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Abstract
Reliable and ultra-fast DNA and RNA sequencing have been achieved with the emergence of high-throughput 
sequencing technology. When combining the results of DNA and RNA sequencing for tumor cells of cancer 
patients, neoantigens that potentially stimulate the immune response of either CD4+ or CD8+ T cells can be 
identified. However, due to the abundance of somatic mutations and the high polymorphic nature of human 
leukocyte antigen (HLA) it is challenging to accurately predict the neoantigens. Moreover, comparing to HLA-I 
presented peptides, the HLA-II presented peptides are more variable in length, making the prediction of HLA-II 
loaded neoantigens even harder. A number of computational approaches have been proposed to address this 
issue but none of them considers the DNA origin of the neoantigens from the perspective of 3D genome. Here 
we investigate the DNA origins of the immune-positive and non-negative HLA-II neoantigens in the context of 
3D genome and discovered that the chromatin 3D architecture plays an important role in more effective HLA-II 
neoantigen prediction. We believe that the 3D genome information will help to increase the precision of HLA-II 
neoantigen discovery and eventually benefit precision and personalized medicine in cancer immunotherapy.
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Introduction
Immunotherapies through boosting the endogenous 
T cell’s ability to destroying cancer cells have demon-
strated effective in a variety of human malignancies 
[1]. The mutations of cancers can encode the seeds of 
their own destruction, in the form of T cell recogniz-
able immunogenic peptides, also known as neoantigenic 
epitopes. There are two major origins of cancer rejec-
tion epitopes: the first origin of such antigens is formed 
by non-mutated proteins to which T cell tolerance is 
incomplete due to their restricted tissue expression pat-
tern; the second origin is formed by peptides that are 
novel in normal human genome, known as neoantigens 
[1]. With the advance of sequencing technology, it has 
been revealed that during cancer development, a large 
number of somatic mutations can be generated. Most of 
these mutations are caused by genomic instability within 
the tumor cells and are invidious passenger mutations 
with unobvious growth advantage; a limited number of 
cancer mutations however, are driver mutations which 
interfere with normal cell regulation and can contribute 
to cancer growth and resistance to targeted therapies [2]. 
Both passenger mutations and driver mutations can be 
nonsynonymous that alter protein amino acid sequence 
coding, leading tumor to express abnormal proteins that 
cannot be found in normal cells. During cell metabolize, 
the proteins possessing abnormal sequences are trimmed 
into short peptides and are presented on the cell surface 
by the major histocompatibility complex (MHC, or HLA 
in humans) which have a chance to be recognizable by T 
cell as foreign antigens [2–4].

The cancer-killing ability of CD8+ T cells (killer T cell) 
can be stimulated when the T cell receptors (TCRs) rec-
ognize cancerous peptide epitopes that are displayed on 
major histocompatibility complex-I (MHC-I, HLA-I in 
human) on the surface of the tumor cells. CD4+ T cells 
on the other hand, identify peptides bound to MHC-II 
(HLA-II in human) molecules displayed on the surface 
of antigen-presenting cells (APCs). In recent years, CD4+ 
T cell (helper T cell) is drawing more attention in can-
cer immunotherapy area, as studies have shown that in 
infections or cancer, when non-self peptides or tumor-
associated antigens are generated, interactions between 
the HLA-II–peptide complex on APCs and the TCR on 
CD4+ T cells, are key to initiate and sustain immune 
responses [5–7]. Comparing to HLA-I presented neoan-
tigen discovery, due to the high polymorphic nature of 
HLA-II and that the HLA-II presented peptides are more 
variable in length, it is more challenging to efficiently 
predict the HLA-II loaded neoantigens [8–10].

