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Abstract
Background Alternative splicing is a pivotal mechanism of post-transcriptional modification that contributes to the 
transcriptome plasticity and proteome diversity in metazoan cells. Although many splicing regulations around the 
exon/intron regions are known, the relationship between promoter-bound transcription factors and the downstream 
alternative splicing largely remains unexplored.

Results In this study, we present computational approaches to unravel the regulatory relationship between promoter-
bound transcription factor binding sites (TFBSs) and the splicing patterns. We curated a fine dataset that includes 
DNase I hypersensitive site sequencing and transcriptomes across fifteen human tissues from ENCODE. Specifically, we 
proposed different representations of TF binding context and splicing patterns to examine the associations between 
the promoter and downstream splicing events. While machine learning models demonstrated potential in predicting 
splicing patterns based on TFBS occupancies, the limitations in the generalization of predicting the splicing forms 
of singleton genes across diverse tissues was observed with carefully examination using different cross-validation 
methods. We further investigated the association between alterations in individual TFBS at promoters and shifts in exon 
splicing efficiency. Our results demonstrate that the convolutional neural network (CNN) models, trained on TF binding 
changes in the promoters, can predict the changes in splicing patterns. Furthermore, a systemic in silico substitutions 
analysis on the CNN models highlighted several potential splicing regulators. Notably, using empirical validation using 
K562 CTCFL shRNA knock-down data, we showed the significant role of CTCFL in splicing regulation.

Conclusion In conclusion, our finding highlights the potential role of promoter-bound TFBSs in influencing the 
regulation of downstream splicing patterns and provides insights for discovering alternative splicing regulations.
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Background
Gene splicing endows the transcriptional diversity of 
the metazoan genome. Splicing is the process by which 
introns are removed from the nascent pre-mRNA and 
exons are joined, generating the functional mRNA. Alter-
native splicing (AS), the selective removal of exons and 
reconnection of exons by multiple processes, is known to 
play a pivotal role in regulatory pathways from inverte-
brates to mammals [1, 2]. By the regulatory mechanism 
of AS, a single gene is capable of generating multiple 
RNA molecules encoding proteins with different func-
tions [3]. The importance of AS lies in the evidence that 
the human genome has been estimated more than 95% 
of multi-exon genes undergo alternative splicing in an 
underlying tissue-specific manner [4]. Moreover, the 
variations in splicing patterns are prevalent to associate 
with many complex diseases in humans [5, 6], and one-
third of all disease-associated alleles have been estimated 
to alter splicing [7].

Studies on AS regulation have mainly focused on 
the sequence information of spliced exons and flanked 
introns. Machine learning has unprecedented perfor-
mance in predicting exon-inclusion/skipping levels in 
bulk tissues or single cells. Several computational mod-
els to derive “splicing codes” that predict splice site selec-
tion in a genomic sequence successfully capture patterns 
around the skipped exon and elucidate complex regula-
tory mechanisms from genomic and epigenomic features 
[8–12]. Despite many efforts to characterize the splicing 
regulatory codes within the splice sites, the extent and 
effects of transcription machinery at the relatively distant 
promoter regions in splicing regulation remain unsolved.

In the past decades, AS has been generally accepted to 
be tightly coupled with RNA polymerase transcription 
of the nascent pre-mRNA [13, 14]. Two prevailing mod-
els have been proposed to explain the coupling between 
alternative splicing and transcription: the recruitment 
model [15, 16] and the kinetics model [14]. Notably, the 
chromatins are mostly not in linear form; the transcrip-
tion complex on a promoter affects the recruitment of 
splicing factors and elongation of RNA polymerase II to 
promote exon exclusion through chromatin looping [17]. 
In addition, various DNA-binding proteins have been 
reported to influence the AS patterns by changing epi-
genetic conditions in the promoter [18].

Each gene contains a set of unique combinations of TF 
binding sites (TFBSs) in the promoter that determines 
its temporal and spatial expression. Transcriptional reg-
ulation is usually a combinatorial effect of multiple TFs 
binding to cis-regulatory elements located in the proxi-
mate and distal regions from transcription start sites 
[19]. Date to 20 years ago, the regulation of exon splic-
ing patterns was demonstrated directly through the spe-
cific TFBS occupancy in the promoter [20, 21]. Moreover, 

the coupling of promoter and splicing is later proposed 
with extensive regulator mechanisms [22, 23]. Given the 
three-dimensional folding of chromatin loops, the proxi-
mal promoter- or distal enhancer-bound factors joined 
into transcription compartments correlate with alterna-
tive splicing of exons [24]. Although the biological find-
ings connect the promoter with AS by focusing on a few 
gene models, the hypothesis that promoter architecture 
in terms of TFBS composition regulates AS remains 
unexplored at the genome-wide level.

