’ being cosmopolitan and
highly aggressive. Race ‘O’ and race “IT” produce phyto-
toxins, Hm-O and Hm-T toxins, respectively, leading to
varying degrees of virulence [5]. MLB, characterized by
spindle-shaped lesions on leaves, adversely affects photo-
synthetic activity, resulting in significant yield reduction
[6]. Resistance to MLB is complex, involving quantitative
inheritance with additive and recessive gene actions [7].
Despite its economic impact, our understanding of the
resistance mechanisms against necrotrophic pathogens,
especially MLB, lags behind [8].

This study addresses the critical gap in our knowledge
by employing advanced genomics tools, particularly
genome wide association studies (GWAS), to unravel
the genetic basis of MLB resistance in maize [9]. QTL
mapping using Traditional biparental mapping popula-
tions has consistently proven to be a powerful approach
for identifying loci that co-segregate with the trait of
interest within the research population and is known to
detect rare variant along with the identification of source
of favourable QTL alleles [10] However, It can only test
the diversity of segregating alleles between the parental
strains, and the mapping resolution depends on the num-
ber of recombination events that occur during popula-
tion development, as discussed by Mitchell-Olds et al.
[11]. Additionally, markers are often sparse due to lim-
ited recombination events. Indeed, GWAS have become
a powerful tool for understanding the genetic basis of
various traits and identifying causative loci and genes.
GWAS, investigates the associations between genetic
markers, and phenotypes of interest across a diverse set
of unrelated individuals or lines (unrelated individuals
means distantly related and heterogeneous individuals)
of a diverse collection [12]. In association mapping pan-
els, historical recombinations that have accumulated over
generations, along with long-standing LD established
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over dozens or even hundreds of generations, persist
among the representative accessions. This persistence
contributes to improved resolution in association analy-
sis [13] facilitated by the rapid decay of LD.

To date, 140 QTLs have been reported against the
disease, with chromosome 3 harbouring the maximum
number of QTLs (at 25 loci). Bin 3.04 was reported in
many studies [14—19]; as possessing a major QTL and
was validated in different genetic backgrounds. In addi-
tion, rhml, a recessive gene with a large effect, was
reported in bin 6.01 for race O of C. heterostrophus (Bipo-
laris maydis) [17]. Further investigation fine-mapped this
gene to 8.56 kb region, within which resides a sole poten-
tial candidate gene named lysine histidine transporter 1
(LHT1I), as revealed by Zhao et al. [20]. Additionally, Zea
maize ascorbate peroxidase gene (ZMAPx1) has recently
been identified to promote MLB resistance [21]. Another
gene ZmCCoAOMT2, was reported to play a crucial role
in imparting quantitative resistance to MLB [22] in mul-
tiple disease resistance QTL gMdr9.02.

Certain GWAS have been conducted for MLB, provid-
ing valuable insights into the genetic basis of resistance
[23 ,24, 25] in American, and Chinese environments.
However, uptill now association mapping studies are
not conducted in the subtropics of India. The CIMMYT
Asia Association Mapping (CAAM) panel, is the collec-
tion of diverse set of lines, of diverse origin, from tropics/
sub-tropics of Asia having geographical adaptation to our
region and represent ample of genetic diversity for vari-
ous traits including MLB. Well adapted resistant variants
will not only add to allelic diversity but can also serve as
potential donors to breed for MLB tolerant cultivars, a
disease of economic importance in India.

Haplotype is defined as a set of nearby genomic struc-
tural variations, such as polymorphic SNPs, with a strong
linkage disequilibrium (LD) between them. The use of
haplotypes are known to overcome the biallelic limitation
of SNPs, enhance the efficiency of identifying QTLs, and
offer insights into genetic determinants that individual or
independent marker approaches may miss [26]. There-
fore, this research aims to contribute valuable insights
into the genomic landscape of MLB resistance, providing
a foundation for marker-assisted breeding programs with
the following objectives: evaluating the diverse array of
the association mapping panel (AMP) for their responses
to MLB through multilocational artificial screening,
identify marker -trait associations and candidate genes
controlling quantitatively inherited MLB resistance
through genomic wide association studies and perform
haplotype analysis Furthermore, the in-depth in silico
characterization of identified candidate genes to enrich
our comprehension of the defence mechanisms deployed
against MLB [27]. This study not only addresses a critical
agricultural challenge but also lays the groundwork for
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harnessing genomic tools for sustainable maize produc-
tion by developing resilient maize varieties [28]. in vul-
nerable regions.

Materials and methods

Planting material

A subset of CAAM panel, consisting of 359 tropical/
subtropical inbred lines (Table S1) was acquired from
CIMMYT, Hyderabad. The panel underwent rigorous
evaluation through artificial inoculation to assess resis-
tance against MLB. This panel comprises maize inbred
lines derived from various subtropical and tropical pools
within CIMMYT populations from diverse maize pro-
grams. Specifically tailored for Asian environments, the
panel not only showcases tolerance to abiotic stresses like
drought, high temperature, and excess moisture but also
exhibits resistance to biotic stresses such as downy mil-
dew, underscoring its diversity and suitability for map-
ping relevant traits in the region [29].

Phenotypic evaluation of the mapping panel

The CAAM panel underwent evaluation at two locations
with high MLB incidence in the Punjab State of India,
characterized by a humid subtropical climate. These
locations were Punjab Agricultural University (PAU) in
Ludhiana and the Regional Research Station, PAU, in
Gurdaspur, during the Kharif seasons of 2020 (Y1) and
2021 (Y2). These two locations represent distinct agro-
climatic zones within Punjab State: Ludhiana falls within
the central plain zone (30.9°N;75.85°E; 733 mm/year rain-
fall), while Gurdaspur is situated in the sub-mountain
undulated zone (32.04°N; 75.40°E; 1167.8 mm/year rain-
fall). The experimental design employed an alpha lattice
pattern with two replications in each environment. Each
entry was planted in paired rows maintaining a spacing
of 60 cm between rows and 20 cm between individual
plants.

Preparation of mass culture and inoculation procedure

The most virulent isolate of Drechslera maydis (Dml)
was selected for mass culture. Mass multiplication of
fungal culture was performed on sterile sorghum grains
(Sorghum bicolor L.) following the methods of Lim [30].
Inoculated flasks containing sorghum grains were incu-
bated at 25+2 °C for 15 days until the grains were uni-
formly covered with fungal growth. The impregnated
sorghum grains were dried by spreading them on a clean
paper sheet in the shade at room temperature. After dry-
ing, fine powder of these grains were prepared with the
help of a mixer grinder. Whorl inoculations were per-
formed by placing 2gm of powdered grains compris-
ing of fungal isolate in the whorls of each plant at 35-40
days after sowing (DAS). Adequate moisture for a lon-
ger period to permit spore germination was obtained by
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spraying 10—12 ml of water in the whorls using a sprayer.
To avoid the maximum day temperature (to avoid mortal-
ity by direct exposure to sun sight) during the incubation
period, inoculation was performed in the late afternoon
(4-6 p.m.)

Data recording

The disease reaction data were recorded on 10 plants
from plot of two rows. randomly avoiding border plants
following a scale of 1-9 of Hooda et al. [31] at two inter-
vals, viz., 45 days after inoculation (DAI) and 55 DAL
Phenotypes with a rating of 1 or 3 had yellow-brown
chlorotic lesion that do not intersect with each other,
whereas phenotypes with ratings of 6-9 had large elon-
gated necrotic lesions.

Statistical analysis of phenotypic data

All phenotypic data analyses were carried out in META-
R (Multienvironment Trial Analysis with R for Win-
dows) version 6.0 developed by CIMMYT ([32]. BLUPs
were calculated across the individual environments (E1,
E2, E3, and E4) and for the data from both locations, i.e.,
Epl (Ludhiana) and Ep2 (Gurdaspur). All three datasets
were used for GWAS analysis. The linear models were
implemented from the package Ime4 of R in META-R to
calculate the BLUPs and variance components. The fol-
lowing linear model was used for analyzing the individual
environments:

Yijk = i + Repi + Blockj (Repi) + Genk + ijk

where Yijk is the MLB severity, representing phenotypic
performance of the kth genotype at the jth block in the
ith replication, y is the overall mean effect, Rep; is the
effect of the ith replicate, BlockRep,) is the effect of the
jth incomplete block within the ith replicate, Geny is the
effect of the kth genotype and ¢ is the effect of the error
associated with the ith replication, jth incomplete block,
and kth genotype, which is assumed to be normal with
mean zero and variance. For a combined analysis across
years, the following linear model was used:

Yijkl =p + Env; + Rep; (Env;) + Blocky, (Env;Rep;)
+ Geng + Env; x Geng + €

Env;is the effect of the ith environment and Env;x Gen-
jAs the environment X genotype (G xE) interaction, In
both models, all effects, except the overall mean, are
declared to be random and normal with a mean of zero
and effect-specific variances. The random assumption for
the genotype effects allowed us to calculate BLUPs and
broad-sense heritability.
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H? =0%g/ (o°g + o°ge/k + o’e/rk)

where o’g, o°ge and o”e are the number of genotypes,
genotype-environment interactions and error variance
components, respectively; and r and k are the number
of replications within each environment and number of
environments, respectively.

DNA isolation and genotyping

Genotyping was conducted on 336 lines using the
genotyping by sequencing (GBS) platform (GBSv2.7)
[33] at the Institute of Genomic Diversity, Cornell Uni-
versity, Ithaca, USA. The genomic DNA underwent
digestion with the Apekl restriction enzyme, and GBS
libraries were constructed in a 96-plex format before
being sequenced on the Illumina HiSeq. 2000 [34]. SNP
calling was executed using the TASSEL GBS pipeline
[35], with B73 serving as the reference genome. The FIL-
LIN method in TASSEL 5.0 was employed to partially
impute missing genotypic data. The partially imputed
dataset comprised 955,690 SNPs distributed across all
chromosomes. For our GWAS study, filtering criteria of a
call rate>0.9, Minor Allele Frequency (MAF)>0.05, and
heterozygosity <30% were applied, resulting in a refined
dataset of 128,490 SNPs. Principal Component Analysis
(PCA), kinship matrix, and linkage disequilibrium (LD)
were calculated using this curated set of SNPs.

