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Abstract
Background  In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence 
of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-
trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse 
panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial 
inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a 
total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS).

Results  GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. 
Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated 
with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their 
roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating 
phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential 
candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. 
Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating 
the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico 
studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and 
demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis 
revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained 
by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple 
resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to 
consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE).

Conclusion  The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of 
allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
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Introduction
Maize stands as a cornerstone among global cereal crops, 
holding particular significance in regions like Sub-Saha-
ran Africa, Latin America, and key Asian nations, con-
tributing over 20% of food calories [1]. Notably, Asia, 
boasting eight major maize-producing countries, plays 
a pivotal role, producing 28% of the world’s maize [2]. 
However, maize cultivation in the Asian tropics faces 
formidable challenges, particularly during the monsoon 
season, where diseases such as Maydis Leaf Blight (MLB) 
pose a substantial threat. MLB, caused by the necrotro-
phic fungus Bipolaris maydis also known as Drechslera 
maydis, has emerged as a major economic concern, 
inducing yield losses of up to 30% in warm and humid 
conditions [3]. The historical significance of MLB, nota-
bly its devastating outbreak in the USA in 1970, under-
scores its global impact [4].

The fungus responsible for MLB exhibits three physi-
ological races, with race ‘O’ being cosmopolitan and 
highly aggressive. Race ‘O’ and race ‘T’ produce phyto-
toxins, Hm-O and Hm-T toxins, respectively, leading to 
varying degrees of virulence [5]. MLB, characterized by 
spindle-shaped lesions on leaves, adversely affects photo-
synthetic activity, resulting in significant yield reduction 
[6]. Resistance to MLB is complex, involving quantitative 
inheritance with additive and recessive gene actions [7]. 
Despite its economic impact, our understanding of the 
resistance mechanisms against necrotrophic pathogens, 
especially MLB, lags behind [8].

This study addresses the critical gap in our knowledge 
by employing advanced genomics tools, particularly 
genome wide association studies (GWAS), to unravel 
the genetic basis of MLB resistance in maize [9]. QTL 
mapping using Traditional biparental mapping popula-
tions has consistently proven to be a powerful approach 
for identifying loci that co-segregate with the trait of 
interest within the research population and is known to 
detect rare variant along with the identification of source 
of favourable QTL alleles [10] However, It can only test 
the diversity of segregating alleles between the parental 
strains, and the mapping resolution depends on the num-
ber of recombination events that occur during popula-
tion development, as discussed by Mitchell-Olds et al. 
[11]. Additionally, markers are often sparse due to lim-
ited recombination events. Indeed, GWAS have become 
a powerful tool for understanding the genetic basis of 
various traits and identifying causative loci and genes. 
GWAS, investigates the associations between genetic 
markers, and phenotypes of interest across a diverse set 
of unrelated individuals or lines (unrelated individuals 
means distantly related and heterogeneous individuals) 
of a diverse collection [12]. In association mapping pan-
els, historical recombinations that have accumulated over 
generations, along with long-standing LD established 

over dozens or even hundreds of generations, persist 
among the representative accessions. This persistence 
contributes to improved resolution in association analy-
sis [13] facilitated by the rapid decay of LD.

To date, 140 QTLs have been reported against the 
disease, with chromosome 3 harbouring the maximum 
number of QTLs (at 25 loci). Bin 3.04 was reported in 
many studies [14–19]; as possessing a major QTL and 
was validated in different genetic backgrounds. In addi-
tion, rhm1, a recessive gene with a large effect, was 
reported in bin 6.01 for race O of C. heterostrophus (Bipo-
laris maydis) [17]. Further investigation fine-mapped this 
gene to 8.56 kb region, within which resides a sole poten-
tial candidate gene named lysine histidine transporter 1 
(LHT1), as revealed by Zhao et al. [20]. Additionally, Zea 
maize ascorbate peroxidase gene (ZMAPx1) has recently 
been identified to promote MLB resistance [21]. Another 
gene ZmCCoAOMT2, was reported to play a crucial role 
in imparting quantitative resistance to MLB [22] in mul-
tiple disease resistance QTL qMdr9.02.

 Certain GWAS have been conducted for MLB, provid-
ing valuable insights into the genetic basis of resistance 
[23 ,24, 25] in American, and Chinese environments. 
However, uptill now association mapping studies are 
not conducted in the subtropics of India. The CIMMYT 
Asia Association Mapping (CAAM) panel, is the collec-
tion of diverse set of lines, of diverse origin, from tropics/
sub-tropics of Asia having geographical adaptation to our 
region and represent ample of genetic diversity for vari-
ous traits including MLB. Well adapted resistant variants 
will not only add to allelic diversity but can also serve as 
potential donors to breed for MLB tolerant cultivars, a 
disease of economic importance in India.

Haplotype is defined as a set of nearby genomic struc-
tural variations, such as polymorphic SNPs, with a strong 
linkage disequilibrium (LD) between them. The use of 
haplotypes are known to overcome the biallelic limitation 
of SNPs, enhance the efficiency of identifying QTLs, and 
offer insights into genetic determinants that individual or 
independent marker approaches may miss [26]. There-
fore, this research aims to contribute valuable insights 
into the genomic landscape of MLB resistance, providing 
a foundation for marker-assisted breeding programs with 
the following objectives: evaluating the diverse array of 
the association mapping panel (AMP) for their responses 
to MLB through multilocational artificial screening, 
identify marker -trait associations and candidate genes 
controlling quantitatively inherited MLB resistance 
through genomic wide association studies and perform 
haplotype analysis Furthermore, the in-depth in silico 
characterization of identified candidate genes to enrich 
our comprehension of the defence mechanisms deployed 
against MLB [27]. This study not only addresses a critical 
agricultural challenge but also lays the groundwork for 
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harnessing genomic tools for sustainable maize produc-
tion by developing resilient maize varieties [28]. in vul-
nerable regions.

Materials and methods
Planting material
A subset of CAAM panel, consisting of 359 tropical/
subtropical inbred lines (Table S1) was acquired from 
CIMMYT, Hyderabad. The panel underwent rigorous 
evaluation through artificial inoculation to assess resis-
tance against MLB. This panel comprises maize inbred 
lines derived from various subtropical and tropical pools 
within CIMMYT populations from diverse maize pro-
grams. Specifically tailored for Asian environments, the 
panel not only showcases tolerance to abiotic stresses like 
drought, high temperature, and excess moisture but also 
exhibits resistance to biotic stresses such as downy mil-
dew, underscoring its diversity and suitability for map-
ping relevant traits in the region [29].

Phenotypic evaluation of the mapping panel
The CAAM panel underwent evaluation at two locations 
with high MLB incidence in the Punjab State of India, 
characterized by a humid subtropical climate. These 
locations were Punjab Agricultural University (PAU) in 
Ludhiana and the Regional Research Station, PAU, in 
Gurdaspur, during the Kharif seasons of 2020 (Y1) and 
2021 (Y2). These two locations represent distinct agro-
climatic zones within Punjab State: Ludhiana falls within 
the central plain zone (30.9°N;75.85°E; 733 mm/year rain-
fall), while Gurdaspur is situated in the sub-mountain 
undulated zone (32.04°N; 75.40°E; 1167.8 mm/year rain-
fall). The experimental design employed an alpha lattice 
pattern with two replications in each environment. Each 
entry was planted in paired rows maintaining a spacing 
of 60  cm between rows and 20  cm between individual 
plants.

