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Abstract
Background  Detecting very minor (< 1%) subpopulations using next-generation sequencing is a critical need for 
multiple applications, including the detection of drug resistant pathogens and somatic variant detection in oncology. 
A recently available sequencing approach termed ‘sequencing by binding (SBB)’ claims to have higher base calling 
accuracy data “out of the box.” This paper evaluates the utility of using SBB for the detection of ultra-rare drug resistant 
subpopulations in Mycobacterium tuberculosis (Mtb) using a targeted amplicon assay and compares the performance 
of SBB to single molecule overlapping reads (SMOR) error corrected sequencing by synthesis (SBS) data.

Results  SBS displayed an elevated error rate when compared to SMOR error-corrected SBS and SBB techniques. 
SMOR error-corrected SBS and SBB technologies performed similarly within the linear range studies and error rate 
studies.

Conclusions  With lower sequencing error rates within SBB sequencing, this technique looks promising for both 
targeted and unbiased whole genome sequencing, leading to the identification of minor (< 1%) subpopulations 
without the need for error correction methods.

Keywords  Sequencing by synthesis (SBS), Sequencing by binding (SBB), Tuberculosis (TB), Heteroresistance, Single 
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Background
While next-generation sequencing (NGS) has revolution-
ized genomics in oncology and infectious disease, chal-
lenges remain in characterizing cellular heterogeneity, 
including the accurate measurement of minor popula-
tions (< 1%) due to the intrinsic error rates, particularly in 
‘sequencing by synthesis’ (SBS) methods [1]. One critical 
use case for accurate measurement of minor populations 
(< 1%) is the early identification of drug resistant subpop-
ulations of Mycobacterium tuberculosis (Mtb), a phenom-
enon known as heteroresistance. Tuberculosis remains 
a leading global infectious disease problem due to many 
challenges associated with detecting and treating drug 
resistant Mtb infections. Sequencing-based analysis 
of resistance causing mutation loci in drug resistance-
related Mtb genes has revealed both dominant and minor 
drug resistant subpopulations in patients exhibiting drug 
resistant infections [2–5]; accurate detection and quan-
tification of these subpopulations can be significantly 
affected by polymerase and sequencing error.

Multiple methods have been introduced to decrease 
sequencing error rates including unique molecular iden-
tifiers (UMIs) [6], duplex sequencing [7, 8] and others [9–
11]. Current error correction methods, while powerful, 
introduce complexity to library prep and analysis, and 
often require over-sequencing. UMIs are an error correc-
tion tool commonly used in sequencing where barcodes 
are introduced by tagging molecules in the first cycle of 
PCR to identify and correct both PCR and sequencing 
errors. Single molecule overlapping reads (SMOR) is one 
error correction method and the focus of this study on 
Mtb amplicons, which requires overlapping read 1 (R1) 
and read 2 (R2) pairs and discards variants within over-
lapping reads where the base call differs between R1 and 
R2. We have previously shown that single molecule over-
lapping reads (SMOR) analysis reduces SBS sequencing 
error significantly and can be used to detect minor pop-
ulations of drug resistant Mtb down to 0.1% of the total 
population [12–19]. Here, we assess the reliability of a 
novel ‘sequencing by binding’ (SBB) chemistry (Pacific 
Biosciences, PacBio) to sequence well defined Mtb drug 
resistance mutations in katG and gyrA genes (conferring 
isoniazid and fluoroquinolone resistance, respectively) 
down to 0.01% without employing additional error cor-
rection methods (e.g., UMIs or SMOR).

Methods
In order to assess the capabilities of targeted SBB 
sequencing to identify and quantify low to extremely low 
minor subpopulations, and compare to error-corrected 
and non-error-corrected targeted SBS sequencing, we 
created validated contrived mixtures, conducted PacBio 
SBB and Illumina SBS sequencing, and statistically 

compared sequencing outputs for sequencing accuracy 
and quantification precision. Methods in detail are as 
follows:

