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Abstract 

Background  Chemoreception is crucial for insect fitness, underlying for instance food-, host-, and mate finding. 
Chemicals in the environment are detected by receptors from three divergent gene families: odorant receptors (ORs), 
gustatory receptors (GRs), and ionotropic receptors (IRs). However, how the chemoreceptor gene families evolve 
in parallel with ecological specializations remains poorly understood, especially in the order Coleoptera. Hence, we 
sequenced the genome and annotated the chemoreceptor genes of the specialised ambrosia beetle Trypodendron 
lineatum (Coleoptera, Curculionidae, Scolytinae) and compared its chemoreceptor gene repertoires with those 
of other scolytines with different ecological adaptations, as well as a polyphagous cerambycid species.

Results  We identified 67 ORs, 38 GRs, and 44 IRs in T. lineatum (‘Tlin’). Across gene families, T. lineatum has fewer 
chemoreceptors compared to related scolytines, the coffee berry borer Hypothenemus hampei and the mountain pine 
beetle Dendroctonus ponderosae, and clearly fewer receptors than the polyphagous cerambycid Anoplophora glabrip-
ennis. The comparatively low number of chemoreceptors is largely explained by the scarcity of large receptor lineage 
radiations, especially among the bitter taste GRs and the ‘divergent’ IRs, and the absence of alternatively spliced GR 
genes. Only one non-fructose sugar receptor was found, suggesting several sugar receptors have been lost. Also, we 
found no orthologue in the ‘GR215 clade’, which is widely conserved across Coleoptera. Two TlinORs are orthologous 
to ORs that are functionally conserved across curculionids, responding to 2-phenylethanol (2-PE) and green leaf vola-
tiles (GLVs), respectively.

Conclusions  Trypodendron lineatum reproduces inside the xylem of decaying conifers where it feeds on its obli-
gate fungal mutualist Phialophoropsis ferruginea. Like previous studies, our results suggest that stenophagy corre-
lates with small chemoreceptor numbers in wood-boring beetles; indeed, the few GRs may be due to its restricted 
fungal diet. The presence of TlinORs orthologous to those detecting 2-PE and GLVs in other species suggests these 
compounds are important for T. lineatum. Future functional studies should test this prediction, and chemoreceptor 
annotations should be conducted on additional ambrosia beetle species to investigate whether few chemoreceptors 
is a general trait in this specialized group of beetles.

Keywords  Coleoptera, Curculionidae, Scolytinae, Genome, Maximum-likelihood tree, Odorant receptor, Gustatory 
receptor, Ionotropic receptor, Mutualism, Fungus

*Correspondence:
Martin N. Andersson
martin_n.andersson@biol.lu.se
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10678-4&domain=pdf
http://orcid.org/0000-0001-6106-0611
http://orcid.org/0000-0001-9821-7731
http://orcid.org/0000-0003-4234-5659
http://orcid.org/0000-0001-9097-9715
http://orcid.org/0000-0002-5702-3751
http://orcid.org/0000-0001-9807-8524


Page 2 of 16Biswas et al. BMC Genomics          (2024) 25:764 

Background
Deciphering chemical information in the environment 
is essential for the fitness of many animals. In insects, 
chemoreception (olfaction and taste/gustation) is often 
crucial for finding hosts, food, oviposition sites and 
mates, to maintain symbiotic relationships, and to avoid 
predators, competitors, non-hosts, and harmful microbes 
[1–4]. Chemoreception involves the binding of chemicals 
to membrane-bound receptor proteins that are encoded 
by some of the largest gene families in insect genomes 
[5–8]. The binding of a chemical to a receptor results 
in a conformational change that translates the chemical 
energy in the stimulus into a neuronal signal in the sen-
sory neuron, which is conveyed to the central nervous 
system for interpretation [1].

The different families of insect chemoreceptors are 
the odorant receptors (ORs) [7], gustatory receptors 
(GRs) [9] and ionotropic receptors (IRs) [5, 10]. The ORs 
represent the primary means by which insects detect 
airborne chemicals [2]. These receptors are seven trans-
membrane domain proteins present in the dendrites of 
olfactory sensory neurons (OSNs) primarily in the anten-
nae and maxillary palps. They form a heterotetrameric 
complex with a conserved odorant receptor co-receptor 
(Orco)  [11–14], which is essential for the formation of 
an ion channel upon ligand-binding in the OR [15–17]. 
The more ancient family of GRs is believed to belong 
to the same superfamily as the ORs [18–20]. Gustatory 
receptors are expressed in gustatory as well as non-gus-
tatory organs and are known to recognise non-volatile 
compounds including sugars, amino acids, bitter com-
pounds, contact pheromones, as well as the gas carbon 
dioxide [6, 9, 21, 22]. Ionotropic receptors are related to 
ionotropic glutamate receptors (iGluRs) that have impor-
tant functions in synaptic communication. Several of the 
conserved ‘antennal IRs’ are involved in olfaction, but 
others play a role in sensing humidity, salt and tempera-
ture [5, 23–26]. Members of the so-called ‘divergent IRs’ 
have been assigned a gustatory function [23, 27]. The IRs 
are three transmembrane domain proteins that function 
together with different IR co-receptors (IR8a, IR25a, and 
IR76b) [28, 29]. Unlike ORs, which detect a variety of 
compound structures, the olfactory IRs primarily detect 
short-chained compounds, such as organic acids and 
amines [29–32].

The divergent chemoreceptor gene families evolve 
according to a ‘birth and death’ model, in which gene 
duplication represents the birth of a gene, and pseu-
dogenization or deletion the death [2,  33]. This mode 
of evolution has generated variation between species in 
the sizes of the chemoreceptor gene families, with dif-
ferent taxa displaying different extents of chemorecep-
tor lineage radiations and losses [33, 34]. However, our 

understanding of how the chemoreceptor gene fami-
lies may expand or retract in relation to species ecol-
ogy remains poorly understood. A previous study on 
wood-boring beetles from different taxonomic fami-
lies proposed a positive correlation between host range 
and the number of chemoreceptor genes present in the 
genome. Specifically, fewer genes were annotated in the 
genomes of two stenophagous species (mountain pine 
beetle Dendroctonus ponderosae Hopkins, Curculio-
nidae, and the emerald ash borer Agrilus planipennis 
Fairmaire, Buprestidae) than in a polyphagous species 
(Asian longhorn beetle Anoplophora glabripennis Mots-
chulsky, Cerambycidae) [35]. However, the generality 
of this hypothesis was recently challenged by the find-
ing that the genome of the highly specialized Western 
corn rootworm (Diabrotica virgifera virgifera LeConte, 
Chrysomelidae) contains expanded families of both ORs 
and IRs compared to several beetle species with broader 
host ranges [36].