Preparation of mass culture and inoculation procedure
The most virulent isolate of Drechslera maydis (Dm1) 
was selected for mass culture. Mass multiplication of 
fungal culture was performed on sterile sorghum grains 
(Sorghum bicolor L.) following the methods of Lim [30]. 
Inoculated flasks containing sorghum grains were incu-
bated at 25 ± 2  °C for 15 days until the grains were uni-
formly covered with fungal growth. The impregnated 
sorghum grains were dried by spreading them on a clean 
paper sheet in the shade at room temperature. After dry-
ing, fine powder of these grains were prepared with the 
help of a mixer grinder. Whorl inoculations were per-
formed by placing  2gm of powdered grains compris-
ing of fungal isolate in the whorls of each plant at 35–40 
days after sowing  (DAS). Adequate moisture for a lon-
ger period to permit spore germination was obtained by 

spraying 10–12 ml of water in the whorls using a sprayer. 
To avoid the maximum day temperature (to avoid mortal-
ity by direct exposure to sun sight) during the incubation 
period, inoculation was performed in the late afternoon 
(4–6 p.m.)

Data recording
The disease reaction data were recorded on 10 plants 
from plot of two rows. randomly avoiding border plants 
following a scale of 1–9  of Hooda et al. [31] at two inter-
vals, viz., 45 days after inoculation (DAI) and 55 DAI. 
Phenotypes with a rating of 1 or 3 had yellow-brown 
chlorotic lesion that do not intersect with each other, 
whereas phenotypes with ratings of 6–9 had large elon-
gated necrotic lesions.

Statistical analysis of phenotypic data
All phenotypic data analyses were carried out in META-
R (Multienvironment Trial Analysis with R for Win-
dows) version 6.0 developed by CIMMYT [32]. BLUPs 
were calculated across the individual environments (E1, 
E2, E3, and E4) and for the data from both locations, i.e., 
Ep1 (Ludhiana) and Ep2 (Gurdaspur). All three datasets 
were used for GWAS analysis. The linear models were 
implemented from the package lme4 of R in META-R to 
calculate the BLUPs and variance components. The fol-
lowing linear model was used for analyzing the individual 
environments:

	Y ijk = µ + Repi + Blockj (Repi) + Genk + ijk

where Yijk is the MLB severity, representing phenotypic 
performance of the kth genotype at the jth block in the 
ith replication, µ is the overall mean effect, Repi is the 
effect of the ith replicate, Blockj(Repi) is the effect of the 
jth incomplete block within the ith replicate, Genk is the 
effect of the kth genotype and εijk is the effect of the error 
associated with the ith replication, jth incomplete block, 
and kth genotype, which is assumed to be normal with 
mean zero and variance. For a combined analysis across 
years, the following linear model was used:

	
Y ijkl =µ +Envi + Repj (Envi) + Blockk (EnviRepi)

+Genl +Envi ×Genl + εijkl

Enviis the effect of the ith environment and Envi× Gen-
lis the environment × genotype (G ×E) interaction, In 
both models, all effects, except the overall mean, are 
declared to be random and normal with a mean of zero 
and effect-specific variances. The random assumption for 
the genotype effects allowed us to calculate BLUPs and 
broad-sense heritability.
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	 H2 = σ2g/
(
σ2g + σ2ge/k + σ2e/rk

)

where σ2g, σ2ge and σ2e are the number of genotypes, 
genotype-environment interactions and error variance 
components, respectively; and r and k are the number 
of replications within each environment and number of 
environments, respectively.

DNA isolation and genotyping
Genotyping was conducted on 336 lines using the 
genotyping by sequencing (GBS) platform (GBSv2.7) 
[33] at the Institute of Genomic Diversity, Cornell Uni-
versity, Ithaca, USA. The genomic DNA underwent 
digestion with the ApekI restriction enzyme, and GBS 
libraries were constructed in a 96-plex format before 
being sequenced on the Illumina HiSeq. 2000 [34]. SNP 
calling was executed using the TASSEL GBS pipeline 
[35], with B73 serving as the reference genome. The FIL-
LIN method in TASSEL 5.0 was employed to partially 
impute missing genotypic data. The partially imputed 
dataset comprised 955,690 SNPs distributed across all 
chromosomes. For our GWAS study, filtering criteria of a 
call rate > 0.9, Minor Allele Frequency (MAF) > 0.05, and 
heterozygosity < 30% were applied, resulting in a refined 
dataset of 128,490 SNPs. Principal Component Analysis 
(PCA), kinship matrix, and linkage disequilibrium (LD) 
were calculated using this curated set of SNPs.

Principal component (PC) analysis, kinship and LD analysis
PCA [36], kinship, and LD analysis was conducted in 
Genomic Association and Prediction Integrated Tool 
version 3 (GAPIT) [37]. A three-dimensional plot of 
principal components was drawn to visualize the possi-
ble population stratification among the samples. A scree 
plot was generated to determine the number of princi-
pal components to be included in the GWAS. The kin-
ship matrix was generated with the Van-raden algorithm 
and was visualized as a heatmap. The LD was estimated 
by using all the markers and their neighbouring mark-
ers as pairwise r2 values (the squared correlation among 
alleles at two SNPs). The LD decay was plotted as r2 val-
ues between SNPs against the physical distances (kb) 
between SNPs at r2 = 0.1. 

Genome-Wide Association Mapping:    GWAS was 
performed on the BLUP values obtained for the final dis-
ease score across environments (E1, E2, E3, and E4) and 
on the pooled dataset of two years at location 1 (Ludhi-
ana) and location 2 (Gurdaspur) (Ep1 and Ep2 respec-
tively) on 336 inbred lines  (and as supplementary on 
individual environments) . GBS was used for genotyping 
to generate 128,490 SNPs and used for GWAS mapping 
The SNPs were distributed across all ten maize chromo-
somes. A density plot was constructed for chromosome 
wise SNPs within  1 Mb window (Fig. 1a, b).

GWAS was performed using the Bayesian-information 
and linkage disequilibrium iteratively nested keyway 
(BLINK) package as implemented in GAPIT version 3 in 
the R version 4.2.1 software environment [38, 39]. BLINK 
approach employs a multi-locus model for the evaluation 
of markers distributed across the genome and conducts 
two fixed-effect models iteratively. One model tests one 
marker at a time with multiple associated markers as 
fixed effects to account for population structure, and the 
other model tests the covariate markers to control spuri-
ous associations [40]. The GWAS results were visualized 
by plotting -log10P values as Manhattan plots. The values 
are plotted against the chromosomal position of the SNPs 
in GAPIT V.3. The quantile–quantile plots (Q–Q plots) 
in BLINK represented observed versus expected nega-
tive log10P value that deciphered the severity of inflation 
test statistics. The set Bonferroni-corrected threshold at 
P < 0.1 was very stringent; therefore, the suggestive or 
exploratory P value threshold to control the genome-
wide type 1 error rate was estimated as < 9.0 × 10− 5 for 
identifying the significant SNPs for MLB from the set of 
128,490 markers and considered as the significance cut-
off for the association [41, 42].The final number of signifi-
cant SNPs/MTAs was chosen after accounting for SNPs 
which were consistent or common across Ep1, Ep2 and 
combined environmentsThe allelic effects were depicted 
for four associated markers/SNP. It was determined 
by using disease score data of 336 inbred lines for both 
alleles (major and minor) of the SNP. The effect was rep-
resented as difference between the groups by box plots 
using Kruskal-Wallis test. The test statistic H (chi2) is 
computed as follows:

	
H =

12

n(n + 1)

(
∑

g

T 2
g

ng

)
− 3(n + 1)

where ng is the number of elements in group g, n is the 
total number of elements, and Tg is the sum of ranks in 
group g. The test was done to see whether the effect of 
alleles differ significantly in resistant and susceptible lines 
for the disease score. The analysis was performed in Past 
V.4.13 [43] and DATA Table (2023) [44].