Contrived mixtures
Two plasmids were used as DNA template to create PCR 
products for making contrived drug resistant mutation 
mixtures at 10%, 1%, 0.1%, 0.01%, and 0.001%. A wildtype 
(WT) plasmid was created (Blue Heron Biotech, LLC) 
with katG and gyrA sequences that match the Myco-
bacterium tuberculosis H37Rv pan-susceptible strain. A 
second resistant (RS) plasmid was created (Blue Heron 
Biotech, LLC) with katG and gyrA mutations at katG 
g944c and gyrA a241g, which are mutations known to 
confer drug resistance in clinical isolates from tuberculo-
sis patients [20]. Both plasmids were linearized with PciI 
restriction enzyme (New England Biolabs, Inc.) using 
manufacturer’s conditions and diluted to 103 copies and 
used as DNA template for targeted sequencing PCR. This 
PCR contained primers (200 nM final conc.) with univer-
sal tails as previously described [13], Q5® Hot Start High-
Fidelity 2X Master Mix (New England Biolabs, Inc.) (1x 
final conc.), betaine (MilliporeSigma) (1  M final conc.), 
and water to 30 µL. The cycling conditions were 98  °C 
for 1 min; 35 cycles of 98 °C for 15 s, 60 °C for 20 s, and 
72 °C for 20 s; and 72 °C for 5 min. The WT PCR prod-
ucts were diluted with water to 400 uL to make enough 
volume for subsequent 10-fold dilution series. Qubit 
dsDNA HS Assay Kit (Thermo Fisher Scientific, Inc.) 
quantification was used to measure, dilute, and confirm 
the RS PCR products were at the same concentration as 
the WT PCR products. With all PCR products at equi-
molar concentrations (i.e., for both katG and gyrA), three 
separate 10% mixtures were created by mixing 3 µL of 
RS PCR products into 27 µL of WT PCR products. Four 
additional 10-fold dilution series for each 10% mixture 
replicate were created using WT PCR products as the 
diluent. These universally-tailed PCR products (i.e., six 
different 10-fold dilution series) were purified with a 1.0x 
AMPure XP (Beckman Coulter, Inc) bead cleanup, eluted 
into 20 µl of water, processed further for either Illumina 
or PacBio SBB sequencing.

Illumina SBS sequencing
The purified PCR product mixtures were each barcoded 
with dual and unique 12  bp indexing primers in a sec-
ond PCR that also added adapters for sequencing on 
an Illumina DNA sequencer platform. This PCR con-
tained 2 µL of the previous product, primers (400 nM 
final conc.) with barcodes and adapters as previously 
described [13], KAPA HiFi Hotstart ReadyMix (Roche 
Molecular Systems, Inc.) (1x final conc.), and water to 50 
µL. The cycling conditions were 98 °C for 2 min; 6 cycles 
of 98 °C for 30 s, 60 °C for 20 s, and 72 °C for 30 s; and 
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72 °C for 5 min. These PCR products were purified with 
a 0.8x AMPure XP (Beckman Coulter, Inc) bead cleanup 
and eluted into 40 µL of water. These individual librar-
ies were quantified with a KAPA Library Quantifica-
tion Low Rox Kit (Roche Molecular Systems, Inc.) on a 
QuantStudio™ 7 Flex Real-Time PCR System (Thermo 
Fisher Scientific, Inc.) and pooled in equimolar amounts 
before being combined with 20% PhiX sequencing con-
trol v3 (Illumina, Inc.), assessed with a High Sensitivity 
D5000 ScreenTape (Agilent Technologies, Inc.) on a 4200 
TapeStation system (Agilent Technologies, Inc.), and 
finally sequenced on a MiSeq® System (Illumina, Inc.) 
with a 600-cycle MiSeq Reagent Kit v3 (Illumina, Inc.).

PacBio SBB sequencing
The individual Illumina libraries were converted using 
the PacBio Onso Conversion protocol (PacBio 102-529-
500). Briefly, a p5/p7 library (5-100 fmol) were added to 
PCR conversion primers (2.5ul), PCR master mix (2X) 
and water up to 30ul. The cycling conditions were 98 °C 
for 30  s; 5 cycles of 98  °C for 10  s, 65  °C for 30  s, and 
72 °C for 30 s; and 72 °C for 5 min. These PCR products 
were purified with a 1.6x AMPure XP (Beckman Coulter, 
Inc) bead cleanup and eluted into 52 µL of low TE. These 
individual libraries were quantified with a KAPA Library 
Quantification Low Rox Kit (Roche Molecular Systems, 
Inc.) on qPCR System and pooled in equimolar amounts 
before being combined with 10% Onso indexed library 
control (PacBio 102-529-900) assessed with a High Sen-
sitivity D1000 ScreenTape (Agilent Technologies, Inc.) 
on a 4200 TapeStation system (Agilent Technologies, 
Inc.), and sequenced on a prototype Onso instrument in 
a single read, 150 cycle configuration (pre-commercial 
reagents).