According to the above principles, if candidate neo-
antigens are identified via sequencing experiment, 
one can validate the efficacy of the synthesized epit-
ope peptides in vivo (cancer cell-line or animal model) 

before clinical practice [1, 2] and indeed, cancers bear-
ing sporadic dominant mutation can often be effectively 
treated by targeting the driver mutation [2, 11]. When 
the somatic mutations are abundant however, which is a 
more general scenario, it is challenging to efficiently pri-
oritize the identified neoantigen candidates according 
to their ability to activate the T cell’s immuno-response 
[12]. Although HLA peptidomics development in recent 
years [13–15] allow fast and reliable measurements of 
thousands of HLA ligands per sample, which improve 
HLA-I epitope predictions to a large extend [16–20], 
similar improvements are not hold for HLA-II, and previ-
ous studies based on high-throughput peptidomics have 
been restricted to a few HLA-II alleles [14, 21] or failed to 
demonstrate improvements in epitope predictions at all 
[22], leaving the space of computational HLA-II neoanti-
gen prediction still wide open.

Over the past two decades, numerous neoantigen 
prediction approaches have been proposed [8, 9, 19, 
23, 24] which can be partitioned into two major catego-
ries: the protein 3D structure-based approaches which 
consider the 3D conformations of pMHC and TCR, 
and the sequence-based approaches which consider the 
amino acid sequence of the target peptides. For the 3D 
structure-based approaches, if high quality pMHC 3D 
structures are available, molecular dynamic (MD) meth-
ods can be applied to investigate the contact affinity of 
pMHC-TCR complex [25–27], otherwise the modelling 
or simulation by protein docking and threading has to be 
employed due to the lack of high quality pMHC 3D con-
formation. Most other approaches adopt the sequence-
based methods as there are much larger training datasets 
[28, 29] and the sequence-based approaches are usually 
more efficient to set up [12, 30].

Early sequence-based methods such as BIMAS [31] and 
SYFPEITHI [32] adopted the position-specific scoring 
matrices (PSSMs) which are defined from experimentally 
confirmed peptide binders of a particular MHC allele 
[12]. More advanced machine-learning based techniques 
were then developed to capture the nonlinear nature of 
the pMHC-TCR interaction which demonstrated better 
performance than the PSSM-based methods. Consensus 
approaches such as CONSENSUS [33] and NetMHCcons 
[34] that combine multiple methods were also developed 
to achieve more robust predictions, trading off addi-
tional computational power in determining the weight-
ing among results generated by different methods. When 
considering peptide binding, most methods did not con-
sider the HLA allele variety, therefore, pan-specific meth-
ods, such as NetMHCpan [19, 24], were developed which 
allow the HLA type independent prioritization. As one 
of the most widely adopted methods in the area, Net-
MHCpan first train a neural network based on multiple 
public datasets, then the affinity of a given peptide-MHC 
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considering the polymorphic HLA types HLA-A, HLA-B 
or HLA-C is computed according to the trained neu-
ral network. NetMHCpan [19] and NetMHCIIpan [35] 
perform remarkably, even compared to allele-specific 
approaches [12, 36]. However, although several assess-
ments and criteria were proposed in the past aiming at a 
more fair and effective comparison [36–38], there are no 
recent independent benchmark studies that can be used 
to recommend specific tools up until now [3].

In our previous study, we discovered that the DNA 
loci of MHC-I neoantigens obey certain distribution in 
genome 3D space [3] and by incorporating this impor-
tant information, we developed a group feature selection 
based deep neural network model (DNN-GFS) that was 
able to predict MHC-I neoantigen in a much higher accu-
racy than the existing widely adopted methods [4]. To 
the best of our knowledge however, none of the present 
MHC-II epitope prediction methods consider the cor-
responding DNA loci of the neoantigens in the perspec-
tive of 3D genome, which carries important additional 
information compared to the amino acid sequence alone 
[39]. In this work, we incorporated the DNA origin of the 
immune-positive and non-negative MHC-II neoantigens 
in the context of the 3D genome and demonstrate its 
contribution to the MHC-II neoantigen prediction.