Haplotype regression analysis
Haplotype regression analysis was executed in SNP & 
Variation Suite (SVS) Version 8.6.0 (SVS, Golden Helix, 
Inc., Bozeman, MT, www.Goldenhelix.com). SNPs within 
the bottom 0.1 percentile of the distribution in GWAS 
for all three datasets were selected for haplotype detec-
tion and trait regression. Haplotype frequency estimation 
was done using the Expectation Maximisation (EM) algo-
rithm with 50 EM iterations [45]. EM is an iterative opti-
misation method that uses machine learning algorthims 

http://www.Goldenhelix.com
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to find maximum likelihood and is known to handle 
missing data. EM convergence tolerance of 0.0001 and 
a frequency threshold of 0.01 was used. To minimise the 
historical recombination, haplotype blocks were detected 
based on the block defining algorithm [46] because the 
regions with little evidence of recombination among 
common alleles is considered for assembling the diversity 
and forms a biological basis of objectively defining haplo-
type blocks. Regression analysis was carried out with the 
haplotypes detected, based on step-wise regression of the 
MLB BLUP estimates of all three datasets with forward 
elimination at Bonferroni value cut off  ≤ 0.05. Haplotype 
regression analysis uses the expected number of copies 
of the haplotypes considering genotype as explanatory 

variable. It has high computational efficiency then Bayes-
ian methods.

Candidate gene mining, in silico expression analysis and 
interaction predictions
The SNP markers significantly associated with the trait 
were searched in MaizeGDB (http://www.maizegdb.
org) against the reference genome B73_RefGen_V2 to 
find the physical position of the identified markers and 
flanking genes. A gene with a marker located within it 
or the closest high-confidence gene within 0.9 kb flank-
ing of the SNP’s physical position was considered as the 
associated gene to that marker. Information about these 
genes was gathered from NCBI (https://www.ncbi.nlm.

Fig. 1  (a) Density plot representing chromosome wise SNPs within  1 Mb window. The horizontal axis of the density plot shows the chromosome length 
(Mb), and the colours reflect the SNP density distribution, with white indicating the lowest number of SNPs and strong red representing a greater number 
or density of SNPs. (b) Distribution of markers on all 10 chromosomes of maize
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nih.gov/entrez) and the MaizeGDB (www.maizegdb.org) 
database. The functions of the predicted candidate genes 
were reviewed to establish their significance in enhancing 
resistance. Details on the gene families and Gene Ontol-
ogy (GO) terms of the candidate genes were obtained 
from PLAZA (version 5). In silico expression analysis of 
the genes was carried out using publicly available expres-
sion data, presented as fragments per kilobase of tran-
script per million mapped reads (FPKM), sourced from 
the q-Teller Maize GDB database (http://www.maizegdb.
org). This data, compiled by Walley et al. [47], originated 
from a comprehensive gene expression atlas constructed 
through mRNA sequencing (mRNA-seq) involving three 
biological replicates from 23 distinct tissues. Our analy-
sis specifically considered leaf tissue from various zones 
(zone 1: symmetrical, leaf zone 2: stomatal, leaf zone 3: 
growth, and mature leaf ), in addition to the vegetative 
meristem (16–18 days). The gene expression patterns 
were visualized as a heatmap using TBtools software 
[48], following the log2 transformation of FPKM values 
[49]. To detect interactions and coexpression among the 
candidate genes, GeneMANIA (https://genemania.org/) 
was employed. Query list of candidate genes was used 
as input. By default geneMania prediction server utilizes 
adaptive network weighted method to dertermine the 
network. GeneMania extended the list of query genes 
with the functionaly similar genes. The default force 
directed COSE network was formed based on weighted 
sum of individual data sources. The prediction server uti-
lised databases; Gene expression omnibus (GEO) along 
with Interpro for co-expression data and BioGRID for 
physical interaction data [50, 51] Results.

Phenotypic evaluation of CAAM panel for maydis leaf 
blight
The panel displayed significant variations (P value < 0.001) 
in disease severity on a disease scale ranging from 1 to 
9. The disease pressure was high for MLB at both loca-
tions, as observed by the disease severity score of ≥ 7 dur-
ing 2020 and 2021 under artificial epiphytotic conditions. 
The environment-wise average disease score (DS) ranged 
from 2.11 to 7.93 (E1), 3.23–7.08 (E2), 2.94–8.9 (E3), 

and 2.54–8.07 (E4), whereas the DS ranged from 3.15 to 
7.93 across the environments (based on a dataset of four 
environments). The DS ranged from 2.89 to 7.06 at Ep1 
(based on two datasets at location 1) and 3.29–7.34 at 
Ep2 (based on two datasets at location 2). The estimate 
of broad sense heritability across the environments (0.79) 
(E1, E2, E3, E4) as well as for pooled within locations; 
Ep1 (0.61) and Ep2 (0.76) was moderate to high (Table 1). 
The environment-wise frequency distribution of panel 
belonging to four classes of resistance is represented by 
bar plots (Fig.  2). Maximum number of lines were fall-
ing in the class of moderate resistance (DS scale 4–5) and 
moderate susceptibility (DS scale 6–7) in each of four 
environments.

Population structure, kinship and linkage disequilibrium 
(LD) analysis
Principal component analysis and kinship analysis of the 
association panel were conducted using a filtered set of 
SNPs (128,490). The first three principal components 
(PCs) encapsulated most of the genetic variation, as illus-
trated in Fig. 3a. The pairwise relative kinship matrix of 
the 336 genotypes revealed a low levels of genetic relat-
edness within the panel, (Fig. 3b). Genome wide LD plot 
displayed the LD decay of 0.9 at r2 = 0.1 (Fig. 3c).

GWAS for MLB resistance
GWAS was performed with a subset of 128,490 SNPs 
following BLINK model after a rigorous quality check. 
This model corrects both kinship (K) and population 
structure (Q), as depicted by the least genomic inflation 
deciphered from the Q‒Q plot (Fig.  4a, b, c). The dis-
tribution of SNPs across chromosomes showed greater 
density at the ends and lower density at the centro-
meric regions, with chromosome 1 having the highest 
number of SNPs (20302) and chromosome 10 having 
the lowest number of SNPs (8736). The P value thresh-
old was (< 9.0 × 10− 5) for identifying the significant SNPs 
for MLB In each dataset, Manhattan plots (Fig. 4d, e, f ) 
were generated to display the -log10P value of each SNP 
from the association study. At P value < 9.0 × 10− 5, 13 
SNPs were detected across environments (E1, E2, E3, and 

Table 1  Variance components and descriptive statistics of CAAM panel for MLB disease score
Heritability (h2) Genotype variance Residual variance Mean Range LSD CV