In this study, we developed analytical strategies to 
approach this question using data of both RNA-seq 
and DNase-seq in pairs across the different human tis-
sues from the ENCODE project. We first considered the 
associations between the occurrences of more than 300 
TF binding motifs in the promoter and the correspond-
ing splicing patterns. Secondly, we examined whether the 
changes in TF binding condition were able to predict the 
splicing change by studying the relative changes of the 
percent splice in (PSI) values between any paired tissues. 
Then, we conducted machine learning methods and deep 
learning neural networks to predict the splicing patterns. 
Notably, the convolutional neural network (CNN) mod-
els that took complete TF occupancy information in pro-
moter regions as input achieved the highest performance 
at 0.889 of the area under receiver operating character-
istic curve (AUROC). Lastly, we applied the importance 
analysis of the CNN models for each TF and identified 
some important TFs that affecting the splicing prediction 
genome-widely.

Materials and methods
Data processing and sample selection
We downloaded both the DNase-seq peak BED files 
and the RNA-seq data for 15 human tissues from the 
ENCODE data portal [25]. To obtain high quality of 
data, the data without any flags, such as insufficient read 
depth, in the experimental metadata that were reported 
by the ENCODE Data Coordination Center are used in 
the following experiments. For DNase-seq datasets, the 
standard pipeline (accession: ENCPL201DNS for single-
ended data, ENCPL202DNS for paired-ended data) from 
ENCODE called the peaks using hotspot2 algorithm 
with 1% false-discovery rate. For RNA-seq data, the 
ENCODE RNA-seq pipeline for long RNAs (accession: 
ENCPL002LSE for single-ended data, ENCPL002LPE 
for paired-ended data) used the STAR program for map-
ping the reads and the RSEM algorithm for quantification 
of genes. We used genomic and annotation files of the 
human reference genome version GRCh37 as provided 
by release V19 of GENCODE [26].
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Fig. 1 (See legend on next page.)
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Identification of putative in vivo TF binding sites
The DNase-seq peaks were used to define the open chro-
matin regions in the promoter regions (− 2 kb to + 500 bp 
from the transcription start site). We downloaded TF 
motifs from the JASPAR database (ver. 2018) [27] and 
excluded the fusion TF (i.e., EWSR1/FLI1 fusion) and 
older versions of motifs from the same TF, as a result, we 
obtained 407 TF binding motifs from JASPAR. Later, we 
scanned the sequence from each open chromatin region 
for each TF binding motif in position-weight-matrix 
(PWM) format, using FIMO from the MEME (Motif-
based sequence analysis tools) suite [28]. Of note, we 
applied the FIMO with a threshold false discovery rate 
of < 10− 3, which is less stringent than the general recom-
mended parameter (< 10− 4) for putative cis-regulatory 
elements detection. Since we only considered TF binding 
sites located in the open chromatin regions, the general 
parameter is too stringent for our purpose.

RNA-seq processing and calculation of cassette exon usage 
(PSI)
To estimate the splicing level for each exon and tissue, 
we first used CATANA [29] to annotate AS events in all 
human transcripts for the AS annotation index file. The 
BAM files of RNA-seq data generated by the ENCODE 
were used to estimate the percent spliced-in (PSI) values 
for the first cassette exon of the protein-coding genes 
using the MISO (Mixture of Isoforms) tool [30]. For the 
calculation of the ZΨ score, we first selected the genes 
that PSI range is larger than 0.2 across different tissues 
and then standardized their PSI by z-score transforma-
tion for each gene.

Enrichment analysis
We analyzed the association of TF binding occupan-
cies and splicing patterns from 2 × 2 contingency tables 
categorizing all human genes according to the occur-
rences of binding sites for a given TF and splicing pat-
terns (exclusion or inclusion in Fig.  1D). In parallel, we 
built the contingency table to analyze the association 
between TFBS-occupied differences and splicing phases 

(concordance or discordance in Fig.  2D) for each TF. 
The odds ratio (OR) based on the contingency table was 
calculated for each TF and a chi-squared (χ2) test was 
applied to determine the statistical significance of the 
association. The p-value is adjusted by Bonferroni correc-
tion (and its − log10 transformation) for the association, 
and the odds ratio with log2 transformation is a measure 
of the effect size. The adjusted p-value < 0.001 is consid-
ered as significant.

Tau index of TF tissue specificity
We calculated the tissue specificity index tau [31, 32] 
using the gene expression of each TFs across different tis-
sues, as follows:

 
tau =

∑ n
i=1 (1 − x̂i )

n − 1
; x̂i =

xi

max
1≤ i≤ n

xi

where xi  represents the gene expression of TF x  in tis-
sue i  ; and n  is the number of tissues expressing the TF 
(TPM > 1). We then adopted the cut-off of tau based on a 
previous study [33] and defined the TFs with tau ≥ 0.8 as 
tissue-specifically expressed.