To understand how the evolution of the chemorecep-
tor gene families may relate to ecological specializations, 
these genes should be manually annotated from genomes 
because annotations of tissue-specific transcriptomes, 
which is more common [37], as well as automated 
genome annotation pipelines, typically miss a significant 
fraction of the chemoreceptors encoded by the genome 
[34, 35, 38–40]. Most such genome-scale efforts have 
targeted various species of Diptera, Hymenoptera and 
Lepidoptera, [18, 41–49], whereas less focus has been on 
the Coleoptera, the largest order of insects with > 400,000 
described species. Among the currently existing studies, 
the OR family has received most attention [34], whereas 
the GR and/or IR families have to our knowledge only 
been completely annotated in seven species: the red flour 
beetle Tribolium castaneum Herbst (Tenebrionidae) [50, 
51], A. glabripennis [52], the Colorado potato beetle Lep-
tinotarsa decemlineata Say (Chrysomelidae) [39], D. pon-
derosae, A. planipennis [35], D. v. virgifera [36], and the 
coffee berry borer Hypothenemus hampei Ferrari (Curcu-
lionidae) [53] (see also Table 1). Hence, annotation of the 
chemoreceptor genes in additional species is required to 
improve our understanding of the molecular evolution of 
chemoreception in this diverse insect order. To this end, 
targeting the chemoreceptor genes from related species 
that differ in ecological traits may be particularly reward-
ing, because the species phylogeny is known to at least 
partly dictate the genomic chemoreceptor gene content, 
including the presence and phylogenetic distributions of 
receptor lineage radiations and losses [34, 54].

In this study, we sequenced the genome of the striped 
ambrosia beetle, Trypodendron lineatum Olivier 
(Coleoptera, Curculionidae, Scolytinae), and manually 
annotated the three chemoreceptor gene families from 
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the resulting assembly for comparison with related, and 
less related, species with different ecological adapta-
tions. Ambrosia beetles are a polyphyletic group with 
more than 3,400 species from at least 11 lineages within 
the Platypodinae and Scolytinae subfamilies that have 
evolved obligate nutritional mutualism with filamentous 
fungi on several independent occasions [55–58]. To the 
best of our knowledge, the chemoreceptor genes have 
so far not been annotated from a genome of any ambro-
sia beetle species. Trypodendron lineatum is a Holarctic 
wood-boring pest that attacks dead or dying conifer trees, 
decreasing wood quality, and thus causing economic 
damages [59–61]. It belongs to the same subfamily as D. 
ponderosae and H. hampei, which both have their chem-
oreceptor genes annotated from genomes. Trypodendron 
lineatum is attracted to volatiles from dead or decaying 
conifer trees [62–65], and avoids non-host volatiles from 
angiosperm plants [66, 67]. Upon finding a suitable host, 
T. lineatum females release the aggregation pheromone 
( +)-lineatin (3,3,7-trimethyl-2,9-dioxatricyclononane) 
to attract conspecifics  [68]. Afterwards, they construct 
a tunnel system in the xylem, in which the walls are 
inoculated with a community of fungi dominated by the 
nutritional fungal mutualist Phialophoropsis ferruginea 
(Mathiesen-Käärik) (Ascomycota) serving as the primary 
food source for the developing beetle offspring [69–71]. 
The ecologies of the two scolytines D. ponderosae and H. 
hampei are different from the rather secondary fungus-
farming lifestyle of T. lineatum. Dendroctonus pondero-
sae is an aggressive bark beetle with either an obligate 
or a facultative mutualism with varying fungal species 
depending on geographic range (such as Grosmannia 
clavigera (Rob.-Jeffr. & Davidson) Zipfel, Z.W. de Beer & 
M.J. Wingf., Ophiostoma monitum (Rumbold) von Arx, 
Leptographium longiclavatum Lee, Kim & Breuil (all 
Ascomycota), and Entomocorticium dendroctoni Whitn., 

Band. & Oberw. (Basidiomycota)) [72–75]. The beetles 
bore into and feed on the phloem (not the xylem) and 
supplement their diet with the fungi; together the beetles 
and the fungi are able to kill healthy pine trees of several 
species in North America [76–78]. On the other hand, H. 
hampei is a spermatophagous beetle that spends most of 
its life cycle inside the seeds of coffee berries and has no 
known mutualism with fungi [79, 80]. In addition to these 
two scolytine species, we further included the chemo-
receptors of the more distantly related and polyphagous 
wood-boring cerambycid A. glabripennis, which is able to 
attack many different species of plants [81, 82] to provide 
an expanded comparative overview. Due to the special-
ized ecology and narrow diet of T. lineatum, we hypoth-
esized that it may have comparatively few chemoreceptor 
genes in its genome.

Results
Genome assembly
We used Nanopore technology to sequence the genome 
of male (the heterogametic sex) T. lineatum. The total 
genome assembly size was 83.6 Mbp, divided between 
832 contigs with a contig N50 size of 915 kbp. The long-
est contig was 4.16 Mbp. The BUSCO analysis indicated 
a genome completeness of 97.9% (1338 of 1367 BUS-
COs were present as complete genes), with 96.3% of the 
genes being present as complete single copy orthologues, 
1.6% as complete duplicated orthologues, and 1.2% were 
fragmented. Only 0.9% of the BUSCOs (13 genes) were 
considered entirely missing from the assembly. Overall, 
these results suggest a rather small but complete genome 
assembly, suitable for annotation of the chemorecep-
tor gene families. A total of 149 chemoreceptor genes 
from three gene families were annotated in the present 
genome assembly (Table 1; amino acid sequences, contig 
positions, and additional annotation details are provided 
in Additional File 1). We also sequenced and assembled 
an antennal transcriptome (see Methods for details), 
which was used to support the genome annotations and 
to investigate whether the genes are expressed in the 
main chemosensory organ. Of the 149 annotated chemo-
receptor genes, 130 (87%) were recovered as full-length 
or partial transcripts in this assembly (Additional File 1).