Ludhiana (Ep1) 0.61 0.96*** 0.47 5.35 2.89–7.06 2.17 12.87
Gurdaspur (Ep2) 0.76 0.80*** 0.63 4.94 3.29–7.34 1.43 16.04
ACROSS 0.79 0.85*** 0.56 5.16 3.15–7.93 1.33 14.46
LDH 20 (E1) 0.93 1.29*** 0.20 5.04 2.11–7.93 0.87 8.91
GRD20 (E2 0.72 0.75*** 0.59 4.90 3.23–7.08 1.55 15.72
LDH21(E3) 0.87 2.54*** 0.75 5.65 2.94–8.5 1.71 15.36
GRD21(E4) 0.78 1.23*** 0.69 4.98 2.54–8.07 1.65 16.62
***p < 0.001, Ep1- pooled environment Ludhiana (Ldh); Ep2- pooled environment Gurdaspur (Grd),  across-Combined over environments (E1: Ldh 2020, E2: Grd 2020, 
E3:Ldh 2021, E4: Grd 2021), h2-broad sense heritability, LSD- Least square distance, cv- coefficient of variation

https://www.ncbi.nlm.nih.gov/entrez
http://www.maizegdb.org
http://www.maizegdb.org
http://www.maizegdb.org
https://genemania.org/
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E4), with P value ranging from 1.6 × 10− 6 to 8.3 × 10− 5 
and an effect size ranging from − 0.46 to 0.43. Six SNPs 
were detected in the pooled environment Ep1, for which 
the P value ranged from 9.1 × 10− 6 to 7.1 × 10-5 and the 
effect size ranged from − 0.34 to 0.33. Fifteen SNPs were 
detected in the pooled environment Ep2, for which the P 
value ranged from 3.8 × 10− 6 to 8.4 × 10-5, and the effect 
size ranged from − 0.33 to 0.44. Six SNPs overlapped 
between across environment analysis and location-
wise analysis, whereas only one SNP (S8_155841067) 
was found to overlap between Ep1 and Ep2. Five 
SNPs (S8_152460815, S5_140936401, S3_156792785, 
S8_155841067, and S8_162518701) overlapped in both 
Ep2 and across environments analysis (E, E2, E3, and 
E4), and three SNPs (S6_130006038, S8_155841067, and 
S1_232344813) overlapped among Ep1 and across envi-
ronments analysis (E, E2, E3, and E4). (Table  2). Of the 
34 identified SNPs in the present study, 26 SNPs were 

considered significant after accounting for common 
SNPs according to the cumulative analysis of the datas-
ets. SNP S8_155841067 showed the strongest association 
with the lowest P value and was reportedly most stable 
SNP across (combined), pooled, and individual envi-
ronments (E2 and E3) as well (Table S2 a, b, c). Chro-
mosome 8 harboured the highest number of significant 
SNPs (six SNPs) in two different chromosomal bins: 
8.06 (5 SNPs) and 8.01 (1 SNP). Seven SNPs that exhib-
ited a significant association with MLB were reported 
from novel chromosomal bins, viz., 9.01 (S9_8243435), 
7.04 (S7_161657633), 9.06 (S9_141454813), 6.05 
(S6_141510514), 5.01 (S5_3412526), 1.04 (S1_52252512), 
and 4.06 (S4_166482019). The allelic effects of the four 
significant (Fig.  5) and common SNPs reported from 
combined environments and pooled environments (Ep1, 
Ep2) were examined using the Kruskal-Wallis test. These 
SNPs were harboured in the chromosomal bins 8.06 (3) 

Fig. 2  Frequency distribution of genotypes in different classes of resistance for MLB (1-3-resistant; 4-5-moderate resistant; 6-7-moderate susceptible; 
8-9-susceptible)

 



Page 8 of 24Nisa et al. BMC Genomics          (2024) 25:760 

and 6.01 (1), which were reported to be enriched with 
QTLs for resistance against MLB and other diseases. The 
chi-square values and probability (P) values indicated 
presence of significant phenotypic differences in plant 
MLB score for allelic effects of all four SNPs (Table  3). 
Box and whisker plots were employed to illustrate the 
significant allelic effects of the SNPs for MLB resistance 
(Fig.  5). For all four SNPs, homozygous combination of 
favourable alleles were reported in resistant lines with 
lowest disease score (< 3.0), e.g. allele ‘CC’ (homozygous) 
for SNP S8_155841067. In contrast, lines with the ‘TT ' 
allele (homozygous) exhibited mean disease scores rang-
ing from 7.9 to 8.0, indicating their susceptibility to MLB.

Haplotype detection and regression analysis for the trait
A set of 188 SNPs in the bottom 0.1 percentile distribu-
tion in GWAS study of across, Ep1 and Ep2 were used for 
haplotype detection. The analysis identified 75 haplotype 
blocks across the 10 chromosomes. Haplotype Regres-
sion Analysis (HTR) was carried out with 75 haplotypes 
on MLB BLUP estimates of three individual datasets 
separately. For across environments 31 haplotype blocks 
were identified at Bonferroni value ≤ 0.05 that explained 

4.19–16.05% phenotypic variance. Twenty one significant 
haplotype blocks were identified for Ep1 with explained 
phenotypic variance of 3.45–10.56% and 36 haplotype 
blocks detected were associated with MLB resistance 
in Ep2 explaining phenotypic variance of 3.78–16.44% 
(Table S1). Thirteen common significant (Bonferroni 
value ≤ 0.05) haplotype blocks were identified in HTR 
analysis of Ep1 and Ep2 environments.

These haplotype blocks which include 2–5 SNPs were 
spread on seven chromosomes (1, 2, 3, 4, 8, 9 and 10 and 
the proportion of variance explained by these common 
blocks ranged from3.45–10.57% (Table  4). These com-
monly identified significant haplotype blocks were subse-
quently compared with the SNPs identified in GWAS and 
candidate genes reported. Among them, one particular 
haplotype block (Hap_8.3) was found to consist two SNPs 
(S8_152715134, S8_152460815) identified in GWAS.

Functional annotation of the candidate genes
Twenty-five unique candidate genes were identified for 
MLB resistance. These genes, were found to possess 
functional domains associated with biotic stress toler-
ance. Three candidate gene models (3) were associated 

Fig. 3  Principal component analysis (PCA) and Kinship matrix results (a) Three-dimensional plot of the first three principal components, (b) Kinship heat 
map depicting genetic distance between 336 inbreds. The colour histogram indicates the distribution of coefficients of co-ancestry, with white to yellow 
hue for our inbred lines representing lower genetic relatedness as per the colour key, whereas as stronger red represents higher relatedness, (c) Linkage 
disequilibrium (LD) decay plot in CAAM panel based on 128,490 SNPs
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with SNP S8_155841067 (lowest P value) on chromo-
some 8 (bin 8.06), i.e., B3 domain-containing protein 
(gene harbouring the SNP), SPA1 protein (suppres-
sor of Phya-105 1), and RNA helicase (ATP-dependent 
helicase rhp16) (genes flanking the physical distance of 
0.9-1 kb from the position of SNP) Additional gene mod-
els reported from bin 8.06 included the ABC transporter 
protein family member, AP-4 complex (subunit epsilon), 
abi20-ABI3-VP1-transcription factor 20, and AP2/ERF 
domain-containing protein. Moreover, one gene, PR5-
like receptor kinase, was identified in bin 8.01. These 
genes may be functionally relevant for defending against 

necrotrophic fungi. Genes with different DNA-binding 
domains mediated by jasmonic acid (JA) signalling, lead-
ing to activation of defence, were also identified. For 
example, the MYB DNA-binding domain superfamily 
and Indole-3-pyruvate monooxygenase YUCCA1 were 
found on chromosome 6 (6.01). The basic helix-loop-
helix (bHLH) DNA-binding superfamily protein-produc-
ing gene was found on chromosome 5 (5.04), the lipolytic 
acyl hydrolase (LAH)/patatin protein producing gene was 
reported on chromosome 1 (1.06), and the genes Wun1 
and vq4-VQ motif transcription factor 4 were reported 
in bins 6.05 and 1.04. Apart from the above genes, we 