Methods
Immunogenicity data collection and curation
For MHC-II neoantigen training data, peptide sequences 
and the corresponding immune response information 
were collected from the IEDB database under the T-Cell 
Assay category [29] in May 2021. After collecting 399,318 
peptide records in the primary dataset, we performed fil-
tering by targeting Homo Sapiens species and MHC-II 
subtypes, and restrained the peptide length from 11 to 30, 
followed by identical records (i.e., same peptide sequence 
and HLA subtype) merging. The dataset was further 
cleaned up by applying two procedures, checkIllegalPep-
tides and modifyHLAType, which checks for amino-acid 
alphabet legitimacy and standardizes HLA allele names, 
respectively. For peptides of unknown MHC subtype, 
DRB1*01:01 was set as default MHC allele. For peptides 
of known MHC subtypes, we sorted them into different 
datasets for separate training and evaluation. Identical 
peptides with multiple immune experiments are defined 
as immuno-positive or immuno-negative if the positive 
rate > 70% or the positive rate < 30%, respectively. In the 
end, we obtained 3,633 peptides, with 2,197 immuno-
negative and 1,436 immuno-positive. As for the sub data 
set which contains detailed MHC-II subtype informa-
tion, there were in total 703 peptides, of which 411 are 
immuno-positive ones and 292 are immuno-negative 
ones.

Mapping peptides to human genome
We developed a pipeline to map the peptides sequence 
to reference human genome hg19; the pipeline query the 
NCBI local BLAST [40] and map the gene names to chro-
mosomes and start-end positions. To set up local BLAST, 
we restricted the search to H.sapiens and set the E-value 
to 0.01 to find matches. After obtaining the accessions, 
we used the BIOMART [41] to convert the gene name to 
ENSEMBL ID, then we used the DAVID [42] to obtain 
the gene names composed with gene symbols and the 
chromosome positions were then obtained.

Chromatin 3D modeling
We used the contact frequency Hi-C data of the hESC 
and IMR90 cell lines generated by Bin Ren’s lab as the 
chromatin 3D conformation data source [43]. The con-
tact frequencies and the subsequent chromatin 3D mod-
eling are based on these population cell based Hi-C data. 
We developed a whole-genome 3D modeling algorithm 
for the human genome using molecular dynamics (MD) 
based approach with resolution of 500  kb (bin size) for 
hESC and IMR90 Hi-C data. Each bin was coarse-grained 
by the algorithm as one bead and intact genome was 
modeled as 23 polymer chains represented by bead-on-
the-string structures [4]. Two factors would affect the 
spatial position of each bead: the chromatin connectiv-
ity that constrains sequentially neighbor beads in close 
spatial proximity and the chromatin activity that ensures 
active regions are more likely to be located close to the 
center of cell nucleus [4]. We estimated the chromatin 
activity as compartment degree that can be directly cal-
culated from Hi-C matrix with algorithm described in 
previous work [44]. All the beads were assigned distances 
to the nuclear center and the conformation of chromatin 
was optimized from random initial structures using MD 
approach. The bias potential was applied to satisfy the 
distance constraints.

MHC-II neoantigen prediction method
We adopted the NetMHCIIpan method with Binding 
Affinity (BA) and Mass-Spectrometry Eluted Ligands 
(EL) training means respectively, to predict the curated 
peptides’ immunogenicity as baseline predictions. The 
predicted results were then treated as input feature along 
with the 3D genome coordinates and radius position val-
ues of hESC and IMR90. The 9 input features (1 of BA or 
EL, 6 of < x, y, z > coordinates from hESC and IMR90 3D 
models, and 2 of radius positions from hESC and IMR90 
3D models) were then taken together to train KNN 
(K-Nearest Neighbor) with K = 8 after parameter tuning, 
SVM (Support Vector Machine) with default param-
eter of Gaussian kernel, and LR (Logistic Regression), 
under 5-fold and leave-one-out (LOO) cross validation 
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schemes, to validate its contribution to the baseline 
prediction.