Principal component (PC) analysis, kinship and LD analysis
PCA [36], kinship, and LD analysis was conducted in
Genomic Association and Prediction Integrated Tool
version 3 (GAPIT) [37]. A three-dimensional plot of
principal components was drawn to visualize the possi-
ble population stratification among the samples. A scree
plot was generated to determine the number of princi-
pal components to be included in the GWAS. The kin-
ship matrix was generated with the Van-raden algorithm
and was visualized as a heatmap. The LD was estimated
by using all the markers and their neighbouring mark-
ers as pairwise r” values (the squared correlation among
alleles at two SNPs). The LD decay was plotted as r* val-
ues between SNPs against the physical distances (kb)
between SNPs at r*=0.1.

Genome-Wide Association Mapping: GWAS was
performed on the BLUP values obtained for the final dis-
ease score across environments (E1, E2, E3, and E4) and
on the pooled dataset of two years at location 1 (Ludhi-
ana) and location 2 (Gurdaspur) (Epl and Ep2 respec-
tively) on 336 inbred lines (and as supplementary on
individual environments) . GBS was used for genotyping
to generate 128,490 SNPs and used for GWAS mapping
The SNPs were distributed across all ten maize chromo-
somes. A density plot was constructed for chromosome
wise SNPs within 1 Mb window (Fig. 1a, b).
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GWAS was performed using the Bayesian-information
and linkage disequilibrium iteratively nested keyway
(BLINK) package as implemented in GAPIT version 3 in
the R version 4.2.1 software environment [38, 39]. BLINK
approach employs a multi-locus model for the evaluation
of markers distributed across the genome and conducts
two fixed-effect models iteratively. One model tests one
marker at a time with multiple associated markers as
fixed effects to account for population structure, and the
other model tests the covariate markers to control spuri-
ous associations [40]. The GWAS results were visualized
by plotting -log; P values as Manhattan plots. The values
are plotted against the chromosomal position of the SNPs
in GAPIT V.3. The quantile—quantile plots (Q-Q plots)
in BLINK represented observed versus expected nega-
tive log,,P value that deciphered the severity of inflation
test statistics. The set Bonferroni-corrected threshold at
P<0.1 was very stringent; therefore, the suggestive or
exploratory P value threshold to control the genome-
wide type 1 error rate was estimated as <9.0x10™° for
identifying the significant SNPs for MLB from the set of
128,490 markers and considered as the significance cut-
off for the association [41, 42].The final number of signifi-
cant SNPs/MTAs was chosen after accounting for SNPs
which were consistent or common across Epl, Ep2 and
combined environmentsThe allelic effects were depicted
for four associated markers/SNP. It was determined
by using disease score data of 336 inbred lines for both
alleles (major and minor) of the SNP. The effect was rep-
resented as difference between the groups by box plots
using Kruskal-Wallis test. The test statistic H (chi®) is
computed as follows:

12 T2

where 7, is the number of elements in group g, 7 is the
total number of elements, and 7, is the sum of ranks in
group g. The test was done to see whether the effect of
alleles differ significantly in resistant and susceptible lines
for the disease score. The analysis was performed in Past

V.4.13 [43] and DATA Table (2023) [44].

Haplotype regression analysis

Haplotype regression analysis was executed in SNP &
Variation Suite (SVS) Version 8.6.0 (SVS, Golden Helix,
Inc., Bozeman, MT, www.Goldenhelix.com). SNPs within
the bottom 0.1 percentile of the distribution in GWAS
for all three datasets were selected for haplotype detec-
tion and trait regression. Haplotype frequency estimation
was done using the Expectation Maximisation (EM) algo-
rithm with 50 EM iterations [45]. EM is an iterative opti-
misation method that uses machine learning algorthims
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Fig. 1 (a) Density plot representing chromosome wise SNPs within 1 Mb window. The horizontal axis of the density plot shows the chromosome length
(Mb), and the colours reflect the SNP density distribution, with white indicating the lowest number of SNPs and strong red representing a greater number
or density of SNPs. (b) Distribution of markers on all 10 chromosomes of maize

to find maximum likelihood and is known to handle
missing data. EM convergence tolerance of 0.0001 and
a frequency threshold of 0.01 was used. To minimise the
historical recombination, haplotype blocks were detected
based on the block defining algorithm [46] because the
regions with little evidence of recombination among
common alleles is considered for assembling the diversity
and forms a biological basis of objectively defining haplo-
type blocks. Regression analysis was carried out with the
haplotypes detected, based on step-wise regression of the
MLB BLUP estimates of all three datasets with forward
elimination at Bonferroni value cut off <0.05. Haplotype
regression analysis uses the expected number of copies
of the haplotypes considering genotype as explanatory

variable. It has high computational efficiency then Bayes-
ian methods.

Candidate gene mining, in silico expression analysis and
interaction predictions

The SNP markers significantly associated with the trait
were searched in MaizeGDB (http://www.maizegdb.
org) against the reference genome B73_RefGen V2 to
find the physical position of the identified markers and
flanking genes. A gene with a marker located within it
or the closest high-confidence gene within 0.9 kb flank-
ing of the SNP’s physical position was considered as the
associated gene to that marker. Information about these
genes was gathered from NCBI (https://www.ncbi.nlm.
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nih.gov/entrez) and the MaizeGDB (www.maizegdb.org)
database. The functions of the predicted candidate genes
were reviewed to establish their significance in enhancing
resistance. Details on the gene families and Gene Ontol-
ogy (GO) terms of the candidate genes were obtained
from PLAZA (version 5). In silico expression analysis of
the genes was carried out using publicly available expres-
sion data, presented as fragments per kilobase of tran-
script per million mapped reads (FPKM), sourced from
the q-Teller Maize GDB database (http://www.maizegdb.
org). This data, compiled by Walley et al. [47], originated
from a comprehensive gene expression atlas constructed
through mRNA sequencing (mRNA-seq) involving three
biological replicates from 23 distinct tissues. Our analy-
sis specifically considered leaf tissue from various zones
(zone 1: symmetrical, leaf zone 2: stomatal, leaf zone 3:
growth, and mature leaf), in addition to the vegetative
meristem (16—18 days). The gene expression patterns
were visualized as a heatmap using TBtools software
[48], following the log, transformation of FPKM values
[49]. To detect interactions and coexpression among the
candidate genes, GeneMANIA (https://genemania.org/)
was employed. Query list of candidate genes was used
as input. By default geneMania prediction server utilizes
adaptive network weighted method to dertermine the
network. GeneMania extended the list of query genes
with the functionaly similar genes. The default force
directed COSE network was formed based on weighted
sum of individual data sources. The prediction server uti-
lised databases; Gene expression omnibus (GEO) along
with Interpro for co-expression data and BioGRID for
physical interaction data [50, 51] Results.

Phenotypic evaluation of CAAM panel for maydis leaf
blight

The panel displayed significant variations (P value <0.001)
in disease severity on a disease scale ranging from 1 to
9. The disease pressure was high for MLB at both loca-
tions, as observed by the disease severity score of 27 dur-
ing 2020 and 2021 under artificial epiphytotic conditions.
The environment-wise average disease score (DS) ranged
from 2.11 to 7.93 (E1), 3.23-7.08 (E2), 2.94-8.9 (E3),
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and 2.54-8.07 (E4), whereas the DS ranged from 3.15 to
7.93 across the environments (based on a dataset of four
environments). The DS ranged from 2.89 to 7.06 at Epl
(based on two datasets at location 1) and 3.29-7.34 at
Ep2 (based on two datasets at location 2). The estimate
of broad sense heritability across the environments (0.79)
(E1, E2, E3, E4) as well as for pooled within locations;
Ep1 (0.61) and Ep2 (0.76) was moderate to high (Table 1).
The environment-wise frequency distribution of panel
belonging to four classes of resistance is represented by
bar plots (Fig. 2). Maximum number of lines were fall-
ing in the class of moderate resistance (DS scale 4-5) and
moderate susceptibility (DS scale 6-7) in each of four
environments.

Population structure, kinship and linkage disequilibrium
(LD) analysis

Principal component analysis and kinship analysis of the
association panel were conducted using a filtered set of
SNPs (128,490). The first three principal components
(PCs) encapsulated most of the genetic variation, as illus-
trated in Fig. 3a. The pairwise relative kinship matrix of
the 336 genotypes revealed a low levels of genetic relat-
edness within the panel, (Fig. 3b). Genome wide LD plot
displayed the LD decay of 0.9 at r*=0.1 (Fig. 3c).