Machine learning and deep learning models
In order to get a better prediction power, we compared 
the accuracy between four methods, logistic regression, 
XGBoost, deep neural network (DNN), and convolu-
tional neural network (CNN). To avoid biases caused by 
imbalanced data, we applied a balanced sampler as the 
concept described on the imbalanced-dataset-sampler 
(from https://github.com/ufoym/imbalanced-dataset-
sampler) to our training dataset before model train-
ing. We trained the basic logistic regression model with 
default parameter settings described in the scikit-learn 
[34]. For the XGBoost model, we limited the max tree 
depth to 6, set the eta by 1, and used gbtree as a booster.

In this research, we implemented our DNN and CNN 
models using the PyTorch framework [35]. The archi-
tecture of DNN began with flattening the input data and 

(See figure on previous page.)
Fig. 1 (A) The workflow schema and the experiment design. We obtain 15 tissues that have matched DNase-seq and RNA-seq from ENCODE. DNase-
seq data was used to identify open chromatin regions and followed by TF motif scanning to identify TF binding profile in promoter. RNA-seq data was 
processed by the MISO program to obtain percent splice in (PSI) metrics which represent the splicing pattern of the first skipped exon. (B) PSI distribution 
histogram. The horizontal axis represents the PSI value and the vertical axis represents the number of skipping exon events. (C) Venn diagram of the exclu-
sion group gene and inclusion group gene. The exclusion group gene defined as PSI < 0.2 and the inclusion group gene defined as PSI > 0.8. (D) Volcano 
plot of the chi-square test results and the TF expression tissue specificity distribution along with ranking p-values of the chi-squared test. The horizontal 
axis of the volcano plot represents the -log10 (adjust p-value) and the log2 (OR). The chi-square test p-value is corrected by Bonferroni multiple test correc-
tion. The blue dot denoted the ubiquitously expressed TFs (tau < 0.8) and the red dot denoted the tissue-specific expressed TFs (tau ≥ 0.8). (E) The schema 
of validation strategies. From left to right represents event-wise, tissue-wise, and gene-wise validation schema, respectively. (F) The model performance 
of event-wise, tissue-wise, and gene-wise validation schema. For left panel to right panel represents F1-score, AUROC, and accuracy, respectively. (G) The 
gene were assigned into three groups according to the splicing forms across all tissues. One-sided denotes the genes belonging to same splicing form 
in more than two tissues; both-sided denotes the genes having both inclusion and exclusion forms in 15 tissues; singleton denotes the genes expressed 
in a particular tissue only. The accuracies of prediction and number of genes in three groups were calculated respectively for each tissue from the tissue-
wise validation experiments

https://github.com/ufoym/imbalanced-dataset-sampler
https://github.com/ufoym/imbalanced-dataset-sampler
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followed by 3 dense layers, with 512, 256, and 128 nodes, 
respectively. ReLU activation function was applied on the 
output of each dense layer and then followed by a drop-
out layer to randomly set 25% of input units to 0. The 
sigmoid function was applied to the final output of the 
tensor to generate binary classification predictions.

The architecture of CNN is similar to DNN with some 
modifications. The input data was first processed through 
a convolution layer which followed by the ReLU activa-
tion function, max pooling layer and a dropout layer, 
and then connected to 2 dense-ReLU-dropout units as 
described above, both with 128 nodes. The sigmoid func-
tion is also used to do the binary classification task.

Importance analysis
To extract informative TF binding features from the 
CNN model, we performed an in silico perturbation-
based analysis to observe the impact on the perturbed 
input data. Similar to the previous method, we perturb 
the input by assigning a zero value for a given TF of the 
input feature (zero-out operation) and perform inference 
on the trained model. The feature importance through 
zero-out operation was measured by the output chang-
ing ratio. Output changing ratio was defined as Nchanged 
/ Ntotal, where Nchanged represents the count of changed 
output label after zero-out and Ntotal represents the total 
input delta instances number with corresponding TF 
binding site.