Targeted amplicon sequencing analysis
fastQ.gz files were subsampled using “seqtk” (1.3) [21], 
leading to 20,000 or 100,000 single reads for SBB and 
20,000 or 100,000 paired reads for SBS. After subsam-
pling, the contrived population mixtures were ana-
lyzed using the Amplicon Sequencing Analysis Pipeline 
(ASAP) software (1.9.0) [13, 22]: a customized ASAP 
JavaScript Object Notation (JSON) file was created for 
these katG and gyrA nucleotide locations and the reads 
were trimmed of any adapter with any less than 80 nt 
being removed by bbduk [23]. Then the trimmed reads 
were aligned to the target amplicon references using 
Bowtie2 [24] and the resultant BAM files were analyzed 
for single nucleotide polymorphisms (SNPs) follow-
ing the specifications in the JSON file and user defined 
thresholds including SMOR analysis. ASAP outputs an 
XML file containing all of the results. Utilizing an RStu-
dio (2023.03.1) and R (4.3.0) installation on a high-per-
formance computing cluster, the ASAP XML file was 

parsed using custom scripts. The “tidyverse” (2.0.0) [25], 
“ggpubr” (0.6.0) [26], and “Hmisc” (5.1-0) [27] packages 
were used within the analysis.

Full and linear range plots
For each method, gene, and read sampling by plotting 
the observed SNP percentage compared to the theoreti-
cal percentage. Linear models were used to calculate the 
R2 values and to create 95% confidence intervals for the 
associated linear range. In addition, Supplemental Fig. 2 
was created to identify the number of unique fragments 
needed to statistically validate a 0% SNP population. 
P-values were calculated for each SNP population and 
unique sequenced fragments using a binomial distribu-
tion accessed through the “binom.test” function within R.

Error rate analysis
Using the 100k read sampling files, regions where all 
three methods had more than 10,000X coverage were 
identified within katG and gyrA. Once these regions were 
identified, the per-base error rate was calculated across 
each base pair by classifying SNP errors as either tran-
sitions, transversions, insertions, or deletions. In addi-
tion to these classifications, the total error rate was also 
calculated.

	

Total Error Rate (%) BP Position

= (
Non Reference Calls BP Position

Total Depth BP Position
) × 100

After the per-base error rate was calculated, the mean 
error rate for each gene was calculated. In addition, due 
to the bounded nature of proportions, confidence inter-
vals for error rate were calculated via nonparametric 
bootstrapping with the “Hmisc” package [27]. Finally, 
individual error rates were compared across methods 
using a t-test.

SNP specificity analysis
SNP specificity was measured by identifying false posi-
tive mutations for each sequencing method (SBS, SBS-
SMOR, and SBB). Similar to the error analysis, the 100k 
read sampling files were used, and only regions with 
more than 1,000X coverage were used. Once regions 
were identified, mutations were classified into 6 groups 
(e.g., > 10%, > 1–10%, > 0.1-1%, > 0.01–0.1%, > 0.001–
0.01%, and < 0.001%) based on the observed proportion. 
The average number of false positive SNPs per gene and 
sample were calculated along with a standard 95% confi-
dence interval.
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Results and discussion
We assess the capabilities of targeted SBB sequencing 
to identify and quantify rare subpopulations, compared 
to SMOR error-corrected and non-error-corrected tar-
geted SBS sequencing. Thirty contrived Mtb mixtures 
were created to investigate the performance of these dif-
ferent sequencing and informatics approaches. 10%, 1%, 
0.1%. 0.01%, and 0.001% proportions containing either 
katG g944c or gyrA a241g were made in triplicate using 
three different 10-fold dilution series, so each sample was 
generated in triplicate. In addition to these mixtures, the 
component samples were sequenced in singlet as con-
trols representing 100% and 0% populations. Each mix-
ture was sequenced with SBS and SBB (see Methods). 
The SBS sequencing data was analyzed both with no 
error correction (SBS) and using SMOR error correction 
(SBS-SMOR) and SBB was analyzed with no error cor-
rection. The fastQ files were downsampled for more con-
sistent analysis.