GWAS for MLB resistance

GWAS was performed with a subset of 128,490 SNPs
following BLINK model after a rigorous quality check.
This model corrects both kinship (K) and population
structure (Q), as depicted by the least genomic inflation
deciphered from the Q-Q plot (Fig. 4a, b, ). The dis-
tribution of SNPs across chromosomes showed greater
density at the ends and lower density at the centro-
meric regions, with chromosome 1 having the highest
number of SNPs (20302) and chromosome 10 having
the lowest number of SNPs (8736). The P value thresh-
old was (<9.0x10°) for identifying the significant SNPs
for MLB In each dataset, Manhattan plots (Fig. 4d, e, f)
were generated to display the -log,;,P value of each SNP
from the association study. At P value<9.0x107° 13
SNPs were detected across environments (E1, E2, E3, and

Table 1 Variance components and descriptive statistics of CAAM panel for MLB disease score

Heritability (h?) Genotype variance Residual variance Mean Range LSD cv
Ludhiana (Ep1) 0.61 0.96*** 047 535 2.89-7.06 217 12.87
Gurdaspur (Ep2) 0.76 0.80%** 0.63 4.94 329-7.34 143 16.04
ACROSS 0.79 0.85*** 0.56 5.16 3.15-7.93 1.33 14.46
LDH 20 (E1) 093 1.29%** 0.20 5.04 2.11-7.93 0.87 891
GRD20 (E2 0.72 0.75%** 0.59 4.90 3.23-7.08 1.55 15.72
LDH21(E3) 0.87 2.54%%% 0.75 5.65 2.94-8.5 1.71 15.36
GRD21(E4) 0.78 1.23%** 0.69 4.98 2.54-8.07 1.65 16.62

**¥»<0.001, Ep1- pooled environment Ludhiana (Ldh); Ep2- pooled environment Gurdaspur (Grd), across-Combined over environments (E1: Ldh 2020, E2: Grd 2020,
E3:Ldh 2021, E4: Grd 2021), h’-broad sense heritability, LSD- Least square distance, cv- coefficient of variation
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Fig. 2 Frequency distribution of genotypes in different classes of resistance for MLB (1-3-resistant; 4-5-moderate resistant; 6-7-moderate susceptible;

8-9-susceptible)

E4), with P value ranging from 1.6x107° to 8.3x107°
and an effect size ranging from —0.46 to 0.43. Six SNPs
were detected in the pooled environment Ep1, for which
the P value ranged from 9.1x107° to 7.1x10™ and the
effect size ranged from —0.34 to 0.33. Fifteen SNPs were
detected in the pooled environment Ep2, for which the P
value ranged from 3.8x107° to 8.4x 10, and the effect
size ranged from —0.33 to 0.44. Six SNPs overlapped
between across environment analysis and location-
wise analysis, whereas only one SNP (S8_155841067)
was found to overlap between Epl and Ep2. Five
SNPs (S8_152460815, S5_140936401, S3_156792785,
S$8_155841067, and S8_162518701) overlapped in both
Ep2 and across environments analysis (E, E2, E3, and
E4), and three SNPs (S6_130006038, S8_155841067, and
S1_232344813) overlapped among Epl and across envi-
ronments analysis (E, E2, E3, and E4). (Table 2). Of the
34 identified SNPs in the present study, 26 SNPs were

considered significant after accounting for common
SNPs according to the cumulative analysis of the datas-
ets. SNP S8_155841067 showed the strongest association
with the lowest P value and was reportedly most stable
SNP across (combined), pooled, and individual envi-
ronments (E2 and E3) as well (Table S2 a, b, c¢). Chro-
mosome 8 harboured the highest number of significant
SNPs (six SNPs) in two different chromosomal bins:
8.06 (5 SNPs) and 8.01 (1 SNP). Seven SNPs that exhib-
ited a significant association with MLB were reported
from novel chromosomal bins, viz., 9.01 (S9_8243435),
7.04 (S7_161657633), 9.06 (S9_141454813), 6.05
(56_141510514), 5.01 (S5_3412526), 1.04 (S1_52252512),
and 4.06 (S4_166482019). The allelic effects of the four
significant (Fig. 5) and common SNPs reported from
combined environments and pooled environments (Ep1,
Ep2) were examined using the Kruskal-Wallis test. These
SNPs were harboured in the chromosomal bins 8.06 (3)
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Fig. 3 Principal component analysis (PCA) and Kinship matrix results (a) Three-dimensional plot of the first three principal components, (b) Kinship heat
map depicting genetic distance between 336 inbreds. The colour histogram indicates the distribution of coefficients of co-ancestry, with white to yellow
hue for our inbred lines representing lower genetic relatedness as per the colour key, whereas as stronger red represents higher relatedness, (c) Linkage

disequilibrium (LD) decay plot in CAAM panel based on 128,490 SNPs

and 6.01 (1), which were reported to be enriched with
QTLs for resistance against MLB and other diseases. The
chi-square values and probability (P) values indicated
presence of significant phenotypic differences in plant
MLB score for allelic effects of all four SNPs (Table 3).
Box and whisker plots were employed to illustrate the
significant allelic effects of the SNPs for MLB resistance
(Fig. 5). For all four SNPs, homozygous combination of
favourable alleles were reported in resistant lines with
lowest disease score (<3.0), e.g. allele ‘CC’ (homozygous)
for SNP S8 155841067. In contrast, lines with the ‘“TT '
allele (homozygous) exhibited mean disease scores rang-
ing from 7.9 to 8.0, indicating their susceptibility to MLB.

Haplotype detection and regression analysis for the trait

A set of 188 SNPs in the bottom 0.1 percentile distribu-
tion in GWAS study of across, Epl and Ep2 were used for
haplotype detection. The analysis identified 75 haplotype
blocks across the 10 chromosomes. Haplotype Regres-
sion Analysis (HTR) was carried out with 75 haplotypes
on MLB BLUP estimates of three individual datasets
separately. For across environments 31 haplotype blocks
were identified at Bonferroni value<0.05 that explained

4.19-16.05% phenotypic variance. Twenty one significant
haplotype blocks were identified for Epl with explained
phenotypic variance of 3.45-10.56% and 36 haplotype
blocks detected were associated with MLB resistance
in Ep2 explaining phenotypic variance of 3.78-16.44%
(Table S1). Thirteen common significant (Bonferroni
value<0.05) haplotype blocks were identified in HTR
analysis of Epl and Ep2 environments.

These haplotype blocks which include 2-5 SNPs were
spread on seven chromosomes (1, 2, 3, 4, 8, 9 and 10 and
the proportion of variance explained by these common
blocks ranged from3.45-10.57% (Table 4). These com-
monly identified significant haplotype blocks were subse-
quently compared with the SNPs identified in GWAS and
candidate genes reported. Among them, one particular
haplotype block (Hap_8.3) was found to consist two SNPs
(S8_152715134, S8_152460815) identified in GWAS.

Functional annotation of the candidate genes

Twenty-five unique candidate genes were identified for
MLB resistance. These genes, were found to possess
functional domains associated with biotic stress toler-
ance. Three candidate gene models (3) were associated
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threshold for an exploratory P value

with SNP S8 155841067 (lowest P value) on chromo-
some 8 (bin 8.06), i.e,, B3 domain-containing protein
(gene harbouring the SNP), SPA1 protein (suppres-
sor of Phya-105 1), and RNA helicase (ATP-dependent
helicase rhp16) (genes flanking the physical distance of
0.9-1 kb from the position of SNP) Additional gene mod-
els reported from bin 8.06 included the ABC transporter
protein family member, AP-4 complex (subunit epsilon),
abi20-ABI3-VP1-transcription factor 20, and AP2/ERF
domain-containing protein. Moreover, one gene, PR5-
like receptor kinase, was identified in bin 8.01. These
genes may be functionally relevant for defending against

necrotrophic fungi. Genes with different DNA-binding
domains mediated by jasmonic acid (JA) signalling, lead-
ing to activation of defence, were also identified. For
example, the MYB DNA-binding domain superfamily
and Indole-3-pyruvate monooxygenase YUCCA1 were
found on chromosome 6 (6.01). The basic helix-loop-
helix (bHLH) DNA-binding superfamily protein-produc-
ing gene was found on chromosome 5 (5.04), the lipolytic
acyl hydrolase (LAH)/patatin protein producing gene was
reported on chromosome 1 (1.06), and the genes Wunl
and vg4-VQ motif transcription factor 4 were reported
in bins 6.05 and 1.04. Apart from the above genes, we
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Table 2 Significant SNPs for MLB resistance identified in CAAM panel in different environments

SNP © Chr Pos (B73V_2) P.value MAF Effect Allele
Across Environments (E1, E2, E3, E4) S8 155841067 chr8 155,841,067 16x107°8 0.08 0430147 /T
S$3_156792785 chr3 156,792,785 34x107° 0.10119 -0.46926 T/G
S$1_232344813 chrl 232,344,813 86x107° 0.214286 -0.33994 G/A
S8_152715134 chr8 152,715,134 1.0%x107° 0.16369 -0.35597 T/A
S$8_162518701 chr8 162,518,701 13%107° 0.331845 -0.26475 G/C
S6_130006038 chré 130,006,038 18%107° 0.300595 -0.2915 G/A
S5_140936401 chr5 140,936,401 2.1x107° 0.25744 0.266323 /G
S4_166482019 chr4 166,482,019 48%107° 0.125 0.371895 (2]
S8_148676841 chr8 148,676,841 53%107° 0.116071 -0.33136 C/A
S$2_223252193 chr2 223,252,193 57%107° 0.13244 -0.3614 G/C
S6_21316804 chré 21,316,804 70x107° 0.171131 -0.3094 T/G
S8_8887701 chr8 8,887,701 72x107° 0.275298 0.250936 G/A
S4_11836688 chr4 11,836,688 83x107° 0.107143 0.405554 T
Ep1 S6_130006038 chré 130,006,038 9.1x107° 0.300595 -0.2899 G/A
S7_161657633 chr7 161,657,633 19%107° 0.19494 0.332909 AT
S8_155841067 chr8 155,841,067 38x107° 0.080357 0.35661 (@)
S9_ 8243435 chr9 8,243,435 43x107° 0.181548 -0.34259 G/T
S1_232344813 chrl 232,344,813 69%x107° 0.214286 -0.2929 G/A
S2_157608147 chr2 157,608,147 71x107° 0.389881 -0.19765 A/G
Ep2 S6_34825812 chr6 34,825,812 38%107° 0.083333 0439454 /T
S8_152460815 chr8 1.52E+08 1.1%107° 0.074405 0.449882 T/A
S5_140936401 chr5 141E+08 21x107° 0.25744 0.259789 C/G
$1_200269986 chri 2E+08 23%x107° 0.08631 0.385707 A/G
S8_148676841 chr8 1.49E+08 25%107° 0.116071 -0.33722 C/A
S3_156792785 chr3 1.57E+08 38%107° 0.10119 -040914 T/G
S9_141454813 chr9 141E+08 46%107° 0.25744 -0.29864 T/A
S6_141510514 chré 1.42E+08 52x107° 0.071429 -04189 G/A
S5_3412526 chr5 3/412,526 53%107° 0.263393 0.254293 A/G
S8_155841067 chr8 1.56E+08 56x107° 0.080357 0.355416 (2]
S5_13798307 chr5 13,798,307 62x107° 0.395833 -0.23036 G/T
S1_52252512 chrl 52,252,512 74%107° 0.090774 0.366379 A/C
S$1_233546091 chrl 2.34E+08 83x107° 0.165179 -0.33468 /T
$8_162518701 chr8 1.63E+08 83x107° 0.331845 -0.23456 G/C
$10_83669175 chr10 83,669,175 84x107° 0.061012 0442897 G/T