Odorant receptors (ORs)
A total of 67 TlinORs, including Orco, were annotated 
in the T. lineatum genome (Table 1). Four of these genes 
were regarded as pseudogenes, and another four gene 
models remain partial because the N-terminal exon(s), 
which is typically divergent, could not be confidently 
identified. Six OR genes contained sequencing-induced 
indels, which were manually corrected using raw Illu-
mina reads (see Methods). Apart from TlinOR55NTE 

Table 1  The number of chemoreceptor genes (including 
pseudogenes) manually annotated from genomes of 
coleopteran species (see main text for references)

a This study

Species Odorant 
receptors

Gustatory 
receptors

Ionotropic 
receptors

Total

Trypodendron lineatuma 67 38 44 149

Dendroctonus ponderosae 86 60 57 203

Hypothenemus hampei 67 66 33 166

Anoplophora glabripennis 132 234 72 438

Leptinotarsa decemlineata 80 147 27 254

Tribolium castaneum 338 245 80 663

Agrilus planipennis 47 30 31 108

Diabrotica v. virgifera 160 N/A 107 N/A
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and TlinOR32PSE (gene name suffixes are explained in 
the Methods), which comprised 306 and 303 amino acids, 
respectively, all ORs exceeded 370 amino acids, including 
the partial genes and pseudogenes. Some of the OR genes 
were found in tandem arrays in the assembly, with the 
largest ones each presenting three genes close together 
(TlinOR14-16, TlinOR57-59, TlinOR63-65). Among the 
full-length OR genes, the number of introns varies from 
three to seven (typically ranging from 50 to 150  bp in 
size), except for the Orco gene that contains 10 introns. 
Fifty-eight (87%) of the 67 OR genes that were annotated 
in the genome could be confirmed as full-length or par-
tial transcripts in the antennal transcriptome assembly 
(Additional File 1).

A previous study that phylogenetically analysed the 
ORs from ten beetle genomes defined nine major mono-
phyletic OR subfamilies in Coleoptera, and these sub-
families were named Group 1, 2A, 2B, 3, 4, 5A, 5B, 6, 
and 7 [34]. Several of these subfamilies had been recog-
nized also previously [40, 50]. In the present study, the 
phylogenetic OR analysis included the receptors in the 
genomes of the curculionids T. lineatum, D. pondero-
sae, and H. hampei, and the cerambycid A. glabripennis, 
as well as the functionally characterized ORs from the 
Eurasian spruce bark beetle Ips typographus L. (Curcu-
lionidae, Scolytinae) (Fig.  1). This analysis showed that, 
similar to other curculionids, most of the ORs in T. lin-
eatum belong to Group 7 (29 ORs), followed by Group 
5A (21 ORs), Group 1 (6 ORs), Group 2B (6 ORs) and 
2A (4 ORs). Furthermore, like other curculionids, T. lin-
eatum entirely lacks ORs from Groups 3, 4, 5B and 6. It 
is also evident from our analysis that the phylogenetic 
distribution of ORs in T. lineatum (and the other curcu-
lionids) is different from that in A. glabripennis, which 
has a large proportion of ORs in Groups 2A, 2B and 3, 
representatives also in Groups 4 and 5B, and compara-
tively few ORs in Group 7. In T. lineatum, the largest 
species-specific OR radiation contains 12 ORs in Group 
5A (TlinOR50-61) and the second largest comprise 11 
ORs in Group 7 (TlinOR28-38). Nineteen cases of sup-
ported (Shimodaira-Hasegawa [SH] support value > 0.7) 
simple (1:1) orthologous relationships between TlinORs 
and ORs in one or more of the bark beetle species were 
identified (Additional File 2), including two TlinORs 
grouping with functionally characterized ORs in D. pon-
derosae and I. typographus within Group 2A: TlinOR9 
(and HhamOR31) grouping with ItypOR6 and DponOR8, 
both responding to 2-phenylethanol, and TlinOR10 (and 
HhamOR4) grouping with ItypOR5 and DponOR9, both 
responding to C6 green leaf volatiles (GLVs) (Fig. 1) [83]. 
No clear orthologous relationships were found between 
ORs in any of the curculionid species and A. glabripen-
nis. Similar to a previous study that also analysed ORs 

from only curculionid and cerambycid species [84], our 
tree did not separate OR groups 2A and 2B as monophy-
letic, which is likely due to the narrow taxonomic range 
included in the analysis.

Gustatory receptors (GRs)
We annotated 38 GR genes in T. lineatum, including five 
putative fragmented pseudogenes with e.g. missing N- or 
C-termini, missing internal sequence, frameshifts, and/
or several internal stop codons (Additional File 1). The 
total number of TlinGRs is lower as compared to the two 
other scolytines in the comparison (Table 1). Among the 
33 putatively functional GR genes, all but one could be 
annotated to full length, with the C-terminal exon miss-
ing from TlinGR32CTE. Six of the putatively functional 
GR genes contained sequencing-induced indels in exons 
which could be corrected with support from the raw Illu-
mina reads. Whereas the GRs putatively detecting car-
bon dioxide (GR1-3) or sugars, including the fructose 
receptor (GR4-5), contain four to seven introns (typi-
cally 50–150  bp), most of the putative bitter taste GRs 
have only one intron (Additional File 1). However, nine 
of them have additional introns with the largest number 
(six) found in TlinGR6. Alternative splicing is common 
among insect GR genes, including in related scolytine 
beetles [35, 53]. Most commonly, the alternatively spliced 
GR genes previously observed in D. ponderosae have 
two exons, with the different splice variants sharing the 
second exon but alternating the first one. This has been 
evident from the gene structure by the presence of two 
or several alternative first exons (e.g., exons 1A and 1B, 
and sometimes also 1C, and 1D) located in tandem array, 
followed by a single C-terminal exon (exon 2) [35]. None 
of the annotated TlinGR genes showed such a structure, 
suggesting that the annotated genes are not alternatively 
spliced. A few of the TlinGR genes were found in tandem 
arrays on contigs with the largest array presenting three 
genes (TlinGR8-10). Thirty-one (82%) of the 38 GR genes 
that were annotated in the genome could be confirmed 
as full-length or partial transcripts in the antennal tran-
scriptome assembly (Additional File 1).