Results
In this study, we considered the cassette exon splic-
ing, which is the most frequent alternative splicing type 
observed in the human genome [36]. We proposed two 
scenarios to examine the relationship between TFBSs in 
the promoter regions and the splicing patterns exhibited 
by the corresponding genes. First, we asked whether the 
compositions of TFBS occupancies, which were defined 
as the expressed TFs (TPM > 1) in the given tissues and 
their binding motifs in the open chromatin regions, are 
associated with the splicing patterns of the gene. Sec-
ond, we explored if alternations in the TF binding milieu 
within the promoter region influence the splicing effi-
ciency of the cassette exon usage by comparing their PSI 
values. Methodological steps for TFBS identification in 
promoter regions and exon-skipped events are illustrated 
in Fig. 1A. To curate the TF binding profiles for each pro-
moter, we employed an integrative approach that com-
bined DNase-seq data for identifying open-chromatin 
regions, TF binding motif scan, and expression profiles of 
human TFs across 15 tissues. Splicing patterns for indi-
vidual genes were analyzed based on the transcriptome 
data in the corresponding tissues.

Characterizing the TFBS occupancies in the promoter and 
first cassette exons across tissues
We investigated the associated relationship between the 
TFBSs in the promoter and the first cassette exon, which 
is relatively closed to the promoter. The distribution of 
the PSI values as exon usage levels was bimodal across 
15 human tissues (Fig. 1B). Here, we defined the PSI val-
ues smaller than 0.2 and larger than 0.8 as the exclusion 
form and inclusion form, respectively. Based on the cri-
teria, the usage of the first cassette exons of human genes 
across 15 tissues was mostly skewed in either one of the 
categories, i.e., exclusion or inclusion forms (Fig.  1C). 
There were only 4.6% of genes having both splicing forms 
in different tissues.

Experimental studies have shown that the promoter 
architecture, by using different gene promoters, affects 
the splicing patterns of the exon skipping in the gene 
bodies [37, 38]. Following this idea, we sought to exam-
ine whether the promoter architecture in terms of TFBS 
occupancies as the features determine the inclusion or 
exclusion of the first cassette exon. First, we asked which 
TFBSs were predominant within the promoters of these 
genes with different splicing patterns of their first cas-
sette exon. In order to address this, the discrepancy 
between the frequency of individual TFBS on the pro-
moters of the exclusion sets and that of the inclusion sets 
was evaluated independently by using a chi-squared (χ2) 
test for each tissue. Considering an adjusted significance 
level of p-value < 0.001 after Bonferroni correction, more 
than half of TF binding motifs are significantly enriched 
in the promoter of either exclusion or inclusion sets. In 
addition, we calculated the gene expression specificity 
index tau [31, 32] for each TF and set 0.8 as the cut-off 
for tissue-specific TFs. However, there is no particular 
enrichment of TFs showing more enriched across statis-
tical significance ranks (Fig. 1D, right panel).

Next, we considered the complex relationship among 
TFBSs within promoters on the prediction of splic-
ing patterns by using a machine learning approach. We 
employed the XGBoost method [39], a decision-tree-
based ensemble model, and used the presence of TFBSs 
within the open chromatins of promoter as input data 
to predict the inclusion or exclusion of the first cassette 
exons. Due to the coarser resolution of DNase-seq and in 
silico motif scanning to profile the TFBS occupancies, we 
noticed that some genes share identical features in dif-
ferent tissues. We thus removed the samples that share 
identical features in the training data from the testing 
data of the given tissues to avoid the fallacy of predic-
tion accuracy in the cross-tissue evaluation. Herein, we 
proposed three different cross-fold validation schemes 
in order to properly evaluate prediction performance 
(Fig.  1E). For event-wise scheme, we randomly left 10% 
of promoter-splicing pairs as the independent testing 
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Fig. 2 (See legend on next page.)
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data and performed a 10-fold cross-validation (CV). For 
tissue-wise scheme, we conducted leave-one-tissues-
out cross-validation by treating the promoter-splicing 
pairs from a single tissue as the independent testing 
data. For gene-wise scheme, we used 90% of genes with 
all promoter-splicing pairs across tissues to train model 
and remained 10% of genes were for an independent test-
ing set. In Fig.  1F, three evaluation metrics, including 
F1-score, AUROC, and accuracy, were shown to compare 
the prediction performance in different CV schemes. 
Interestingly, the prediction performance using event-
wise scheme achieved an F1-score and AUROC closed 
to 0.80 (Fig.  1F, green bars). In the cross-tissue valida-
tion results, we further observed that the overall perfor-
mance of the models obtained an average AUROC of 0.84 
(Fig. 1F, purple bar). However, all three metrics underly-
ing gene-wise CV could yield slightly better than random 
guess at 0.50 (Fig. 1F, yellow bars).