© MAF - minor allele frequency, effect- SNP effect+represents major allele as favorable allele and - represents minor allele as favorable allele, Ep1 represents pooled
dataset of two years at E1(Ludhiana), Ep2 represents pooled dataset of two years at E2 (Gurdaspur)

identified one NBS-LRR defence protein-encoding gene,
PIK6-NP, on chromosome 10 (10.3). Genes Brassino-
steroid-insensitive 1-associated receptor kinase and
ubiquitin protein (ligase-binding) were reported on chro-
mosome 1 (1.08). Gene Sterol 3-beta-glucosyltransferase
UGT80A2 was reported on chromosome 2 (2.08). Other
genes associated with the significant SNPs that are iden-
tified in different chromosomal bins were CLAVATA3
embryo surrounding region-related-16 (9.06), calcium-
dependent protein kinase 7 (5.01), bZIP transcription
factor 23 (9.01), putative amino acid acetyl-transferase
NAGSI1 (7.04), aspartic proteinase nepenthesin-2 (4.06),
vq4-VQ motif-transcription factor 4 (1.04), the wound-
induced protein Wunl, and the auxin responsive Aux/
IAA family member (6.05). These genes have been func-
tionally annotated in the literature for the induction of

pathogenesis-related (PR) gene expression and there-
fore can be considered to prompt defence against MLB
(Table 5).

In silico expression and gene interaction analysis of
putative candidate genes

Gene expression data were specifically curated for 22
candidate genes, as detailed in Fig. 6a, b. The remain-
ing genes (3) did not have available expression data
across the four leaf stages or for the vegetative meri-
stem in the database. Genes GRMZM2G033413,
GRMZM5G813007, GRMZM2G031352, AC210013.4_
FGO014, GRMZM2G061602, GRMZM2G164787,
GRMZM2G031584, and GRMZM2G313737 exhibited
increased expression in all four stages of the leaf and
vegetative meristem, whereas GRMZM2G033413/bZIP
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Fig. 5 Box-plots depicting allelic effect differences of SNPs/ MTAs based on Kruskal-wallis non-parametric test; (@) S8_ 155841067, (b) S6_34825812, (c)

S8_152715134, and (d) S8_152460815)

Table 3 List of SNPs/MTAs with significant differences between
allelic effects on the basis of Kruskal-Wallis test

SNP Allele H (chi2) Pvalue

S8_155,841,067 (@) 14.09 0.00087%**
S8_152715134 T/A 10.66 0.004849**
S6_34825812 (@2) 2461 4.52E-06***
S8_152460815 T/A 19.36 6.24E-05%%*

*<0.05, ¥*<0.01, ***<0.001

transcription factor 23 had the highest expression among
all the genes, followed by GRMZM5G813007/amino-
acid acetyltransferase NAGSI. The other genes exhibited
expression only in some leaf zones. The identified candi-
date genes (22) were queried into the GeneMANIA web

server for functional prediction. The physical interaction
and coexpression between the genes in the network were
8.98% and 88.70%, respectively (Fig. 7a, b). The genes
SPA1/ GRMZM2G061602 and ABI3/GRMZM2G313737
were identified on the same chromosome, Chr8 (8.06), in
close proximity to the single SNP S8_155841067. Nota-
bly, these genes have been reported to physically interact
and coexpress within gene networks. The gene network
extended its association with other genes, e.g., between
the genes AT3G56880.1 (candidate gene) and WRKY75
(from the network). Both of these genes act as positive
jasmonate-mediated regulators of plant basal defence
against necrotrophic fungal pathogens and were reported
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Table 4 Common haplotypes identified at Ludhiana (Ep1) and Gurdaspur (Ep2) using haplotype trend regression analysis for MLB

resistance in CAAM panel

Hap- Chromosome  Markers Used P-Value RSquared Bonfer- FDR Selected Environments©
lotype (%) roni Regressors
block P-Value
Hap_1.1 1 S1_11475895,51_11850802, 9.7x107° 7.266 72x107°  29x107%  GTT,ACT Ep-2
51_11991587 55x107* 4745 41%1072 22x107%  GIT Ep-1
Hap_1.2 1 S1_289686730, S1_289688084 1.4x107* 5138 10x107%  37x107% AT Ep-2
32x107% 4610 24x1072  16x1073  TC Ep-1
Hap_2.1 2 $2_1353042, 52_1553601 9.1x1078 9.150 68x107° 22x107° GC Ep-2
13%x107% 4767 101072 14x107°  GC Ep-1
Hap_22 2 S2_12027414,52_12241580  36x107° 6.560 27x107°  13x107*  GC Ep-2
15x107° 7.167 11x107%  38x107% GC Ep-1
Hap_2.3 2 $2_205904685, S2_205905808 6.5x107° 6.161 49%x107%  49x107° GA Ep-2
28%x107% 4038 21x107°  16x107°  GA Ep-1
Hap_3 3 S3_56134621,53_56812535  16x107° 7322 12x1072  79%x107° TA Ep-2
19%x107* 5.553 14%x1072  17x1073  TA Ep-1
Hap_4 4 S4_149745183,54_149899657 7.2x107° 5052 54x107%  26x107% CC Ep-2
32x107% 4175 24x1072  1.7x1073  CC Ep-1
Hap_8.1 8 58_3292504, S8_3427103, 52%1076 8.895 39%107% 49x107°  TGG, GCA Ep-2
58_4258284 21x1074 5114 15%107% 15x107°  GCA Ep-1
Hap_8.2 8 $8_8731001,58_8731102 27%x1078 8938 20x107%  1.0x10°°% (G Ep-2
6.5x107* 3459 49x107%  23x107° (G Ep-1
Hap_83 8 S8_151346456, 74x1078 9353 55x107%  50x107° GAT Ep-2
58_152460815,58_152715134 59x10°* 5597 44x107%  23x107°  GAT Ep-1
Hap_9 9 S9_73520507,59_74919639, 3.7x107* 6.279 27x1072 89x107*  ACGGC Ep-2
59_89451669,59_89598809,  27x10-4  6.561 20x1072  18x107°  ACGGC Ep-1
$9_99083878
Hap_10.1 10 S10_12104511, 58x107% 3.783 43x107%  12x107° CAT Ep-2
510_14001955,510_14522387 48%107°  10.570 36x1077  36x1077 CAT Ep-1
Hap_102 10 S10_140737865, 28%107° 5.655 20%1073 12x107%  AG Ep-2
510_141006825 27x1074 4292 20x1072 17x107°  AG Ep-1

©Ep1 represents pooled dataset of two years at E1(Ludhiana), Ep2 represents pooled dataset of two years at E2 (Gurdaspur)

to be coexpressed in the network. While the remaining
identified candidate genes did not display direct rela-
tionships with each other, they did exhibit associations
with genes belonging to the same family. For instance,
UBQ10/GRMZM2G164787 with UBQ13 and BZIP23/
GRMZM?2G033413 with BZIP53 were related to the
shared protein domain family.

Discussion

Maize leaf blight, caused by the necrotrophic pathogen
Bipolaris maydis, presents a significant global threat to
maize cultivation. This polycyclic disease becomes epi-
demic under favourable conditions, and phenotyping
under artificial epiphytotic conditions with high disease
pressure proves to be cost-intensive. Therefore, a pro-
found understanding of host plant resistance (HPR) is
imperative to identify molecular markers for MLB resis-
tance and enhance the efficiency of developing resistant
tropical and subtropical maize germplasm [52]. The pres-
ent study leveraged high heritability (0.79) for the MLB
disease score, based on pooled data from the CAAM

panel, in four environments, suggesting the possibil-
ity of accurate phenotypic selection to breed for MLB
resistance in maize [53, 54]. The CAAM panel exhibited
lower genetic relatedness, rapid linkage disequilibrium
(LD) decay, and a moderate population structure. Mod-
erate population structure in CIMMYT Asia tropical
and sub-tropical lines was reported in previous studies
[55]. George et al. [56] corroborated this observation and
reported substantial diversity in tropical and subtropi-
cal lines in the Asian region, rendering it challenging to
establish clear-cut distinctions into well-defined clusters.
Warburton et al. [57] suggested that this could be due to
the fact that the populations from where Asian lines were
derived had a heterogeneous nature with larger diversity
within, than between source populations. It is known
that LD decays more rapidly in tropical maize germ-
plasm (1 kb) than in temperate germplasm (10 kb), but
faster LD decay rates have been reported in some tropical
diversity panels [58].

Identification of 26 SNPs significantly associated with
MLB with low to moderate effect sizes across all 10
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Putative candidate genes
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Fig. 6 (a) Graphical representation of expression data as Fragments per kilobase of transcript per million map reads of 22 candidate genes, (b) Heatmap
exhibiting the expression patterns (Log, transformed FPKM values) of candidate genes in leaf tissue at four different stages and in the vegetative meri-

stem; blue represents lower values, and red represents higher values

chromosomes suggested that resistance to MLB is gov-
erned by multiple quantitative trait nucleotides (QTNs)
with small effects. Our observation of the quantitative
nature of MLB has been reported in earlier studies also
[14-15]]. Chromosome-specific analysis reveals crucial
genomic regions that are important for disease resis-
tance in general, and resistance to MLB in particular.