The GRs from T. lineatum were phylogenetically ana-
lysed together with the GRs from D. ponderosae, H. 
hampei and A. glabripennis. This analysis showed that 
the three CO2 receptors (TlinGR1-3) are conserved 
in T. lineatum, as expected by their presence in other 
coleopterans (Fig.  2). In contrast, only one receptor 
(TlinGR4) is present within the non-fructose sugar 
receptor clade, and it is orthologous to DponGR4, 
HhamGR7, and AglaGR4. Because these other spe-
cies each have several sugar receptors (6 DponGRs, 4 
HhamGRs, and 6 AlgaGRs), this result suggests that 
T. lineatum has lost several sugar receptor genes. As 
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for the other two curculionids, T. lineatum has one 
receptor (TlinGR5), orthologous to DponGR10 and 
HhamGR4, within the putative fructose receptor clade 
(A. glabripennis has three GRs in this clade). A previous 
study found one small clade among the putative bitter 
taste GRs that appear widely conserved across differ-
ent families of Coleoptera, with a single orthologue in 
e.g., T. castaneum, A. planipennis, A. glabripennis, and 
D. ponderosae [35]. This clade was previously named 

the ‘GR215’ clade after the orthologue in T. castaneum 
(TcasGR215). Surprisingly, we did not find any T. linea-
tum GR that groups in this clade, suggesting it has been 
lost in this species. The putative bitter taste gustatory 
receptors (GRs) demonstrated species-specific expan-
sions in each of the four species included in the anal-
ysis, varying from small to large clades. However, no 
exceedingly large expansion was evident in T. lineatum; 

Fig. 1  Approximately maximum likelihood phylogenetic tree of odorant receptors (ORs). Included are OR amino acid sequences from the genomes 
of Trypodendron lineatum (Tlin; red), Dendroctonus ponderosae (Dpon; blue), Hypothenemus hampei (Hham; orange), and Anoplophora glabripennis 
(Agla; brown), as well as functionally characterized ORs from Ips typographus (Ityp; black). The tree is rooted with the conserved lineage of Orco 
proteins and is based on a MAFFT alignment. The coloured nodes (cyan to black) indicate SH (Shimodaira-Hasegawa) local branch support, which 
increases with the size and brightness of the circles. The arcs indicate the different major groups of coleopteran OR families [34]. The Methods 
section provides a full description of receptor suffixes and the sources of sequence data
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the largest TlinGR-specific clade contained eight GRs, 
of which four are pseudogenes (Fig.  2). This contrasts 
with H. hampei, and particularly A. glabripennis, which 
both have much larger GR-lineage expansions. Among 
the putative bitter taste GRs, nine of the TlinGRs have 

supported simple orthologues in one or both other cur-
culionids, whereas one orthologue is shared between H. 
hampei, D. ponderosae, T. lineatum and A. glabripennis 
(Fig. 2, Additional File 2).

Fig. 2  Approximately maximum likelihood phylogenetic tree of gustatory receptors (GRs). Included are GR amino acid sequences 
from the genomes of Trypodendron lineatum (Tlin; red), Dendroctonus ponderosae (Dpon; blue), Hypothenemus hampei (Hham; orange), 
and Anoplophora glabripennis (Agla; brown). The tree is rooted with the ancestral lineage of sugar receptors and is based on a MAFFT alignment. The 
coloured nodes (cyan to black) indicate SH (Shimodaira-Hasegawa) local branch support, which increases with the size and brightness of the circles. 
The well-established GR clades with strong support across all four beetle species are represented by thick red arcs. The thin black arc indicates 
a highly supported clade with differences between species in the extent of GR-lineage radiations. The pink arc indicates a clade with simple 
orthologues in both the curculionid and cerambycid species. The Methods section provides a full description of receptor suffixes and the sources 
of sequence data
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Ionotropic receptors (IRs)
A total of 44 TlinIR genes were annotated (Table  1), 
including 43 full-length genes and one partial gene (Tlin-
IR75iNTE), for which the two N-terminal exons could 
not be found (Additional File 1). No pseudogenes were 
discovered among the IRs. As expected, members of all 

conversed antennal IRs (IR8a, IR21a, IR25a, IR40a, IR41a, 
IR68a, IR76b, IR93a, and IR75 members) were present in 
T. lineatum. For IR41a, the T. lineatum genome presented 
three paralogues close to each other on the same contig 
(separated by 455 bp and 242 bp, respectively) compared 
to two paralogues in both D. ponderosae and H. hampei, 