It is worth noting that the gene-wise CV scenario 
indeed examined whether the generalization of a trained 
model enables to classify the splicing events using the 
unseen promoter information about TF binding pro-
files, which were not included in the training dataset. 
We later addressed a following question if the same gene 
promoter in different tissues both present in the training 
and testing sets was critical for prediction performance. 
Subsequently, we split the genes into three groups, i.e., 
one-sided, both-sided, and singleton, according to their 
splicing forms across all tissues and re-examined the 
results of prediction accuracy in the individual tissues. 
In contrast to the genes with one-sided and both-sided 
splicing forms, the trained models using data from other 
tissues did not predict the splicing forms of the singleton 
genes correctly in the given tissue (Fig.  1G, left panel). 
Furthermore, we counted the number of genes in the 
respective groups (Fig.  1G, right panel), and found that 
a good overall performance of the models underlying tis-
sue-wise CV was dominant by the large number of genes 
with one-sided splicing form across all tissues. The poor 
prediction on those small portions of singleton genes 
(less than 200) did not cause a drastic drop in overall 
prediction accuracy. In summary, our current approach 
failed to construct the models with generalization ability 
to infer the splicing forms using promoter information 
that pertains to TF binding profiles.

Changes of TF binding to the promoter reflect the distinct 
exon splicing phases
In this section, we sought to examine whether changes of 
individual TF binding to promoter alter the splicing effi-
ciency that was estimated by PSI values. The PSI value 
summarizes the splicing condition of the constitutive 
exons that are included in all or part of transcripts from 
expressed isoforms [40]. As the fact that ranges of PSI 
values of different genes are varied across 15 tissues, the 
genes differ from each other in terms of their efficiency 
of splicing first cassette exon into the expressed isoforms. 
As a result, the efficiency of exon usage should be consid-
ered for each gene itself instead of the absolute PSI (Ψ) 
value. To this end, we applied the Z-score transforma-
tion to normalize the absolute PSI scores of all genes. Of 
note, some genes that had a smaller PSI range (< 0.2) and/
or expressed in less than three tissues were discarded in 
the following experiments. We then defined the top 20% 
and last 20% of transformed ZΨ scores in each gene as the 
two distinct phases of exon usage, i.e., low and high splic-
ing efficiency respectively (Fig. 2A). To test the hypoth-
esis that changes of TFBS in the open chromatin of the 
promoter are associated with splicing phase change, the 
differences of two ZΨ and their TF binding occupancies 
in a given paired tissues for each gene were calculated 
(Fig. 2B). The distribution of delta ZΨ scores was shown 
in Fig.  2C, where the unchanged group (same splicing 
phase) was below 1 and the changed group (different 
splicing phase) was larger than 1.8. Of note, no over-
lapped events were observed between concordance and 
discordance groups.

To examine the association between TFBS-occupied 
difference and splicing phase for individual TFs, we con-
structed a 2 × 2 contingency table for each TF. Specifi-
cally, for each tissue pair in one gene, we assigned the pair 
into groups according to whether its TFBS occupancy is 
changed (ΔTFα = 0 or ΔTFα = 1), and whether the splic-
ing phase is changed (concordance or discordance). We 
thus calculated the odds ratio from contingency table and 
applied chi-squared test. About two-third of TFs, their 
binding occupancy changes were significantly associated 
with splicing phase changes (N = 203, adj. p-value < 10− 3, 
Fig.  2D). Since every tissue usually expresses different 
sets of TFs to control the cell fate [41, 42], we estimated 
the tissue specificity of TF expression by tau score [32]. 

(See figure on previous page.)
Fig. 2 (A) The distribution of PSI and ZPSI. Each horizontal line represents PSI values of a gene and the vertical axis was sorted by gene median PSI. The 
blue dots denote the first quintile (top 20%) of PSI and the red dots denote the fifth quintile (latest 20%) of PSI. (B) The “delta” schema of splicing events. For 
each gene, we enumerate all tissue pairs and perform exclusive-or (XOR) operation on the TF binding occupancies and yield ΔData representation which 
means the differences in TF binding occupancies. For the splicing pattern, we calculate the absolute difference of the ZPSI and yield ΔZΨ, which represents 
the variances in splicing efficiency. (C) The distribution of ΔZΨ among splicing status unchanged group (concordance) and changed group (discordance). 
The distribution showed a clear bimodal pattern, that the discordance ΔZΨ is distinctly higher than the concordance ΔZΨ. (D) The chi-squared test of as-
sociation between TFBS-occupied differences and splicing phases. The left panel is the volcano plot of the chi-square test; the horizontal axis represents 
the -log10 (adjusted p-value) and the vertical axis represents the log2 (OR). Top 10 significant TFs are shown in their names. The right panel is the ratio of 
tissue-specific and ubiquitous TFs among adjusted p-value rankings
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More than half (53%) of TFs among those non-signifi-
cant groups were ubiquitously expressed, while most of 
the TFs (75%) among those significant associations with 
splicing phase change were tissue-specifically expressed 
(Fig.  2D). Of note, the open chromatin regions in the 
promoter of the same gene in different tissues show less 
variations. Thus, TFBSs without filtered by expression 
profiles of given TFs did not show any significant associa-
tion. Therefore, although the DNA sequences of the pro-
moter are identical, the divergence on the TF expression 
across different tissues is a likely regulating mechanism 
to affect the splicing phase change.