Chromosomal bin 8.06, found in our study, comprised
five SNPs. The physical coordinates of these identi-
fied SNPs colocalized with the QTL gMSRS8 (151.45 to
166.98 Mb), which was identified from the same AM
panel and validated for charcoal rot (caused by a necro-
trophic pathogen) [54]. This bin also harbours QTLs for
other important diseases; GLS, NCLB, common rust,
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Fig. 7 (a) lllustration of the physical interaction and co-expression network of candidate genes and allied genes depicted by GeneMANIA. Pink lines
signify physical interactions among the candidate genes and other genes from the same family, while light purple lines represent the co-expression of
these genes. (b) Percentage of each category of interactions among the genes

and smut [59, 60]. Furthermore, comprehensive meta-
QTL analysis revealed the presence of a cluster of QTLs
on chromosome 8, accompanied by significant consensus
QTLs associated with MLB, NCLB, and GLS, all located
within a narrow confidence interval [61]. Based on these
well-aligned reports, we suggest further studies on the
significant associations we have detected in this chro-
mosomal bin for validation and deployment efforts to
combat MLB effectively. Furthermore, Bin 8.01 (compris-
ing SNP S8_8887701) corresponds to a previous study
reporting a QTL (FAUDPCS.1) in the Indian germplasm
for MLB, emphasizing relevance of bin 8.01 in MLB resis-
tance [62]. Chromosome 3 has been reported to harbour

the maximum number of QTLs (at 25 loci) for resistance
to MLB specifically in bin 3.04 [15-17, 19], ] possess-
ing major QTLs which are validated in different genetic
backgrounds. A meta-QTL study highlighted the signifi-
cance of genomic regions within bins 3.04—3.08 for MLB
resistance 61]]. We identified one SNP (S3_156792785) in
bin 3.05 in our GWAS study. This bin is also recognized
for harbouring stable genomic regions linked to other
diseases caused by necrotrophs, e.g., fusarium ear rot
[63].

We identified two SNPs within chromosomal bin 6.01
(S6_21316804 and S6_34825812). Bin 6.01 is recognized
as a hotspot for resistance against various viral diseases,
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and MLB [64]. A minor QTL associated with MLB
resistance was reported in this bin [41]. Moreover, the
rhml gene, known to confer complete MLB resistance
against race ‘O; is situated within or in close proximity
to bin 6.01 [ 17]. Our findings suggest the possibility of a
broader spectrum of allelic variation against MLB within
bin 6.01. Three SNPs were reported on chromosome 5,
among which one SNP (S§5_140936401) was reported in
bin 5.04. Previous studies [22, 65], ] have identified sig-
nificant SNPs associated with MLB resistance within bin
5.04. Additionally, bin 5.04 has been reported to host
resistance against NCLB, GLS, and MLB, as documented
by Martins et al. [66 ]. A single SNP was identified on
chromosome 10 (10.3), which remarkably correspond
with earlier research findings where a disease QTL
(dQTL) for MLB was reported. This finding emanated
from two B73-resistant NILs (NC292 and NC330) against
MLB, which were developed by repeated backcross-
ing with elite source of MLB resistance (NC250P), fur-
ther reinforcing the significance of this genomic region
in conferring resistance [66]. Two SNPs identified to be
significantly associated with MLB resistance in this study
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(S1_233546091 and S1_232344813) on Chromosome 1
(bin 1.08), colocalized with earlier reported SNPs against
NCLB [36] and Fusarium stalk rot [67] in the same panel.
Moreover, in previous studies, no SNPs or QTLs colocal-
ized with the physical coordinates of SNPs reported in
the seven novel chromosomal bins associated with MLB
(Table 6).

The majority of the haplotype blocks identified from
our haplotype detection analysis were formed with two
or three SNPs. The size of these haplotypes is intricately
linked to the level of linkage disequilibrium (LD) within
the population under study, as elucidated by Slatkin
(2008) [68]. A rapid decay of LD results in the formation
of smaller haplotype [69, 70]. A single haplotype block
(Hap_8.3) exhibiting a significant effect was identified
within chromosomal bin 8.06, which corroborated with
our GWAS findings. This haplotype was found to account
for approximately 9.3% (Ep2) and 5.3% (Ep1) of the varia-
tion observed for the trait respectively in our study.
Two haplotype blocks, reported in two novel bins, 2.00
(Hap_2.1) & 1.11 (Hap_1.2) explained PVE of 9.1%, 5.7%
for Ep2, and 5.1%, 4.6% for Ep1, respectively. The use of

Table 6 Summary of chromosomal location of Maydis leaf blight (MLB) resistance quantitative trait loci (QTL)/SNPs in maize from

previous studies

S. No. Bins® /Chromosomes Reporting MLB QTL/SNPs Markers used Populations Refer-
ences
1 1.02,1.07,1.09, 2.04,3.03,3.04,4.09,5.01,7.02,9.05 and 10.04 SSR RILs (Mo 17 x B73) [13]
2 1.06, 1.08, 1.09, 2.09, 3.04, 3.06, 6.00, 7.02 and 8.03 SSR RILs (B73 X Mo17) [18]
3 1.08-1.09, 2.06-2.07, 3.04, 3.07, 3.09, 6.06 and 9.03-9.04 SSR RILs (NC300 x B104) [14]
4 1.03,1.05, 1.06, 1.10, 2.04, 3.04, 3.06, 4.02-4.03, 6.02, 7.03 and SSR Advanced intercross RILs (B73 x Mo17) [15]
8.02-8.03
5 2.07,3.04,6.01 and 8.05 SSR RILs (H99 x B73) and (B73 x B52) [16]
6 1.09, 2.05-2.06, 3.03, 5.05-5.06, 6.01,9.02 and 10.03 SSR and SNPs NILs (NC292 x B73) and (NC330 x B73) [66]
7 1.05-1.06, 1.08-1.09, 2.04, 2.09, 3.04-3.05, 8.05 and 10.05 SSR and SNPs RILs (KI14 x B73) [113]
8 1.10, 2.03, 3.03, 3.04, 8.06, 8.05, 9.03, 9.04, 9.05 and 10.04 SSR RILs (B73 x CML254), (CML254 x B97) and [17]
(B97 x Ki14)
9 3,4,6,8,9and 10 SSR Fos (T14xT4) [114]
10 6 (6.01) Gene rhm RFLP (UMC85 F3(RH95rhm x B73) [115]
and p144)
11 1.03/1.04,1.07,1.09, 1.06, 1.05, 2.02/2.03, 2.04, 2.05, 3.03, 3.04, SNPs NAM [22]
3.05, 3.06, 3.09, 4.00/4.01, 4.05, 4.09, 5.03, 5.04, 5.06, 5.07, 6.01,
6.06, 7.00, 7.01, 7.03, 8.03, 8.06/8.07,9.02, 9.03/9.04, 9.04, 9.07,
10.03 and 10.07
12 1.09, 2.05-2.06, 3.03,6.01 and 9.02 SSR NILs (NC292 x B73) and (NC330 x B73) [116]
13 2.04,3.04,3.05 and 8.05 SSR Teosinte NILs from 10 populations 1171
14 1,2,3,4,56,7,8,9and 10 SNP NAM [65]
15 3.08,9.03,8.01,8.03,and 8.01 SSR RIL (LM5 x CM140) [62]
16 1,234,56,789,10 SNP ROAM, 8 RIL populations, and 513 diversity  [25]
maize inbred lines
17 1,2,3/4,56,78910 SNP NAM [24]
18 9.06,5.01,9.01,7.04, 4.06, 1.04, and 6.05 SNP CAAM

2Chromosome bin location of QTL peak on 1 of the 10 chromosomes of the maize genome. Bins divide the genetic map into 100 approximately equal segments of
approximately 20 centiMorgans between two fixed Core Marker. The segments are designated with the chromosome number followed by a two-digit decimal (e.g.,

1.00, 1.01, 1.02, etc.)

RILs: recombinant inbred lines; NILs: near isogenic lines; NAM: nested association mapping, ROAM: Random-Open-parent Association Mapping, CAAM: CIMMYT

Asia Association Mapping
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haplotypes increases the phenotypic variance explained,
and can be beneficial when identifying marker phenotype
associations for the genetic dissection of loci underlying
the complex trait [71]. Additionally, SNPs/ haplotypes
reported in previously unreported genomic regions/bins
(9.06, 5.01, 9.01, 7.04, 4.06, 6.05, 2.00, and 1.11) could be
unique to the CAAM panel and the environment stud-
ied, and could be candidates for enriched allelic diversity
associated with MLB resistance.

Twenty-six SNPs associated with MLB resistance in
this study were associated with annotated genes with
functional domains that were previously reported to
influence disease resistance in various crops (Table 5).
Genes in Chromosome 8 play pivotal roles in various
defence pathways, viz., and activation of basal defence
by mitogen-activated protein kinases, serine/threo-
nine protein kinase activity, circadian rhythm-generated
basal immunity, hypersensitive cell death response, and
transport of secondary metabolites required against
necrotrophs, e.g., phytoalexins, especially camalexin
(3-thiazol-2-yl-indole), a secondary metabolite toxic to
B. maydis [73-76). Based on the predicted co-expression
results, co-expression of these genes was detected in the
network, and it could be possible that these genes (bin
8.06) may form a cluster, initiating a cascade of reactions
against MLB, which warrants further investigation [76].
Furthermore, the expression of these genes exceeded
10-FPKM in all leaf zones. Physical interaction of genes
SPA1/GRMZM2G061602 and ABI3/GRMZM2G313737
underscore their role in basal defence response via
MAMP responsive MAPK mechanisms [77, 78]. The
SPA1 gene further advances the notion of circadian
rhythm-generated basal immunity against MLB, which
reveals the potential for further studies on such genes in
the future [75]. The candidate gene GRMZM2G013581/
MYB DNA binding domain (bin 6.01) was identified in
our study. Chen et al. [25] functionally validated gene
MYBR92 (encoding a MYB-like transcription factor)
against MLB.