Fig. 3  Approximately maximum likelihood phylogenetic tree of ionotropic receptors (IRs). Included are IR amino acid sequences from the genomes 
of Trypodendron lineatum (Tlin; red), Dendroctonus ponderosae (Dpon; blue), Hypothenemus hampei (Hham; orange), and Anoplophora glabripennis 
(Agla; brown). The tree is rooted with the conserved lineages of IR8a and IR25a proteins and is based on a MAFFT alignment. The coloured 
nodes (cyan to black) indicate SH (Shimodaira-Hasegawa) local branch support, which increases with the size and brightness of the circles. The 
well-established and widely conserved antennal IR clades are indicated by thick red arcs. The thick blue arc indicates the divergent IRs. The thin 
black arcs indicate highly supported clades of IR60a and IR100a that are conserved among the divergent IRs, and the thin pink arc indicates 
a newly observed clade with simple orthologous in both the curculionid and cerambycid beetles. The Methods section provides a full description 
of receptor suffixes and the sources of sequence data
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and a single gene in A. glabripennis (Fig. 3). Eight mem-
bers of the IR75 family were identified compared to 
eleven in D. ponderosae, nine in H. hampei, and eight in 
A. glabripennis. All TlinIR75 members have correspond-
ing orthologues in either D. ponderosae or H. hampei 
and, in most cases, both species. Among the divergent 
group of IRs, a single orthologue of IR60a and three para-
logues in the IR100a clade were identified, like in D. pon-
derosae. No major radiation of divergent IRs was evident 
in the study species, which contrasts with the large radia-
tions seen especially in A. glabripennis. Among the diver-
gent IRs (apart from IR60a and the IR100a members), 12 
examples of simple 1:1 orthologous relationships were 
evident between T. lineatum and D. ponderosae and/
or H. hampei (Additional File 2). In fact, one example of 
simple orthology extending also to the Cerambycidae was 
evident, with very high support (SH = 1.0) for the close 
grouping of TlinIR102, DponIR103, HhamIR103, and 
AglaIR146 (Fig. 3, Additional File 2). In case of conserved 
antennal IRs, most of the TlinIRs have several introns 
with TlinIR40a having the largest number (15), whereas 
the divergent IRs are either intronless (15 IRs) or contain 
1–3 introns (10 IRs) (Additional File 1). Previous genomic 
annotations of beetle IRs have unravelled introns in sev-
eral of the conserved antennal IRs spanning several kilo-
bases of sequence; for example, the two largest introns in 
DponIR93a cover > 18 kbp and > 15 kbp, respectively, with 
the whole gene from start to stop codon covering approx. 
60 kbp of the genome [35]. In contrast, the largest of the 
14 introns in TlinIR93a is only 155  bp, and with most 
introns ranging between approx. 50 to 70 bp. This is the 
case also for the other antennal IRs in T. lineatum, except 
for one 3 kbp intron in TlinIR8a, and one 1 kbp intron 
in TlinIR60a. In fact, the occurrence of large introns in 
T. lineatum was very rare across all annotated chemore-
ceptor gene families. Forty-one (93%) of the 44 IR genes 
that were annotated in the genome could be confirmed 
as full-length or partial transcripts in the antennal tran-
scriptome assembly (Additional File 1).

Discussion
We annotated 149 chemoreceptor genes from the 
genome of the ambrosia beetle T. lineatum, including 67 
ORs, 38 GRs, and 44 IRs. A total of 138 of these genes 
could be annotated to full length, and 130 of them were 
recovered as full-length or partial transcripts in an anten-
nal transcriptome; hence, the chemoreceptor gene set 
reported in this study is of high quality, facilitating future 
functional studies. The chemoreceptor genes had previ-
ously been manually annotated from the genomes of two 
species in the Scolytinae subfamily, D. ponderosae [35] 
and H. hampei [53], but to our knowledge, never from an 
ambrosia beetle. Hence, this study allows for improved 

analysis of chemoreceptor gene evolution within the Sco-
lytinae subfamily, including comparisons between related 
species with different ecological specializations.

The total number of chemoreceptors in T. lineatum is 
clearly lower than in D. ponderosae (203 receptors), and 
slightly lower than in H. hampei (166 receptors). Com-
pared to the polyphagous cerambycid wood-borer A. 
glabripennis (438 receptors) all three stenophagous sco-
lytines have vastly fewer chemoreceptors (Table  1). A 
previous study showed that the wood-boring specialist 
A. planipennis also has a reduced chemoreceptor reper-
toire (108 receptors) compared to polyphagous species 
(Table  1). This suggests that a narrow host range/diet 
may correlate with low numbers of chemoreceptors in 
wood-boring beetles [35]. However, this trend may 
not be generally applicable when comparing with non-
wood-boring beetle species [36]. The comparatively 
low number of chemoreceptors in T. lineatum is largely 
explained by the scarcity of large receptor lineage radi-
ations, especially among the putative bitter taste GRs 
and the divergent class of IRs. This finding is reflected 
in the lack of larger tandem arrays of such chemorecep-
tors in the genome, with the largest ones encompass-
ing only three genes assembled nearby on the same 
contigs. The largest TlinGR-radiation contained (only) 
eight receptors, of which four were fragmented pseu-
dogenes. Additionally, none of the annotated TlinGR 
genes showed evidence of alternative splicing, which 
contributes to the comparatively low number of chem-
oreceptor proteins observed in this species. Alternative 
GR gene splicing has been found in both D. pondero-
sae and H. hampei [35, 53], and is highly prevalent in 
A. glabripennis [52]. Among the analysed scolytine 
species, T. lineatum has fewer chemoreceptor genes 
than D. ponderosae in all three gene families; however, 
compared to H. hampei, the ambrosia beetle presents 
the same number of ORs and a larger number of IRs 
(Table 1). However, the GR repertoire in T. lineatum is 
clearly smaller with only 38 receptors identified, com-
pared to 60 and 66 GRs in the other two scolytine spe-
cies, respectively. Surprisingly, the total assembly size 
of the T. lineatum genome at 83.6 Mbp is much smaller 
than the estimated genome sizes of other sequenced 
scolytine species, ranging from 163 Mbp in H. hampei 
to 373 Mbp in Dendroctonus valens [53, 85–87]. Nev-
ertheless, our BUSCO analysis showing 97.9% com-
pleteness speaks in favor of a rather complete assembly 
and suggests that the comparatively few chemorecep-
tor genes identified is unlikely to be caused by parts of 
the genome being missing from the assembly. Also, the 
rare occurrence of chemoreceptor gene introns larger 
than 150 bp in T. lineatum is in stark contrast to e.g., D. 
ponderosae in which several of the genes have introns 
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spanning several kilobases of sequence [35]. This com-
pact gene structure is likely to contribute to the small 
assembly size of the T. lineatum genome.