Fig. 4  Quantile–quantile plot (Q–Q plot) of MLB resistance from (a) the across environments, (b) pooled analysis from two years of evaluation at Env 1 
(Ep1), and (c) pooled analysis from two years of evaluation at Env 2 (Ep2), representing observed versus expected negative log10P values deciphering the 
severity of inflation test statistics. Manhattan plot of GWAS analysis of MLB resistance from (d) the across-environment analysis, (e) pooled analysis from 
two years of evaluation at Env 1 (Ep1), and (f) pooled analysis from two years of evaluation at Env 2 (Ep2) with the individual SNPs on all chromosomes 
on the X-axis and –log10P values of each SNP on the Y-axis. The different colours represent the 10 chromosomes of Zea mays L. The black line marks the 
threshold for an exploratory P value
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identified one NBS-LRR defence protein-encoding gene, 
PIK6-NP, on chromosome 10 (10.3). Genes Brassino-
steroid-insensitive 1-associated receptor kinase and 
ubiquitin protein (ligase-binding) were reported on chro-
mosome 1 (1.08). Gene Sterol 3-beta-glucosyltransferase 
UGT80A2 was reported on chromosome 2 (2.08). Other 
genes associated with the significant SNPs that are iden-
tified in different chromosomal bins were CLAVATA3 
embryo surrounding region-related-16 (9.06), calcium-
dependent protein kinase 7 (5.01), bZIP transcription 
factor 23 (9.01), putative amino acid acetyl-transferase 
NAGS1 (7.04), aspartic proteinase nepenthesin-2 (4.06), 
vq4-VQ motif-transcription factor 4 (1.04), the wound-
induced protein Wun1, and the auxin responsive Aux/
IAA family member (6.05). These genes have been func-
tionally annotated in the literature for the induction of 

pathogenesis-related (PR) gene expression and there-
fore can be considered to prompt defence against MLB 
(Table 5).

In silico expression and gene interaction analysis of 
putative candidate genes
Gene expression data were specifically curated for 22 
candidate genes, as detailed in Fig.  6a, b. The remain-
ing genes (3) did not have available expression data 
across the four leaf stages or for the vegetative meri-
stem in the database. Genes GRMZM2G033413, 
GRMZM5G813007, GRMZM2G031352, AC210013.4_
FG014, GRMZM2G061602, GRMZM2G164787, 
GRMZM2G031584, and GRMZM2G313737 exhibited 
increased expression in all four stages of the leaf and 
vegetative meristem, whereas GRMZM2G033413/bZIP 

Table 2  Significant SNPs for MLB resistance identified in CAAM panel in different environments
SNP © Chr Pos (B73 V_2) P.value MAF Effect Allele

Across Environments (E1, E2, E3, E4) S8_155841067 chr8 155,841,067 1.6 × 10− 6 0.08 0.430147 C/T
S3_156792785 chr3 156,792,785 3.4 x 10− 6 0.10119 -0.46926 T/G
S1_232344813 chr1 232,344,813 8.6 × 10− 6 0.214286 -0.33994 G/A
S8_152715134 chr8 152,715,134 1.0 × 10− 5 0.16369 -0.35597 T/A
S8_162518701 chr8 162,518,701 1.3 × 10− 5 0.331845 -0.26475 G/C
S6_130006038 chr6 130,006,038 1.8 × 10− 5 0.300595 -0.2915 G/A
S5_140936401 chr5 140,936,401 2.1 × 10− 5 0.25744 0.266323 C/G
S4_166482019 chr4 166,482,019 4.8 × 10− 5 0.125 0.371895 C/T
S8_148676841 chr8 148,676,841 5.3 × 10− 5 0.116071 -0.33136 C/A
S2_223252193 chr2 223,252,193 5.7 × 10− 5 0.13244 -0.3614 G/C
S6_21316804 chr6 21,316,804 7.0 × 10− 5 0.171131 -0.3094 T/G
S8_8887701 chr8 8,887,701 7.2 × 10− 5 0.275298 0.250936 G/A
S4_11836688 chr4 11,836,688 8.3 × 10− 5 0.107143 0.405554 C/T

Ep1 S6_130006038 chr6 130,006,038 9.1 × 10− 5 0.300595 -0.2899 G/A
S7_161657633 chr7 161,657,633 1.9 × 10− 5 0.19494 0.332909 A/T
S8_155841067 chr8 155,841,067 3.8 × 10− 5 0.080357 0.35661 C/T
S9_8243435 chr9 8,243,435 4.3 × 10− 5 0.181548 -0.34259 G/T
S1_232344813 chr1 232,344,813 6.9 × 10− 5 0.214286 -0.2929 G/A
S2_157608147 chr2 157,608,147 7.1 × 10− 5 0.389881 -0.19765 A/G

Ep2 S6_34825812 chr6 34,825,812 3.8 × 10− 5 0.083333 0.439454 C/T
S8_152460815 chr8 1.52E + 08 1.1 × 10− 5 0.074405 0.449882 T/A
S5_140936401 chr5 1.41E + 08 2.1 × 10− 5 0.25744 0.259789 C/G
S1_200269986 chr1 2E + 08 2.3 × 10− 5 0.08631 0.385707 A/G
S8_148676841 chr8 1.49E + 08 2.5 × 10− 5 0.116071 -0.33722 C/A
S3_156792785 chr3 1.57E + 08 3.8 × 10− 5 0.10119 -0.40914 T/G
S9_141454813 chr9 1.41E + 08 4.6 × 10− 5 0.25744 -0.29864 T/A
S6_141510514 chr6 1.42E + 08 5.2 × 10− 5 0.071429 -0.4189 G/A
S5_3412526 chr5 3,412,526 5.3 × 10− 5 0.263393 0.254293 A/G
S8_155841067 chr8 1.56E + 08 5.6 × 10− 5 0.080357 0.355416 C/T
S5_13798307 chr5 13,798,307 6.2 × 10− 5 0.395833 -0.23036 G/T
S1_52252512 chr1 52,252,512 7.4 × 10− 5 0.090774 0.366379 A/C
S1_233546091 chr1 2.34E + 08 8.3 × 10− 5 0.165179 -0.33468 C/T
S8_162518701 chr8 1.63E + 08 8.3 × 10− 5 0.331845 -0.23456 G/C
S10_83669175 chr10 83,669,175 8.4 × 10− 5 0.061012 0.442897 G/T

© MAF - minor allele frequency, effect- SNP effect + represents major allele as favorable allele and – represents minor allele as favorable allele, Ep1 represents pooled 
dataset of two years at E1(Ludhiana), Ep2 represents pooled dataset of two years at E2 (Gurdaspur)
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transcription factor 23 had the highest expression among 
all the genes, followed by GRMZM5G813007/amino-
acid acetyltransferase NAGS1. The other genes exhibited 
expression only in some leaf zones. The identified candi-
date genes (22) were queried into the GeneMANIA web 

server for functional prediction. The physical interaction 
and coexpression between the genes in the network were 
8.98% and 88.70%, respectively (Fig.  7a, b). The genes 
SPA1/ GRMZM2G061602 and ABI3/GRMZM2G313737 
were identified on the same chromosome, Chr8 (8.06), in 
close proximity to the single SNP S8_155841067. Nota-
bly, these genes have been reported to physically interact 
and coexpress within gene networks. The gene network 
extended its association with other genes, e.g., between 
the genes AT3G56880.1 (candidate gene) and WRKY75 
(from the network). Both of these genes act as positive 
jasmonate-mediated regulators of plant basal defence 
against necrotrophic fungal pathogens and were reported 

Table 3  List of SNPs/MTAs with significant differences between 
allelic effects on the basis of Kruskal–Wallis test
SNP Allele H (chi2) P value
S8_ 155,841,067 C/T 14.09 0.00087***
S8_152715134 T/A 10.66 0.004849**
S6_34825812 C/T 24.61 4.52E-06***
S8_152460815 T/A 19.36 6.24E-05***
*<0.05, **<0.01, ***<0.001

Fig. 5  Box-plots depicting allelic effect differences of SNPs/ MTAs based on Kruskal-wallis non-parametric test; (a) S8_ 155841067, (b) S6_34825812, (c) 
S8_152715134, and (d) S8_152460815)
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to be coexpressed in the network. While the remaining 
identified candidate genes did not display direct rela-
tionships with each other, they did exhibit associations 
with genes belonging to the same family. For instance, 
UBQ10/GRMZM2G164787 with UBQ13 and BZIP23/
GRMZM2G033413 with BZIP53 were related to the 
shared protein domain family.