Specific genes associated with novel SNPs identi-
fied are functionally recognized for their expression in
response to cross-talk between jasmonic acid and ethyl-
ene, which enhances sensitivity to necrotrophic patho-
gens [79]. For example, the transcription factor (TF)
BZIP 23/GRMZM2G033413 (S9_8243435) is known
to modulate the response to various stresses, including
abiotic factors and hormone transduction [80]. Another
gene, GRMZM?2G357834/WUN], is involved in plant-
defence responses regulated by JA and its methyl ester,
methyl jasmonate (MeJA) against necrotrophs [81].
GRMZM5G813007/NAGS1 (S7_161657633) is involved
in the L-arginine biosynthesis pathway [82]. Arginine
serves as a precursor for the synthesis of nitric oxide
(NO) and polyamines (PAs), both of which are known
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to promote defence mechanisms. AC210013.4_FG014/
CDPK?7 (S5_3412526) gene has been found to respond
to various stimuli, including abscisic acid (ABA), cold,
drought, salinity, heat, elicitors, and pathogens [840].
Our study highlighted the possible role of ubiquitina-
tion required in facilitating the function of NBS-LRR
proteins (promoting effector-triggered immunity), spe-
cifically by the GRMZM2G164787/Ubiquitin protein
(ligase binding) gene associated with SNP S1_232344813)
[84]. Genes E3 Ubiquitin protein (ligase) and CDPK7
have been reported in a previous study [25] as associ-
ated with resistance to MLB. Another important gene
GRMZM?2G444623/aspartic proteinase nepenthesin-2
(S4_166482019) was identified which was reported to
reduce the activity of fungal phytases. In Barley, a related
gene nepenthesin-1 (HVNEP-1) was discovered that
reduced the production of mycotoxin 15-acetyldeoxyni-
valenol (15-ADON) from Fusarium graminearum [85].
It would be worthwhile to investigate the role of NEP2
in MLB resistance in maize. The reported SNPs in genes
associated with the JA/ET signalling pathway and other
defence mechanisms add depth to our understanding of
MLB resistance, to carry forward with independent vali-
dation of the candidate genes.

Moreover, contrasting genotypes identified in this
study could be used to develop mapping populations
for further genetic dissection of the trait, The construc-
tion of breeder-friendly Kompetitive allele-specific PCR
(KASP) markers for the significant and stable MTAs/
single SNPs identified may facilitate the deployment of
these genomic regions through marker-assisted selection
in the maize breeding process. In addition, the significant
MTAs identified during the current study can be inte-
grated into genomic prediction models to evaluate their
potential for selection for MLB. Desirable haplotypes can
be used for haplotype-based breeding in maize for MLB
resistance through resequencing approach as, the molec-
ular markers that define these favorable haplotypes can
be developed and used to select the most desirable com-
bination of haplotypes governing the specific phenotype.
Moreover, inbred lines with novel recombination in chro-
mosomal blocks of interest can be selected by haplotype-
related markers [86]. The identified important genes may
also be validated using functional genomics techniques.
However, the potential challenge one can face is impact
on the marker/SNP effect which can differ with popu-
lations and environments. This challenge arises due to
differencs in LD between SNP and QTL in different pop-
ulations, effect of G x E interaction, and spurious associa-
tions [87] Overall, this comprehensive genomic analysis
provides valuable insights for targeted breeding strategies
to enhance MLB resistance in maize.
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Conclusion

In summary, GWAS and haplotype trait regression stud-
ies on resistance to MLB in Asia-adapted CAAM panel
identified 26 SNPs and 13.haplotypes associated with the
trait. The study confirmed the quantitative nature of the
resistance with identified variants exhibiting low to mod-
erate effect sizes. But gene annotation and network anal-
ysis of the identified variants points to some important
genes that are implicated in diverse defence pathways in
particular, and stress tolerance in general. Several of the
identified variants were located in previously reported
chromosomal bins, and some new genomic regions were
also identified in this study. This not only enhances our
appreciation of allelic diversity but also deepens our
understanding of the intricate mechanisms behind resis-
tance to MLB in maize. Additionally, the identification of
a number of SNPs and haplotype within chromosomal
bin 8.06, which is known to harbour dQTLs/dQTNs for
resistance to multiple diseases, underscores its poten-
tial to be further investigated for validation and possible
deployment of trait markers for resistance to MLB.

Abbreviations
MLB Maydis leaf blight

CAAM  CIMMYT Asia association mapping panel
GWAS  Genome wide association studies
QrL Quantitative trait loc

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512864-024-10655-x.

[ Supplementary Material 1 ]

Acknowledgements

The authors would like to thank CIMMYT for providing the germplasm and
access to GBS data and Director Regional Research Station Gurdaspur, PAU,
Ludhiana for providing access to the experimental station. The authors
gratefully acknowledge the support received from the One CGIAR Accelerated
Breeding Initiative (ABI).

Author contributions

"S.S and S.KN conceived and supervised the conductance of the experiment;
W.UN conducted the field evaluation and phenotyping; W.UN carried out the
GWAS and in silico analysis, interpreted the results and wrote the manuscript;
SK.N provided the germplasm and GBS data; H.K provided the culture for
inoculation; A.K maintained the trial at the Gurdaspur location; Z K analyzed
the phenotypic data and conducted haplotype analysis; and G.S helped

in GWAS analysis. W.UN, S.S, SKN, and Y.V finalized the manuscript. All the
authors reviewed the manuscript”.

Funding

The authors gratefully acknowledge the funding received from the CGIAR
Research Program (CRP) on MAIZE for generating the genotypic data used in
this study.

Data availability

The experimental data that support the findings of this study have been
deposited in the BioStudies database with the primary accession code
S-BSST1435.

Page 21 of 24

Declarations

Ethics approval and consent to participate

In compliance with the IUCN Policy Statement on Research, in the present
study, the material used was maize (Zea mays L.), a cultivated species
maintained through conventional breeding. Furthermore, none of the
materials utilized in the present research are at risk of extinction. All the
experiments were carried out in accordance with relevant guidelines.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details

'Dept. of Plant Breeding and Genetics, Punjab Agricultural University,
Ludhiana, India

2International Maize and Wheat Improvement Centre (CIMMYT),
Hyderabad, India

3Regional Research Station, Punjab Agricultural University, Gurdaspur,
Ludhiana, India

“School of Agricultural Biotechnology, Punjab Agricultural University,
Ludhiana, India

Received: 17 May 2024 / Accepted: 23 July 2024
Published online: 05 August 2024

References

1. Shiferaw B, Prasanna B, Hellin J, Banziger M. Crops that feed the world. Past
successes and future challenges to the role played by maize in global food
security. Food Secur. 2011;3:307-27.

2. Coclanis PA. The golden fuel. 2023 https://aeon.co/essays/
what-explains-the-unstoppable-rise-of-maize-in-asia

3. Malik VK, Gogoi R, Hooda KS, Singh M. Identification of multiple disease
resistant maize accessions. Indian Phytopathol. 2017;70(1):80-5.

4. Ullstrup AJ. The impacts of the southern corn leaf blight epidemics of
1970-1971. Annu Rev Phytopathol. 1972;10(1):37-50.

5. SinghV, Lakshman DK, Roberts DP, et al. Fungal species causing maize leaf
blight in different agro-ecologies in India. Pathogens. 2021;10(12):1621.
https://doi.org/10.3390/pathogens10121621.

6. Byrnes KJ, Pataky JK, White DG. Relationships between yield of three maize
hybrids and severity of southern leaf blight caused by race O of Bipolaris
Maydis. Plant Dis. 1989;73(10):834-40.

7. Hooker AL. Inheritance of chlorotic-lesion resistance to Helminthosporium
turcicum in seedling corn. Phytopathology. 1963;53:660-2.
Hammond-Kosack KE, Rudd JJ. Plant resistance signalling hijacked by a
necrotrophic fungal pathogen. Plant Signal Behav. 2008;3(11):993-5.

9. Atwell S,Huang Ys, Vilhjdimsson BJ, et al. Genome-wide association
study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature.
2010;465(7298):627-31.

10. Bernardo R. Breeding for quantitative traits in plants. 3rd ed. Woodbury, Min-
nesota: Stemma; 2020. Pp. 114-5.

11. Mitchell-Olds T. Complex-trait analysis in plants. Genome Biol. 2010;11:113.

12. Huang X, Han B. Natural variations and genome-wide association studies in
crop plants. Annu Rev Plant Biol. 2014;,65:531-51.

13.  Rafalski JA. Association genetics in crop improvement. Curr Opin Plant Biol.
2010;13(2):174-80.

14.  Carson ML, Stuber CW, Senior ML. Identification and mapping of quantitative
trait loci conditioning resistance to southern leaf blight of maize caused by
Cochliobolus Heterostrophus race O. Phytopathology. 2004,94(8):862-7.

15.  Balint-Kurti PJ, Carson ML. Analysis of quantitative trait loci for resistance to
southern leaf blight in juvenile maize. Phytopathology. 2006;96(3):221-5.

16. Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza, Rosas MA, Hol-
land JB, Szalma SJ. Precise mapping of quantitative trait loci for resistance to
southern leaf blight, caused by Cochliobolus heterostrophus race O, and flow-
ering time using advanced intercross maize lines. Genetics. 2007;176:645-57.

17. Balint-Kurti PJ, Zwonitzer JC, P& ME, Pea G, Lee M, Cardinal AJ. Identification
of quantitative trait loci for resistance to southern leaf blight and days to


https://doi.org/10.1186/s12864-024-10655-x
https://doi.org/10.1186/s12864-024-10655-x
https://aeon.co/essays/what-explains-the-unstoppable-rise-of-maize-in-asia
https://aeon.co/essays/what-explains-the-unstoppable-rise-of-maize-in-asia
https://doi.org/10.3390/pathogens10121621

Nisa et al. BMC Genomics

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

(2024) 25:760

anthesis in two maize recombinant inbred line populations. Phytopathology.
2008,;98(3):315-20.

Negeri AT, Coles ND, Holland JB, Balint-Kurti PJ. Mapping QTL controlling
southern leaf blight resistance by joint analysis of three related recombinant
inbred line populations. Crop Sci. 2011;51:1571-9.

Balint-Kurti PJ, Carson ML. Analysis of quantitative trait loci for resistance to
southern leaf blight in juvenile maize. Phytopathology. 2006,96:221-5.
ZhaoY, Lu X, Liu C, Guan H, Zhang M, Li Z, Cai H, Lai J. Identification and fine
mapping of rhm1 locus for resistance to Southern corn leaf blight in maize. J
Integr Plant Biol. 2012;54:321-29.

Zhang J, Jia X, Wang GF, Ma S, Wang S, Yang Q Wu. L Ascorbate peroxidase

1 confers resistance to southern corn leaf blight in maize. J Integr Plant Biol.
2022;64:1196-11.