We speculate that the observed differences in chem-
osensory gene content between the three scolytine spe-
cies may relate to differences in their chemical ecologies, 
including associations with symbiotic fungi and complex-
ity of pheromone communication systems. Most species 
of bark- and ambrosia beetles have symbiotic associations 
with microbes where especially the filamentous fungi are 
beneficial for the beetle host in terms of detoxifying coni-
fer tree chemical defenses or by serving as an important 
food source [4, 88–92]. The different species of fungi emit 
different volatile blends, which are often attractive to the 
beetles, suggesting that chemoreception is important for 
the maintenance of the beetle-microbe association [4, 
92–94]. Indeed, both I. typographus and T. lineatum have 
several OSN types (hence ORs) that are tuned to volatiles 
emitted by their respective fungal symbionts [4, 93]. Bark 
beetles, including D. ponderosae and I. typographus, both 
feed on a mixture of fungi and host tree phloem contain-
ing toxic compounds (e.g., terpenoids and polyphenols) 
[4, 72, 74, 77, 95–97], whereas the fungal mutualist P. fer-
ruginea is likely the primary food source of T. lineatum 
[69–71]. We hypothesize that this specific diet may relate 
to the comparatively few bitter taste GRs in the ambrosia 
beetle. For comparison, polyphagous moth species have 
much larger numbers of bitter taste GRs as compared 
to monophagous or oligophagous species [98–100], 
and polyphagy has also been suggested to be linked to 
the very large GR count (522 GRs) in the omnivorous 
American cockroach Periplaneta americana L.  [101]. 
Although speculative, it is possible that the loss of sev-
eral sugar receptors in T. lineatum also is related to its 
restricted fungal diet. Losses of sugar receptors have pre-
viously been found in the herbivorous Hessian fly, May-
etiola destructor Say (Diptera; Cecidomyidae), which 
specializes on wheat and a few related grasses [46], and 
in some species of subterranean beetles within the tribe 
Leptodirini (Coleoptera; Leiodidae) [102]. Also, the lack 
of receptor lineage radiations among the divergent IRs in 
T. lineatum, which are putative taste receptors [23, 27], 
might relate to its specific diet. In contrast to T. lineatum, 
the coffee berry borer H. hampei has a large expansion of 
putative bitter taste GRs and several more sugar recep-
tors. This difference may relate to its unique lifecycle 
inside coffee berries in which the developing coffee beans 
(containing several bitter compounds, [103]) are attacked 
and destroyed [79, 104, 105]. In terms of pheromone 
communication, bark beetles, including D. ponderosae 
and I. typographus are known to detect and respond to 
multiple compounds produced by both con- and hetero-
specific beetles [106–111]. In contrast, T. lineatum has a 

single component aggregation pheromone and electro-
physiological studies have revealed that the majority of 
the common scolytine pheromone compounds are not 
detected by this species [93, 112], which may contrib-
ute to the fewer ORs compared to both D. ponderosae 
and I. typographus (73 ORs identified from an antennal 
transcriptome of this species; [84]). Similarly, it remains 
unknown whether pheromone communication exists in 
H. hampei [79, 113, 114], and if absent, it may also partly 
explain why this species has fewer ORs than the above-
mentioned conifer feeding bark beetles.

The phylogenetic distribution of the T. lineatum ORs 
among the nine major monophyletic coleopteran OR 
Groups [34] was similar to other curculionids with ORs 
present in Groups 1, 2A, 2B, 5A and 7 (Fig. 1), and with 
the two latter groups containing the largest expansions. 
Several ORs from Group 7 have previously been func-
tionally characterised from the Curculionidae family, 
including eight ORs from I. typographus [84, 115, 116], 
three ORs from the red palm weevil Rhynchophorus fer-
rugineus Olivier [117–119], two ORs from each of D. 
ponderosae and the pine weevil Hylobius abietis L. [83], 
and one OR from the rice water weevil Lissorhoptrus ory-
zophilus Kuschel [120]. We found 19 groups of simple 1:1 
OR orthologues that were shared amongst the analysed 
scolytines, which is similar to observed results from stud-
ies targeting other species in this subfamily [53, 84]. Two 
of the TlinORs (TlinOR9 and TlinOR10) are ortholo-
gous to ORs that respond to 2-phenylethanol and GLV 
alcohols, respectively, in each of I. typographus, D. pon-
derosae, and H. abietis [83]. Due to the highly conserved 
responses in these functionally characterized receptors, it 
is possible that the ORs detect the same compounds in T. 
lineatum. Indeed, OSNs responding to GLVs and 2-phe-
nylethenol have previously been identified in T. linea-
tum, although the responses to the latter compound were 
comparatively weak [93, 112]. Both I. typographus and 
T. lineatum have OSNs that specifically detect lanierone 
[93, 116], a pheromone compound used by some North 
American bark beetle species in the Ips genus [121]. In I. 
typographus, lanierone is detected by ItypOR36, and the 
compound reduces the attraction to traps baited with the 
aggregation pheromone in the field [116]. Surprisingly, 
no T. lineatum OR was orthologous to ItypOR36, which 
suggests that the OR that detects lanierone in T. lineatum 
probably has a different evolutionary origin. In contrast 
to ORs in Group 7, no OR from Group 5A has been func-
tionally characterised in any beetle species, and previous 
studies have shown that the OR genes within this group 
are poorly expressed in the antennae; hence their poten-
tial roles in beetle olfaction remain unclear [34, 50, 84].

As with the ORs, several simple orthologous relation-
ships were found among the scolytine putative bitter 
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taste GRs and divergent IRs. In contrast to the ORs, how-
ever, in each of these gene families we observed one 
case where the orthology was extended to also include a 
receptor from the cerambycid A. glabripennis (TlinGR6, 
HhamGR26, DponGR45, AlgaGR137, Fig.  2; TlinIR102, 
HhamIR103, DponIR103, AglaIR142, Fig.  3; Additional 
File 2). Surprisingly, none of the TlinGRs were associ-
ated with the broadly conserved GR215 clade, which has 
members from several coleopteran families, including 
other scolytine species [35], indicating yet another GR 
loss in T. lineatum. Among the antennal IRs, we found 
a comparatively high number (8) of TlinIR75 mem-
bers, which is common in scolytine beetles, and all have 
orthologues in the other scolytine species. Whereas IR75 
receptors detect acids in in dipterans and lepidopter-
ans [30, 31, 42, 122, 123], nothing is known about their 
functions in Coleoptera. Future research should aim to 
functionally characterise the chemoreceptors that are 
conserved in beetles to understand their role in beetle 
chemical ecology.