Discussion
Maize leaf blight, caused by the necrotrophic pathogen 
Bipolaris maydis, presents a significant global threat to 
maize cultivation. This polycyclic disease becomes epi-
demic under favourable conditions, and phenotyping 
under artificial epiphytotic conditions with high disease 
pressure proves to be cost-intensive. Therefore, a pro-
found understanding of host plant resistance (HPR) is 
imperative to identify molecular markers for MLB resis-
tance and enhance the efficiency of developing resistant 
tropical and subtropical maize germplasm [52]. The pres-
ent study leveraged high heritability (0.79) for the MLB 
disease score, based on pooled data from the CAAM 

panel, in four environments, suggesting the possibil-
ity of accurate phenotypic selection to breed for MLB 
resistance in maize [53, 54]. The CAAM panel exhibited 
lower genetic relatedness, rapid linkage disequilibrium 
(LD) decay, and a moderate population structure. Mod-
erate population structure in CIMMYT Asia tropical 
and sub-tropical lines was reported in previous studies 
[55]. George et al. [56] corroborated this observation and 
reported substantial diversity in tropical and subtropi-
cal lines in the Asian region, rendering it challenging to 
establish clear-cut distinctions into well-defined clusters. 
Warburton et al. [57] suggested that this could be due to 
the fact that the populations from where Asian lines were 
derived had a heterogeneous nature with larger diversity 
within, than between source populations. It is known 
that LD decays more rapidly in tropical maize germ-
plasm (1  kb) than in temperate germplasm (10  kb), but 
faster LD decay rates have been reported in some tropical 
diversity panels [58].

Identification of 26 SNPs significantly associated with 
MLB with low to moderate effect sizes across all 10 

Table 4  Common haplotypes identified at Ludhiana (Ep1) and Gurdaspur (Ep2) using haplotype trend regression analysis for MLB 
resistance in CAAM panel
Hap-
lotype 
block

Chromosome Markers Used P-Value R Squared 
(%)

Bonfer-
roni 
P- Value

FDR Selected 
Regressors

Environments©

Hap_1.1 1 S1_11475895, S1_11850802, 
S1_11991587

9.7 × 10− 5 7.266 7.2 × 10− 3 2.9 × 10− 4 GTT, ACT Ep-2
5.5 × 10− 4 4.745 4.1 × 10− 2 2.2 × 10− 3 GTT Ep-1

Hap_1.2 1 S1_289686730, S1_289688084 1.4 × 10− 4 5.138 1.0 × 10− 2 3.7 × 10− 4 AT Ep-2
3.2 × 10− 4 4.610 2.4 × 10− 2 1.6 × 10− 3 TC Ep-1

Hap_2.1 2 S2_1353042, S2_1553601 9.1 × 10− 8 9.150 6.8 × 10− 6 2.2 × 10− 6 GC Ep-2
1.3 × 10− 4 4.767 1.0 × 10− 2 1.4 × 10− 3 GC Ep-1

Hap_2.2 2 S2_12027414, S2_12241580 3.6 × 10− 5 6.560 2.7 × 10− 3 1.3 × 10− 4 GC Ep-2
1.5 × 10− 5 7.167 1.1 × 10− 3 3.8 × 10− 4 GC Ep-1

Hap_2.3 2 S2_205904685, S2_205905808 6.5 × 10− 6 6.161 4.9 × 10− 4 4.9 × 10− 5 GA Ep-2
2.8 × 10− 4 4.038 2.1 × 10− 3 1.6 × 10− 3 GA Ep-1

Hap_3 3 S3_56134621, S3_56812535 1.6 × 10− 5 7.322 1.2 × 10− 3 7.9 × 10− 5 TA Ep-2
1.9 × 10− 4 5.553 1.4 × 10− 2 1.7 × 10− 3 TA Ep-1

Hap_4 4 S4_149745183, S4_149899657 7.2 × 10− 5 5.052 5.4 × 10− 3 2.6 × 10− 4 CC Ep-2
3.2 × 10− 4 4.175 2.4 × 10− 2 1.7 × 10− 3 CC Ep-1

Hap_8.1 8 S8_3292504, S8_3427103, 
S8_4258284

5.2 × 10− 6 8.895 3.9 × 10− 4 4.9 × 10− 5 TGG, GCA Ep-2
2.1 × 10− 4 5.114 1.5 × 10− 2 1.5 × 10− 3 GCA Ep-1

Hap_8.2 8 S8_8731001, S8_8731102 2.7 × 10− 8 8.938 2.0 × 10− 6 1.0 × 10− 6 CG Ep-2
6.5 × 10− 4 3.459 4.9 × 10− 2 2.3 × 10− 3 CG Ep-1

Hap_8.3 8 S8_151346456, 
S8_152460815, S8_152715134

7.4 × 10− 6 9.353 5.5 × 10− 4 5.0 × 10− 5 GAT Ep-2
5.9 × 10− 4 5.597 4.4 × 10− 2 2.3 × 10− 3 GAT Ep-1

Hap_9 9 S9_73520507, S9_74919639, 
S9_89451669, S9_89598809, 
S9_99083878

3.7 × 10− 4 6.279 2.7 × 10− 2 8.9 × 10− 4 ACGGC Ep-2
2.7 × 10 − 4 6.561 2.0 × 10− 2 1.8 × 10− 3 ACGGC Ep-1

Hap_10.1 10 S10_12104511, 
S10_14001955, S10_14522387

5.8 × 10− 4 3.783 4.3 × 10− 2 1.2 × 10− 3 CAT Ep-2
4.8 × 10− 9 10.570 3.6 × 10− 7 3.6 × 10− 7 CAT Ep-1

Hap_10.2 10 S10_140737865, 
S10_141006825

2.8 × 10− 5 5.655 2.0 × 10− 3 1.2 × 10− 4 AG Ep-2
2.7 × 10− 4 4.292 2.0 × 10− 2 1.7 × 10− 3 AG Ep-1

©Ep1 represents pooled dataset of two years at E1(Ludhiana), Ep2 represents pooled dataset of two years at E2 (Gurdaspur)
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chromosomes suggested that resistance to MLB is gov-
erned by multiple quantitative trait nucleotides (QTNs) 
with small effects. Our observation of the quantitative 
nature of MLB has been reported in earlier studies also 
[14–15]]. Chromosome-specific analysis reveals crucial 
genomic regions that are important for disease resis-
tance in general, and resistance to MLB in particular. 