Yang Q, He Y, Kabahuma M, Chaya T, Kelly A, Borrego E, Bian Y, El Kasmi F, Yang
L, Teixeira P, Kolkman J, Nelson R, Kolomiets M, Dang JL, Wisser R, Caplan J, Li
X, Lauter N, Balint-Kurti P. A gene encoding maize caffeoyl-CoA O-methyl-
transferase confers quantitative resistance to multiple pathogens. Nat Genet.
2017;49(9):1364-72.

Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA,
Holland JB. Genome-wide association study of quantitative resistance to
southern leaf blight in the maize nested association mapping population.
Nat Genet. 2011;:43:163-68.

Bian'Y, Yang Q, Balint-Kurti PJ, Wisser RJ, Holland JB. Limits on the reproduc-
ibility of marker associations with southern leaf blight resistance in the maize
nested association mapping population. BMC Genomics 2014 15:1068.
Chen G, XiaoY, Dai S, Dai Z, Wang X, Li B, Jaqueth JS, LiW, Lai Z, Ding J, Yan

J. Genetic basis of resistance to southern corn leaf blight in the maize multi-
parent population and diversity panel. Plant Biotechnol J 2023 21:506-20.
Contreras-Soto RI, Mora F, de Oliveira MAR, Higashi W, Scapim CA, Schuster I.
A genome-wide association study for agronomic traits in soybean using SNP
markers and SNP-based haplotype analysis. PLoS ONE. 2017;12(2):e0171105.
Kumar S, Singh VP, Saini DK, et al. Meta-QTLs, ortho-MQTLs, and candidate
genes for thermotolerance in wheat (Triticum aestivum L). Mol Breed.
2021;41(11):69. https://doi.org/10.1007/511032-021-01264-7.

Kumar B, Choudhary M, Kumar K, et al. Maydis leaf blight of maize: update on
status, sustainable management and genetic architecture of its resistance.
Physiol Mol Plant Pathol. 2022;121:101889.

Zaidi PH, Seetharam K, Krishna G, et al. Genomic regions associated with

root traits under drought stress in tropical maize (Zea mays L). PLoS ONE.
2016;11(10):20164340.

Lim SM. Heterotic effects of resistance in maize to Helminthosporium maydis
race O. Phytopathology. 1975;65(10):1117-20.

Hooda KS, Bagaria PK, Khokhar M, Kaur H, Rakshit S. Mass Screening
techniques for resistance to Maize diseases. ICAR- Indian Institute of Maize
Research. Campus: PAU; 2018.

Alvarado G, Lopez M, Vargas M et al. 2015. META-R (Multi Environment Trail
Analysis With R for Windows). version 4.1. http://hdl.handle.net/11529/10201
CIMMYT, Laboratory Protocols. CIMMYT Applied Molecular Genetics Labora-
tory Protocols. Mexico: CIMMYT; 2001.

Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequenc-
ing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):219379.
Glaubitz JC, Casstevens TM, Lu F, et al. TASSEL-GBS: a high capacity genotyp-
ing by sequencing analysis pipeline. PLoS ONE. 2014;9(2):e90346.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet. 2006;38(8):904-9.

Wang J, Zhang Z. GAPIT. Version 3: boosting power and accuracy for genomic
association and prediction. Genomics Proteom Bioinf. 2021;19:787-96.

R Core Team. R: A Language and Environment for Statistical Computing;
2021.Vienna, Austria: R Foundation for Statistical Computing. https://www.R-
project.org/

Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a package for the next
level of genome-wide association studies with both individuals and markers
in the millions. GigaScience. 2019;8.

Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and
random effect models for powerful and efficient genome wide association
studies. PLos Genet. 2016;12(2):1005767.

Mao H, Wang H, Liu S, et al. A transposable element in a NAC gene is associ-
ated with drought tolerance in maize seedlings. Nat Commun. 2015,6:8326.
Cui Z Luo J, Qi C et al. Genome-wide association study (GWAS) reveals the
genetic architecture of four husk traits in maize. BMC Genomics. 2016;17:946.

43.

45.

46.

47.

48.

49.

50.

5T

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Page 22 of 24

Hammer @, Harper D, Ryan PPAST. Paleontological Statistics Software Pack-
age for Education and Data Analysis. Palaeontologia Electronica. 2001;4:1-9.
DATAtab Team. (2023). DATAtab: Online Statistics Calculator. DATAtab e.U.
Graz, Austria. URL https://datatab.net.

Excoffier LSM, Slatkin M. Maximum-likelihood estimation of molecular haplo-
type frequencies in a diploid population. Mol Biol Evol. 1995;12(5):921-7.
Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins
J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A,
Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype
blocks in the human genome. Science. 2002;296(5576):2225-9.

Walley JW, Sartor RC, Shen Z, et al. Integration of omic networks in a develop-
mental atlas of maize. Science. 2016;353(6301):814-8.

Chen C, Chen H, Zhang Y, et al. TB tools: an integrative toolkit developed for
interactive analyses of big biological data. Mol Plant. 2020;13(8):1194-202.
Xia Y. Statistical normalization methods in microbiome data with application
to microbiome cancer research. Gut Microbes. 2023;15(2):22441309.
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz
M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q,
Wright G, Bader GD, Morris Q. The GeneMANIA prediction server: biological
network integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 2010;38:214-20. https://doi.org/10.1093/nar/gkq537.
Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris Q.
GeneMANIA update 2018. Nucleic Acids Res. 2018;46:60-4.

Yadav OP, Hossain F, Karjagi CG. Genetic improvement of maize in India:
retrospect and prospects. Agric Res. 2015;4:325-38.

Gowda M, Das B, Makumbi D, et al. Genome -wide association studies and
genomic predictions of resistance to maize lethal necrosis disease in tropical
maize germplasm. Theor Appl Genet. 2015;128(10):1957-68.

Rashid Z, Kaur H, Babu 'V, Singh PK, Harlapur SI, Nair SK. Identification and vali-
dation of genomic regions associated with charcoal rot resistance in tropical
maize by genome-wide association and linkage mapping. Front Plant Sci.
2021;12:726767.

Rashid Z, Sofi M, Harlapur S, et al. Genome-wide association studies in
tropical maize germplasm reveal novel and known genomic regions for
resistance to Northern corn leaf blight. Sci Rep. 2020;10(1):21949. https://doi.
0rg/10.1038/541598-020-78928-5.

George ML, Regalado E, Warburton M, Vasal S, Hoisington D. Genetic
diversity of maize inbred lines in relation to downy mildew. Euphytica.
2004;135(2):145-55.

Warburton ML, Ribaut JM, Franco J, Crossa J, Dubreuil P, Betran FJ. Genetic
characterization of 218 elite CIMMYT maize inbred lines using RFLP markers.
Euphytica. 2005;142(1-2):97-106. https://doi.org/10.1007/510681-005-0817-y.
Romay MC, Millard MJ, Glaubitz JC, et al. Comprehensive genotyping of the
USA national maize inbred seed bank. Genome Biol. 2013:14(6):R55.

Martins LB, Rucker E, Thomason W, Wisser RJ, Holland JB, Balint-Kurti P.
Validation and characterization of maize multiple disease resistance QTL.
(Bethesda). 2019;G3(9):2905-12.

Bubeck DM, Goodman MM, Beavis WD, Grant D. Quantitative trait loci con-
trolling resistance to gray leaf spot in maize. Crop Sci. 1993;33(4):838-47.

Ali F, Pan Q, Chen G, Zahid KR, Yan J. Evidence of multiple disease resistance
(MDR) and implication of meta-analysis in marker assisted selection. PLoS
ONE. 2013;8(7):e68150.

Kaur M, Vikal Y, Kaur H, Pal L, Kaur K, Chawla JS. Mapping quantitative trait
loci associated with southern leaf blight resistance in maize (Zea mays L). J
Phytopathol. 2019;167(10):591-600.

LiuY, Hu G, Zhang A, et al. Genome-wide association study and genomic
prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J.
2021,9(2):325-41.

McMullen MD, Simcox KD. Genomic organization of disease and insect
resistance genes in maize. Mol Plant Microbe Interact. 1995,8(6):811-5.

LiYX, Chen L, Li G, et al. Increased experimental conditions and marker densi-
ties identified more genetic loci associated with southern and northern leaf
blight resistance in maize. Sci Rep. 2018;8(1):6848.

Zwonitzer JC, Bubeck DM, Bhattramakki D, Goodman MM, Arellano C, Balint-
Kurti PJ. Use of selection with recurrent backcrossing and QTL mapping

to identify loci contributing to southern leaf blight resistance in a highly
resistant maize line. Theor Appl Genet. 2009;118(5):911-25.

Rashid Z, Babu V, Sharma SS, Singh PK, Nair SK. Identification and validation of
a key genomic region on chromosome 6 for resistance to Fusarium stalk rot
in tropical maize. Theor Appl Genet. 2022;135(12):4549-63.


https://doi.org/10.1007/s11032-021-01264-7
http://hdl.handle.net/11529/10201
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1038/s41598-020-78928-5
https://doi.org/10.1038/s41598-020-78928-5
https://doi.org/10.1007/s10681-005-0817-y

Nisa et al. BMC Genomics

68.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

(2024) 25:760

Slatkin M. Linkage disequilibrium—understanding the evolutionary past and
mapping the medical future. Nat Rev Genet. 2008;9(6):477-85. https://doi.
0rg/10.1038/nrg2361.

Amaral AJ, Megens HJ, Crooijmans RP, Heuven HC, Groenen MA. Linkage
disequilibrium decay and haplotype block structure in the pig. Genetics.
2008;179(1):569-79.

Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping
in plants. Plant Genome-US. 2008;1(1):5-20.

Lorenz AJ, Hamblin MT, Jannink JL. Performance of single nucleotide
polymorphisms versus haplotypes for genome-wide association analysis

in barley. PLoS ONE. 2010;5(11):e14079. https://doi.org/10.1371/journal.
pone.0014079.

Fuji K, Shirakawa M, Shimono Y, et al. The adaptor complex AP-4 regulates
vacuolar protein sorting at trans-golgi network by interacting with vacuolar
SORTING RECEPTOR 1. Plant Physiol. 2016;170(1):211-9.