Conclusions
We sequenced the genome of T. lineatum and subse-
quently manually annotated the OR, GR and IR genes 
from the assembly, representing the first genomic anno-
tation of chemoreceptors in ambrosia beetles. We found 
that T. lineatum overall has fewer chemoreceptors than 
two other similarly analysed scolytine species, which is 
mainly attributed to a scarcity of large receptor-lineage 
radiations, especially noticeable among the putative 
bitter taste GRs and divergent IRs, and the absence of 
alternative splicing of chemoreceptor genes. Whereas 
the three carbon dioxide receptors were present, T. lin-
eatum appears to have lost all but one (non-fructose) 
sugar receptor, and it lacks a member in the GR215 clade, 
which is broadly conserved across Coleoptera. We specu-
late that the comparatively small complement of chem-
oreceptors, particularly GRs, relates to its specialized 
ecology and intimate relationship with a single known 
fungal nutritional mutualist. We also found that T. linea-
tum has two ORs that are orthologous to ORs in other 
curculionids, responding to 2-phenylethanol and GLVs, 
respectively. Future studies should aim to functionally 
characterize these ORs also in T. lineatum to investi-
gate if their functions are conserved as well in this spe-
cies. Overall, this study lays an important foundation for 
future functional characterization of chemoreceptors in 
ambrosia beetles, which is important for advancing our 
understanding of the chemical ecology of these insects 
and potentially for facilitating future control of this dam-
aging forest pest. Finally, our annotations revealed a com-
pact chemoreceptor gene structure, dominated by short 
introns. This finding is strikingly different from other 

analysed coleopterans, including other scolytines. The 
potential functional consequences of this organizational 
difference remain unknown and raise general questions 
about insect genome and multi-gene family evolution, 
which should be addressed in future studies.

Methods
Genome sequencing and assembly
Genomic DNA (gDNA) was extracted from five male 
T. lineatum beetle specimens (collected using phero-
mone traps in a Norway spruce, Picea abies (L.) H. Karst, 
dominated forest in Tågaröd, South Sweden) using the 
Nanobind Big DNA kit (Circulomics, Baltimore, MD, 
USA) followed by enrichment for HMW (high molecu-
lar weight) DNA using the Short Read Eliminator kit XS 
(Circulomics), following the manufacturer’s instructions. 
Isolated HMW DNA purity and concentrations were 
measured using Nanodrop (Thermo Fisher, Waltham, 
MA, USA) and Qubit (Thermo Fisher). End-DNA repair 
was performed before library preparation using the 
NEBNext Ultra II DNA Library Prep Kit (New England 
Biolabs, Ipswich, MA, USA), following the manufactur-
er’s instructions. Sequencing adapters were then ligated 
using the Ligation Sequencing Kit (Oxford Nanopore 
Technologies, Oxford, UK), followed by a clean-up step 
with AMPure XP beads (Beckman Coulter). Sequencing 
was performed on a MinION platform (Oxford Nano-
pore Technologies). Priming of the MinION flow cells 
(vR9.4.1) for sequencing was performed with the Flow 
Cell Priming Kit (Oxford Nanopore Technologies), and 
flow cells were loaded with 160 ng of the libraries three 
times during a run of 72  h total, with washing steps in 
between using the Flow Cell Wash Kit EXP-WSH003 
(Oxford Nanopore Technologies).

After sequencing, high-accuracy base calling of 
the raw reads was performed with an optimized ver-
sion of Guppy v6.0.1 (Oxford Nanopore Technologies) 
(dna_r9.4.1_450bps_hac.cfg model), resulting in a total 
of 25  Gb sequence data (~ 190 × genome coverage). The 
resulting reads were de novo assembled using Flye v2.7.1 
[124] with setting minimum overlap as 10  kb and with 
the “–meta” option, followed by four rounds of polishing 
with Racon v1.3.3 [125] starting from the Flye assembly 
with option (-m 8 -x -6 -g -8 -w 500). After each polish-
ing round, reads were re-aligned to the resulting assem-
bly with minimap2 v2.17 [126]. A final round of polishing 
was performed using Medaka v1.2.0 (https://​github.​com/​
nanop​orete​ch/​medaka) with the r941_min_high_g344 
model using the MinION raw reads. After polishing, hap-
lotype redundancies were merged using Purge haplotigs 
v1.0.4 [127] and duplicated haplotigs collapsed using 
Haplomerger2 v2.01 [128].

https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
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Illumina short-read genome sequencing was performed 
at the National Genomics Infrastructure (NGI, Science 
for Life Laboratory), Stockholm, Sweden. Genomic DNA 
was extracted from a single male and a single female T. 
lineatum. The DNA samples were used to generate 10X 
Chromium libraries that were sequenced (paired-end 
2 × 150  bp, 1 lane) using a NovaSeq6000 system (Illu-
mina) with a 2 × 151 setup using ‘NovaSeqXp’ workflow 
in ‘SP’ mode flowcell. The sequencing generated 261.27 
and 134.79 million reads for the male and female sam-
ple, respectively. Polishing of the final MinION assembly 
with Illumina short reads was performed using ntHits 
ver. 0.1.1(https://​github.​com/​bcgsc/​nthits) and ntEdit 
ver. 1.3.2 [129] using default settings. The relative con-
tig coverage, GC content and contig taxonomic classifi-
cation were scanned after genome assembly using Blob 
tools and Taxon Analysis [130] to enable the identifica-
tion and removal of potential microbial symbionts or 
contaminants. The completeness of the final assembly 
was assessed using the Benchmarking Universal Single-
Copy Orthologs (BUSCOv4.0.6; https://​busco.​ezlab.​org/) 
tool performed against the Insecta odb10 datasets that 
includes 1367 reference genes [131].