Chromosomal bin 8.06, found in our study, comprised 
five SNPs. The physical coordinates of these identi-
fied SNPs colocalized with the QTL qMSR8 (151.45 to 
166.98  Mb), which was identified from the same AM 
panel and validated for charcoal rot (caused by a necro-
trophic pathogen) [54]. This bin also harbours QTLs for 
other important diseases; GLS, NCLB, common rust, 

Fig. 6  (a) Graphical representation of expression data as Fragments per kilobase of transcript per million map reads of 22 candidate genes, (b) Heatmap 
exhibiting the expression patterns (Log2 transformed FPKM values) of candidate genes in leaf tissue at four different stages and in the vegetative meri-
stem; blue represents lower values, and red represents higher values
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and smut [59, 60]. Furthermore, comprehensive meta-
QTL analysis revealed the presence of a cluster of QTLs 
on chromosome 8, accompanied by significant consensus 
QTLs associated with MLB, NCLB, and GLS, all located 
within a narrow confidence interval [61]. Based on these 
well-aligned reports, we suggest further studies on the 
significant associations we have detected in this chro-
mosomal bin for validation and deployment efforts to 
combat MLB effectively. Furthermore, Bin 8.01 (compris-
ing SNP S8_8887701) corresponds to a previous study 
reporting a QTL (qAUDPC8.1) in the Indian germplasm 
for MLB, emphasizing relevance of bin 8.01 in MLB resis-
tance [62]. Chromosome 3 has been reported to harbour 

the maximum number of QTLs (at 25 loci) for resistance 
to MLB specifically in bin 3.04 [15–17, 19], ] possess-
ing major QTLs which are validated in different genetic 
backgrounds. A meta-QTL study highlighted the signifi-
cance of genomic regions within bins 3.04–3.08 for MLB 
resistance 61]]. We identified one SNP (S3_156792785) in 
bin 3.05 in our GWAS study. This bin is also recognized 
for harbouring stable genomic regions linked to other 
diseases caused by necrotrophs, e.g., fusarium ear rot 
[63].

We identified two SNPs within chromosomal bin 6.01 
(S6_21316804 and S6_34825812). Bin 6.01 is recognized 
as a hotspot for resistance against various viral diseases, 

Fig. 7  (a) Illustration of the physical interaction and co-expression network of candidate genes and allied genes depicted by GeneMANIA. Pink lines 
signify physical interactions among the candidate genes and other genes from the same family, while light purple lines represent the co-expression of 
these genes. (b) Percentage of each category of interactions among the genes
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and MLB [64]. A minor QTL associated with MLB 
resistance was reported in this bin [41]. Moreover, the 
rhm1 gene, known to confer complete MLB resistance 
against race ‘O’, is situated within or in close proximity 
to bin 6.01 [ 17]. Our findings suggest the possibility of a 
broader spectrum of allelic variation against MLB within 
bin 6.01. Three SNPs were reported on chromosome 5, 
among which one SNP (S5_140936401) was reported in 
bin 5.04. Previous studies [22, 65], ] have identified sig-
nificant SNPs associated with MLB resistance within bin 
5.04. Additionally, bin 5.04 has been reported to host 
resistance against NCLB, GLS, and MLB, as documented 
by Martins et al. [66 ]. A single SNP was identified on 
chromosome 10 (10.3), which remarkably correspond 
with earlier research findings where a disease QTL 
(dQTL) for MLB was reported. This finding emanated 
from two B73-resistant NILs (NC292 and NC330) against 
MLB, which were developed by repeated backcross-
ing with elite source of MLB resistance (NC250P), fur-
ther reinforcing the significance of this genomic region 
in conferring resistance [66]. Two SNPs identified to be 
significantly associated with MLB resistance in this study 

(S1_233546091 and S1_232344813) on Chromosome 1 
(bin 1.08), colocalized with earlier reported SNPs against 
NCLB [36] and Fusarium stalk rot [67] in the same panel. 
Moreover, in previous studies, no SNPs or QTLs colocal-
ized with the physical coordinates of SNPs reported in 
the seven novel chromosomal bins associated with MLB 
(Table 6).

The majority of the haplotype blocks identified from 
our haplotype detection analysis were formed with two 
or three SNPs. The size of these haplotypes is intricately 
linked to the level of linkage disequilibrium (LD) within 
the population under study, as elucidated by Slatkin 
(2008) [68]. A rapid decay of LD results in the formation 
of smaller haplotype [69, 70]. A single haplotype block 
(Hap_8.3) exhibiting a significant effect was identified 
within chromosomal bin 8.06, which corroborated with 
our GWAS findings. This haplotype was found to account 
for approximately 9.3% (Ep2) and 5.3% (Ep1) of the varia-
tion observed for the trait respectively in our study. 
Two haplotype blocks, reported in two novel bins, 2.00 
(Hap_2.1) & 1.11 (Hap_1.2) explained PVE of 9.1%, 5.7% 
for Ep2, and 5.1%, 4.6% for Ep1, respectively. The use of 

Table 6  Summary of chromosomal location of Maydis leaf blight (MLB) resistance quantitative trait loci (QTL)/SNPs in maize from 
previous studies
S. No. Binsa /Chromosomes Reporting MLB QTL/SNPs Markers used Populations Refer-

ences
1 1.02, 1.07, 1.09, 2.04, 3.03, 3.04, 4.09, 5.01, 7.02, 9.05 and 10.04 SSR RILs (Mo 17 × B73)  [13]
2 1.06, 1.08, 1.09, 2.09, 3.04, 3.06, 6.00, 7.02 and 8.03 SSR RILs (B73 × Mo17)  [18]
3 1.08–1.09, 2.06–2.07, 3.04, 3.07, 3.09, 6.06 and 9.03–9.04 SSR RILs (NC300 × B104)  [14]
4 1.03, 1.05, 1.06, 1.10, 2.04, 3.04, 3.06, 4.02–4.03, 6.02, 7.03 and 

8.02–8.03
SSR Advanced intercross RILs (B73 × Mo17)  [15]

5 2.07, 3.04, 6.01 and 8.05 SSR RILs (H99 × B73) and (B73 × B52)  [16]
6 1.09, 2.05–2.06, 3.03, 5.05–5.06, 6.01, 9.02 and 10.03 SSR and SNPs NILs (NC292 × B73) and (NC330 × B73)  [66]
7 1.05–1.06, 1.08–1.09, 2.04, 2.09, 3.04–3.05, 8.05 and 10.05 SSR and SNPs RILs (KI14 × B73)  [113]
8 1.10, 2.03, 3.03, 3.04, 8.06, 8.05, 9.03, 9.04, 9.05 and 10.04 SSR RILs (B73 × CML254), (CML254 × B97) and 

(B97 × Ki14)
 [17]

9 3, 4, 6, 8, 9 and 10 SSR F2:3 (T14 × T4 )  [114]
10 6 (6.01) Gene rhm RFLP  (UMC85 

and p144)
F3(RH95rhm × B73)  [115]

11 1.03/1.04, 1.07, 1.09, 1.06, 1.05, 2.02/2.03, 2.04, 2.05, 3.03, 3.04, 
3.05, 3.06, 3.09, 4.00/4.01, 4.05, 4.09, 5.03, 5.04, 5.06, 5.07, 6.01, 
6.06, 7.00, 7.01, 7.03, 8.03, 8.06/8.07, 9.02, 9.03/9.04, 9.04, 9.07, 
10.03 and 10.07

SNPs NAM  [22]

12 1.09, 2.05–2.06, 3.03, 6.01 and 9.02 SSR NILs (NC292 × B73) and (NC330 × B73)  [116]
13 2.04, 3.04, 3.05 and 8.05 SSR Teosinte NILs from 10 populations  [117]
14 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 SNP NAM  [65]
15 3.08, 9.03, 8.01, 8.03, and 8.01 SSR RIL (LM5 × CM140)  [62]
16 1,2,3,4,5,6,7,8,9,10 SNP ROAM, 8 RIL populations, and 513 diversity 

maize inbred lines
 [25]

17 1,2,3,4,5,6,7,8,9,10 SNP NAM  [24]
18 9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05 SNP CAAM
aChromosome bin location of QTL peak on 1 of the 10 chromosomes of the maize genome. Bins divide the genetic map into 100 approximately equal segments of 
approximately 20 centiMorgans between two fixed Core Marker. The segments are designated with the chromosome number followed by a two-digit decimal (e.g., 
1.00, 1.01, 1.02, etc.)