Wang W, Barnaby JY, Tada Y, et al. Timing of plant immune responses by a
central circadian regulator. Nature. 2011;470(7332):110-4.

Yazaki K. ABC transporters involved in the transport of plant secondry
metabolities. FEBS Lett. 2006;580(4):1183-91.

Chandan RK, Kumar R, Swain DM, et al. RAV1 family members function as
transcriptional regulators and play a positive role in plant disease resistance.
Plant J. 2023;114(1):39-54.

Wisser RJ, Balint-Kurti PJ, Nelson RJ. The genetic architecture of disease
resistance in maize: a synthesis of published studies. Phytopathology.
2006;96(2):120-9.

Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu
Rev Phytopathol. 2013;51:245-66.

Meshram S, Gogoi R. Look into circadian rhythm in maize during Bipolaris
maydis infection. Plant Dis Res. 2021;36(2):101-5.

Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants.
Annu Rev Plant Physiol Plant Mol Biol. 1997;48:355-81.

Ma H, Liu C, Li Z, et al. ZmbZIP4 contributes to stress resistance in maize

by regulating ABA synthesis and root development. Plant Physiol.
2018;178(2):753-70.

Yen SK, Chung MC, Chen PC, Yen HE. Environmental and developmental
regulation of the wound-induced cell wall protein WI12 in the halophyte ice
plant. Plant Physiol. 2001;127(2):517-28.

Anwar R, Mattoo AK, Handa AK. Polyamine interactions with plant hormones:
crosstalk at several levels. Int J Hydrog Energy. 2015;38:1039-51.

Romeis T, Piedras P, Jones JDG. Resistance gene-dependent activation of a
calcium-dependent protein kinase in the plant defense response. Plant Cell.
2000;12(5):803-16.

Huang TK, Han CL, Lin Sl, et al. Identification of downstream components

of ubiquitin-conjugating enzyme phosphate 2 by quantitative membrane
proteomics in Arabidopsis roots. Plant Cell. 2013;25(10):4044-60.

Bekalu ZE, Krogh Madsen C, Dionisio G, et al. Overexpression of nepenthesin
HVNEP-1 in barley endosperm reduces Fusarium head blight and mycotoxin
accumulation. Agronomy. 2020;10(2):203.

Bevan MW, et al. Genomic innovation for crop improvement. Nature.
2017;543:346-54.

Bastiaansen JWM, Bovenhuis H, Lopes MS et al. SNP effects depend on
genetic and environmental Context. Proceedings, 10th World Congress of
Genetics Applied to Livestock Production.2015.

Atamian HS, Creux NM, Brown RI, Garner AG, Blackman BK, Harmer SL. Circa-
dian regulation of sunflower heliotropism, floral orientation, and pollinator
visits. Science. 2016;353(6299):587-90.

Li D, Liu H, Zhang H, Wang X, Song F. OsBIRH1, a DEAD-box RNA helicase with
functions in modulating defence responses against pathogen infection and
oxidative stress. J Exp Bot. 2008;59(8):2133-46.

Sahu PP, Rai NK, Chakraborty S, et al. Tomato cultivar tolerant to Tomato leaf
curl New Delhi virus infection induces virus-specific short interfering RNA
accumulation and defence-associated host gene expression. Mol Plant
Pathol. 2010;11(4):531-44.

Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as driv-
ers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579-92.
Matsuoka E, Kato N, Hara M. Induction of the heat shock response in
Arabidopsis by heat shock protein 70 inhibitor VER-155008. Funct Plant Biol.
2019;46(10):925-32.

Li J, Zhang M, Sun J, et al. Heavy Metal Stress-Associated Proteins in Rice and
Arabidopsis: genome-wide identification, Phylogenetics, Duplication, and
expression profiles analysis. Front Genet. 2020;11:477.

94.

95.

96.

97.

98.

99.

100.

101.

102.

105.

107.

109.

113.

114.

115.

Page 23 of 24

Zhu X, Li X, He Q, et al. TaMYB29: a novel R2R3-MYB transcription factor
involved in wheat defence against stripe rust. Front Plant Sci. 2021;12:783388.
Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLET gene
encodes an R2R3MYB transcription factor protein that is required for biotic
and abiotic stress responses in Arabidopsis. Plant Cell. 2003;15(11):2551-65.
Trujillo M, Shirasu K. Ubiquitination in plant immunity. Curr Opin Plant Biol.
2010;13(4):402-8.

Hwang JU, Song WY, Hong D, et al. Plant ABC transporters enable many
unique aspects of a terrestrial plant’s lifestyle. Mol Plant. 2016,9(3):338-55.
Hatsugai N, Nakatsuji A, Unten O, et al. Involvement of adapter protein
complex 4 in hypersensitive cell death induced by avirulent bacteria. Plant
Physiol. 2018;176(2):1824-34.

Hao, Zong X, Ren P, Qian'Y, Fu A. Basic helix-loop-helix (bHLH) transcrip-
tion factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci.
2021;22(13):7152.

Cao X, Yang H, Shang C, Ma S, Liu L, Cheng J. The roles of auxin biosynthesis
yucca gene family in plants. Int J Mol Sci. 2019;20(24):6343.

Thomma BP, Eggermont K, Penninckx IA, et al. Separate jasmonate-depen-
dent and salicylate-dependent defense-response pathways in Arabidopsis
are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci
USA. 1998,95(25):15107-11.

Hammond-Kosack KE, Tang S, Harrison K, Jones JD. The tomato Cf-9 disease
resistance gene functions in tobacco and potato to confer responsiveness to
the fungal avirulence gene product avr 9. Plant Cell. 1998;10(8):1251-66.

. Kalamaki MS, Alexandrou D, Lazari D, et al. Over-expression of a tomato

N-acetyl-L-glutamate synthase gene (SINAGST) in Arabidopsis thaliana results
in high ornithine levels and increased tolerance in salt and drought stresses. J
Exp Bot. 2009,60(6):1859-71.

. Kaminaka H, Nake C, Epple P, et al. bZIP10-LSD1 antagonism modulates

basal defense and cell death in Arabidopsis following infection. EMBO J.
2006;25(18):4400-11.

Kopischke M, Westphal L, Schneeberger K, et al. Impaired sterol ester syn-
thesis alters the response of Arabidopsis thaliana to Phytophthora infestans.
Plant J. 2013;73(3):456-68.

. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. Salicylic acid inhibits

pathogen growth in plants through repression of the auxin signaling path-
way. Curr Biol. 2007;17(20):1784-90.

Xu ZS, Xia LQ, Chen M, et al. Isolation and molecular characterization of the
Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases
multiple stress tolerance. Plant Mol Biol. 2007;65(6):719-32.

. Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X. AtPLAl is an acyl hydro-

lase involved in basal jasmonic acid production and Arabidopsis resistance to
Botrytis Cinerea. J Biol Chem. 2007;282(25):18116-28.

Li Z Liu D, Xia Y, et al. Identification and functional analysis of the CLAVATA3/
EMBRYO SURROUNDING REGION (CLE) gene family in wheat. Int J Mol Sci.
2019;20(17):4319.

. Pecher P, Eschen-Lippold L, Herklotz S, et al. The Arabidopsis thaliana

mitogen-activated protein kinases MPK3 and MPK6 target a subclass of
VQ-motif-containing proteins to regulate immune responses. New Phytol.
2014;203(2):592-606.

. ShangY,Yang D, Ha Y, Hur Y-S, Lee MM, Nam KH. Brassinosteroid-insensitive

1-Associated receptor kinase 1 modulates abscisic acid signaling by inducing
PYRT monomerization and Association with ABI1 in Arabidopsis. Front Plant
Sci. 2022;13:849467.

. Zhai C, Lin F,Dong Z, et al. The isolation and characterization of Pik, a rice

blast resistance gene which emerged after rice domestication. New Phytol.
2011;189(1):321-34.

Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB, McMullen
MD, Balint-Kurti PJ. Mapping resistance quantitative trait loci for three foliar
diseases in maize recombinant inbred line population-evidence for multiple
disease resistance. Phytopathology. 2010;100:72-9.

Pengfei L, Jiang F, Zhang J, Wang H, Wang X. QTL mapping for resistance to
southern leaf blight in sweet corn. Afr J Agric Res. 2011;6:197-203.

Zaitlin D, DeMars S, Ma Y. Linkage of rhm a recessive gene for resistance to
Southern corn leaf blight, RFLP marker loci in maize (Zea mays) seedlings.
Genome. 1993:36:555-64.

. Belcher AR. The physiology and host genetics of quantitative resistance in

maize to the fungal pathogen Cochliobolus heterostrophus. Dissertation,
North Carolina State University, Raleigh. 2009.


https://doi.org/10.1038/nrg2361
https://doi.org/10.1038/nrg2361
https://doi.org/10.1371/journal.pone.0014079
https://doi.org/10.1371/journal.pone.0014079

Nisa et al. BMC Genomics (2024) 25:760 Page 24 of 24

117. Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ. Identifi-

H V)
cation of teosinte alleles for resistance to southern leaf blight in near isogenic Publisher’s Note
maize lines. Crop Sci. 2017;57:1973-83. Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.



	﻿Insights into maydis leaf blight resistance in maize: a comprehensive genome-wide association study in sub-tropics of India
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Planting material
	﻿Phenotypic evaluation of the mapping panel
	﻿Preparation of mass culture and inoculation procedure
	﻿Data recording
	﻿Statistical analysis of phenotypic data
	﻿DNA isolation and genotyping
	﻿Principal component (PC) analysis, kinship and LD analysis
	﻿Haplotype regression analysis
	﻿Candidate gene mining, in silico expression analysis and interaction predictions
	﻿Phenotypic evaluation of CAAM panel for maydis leaf blight
	﻿Population structure, kinship and linkage disequilibrium (LD) analysis
	﻿GWAS for MLB resistance
	﻿Haplotype detection and regression analysis for the trait
	﻿Functional annotation of the candidate genes
	﻿In silico expression and gene interaction analysis of putative candidate genes

	﻿Discussion
	﻿Conclusion
	﻿References