Results
After curation and generation of the two datasets, i.e., 
the 3,633-peptide one which contains both known and 
unknown MHC-II subtype p-MHCs, and the 703-pep-
tide one which contains only known MHC-II subtype 
p-MHCs. We first run NetMHCPan-BA and NetMH-
CPan-EL to generate the NetMHCPan results as base-
line predictions. We then incorporated 3D genome 
features, i.e., the < x, y, z > coordinates and the radius 
position of both hESC and IMR90 Hi-C cell lines, and 
trained KNN, SVM, and LR models to obtain final pre-
dictions under either 5-fold (100 repeats) or LOO cross 
validations. Figures 1 and 2 demonstrate the ROC curve 
comparison in 3,633-peptide dataset and 703-peptide 
dataset, respectively. In either Figure, NetMHCPan-BA 
or NetMHCPan-EL are the baseline predictions and 
Plus3D-KNN, Plus3D-LR and Plus3D-SVM are predic-
tions after incorporating 3D genome features under cross 

validations. Figures 3 and 4 are the prediction score com-
passion of different methods under known positive and 
negative immunogenicity category, to demonstrate the 
discriminative power of different methods. The figures 
clearly demonstrate that after incorporating 3D genome 
information, the prediction accuracies are significantly 
boosted no matter what prediction method are used, 
indicating that 3D genome information can contribute 
more precise p-MHC-II neoantigen prediction to a large 
extend. Tables 1 and 2 demonstrated detailed prediction 
statistics at the cutoffs that reach the best F-measure 
score for each situation.

Discussion
The neoantigen therapy is a rising and promising strat-
egy in cancer immunotherapy area, as it can be abso-
lutely personalized and catch up with cancer evolution 
by updating neoantigen panel. It is computationally 
challenging however, to efficiently predict neoantigen 
candidates according to their ability of activating the 
T cell immuno-response, especially when the somatic 

Fig. 1  ROC curve comparison of different prediction methods applied on the 3,633-peptide dataset. a and b: NetMHCPan-BA results are adopted as 
baseline predictions and are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predictions, under 5-fold and Leave-one-out cross validations 
respectively. c and d: NetMHCPan-EL results are adopted as baseline predictions and are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predic-
tions, under 5-fold and Leave-one-out cross validations respectively

 



Page 5 of 10Feng et al. BMC Genomics          (2024) 25:889 

mutations are abundant. Dozens of neoantigen prioriti-
zation or prediction approaches have been proposed to 
address this issue for either MHC-I or MHC-II presented 
epitopes, corresponding to CD8+ and CD4+ T cells 
respectively, but none of the existing approaches consid-
ers the DNA origin of the neoantigens from the perspec-
tive of 3D genome. In this work, we demonstrated that 
similar to our previous discovery for MHC-I and CD8+ 
T cell neoantigen, the 3D genome information can con-
tribute to much more accurate MHC-II neoantigen pre-
diction. The underlining mechanism why 3D genome is 
closely linked to neoantigen immunogenicity is yet to be 
revealed, but here we conjecture that it is the evolution of 
chromatin 3D conformation that positioned protein-cod-
ing DNA segments of different immunogenicity-activat-
ing power in specific locations in the 3D genome within 
the nucleus.

One perspective that worth further investigation is 
how the 3D genome contributes to neoantigen immu-
nogenicity prediction by offering information into the 
evolutionary dynamics of genes and their regulatory 

elements within the nucleus. Better understanding of the 
3D genome architecture allows researchers to identify 
how genetic elements, such as enhancers and promoters, 
have evolved to regulate the expression of genes. Evolu-
tion shapes these regulatory elements over time, enabling 
organisms to adapt and respond to different environmen-
tal and physiological conditions. When considering neo-
antigen immunogenicity prediction, the 3D genome can 
help identify the evolutionary changes that have occurred 
in regulatory elements controlling the expression of 
genes encoding tumor-specific neoantigens. Moreover, 
3D genome sub-architectures such as A/B Compart-
ment, TAD, Loop can also be further investigated along 
with neoantigen immunogenicity, for both MHC-I and 
MHC-II neoantigens, and better prediction models can 
be achieved by incorporating such information.