Machine learning confirm the association between TF 
binding changes and splicing phase shift
Next, we employed different machine learning algo-
rithms, including logistic regression, XGBoost (ensemble 
tree algorithm), and deep neural network methods, to 
test whether the combinations of TF binding changes 
predict the splicing phase changes. To monitor sensitiv-
ity and specificity simultaneously, we assessed the mod-
els using the AUROC in the plot of the true positive rate 
(TPR) against the false positive rate (FPR) for five-fold 
cross-validation tests (Fig. 3A). Three classifiers achieved 
an average AUROC of 0.691, 0.766, 0.771 for logistic 
regression (LReg), deep neural network (DNN), and 
XGBoost (XGB) models, respectively on all the events 
of the dataset. Since there were imbalanced data sets in 
the changed and unchanged groups, the area under the 
precision-recall curve (AUPRC) is also instructive to 
assess the model performance (Fig. 3B). The XGB models 
also achieved a greater mean AUPRC of 0.630 than 0.531 
and 0.624 respectively for LReg and DNN. Because there 
is often more than one binding site in the promoter for 

each TF, we also constructed other ML models using fre-
quencies of all possible TF binding site changes between 
promoters as the features. The overall performance of 
prediction of splicing phase change was decreased about 
6% based on AUROC. This indicates that the decision 
tree-based ML method could not deal with the frequen-
cies of TFBSs change properly.

Integration of TFBS locations in the promoter using deep 
learning models improve prediction performance
We next integrated the position information of TFBSs 
in the promoter as the features to train the deep neural 
network (DNN) and convolution neural network (CNN) 
models respectively. The two-dimension array consisting 
of 2,500 bp and 345 TF binding changes were used as the 
input features as shown in Fig. 4A. The architecture of the 
CNN model includes the one-dimensional convolutions 
kernels, which are designed as the filters for revealing the 
combinations of TF binding changes. The convolution 
layers are followed by a max-pooling layer with sliding 
window size and a stride step of 10 units. And a single 
flatten layer with 256 neurons was used to summarize all 
features and followed by three hidden layers. To prevent 
overfitting, the dropout technique was applied to remove 
25% of the connected neurons in the flatten and hidden 
layer during the training (26).

Training the network with input matrices including 
both TFBS and their interactions with other TFs mark-
edly impacts the performance of the splice predictions. 
In contrast to the performance of previous DNN models 
using only TFBS changes input (Fig.  3A), current DNN 
classifiers achieved greater AUROC, increasing from 
the average 0.766 to 0.853 (Fig.  4B). The CNN classifi-
ers achieved an even greater AUROC of 0.889 (Fig. 4B). 

Fig. 3 (A) The area under receiver operating characteristic curve (AUROC) of Logistic regression, XGBoost, and low-resolution deep learning model. The 
input of the low-resolution deep learning model only contains a single array of TF occupancy information denote as low-resolution. Of note, the XGBoost 
model has the highest AUROC. (B) The area under precision-recall curve (AUPRC) of Logistic regression, XGBoost, and low-resolution deep learning model. 
With the same trend of AUROC, the XGBoost model has the highest AUPRC
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Additionally, CNN models achieved greater AUPRC for 
all five-fold experiments than DNN models, increasing 
the average from 0.730 to 0.782 (Fig. 4C).

Evaluation of TF changes on the splicing patterns
We next to understand the importance of TF motifs on 
splicing patterns utilized by the network to achieve its 
remarkable accuracy. In brief, we performed systemic in 
silico substitution of each TF change as zero, then mea-
sured the effects on the CNN model’s prediction. The 
importance of each TF was estimated by the fraction 
of changed prediction under the in silico substitution. 
The underlying idea is if assume a TF plays a key role 
in regulating splicing patterns, the prediction output of 
the machine learning model should change dramatically 
after substitution rather than other TF. We performed 
importance analysis on each TF and ranked them by 
their importance measurement, and found that a small 
proportion of TFs resulted in dramatical changes in the 
splicing prediction (Fig. 5A). As most of TFs had a little 
effect on the CNN model performance, we highlighted 
top-ranked 19 TFs with outlier values based on the 

interquartile range rule (Q3 + 1.5 × IQR) as the candidate 
splicing regulators.