RILs: recombinant inbred lines; NILs: near isogenic lines; NAM: nested association mapping, ROAM: Random-Open-parent Association Mapping, CAAM: CIMMYT 
Asia Association Mapping
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haplotypes increases the phenotypic variance explained, 
and can be beneficial when identifying marker phenotype 
associations for the genetic dissection of loci underlying 
the complex trait [71]. Additionally, SNPs/ haplotypes 
reported in previously unreported genomic regions/bins 
(9.06, 5.01, 9.01, 7.04, 4.06, 6.05, 2.00, and 1.11) could be 
unique to the CAAM panel and the environment stud-
ied, and could be candidates for enriched allelic diversity 
associated with MLB resistance.

Twenty-six SNPs associated with MLB resistance in 
this study were associated with annotated genes with 
functional domains that were previously reported to 
influence disease resistance in various crops (Table  5). 
Genes in Chromosome 8 play pivotal roles in various 
defence pathways, viz., and activation of basal defence 
by mitogen-activated protein kinases, serine/threo-
nine protein kinase activity, circadian rhythm-generated 
basal immunity, hypersensitive cell death response, and 
transport of secondary metabolites required against 
necrotrophs, e.g., phytoalexins, especially camalexin 
(3-thiazol-2-yl-indole), a secondary metabolite toxic to 
B. maydis [73-76]. Based on the predicted co-expression 
results, co-expression of these genes was detected in the 
network, and it could be possible that these genes (bin 
8.06) may form a cluster, initiating a cascade of reactions 
against MLB, which warrants further investigation [76]. 
Furthermore, the expression of these genes exceeded 
10-FPKM in all leaf zones. Physical interaction of genes 
SPA1/GRMZM2G061602 and ABI3/GRMZM2G313737 
underscore their role in basal defence response via 
MAMP responsive MAPK mechanisms [77, 78]. The 
SPA1 gene further advances the notion of circadian 
rhythm-generated basal immunity against MLB, which 
reveals the potential for further studies on such genes in 
the future [75]. The candidate gene GRMZM2G013581/
MYB DNA binding domain (bin 6.01) was identified in 
our study. Chen et al. [25] functionally validated gene 
MYBR92 (encoding a MYB-like transcription factor) 
against MLB.

Specific genes associated with novel SNPs identi-
fied are functionally recognized for their expression in 
response to cross-talk between jasmonic acid and ethyl-
ene, which enhances sensitivity to necrotrophic patho-
gens [79]. For example, the transcription factor (TF) 
BZIP 23/GRMZM2G033413 (S9_8243435) is known 
to modulate the response to various stresses, including 
abiotic factors and hormone transduction [80]. Another 
gene, GRMZM2G357834/WUN1, is involved in plant-
defence responses regulated by JA and its methyl ester, 
methyl jasmonate (MeJA) against necrotrophs [81]. 
GRMZM5G813007/NAGS1 (S7_161657633) is involved 
in the L-arginine biosynthesis pathway [82]. Arginine 
serves as a precursor for the synthesis of nitric oxide 
(NO) and polyamines (PAs), both of which are known 

to promote defence mechanisms. AC210013.4_FG014/
CDPK7 (S5_3412526) gene has been found to respond 
to various stimuli, including abscisic acid (ABA), cold, 
drought, salinity, heat, elicitors, and pathogens [840]. 
Our study highlighted the possible role of ubiquitina-
tion required in facilitating the function of NBS-LRR 
proteins (promoting effector-triggered immunity), spe-
cifically by the GRMZM2G164787/Ubiquitin protein 
(ligase binding) gene associated with SNP S1_232344813) 
[84]. Genes E3 Ubiquitin protein (ligase) and CDPK7 
have been reported in a previous study [25] as associ-
ated with resistance to MLB. Another important gene 
GRMZM2G444623/aspartic proteinase nepenthesin-2 
(S4_166482019) was identified which was reported to 
reduce the activity of fungal phytases. In Barley, a related 
gene nepenthesin-1 (HVNEP-1) was discovered that 
reduced the production of mycotoxin 15-acetyldeoxyni-
valenol (15-ADON) from Fusarium graminearum [85]. 
It would be worthwhile to investigate the role of NEP2 
in MLB resistance in maize. The reported SNPs in genes 
associated with the JA/ET signalling pathway and other 
defence mechanisms add depth to our understanding of 
MLB resistance, to carry forward with independent vali-
dation of the candidate genes.

Moreover, contrasting genotypes identified in this 
study could be used to develop mapping populations 
for further genetic dissection of the trait, The construc-
tion of breeder-friendly Kompetitive allele-specific PCR 
(KASP) markers for the significant and stable MTAs/
single SNPs identified may facilitate the deployment of 
these genomic regions through marker-assisted selection 
in the maize breeding process. In addition, the significant 
MTAs identified during the current study can be inte-
grated into genomic prediction models to evaluate their 
potential for selection for MLB. Desirable haplotypes can 
be used for haplotype-based breeding in maize for MLB 
resistance through resequencing approach as, the molec-
ular markers that define these favorable haplotypes can 
be developed and used to select the most desirable com-
bination of haplotypes governing the specific phenotype. 
Moreover, inbred lines with novel recombination in chro-
mosomal blocks of interest can be selected by haplotype-
related markers [86]. The identified important genes may 
also be validated using functional genomics techniques. 
However, the potential challenge one can face is impact 
on the marker/SNP effect which can differ with popu-
lations and environments. This challenge arises due to 
differencs in LD between SNP and QTL in different pop-
ulations, effect of G x E interaction, and spurious associa-
tions [87] Overall, this comprehensive genomic analysis 
provides valuable insights for targeted breeding strategies 
to enhance MLB resistance in maize.
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Conclusion
In summary, GWAS and haplotype trait regression stud-
ies on resistance to MLB in Asia-adapted CAAM panel 
identified 26 SNPs and 13.haplotypes associated with the 
trait. The study confirmed the quantitative nature of the 
resistance with identified variants exhibiting low to mod-
erate effect sizes. But gene annotation and network anal-
ysis of the identified variants points to some important 
genes that are implicated in diverse defence pathways in 
particular, and stress tolerance in general. Several of the 
identified variants were located in previously reported 
chromosomal bins, and some new genomic regions were 
also identified in this study. This not only enhances our 
appreciation of allelic diversity but also deepens our 
understanding of the intricate mechanisms behind resis-
tance to MLB in maize. Additionally, the identification of 
a number of SNPs and haplotype within chromosomal 
bin 8.06, which is known to harbour dQTLs/dQTNs for 
resistance to multiple diseases, underscores its poten-
tial to be further investigated for validation and possible 
deployment of trait markers for resistance to MLB.
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