We believe that by incorporating the 3D genome infor-
mation better, e.g., combining more advanced machine 
learning [45–47] and feature selection technologies [48–
50], more precise neoantigen prioritization and discovery 

Fig. 2  ROC curve comparison of different prediction methods applied on the 703-peptide dataset. a and b: NetMHCPan-BA results are adopted as base-
line predictions and are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predictions, under 5-fold and Leave-one-out cross validations respec-
tively. c and d: NetMHCPan-EL results are adopted as baseline predictions and are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predictions, 
under 5-fold and Leave-one-out cross validations respectively
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Fig. 3  Positive and negative sample prediction score distribution comparison of different prediction methods applied on the 3,633-peptide dataset. a 
and b: NetMHCPan-BA results as baseline predictions are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predictions, under 5-fold and LOO cross 
validations respectively. c and d: NetMHCPan-EL results as baseline predictions are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predictions, 
under 5-fold and LOO cross validations respectively
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Fig. 4  Positive and negative sample prediction score distribution comparison of different prediction methods applied on the 703-peptide dataset. a and 
b: NetMHCPan-BA results as baseline predictions are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predictions, under 5-fold and LOO cross 
validations respectively. c and d: NetMHCPan-EL results as baseline predictions are compared with Plus3D-KNN, Plus3D-LR and Plus3D-SVM predictions, 
under 5-fold and LOO cross validations respectively
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can be achieved and will eventually benefit precision 
medicine in cancer immunotherapy.
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Table 1  Statistics of different prediction methods applied on the 3633-peptide dataset
Setting Method Precision Recall F1-measure AUPR AUC
BA, 5Fold NetMHCPan-BA 0.4498 0.7618 0.5857 0.461 0.5918

Plus3D-KNN 0.6889 0.5905 0.6752 0.7167 0.7644
Plus3D-LR 0.4811 0.6372 0.5666 0.5876 0.5946
Plus3D-SVM 0.6101 0.656 0.6605 0.7068 0.7182

BA, LOO NetMHCPan-BA 0.4498 0.7618 0.5857 0.461 0.5918
Plus3D-KNN 0.6821 0.5453 0.606 0.7035 0.6896
Plus3D-LR 0.4783 0.5606 0.5666 0.6063 0.5805
Plus3D-SVM 0.5871 0.7159 0.6451 0.7076 0.6934

EL, 5Fold NetMHCPan-EL 0.3953 1.0 0.5666 0.4808 0.5697
Plus3D-KNN 0.6831 0.5313 0.6633 0.7046 0.7469
Plus3D-LR 0.4568 0.6915 0.5666 0.5617 0.5831
Plus3D-SVM 0.6035 0.6233 0.6393 0.6873 0.7042

EL, LOO NetMHCPan-EL 0.3953 1.0 0.5666 0.4808 0.5697
Plus3D-KNN 0.6815 0.5007 0.5773 0.6898 0.6739
Plus3D-LR 0.4712 0.5251 0.5666 0.592 0.57
Plus3D-SVM 0.5904 0.6887 0.6358 0.7011 0.6882

Table 2  Statistics of different prediction methods applied on the 703-peptide dataset
Setting Method Precision Recall F1-measure AUPR AUC
BA, 5Fold NetMHCPan-BA 0.5855 1.0 0.7385 0.6222 0.5306

Plus3D-KNN 0.8446 0.7007 0.799 0.8664 0.8117
Plus3D-LR 0.7418 0.6642 0.7379 0.7921 0.6634
Plus3D-SVM 0.821 0.6472 0.7704 0.8365 0.7407

BA, LOO NetMHCPan-BA 0.5855 1.0 0.7385 0.6222 0.5306
Plus3D-KNN 0.8182 0.7226 0.7674 0.8515 0.7483
Plus3D-LR 0.7268 0.6861 0.7379 0.7982 0.6616
Plus3D-SVM 0.7698 0.7567 0.7632 0.8344 0.7191

EL, 5Fold NetMHCPan-EL 0.5846 1.0 0.7379 0.6812 0.6014
Plus3D-KNN 0.8293 0.7567 0.8102 0.8702 0.8079
Plus3D-LR 0.7487 0.6813 0.7429 0.7891 0.6739
Plus3D-SVM 0.804 0.6788 0.7746 0.8361 0.7416

EL,
LOO

NetMHCPan-EL 0.5846 1.0 0.7379 0.6812 0.6014
Plus3D-KNN 0.8064 0.7397 0.7716 0.8491 0.7448
Plus3D-LR 0.7389 0.6886 0.7379 0.8048 0.673
Plus3D-SVM 0.7685 0.7591 0.7638 0.8342 0.7186
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