Previous studies have demonstrated that binding of 
the acetyltransferase p300 at promoter regions modifies 
acetylation of splicing factors, and thereby modulate the 
alternative splicing pattern of the gene [43, 44]. We thus 
submitted our 19 candidate TFs and p300 to the STRING 
database [45] for identification of their interactions. We 
applied default settings to search both functional and 
physical protein associations with medium confidence 
score of 0.400 in the STRING database (ver. 11.5). Then, 
we configured the network between query proteins 
only to reveal the associations among them. Interest-
ingly, the network was relatively less complex and p300 
were thought of as a hub gene associated with nine out 
of 19 top-ranked TFs (Fig. 5B). Moreover, the interaction 
between KLF14 and p300 is experimentally and function-
ally confirmed that the binding of KLF14 to the promoter 
recruits p300 to increase the levels of acetylation associ-
ated with transcriptional activation [46]. Although the 
interaction between KLF14 and p300 on the gene activa-
tion was not investigated in the context of splicing, com-
pelling evidence showing a direct link between histone 

Fig. 4 (A) The convolutional neural network schema. The first layer is a convolution layer with ReLU activation function and followed by a max-pooling 
layer. After pooling a flatten layer was applied to reshape the input. Then three dense layer is added followed by a sigmoid function to classified the out-
put. (B) The area under receiver operating characteristic curve (AUROC) of convolutional neural network (CNN) and deep neural network (DNN). (C) The 
area under precision-recall curve (AUPR) of CNN and DNN. Both AUROC and AUPR suggest the CNN has the better performance
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modification and splicing [17, 18] raises the intriguing 
possibility of KLF14/p300 complex in modulating exon 
splicing. Similarly, some top-ranked TFs might share 
a common mechanism in regulating RNA splicing via 

recruitment of p300 to promote the deposition of histone 
acetylation at the promoter.

Lastly, to further confirm our in silico prediction for 
potential splicing regulators, we obtained the K562 

Fig. 5 (A) The rank order plot of importance analysis. The horizontal axis represents the TF importance ranks. The vertical axis represents the importance 
measures (see importance analysis in method section). (B) The gene association network was constructed from the STRING database for top important 
TFs with p300. The thickness of edges denotes the strength of data support according to textmining, experiments, and databases. (C) The distribution of 
ΔZΨ between control and CTCFL-RNAi experiment. The ΔZΨ values of the CTCFL-target genes show significant differences than that of non-CTCFL target 
genes with Wilcoxon rank-sum test (p-value < 0.0001). (D) The sashimi plot and PSI distribution across control and CTCFL-RNAi experiment. The left panel 
shows the first skipped exon event of ENSG00000101096. The right panel shows the first skipped exon event of ENSG00000147364. Red samples were 
from the control of CTCFL experiments and orange samples were from the CTCFL-RNAi samples
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CTCFL shRNA knock-down RNA-Seq data [47] and 
its control from previous research [48]. We re-analyzed 
the splicing status by calculating PSI through MISO 
and applied Z-score transformation using the previ-
ous method in machine learning model training. We 
observed the ΔZΨ values of CTCFL-target genes were 
higher than that of non-target genes significantly (Fig. 5B, 
with p-value < 0.0001, Wilcoxon rank-sum test). This 
revealed in the CTCFL deplete condition, genes tar-
geted by CTCFL change their first skipped exon usage 
thus influence ΔZΨ. We further seek for case studies to 
investigate how splicing status changed in CTCFL-target 
genes under CTCFL depletes (Fig. 5C). The first skipped 
exon in ENSG00000101096 has a higher skipped exon 
usage and increases the average PSI value. In contrast, in 
ENSG00000147364 the first skipped exon usage reduced 
in the CTCFL deplete condition thus has a lower average 
PSI value. These results suggest that CTCFL can influ-
ence the splicing pattern. Nevertheless, CTCFL shows 
a dual function in splicing regulation, not only increase 
skipped exon usage but also reduce usage in some genes. 
This result also matches the previous study on CTCFL-
depletion mediate alternative splicing change in MCF7 
cell line [49]. In the CTCFL-depletion they detect exclu-
sion of 361 and the inclusion of 221 alternative exons 
compared to the normal condition. The CTCFL can 
influence the recruitment of RNAPII and thus impact 
the RNAPII elongation speed and finally alter the splic-
ing result of pre-mRNA. Overall, these results support 
the feasibility of our modeling and importance analysis 
approaches for in silico prediction.