Antennal transcriptome sequencing and assembly
For transcriptome sequencing, adult male and female T. 
lineatum were collected during two field seasons (April-
June 2021–2022) using pheromone traps as described 
above. Antennae collected from 135 individuals (males 
and females in approx. equal sex ratio) were used for 
RNA extractions, with antennae from the two sexes 
pooled to obtain sufficient RNA quantity. The antennae 
were homogenized using Tissue-tearor model 98,370–
365 (Bartlesville, OK, USA). Total RNA was then isolated 
using the RNeasy Minikit (Qiagen, Hilden, Germany). 
This yielded 0.94 µg of total RNA that was used for tran-
scriptome sequencing. Illumina short-read sequencing 
was performed at the NGI (Science for Life Laboratory), 
Sweden. The RNA was DNAse-treated and subjected to 
library construction using the Illumina TrueSeq stranded 
mRNA (polyA) kit (Illumina, San Diego, CA, USA). 
Libraries were sequenced paired-end (2 × 150  bp) on a 
NovaSeq S6000 platform using 0.25 lanes of an S4-300 
(v.1.5) flowcell. The sequencing generated 576.91 mil-
lion paired-end reads. Low-quality reads and adaptor 
sequences were removed prior to the de novo assem-
bly with Trinity (v.2.11.0) [132]. Redundant transcripts 
were removed using CD-HIT-EST (v.4.8.1) [133] with 
a sequence identity threshold of 0.98. The non-redun-
dant assembly comprised 102,112 predicted ‘genes’ with 
their respective isoforms together with other non-cod-
ing sequences totalling 154,547 ‘transcripts’. The aver-
age transcript length was 1,146  bp. The completeness 

of the assembly was evaluated using BUSCO (v.4.1.4) 
as described above. This analysis showed high (96.5%) 
overall completeness of the assembly, with 39.2% of the 
genes present as single-copy orthologues and 57.3% of 
the genes duplicated. Only 37 BUSCO genes (2.7%) were 
missing from the assembly and 11 genes (0.8%) were frag-
mented. The assembled antennal transcriptome was used 
to verify the chemoreceptor gene sequences annotated 
from the genome (described below) and to investigate 
whether their transcripts are present in the main chem-
osensory organ, but not for gene annotation per se.

Chemosensory gene annotation
Exhaustive tBLASTn searches were carried out against 
the polished MinION genome assembly of T. linea-
tum to identify the chemoreceptor genes, using query 
sequences from the bark beetles I. typographus and D. 
ponderosae, as well as the cerambycid A. glabripennis 
[35, 52, 84]. The protein sequences of the identified T. 
lineatum chemoreceptors were then used in additional 
blast searches against the T. lineatum genome until all 
novel hits were exhausted. The blast searches were imple-
mented in Geneious prime v.11.0.18 software (Biomatters 
Ltd., Auckland, New Zealand) with an E-value cut-off at 3 
(or 10, occasionally for divergent GRs and IRs) to ensure 
that divergent genes were not missed. Gene annotations 
and determination of exon/intron boundaries were per-
formed manually in Geneious software as in previous 
studies [34, 35]. The annotated gene models were fur-
ther validated through BLAST searches against the non-
redundant protein collection at NCBI and against the 
assembled antennal transcriptome of T. lineatum (using 
tBLASTn), as described above.

The naming of the ORs, most GRs, and the ‘diver-
gent’ IRs followed previously established nomencla-
ture guidelines and was based on two criteria [35]. 
First, preliminary trees were constructed to assign 
numbers to genes based on their phylogenetic posi-
tions, with related genes given consecutive numbers. 
Secondly, genes present in tandem arrays on contigs 
were assigned consecutive numbers, and such genes 
generally also grouped together in the trees. The con-
served carbon dioxide receptors were named GR1-3 
(according to [134]), a putative non-fructose sugar 
receptor was named GR4, and one putative fructose 
receptor GR5. The numbering of putative bitter taste 
GRs started at GR6. The numbering of ‘divergent’ IRs 
started at IR101, whereas the conserved ‘antennal’ IRs 
were named based on orthology with IRs in Drosophila 
melanogaster, except for the IR75 members that were 
named based on orthology with IR75 proteins in D. 
ponderosae and/or H. hampei. Genes that were lack-
ing the N-terminal or C-terminal were designated with 

https://github.com/bcgsc/nthits
https://busco.ezlab.org/
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the suffixes NTE, and CTE respectively. Because Nano-
pore sequencing technology is prone to introducing 
indels in homopolymer regions, some of the chemore-
ceptor genes contained single nucleotide insertions or 
deletions inside one or more exons. These indels were 
manually corrected with support from the Illumina 
reads, and the corresponding genes attained a FIX suf-
fix. Genes with premature stop codons, frameshifts, 
missing splice sites and/or missing exons (or pieces of 
exons) were considered pseudogenes and were given a 
PSE suffix. Chemoreceptor genes assembled on some 
of the shortest contigs that shared an amino acid iden-
tity > 96% with genes assembled on larger contigs were 
considered likely assembly variants (or alleles) and were 
thus not further considered to prevent overestimation 
of gene counts.

Phylogenetic analysis
To investigate the evolutionary relationships among the 
identified chemoreceptors in T. lineatum and receptors 
from other beetles (from Curculionidae and Ceramby-
cidae), we constructed approximately  maximum likeli-
hood trees that contained the receptors from T. lineatum 
alongside those previously annotated from the genomes 
of D. ponderosae [35], H. hampei [53] and A. glabripennis 
[52]. In the case of ORs, we also included the functionally 
characterised receptors from I. typographus to infer func-
tions in potentially related TlinORs [83, 84, 115, 116]. 
Multiple sequence alignments were constructed using 
MAFFT v7.490 [135]. Minor misalignments of a lim-
ited number of receptors were manually corrected. The 
alignments were then trimmed to discard uninforma-
tive regions using trimAL v.1.2 [136] with the following 
settings: similarity threshold 0, gap threshold 0.7, and 
minimum 25% conserved positions. The trees were con-
structed using FastTree 2.1.11 (implemented in Geneious 
Prime software). Local branch support was assessed 
using the Shimodaira-Hasegawa (SH) test within Fast-
Tree. The OR tree was rooted with the conserved Orco 
lineage, the GR tree with the ancestral clade of sugar 
receptors, and the IR tree with the conserved IR8a/IR25a 
lineage. The trees were visualized and colour-coded using 
FigTree v1.4.4. Final graphical adjustments were made 
using Adobe Illustrator.
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