Discussion
The applications of machine learning methods to char-
acterize the regulatory potential of genomic sequences 
on alternative splicing have been a subject of interest 
for over a decade [8, 50]. Instead of using the genomic 
information around the splicing exons, in this study, we 
focused on the upstream promoter region for predicting 
downstream exon-skipped events genome-widely. In con-
trast to some previous study using the DNA sequences 
directly [8, 9, 11], one major difference of our approach is 
that we applied TF binding motif scan with prior domain 
knowledge to represent the sequence information in the 
promoter. We demonstrate how the promoter signals in 
terms of TFBS profiles can be integrated using machine 
learning approaches for the further implication of asso-
ciation between the promoter and alternative splicing. 
Our results showed that the prediction accuracy differed 
among the different algorithms and input information. 
Notably, one-dimensional CNN architecture is highly 
capable of learning the regulatory code from the TF bind-
ing changes in the promoter to discriminate the splicing 
patterns (Fig. 4).

The primary limitation of this study is only 15 tis-
sues examined, because the utilization of high-quality 
data could minimize the introduction of noise and arti-
facts in DNase-seq and RNA-seq datasets conducted 
by different labs. Consequently, we applied stringently 
to the quality standards by the ENCODE project and 
excluded any experiments that failed to meet these crite-
ria. When conducting the data analyses, we noticed that 
the splicing forms for most of the gene were not varied 
extensively in these 15 tissues (Fig. 1C). Inspired by the 
previous study to avoid fallacy of model performance 
using alternative cross-fold validation schemes properly 
[51], we implemented three different CV schemes, i.e., 
event-wise, tissue-wide, and gene-wise, to evaluate gen-
eration performance carefully. In the course of examining 
the difference across three CV schemes to find possible 
reasons for high performance in the tissue-wise evalua-
tion, we noticed that majority of genes were expressed in 
more than two tissues and displayed same splicing form. 
Because every gene promoter in different tissues shares 
most TFBS features, the event- and tissue-wise schemes 
are subject to the problem of test set contamination 
and could lead to an artificially inflated accuracy in this 
study. On the bright side, there is considerable room for 
improvement in model generalization by collecting var-
ied splicing forms of every gene from different tissues 
extensively to evaluate promoter-splicing interactions.

To address the problem of shared TFBSs in promoter 
across tissues, we turned to look at the TF binding 
changes in promoter (Fig.  2B). Notably, this approach 
diminished the high similarity of TFBS features in tissues 
and making a comparison in any given paired tissues also 
augmented the datasets incrementally for improvement 
of the model training. On the other hand, we considered 
the changes in splicing efficiency (∆ZΨ) by introducing 
a transformation procedure of absolute PSI values into 
the efficiency of exon usage. Our computational method 
is different than a previous study using the absolute 
PSI values to estimate splicing efficiency directly [52]. 
The fact that the ranges of the PSI values in a particular 
gene across 15 tissues are mostly ununiformed distribu-
tion is evident as the averaged PSI values of genes from 
closed to 0 or 1 (Fig. 2A). The Z-transform method could 
remain commensurate in the scale to measure splicing 
efficiency for each gene accordingly. In addition, instead 
of using fixed arbitrary cutoff values (e.g., Ψ < 0.2 and 
Ψ > 0.8) to subsect the splicing status, we applied a per-
centile threshold to divide genes into two tendencies, i.e., 
“splice-in” or “splice-out”. This approach avoids that those 
small-PSI-ranged genes are skew to be classified into 
a single group of splice-in or splice-out. Based on our 
observation, it is perhaps noteworthy to rethink about 
the definition of the splicing status using PSI as a metric 
to explore alternative solutions in discovery of splicing 
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mechanisms. By carefully considering the fundamen-
tal issues in our preprocessing procedures on data, this 
study provides a different perspective to study how TFs 
in promoter affects the exon splicing genome-widely.

To train the prediction model of splicing phase shift, 
we used two different input data, i.e., an array of TF 
binding changes and a matrix of full TF binding changes 
along with the promoter regions. Our results demon-
strated that training the DNN models with varying input 
of TF binding context noticeably impacts the accuracy of 
the splicing phase shift prediction (Figs. 3 and 4). Despite 
amount of trainable network parameters drastically are 
increased when using an input of TF binding context, 
DNN models is capable to automatically learn the task 
from the training data. Remarkably, CNNs achieved even 
higher prediction performance than DNNs with matri-
ces of TF binding context (Fig. 4). In contrast to DNNs, 
CNNs indeed are designed to deal with high-dimensional 
inputs by applying of a serious of convolutional and pool-
ing steps [53, 54]. A likely explanation for high accu-
racy boosting in CNNs is the convolutional operations, 
which learned higher-level features from the combina-
tions of different TF changes. With the good prediction 
performance of CNN models, the importance analysis 
experiments allowed us to identify a couple of TFs that 
potentially involve in splicing regulation. To our knowl-
edge, our study is the first genome-wide effort to investi-
gate that the splicing pattern changes across tissues were 
accurately predicted from the TF binding occupancies in 
the promoter.
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