For 100k read sampling, this yielded an average depth 
of ~ 180k for SBB (due to the paired reads), ~ 80k for 
SBS-SMOR, and ~ 97k for SBB (Supplemental Table 1). 
A higher percentage of sequenced reads were discarded 
during quality control and SMOR error correction than 
in the non-error corrected analysis. Thus, to remain 
comparative in read depth with the SBB chemistry, 
8–13% additional paired reads may be required for the 
SBS-SMOR.

Even visually, substantial variation was seen in the 
total number of variants detected by each technology 
(i.e., SBS reads demonstrably accumulated more variants 
than SBB reads) (Fig. 1). We first evaluated the expected 
versus observed mutation proportions and their associ-
ated linear regressions at 20,000x depth, a typical depth 
for previous Mtb mutational analyses [12, 15, 17, 19], and 
100,000x depth, to analyze ultra-low frequency mixtures. 
SBS, SBS-SMOR and SBB gave similar results for minor 
populations down to 0.1% for katG g944c, though SBB 
demonstrated an extended linear range for variant detec-
tion down to 0.01% (Supplemental Fig.  1A-C, 20,000x). 
The 100,000x depth improved the ability to detect the 
ultra-low variant frequencies for katG g944c down to 
0.01% for SBS-SMOR and 0.001% for SBB (Supplemental 
Fig.  1D-F). For gyrA a241g, we observed similar regres-
sions for all three conditions, with a linear range down to 
0.1% (Supplemental Fig. 1G-H). The additional sequenc-
ing depth did not improve the ability to detect lower 
mutation frequencies for gyrA a241g with SBS, SBS-
SMOR, or SBB (Supplemental Fig. 1I-J).

The sampling depth required to detect the lowest 
population proportion (i.e., 0.001%) at > 95% confidence 
would require > 376,435 original template reads, which 
is ~ 3.5 fold greater than the depth analyzed here, lim-
iting the ability to assess performance of the 0.001% 

sample (Figure S2). Thus, a zero count within 100,000 
reads for gyrA (i.e., 0/100,000 reads, variant not detected) 
with an expected minor population of 0.001% should be 
interpreted with caution. All three replicates for 0.001% 
frequency variants were detected for katG SBB (Supple-
mental Table 2, Supplemental Data 2), however, this dilu-
tion was not included in the linear regressions due to 
anticipated stochasticity within the 0.001% samples and 
within the 0% sample. The root cause for the difference 
in performance between the gyrA and katG amplicons 
is uncertain. Follow-up studies with the more recent 
versions of chemistry, more diverse samples, and an 
increased number of low percentage replicates should be 
prioritized to further understand these results.

We calculated the observed error rate across each 
sequencing method per position across conserved gene 
regions within the 100,000 read depth. Errors were 
defined as a deviation from the plasmid sequence which 
results from both the combination of polymerase errors 
in the PCR and sequencing errors. In this study, the two 
error mechanisms cannot be distinguished and both 
contribute to the analysis. This results in overstating the 
value of the sequencing error for all platforms, although 
a relative comparison can still be made. As the samples 
were amplified and then split for sequencing, with the 
SBB samples undergoing five additional cycles of error, 
the polymerase error will contribute slightly more to the 
SBB analysis, but is not corrected for in this analysis, and 
is assumed to be small. Within the genes in this study, 
SBS with no error correction had an average total error 
of 0.34% and is comparable to previous estimates that 
performed a more in-depth analysis [28] (Supplemental 
Table 3). The SNP observed errors are significantly higher 
than insertion and deletion observed errors in all three 
analyses (consistent with previous analysis of SBS [29], 
however, the finite sequence space utilized in this analysis 
should be generalized across larger regions with caution. 
Overall, SBS-SMOR and SBB showed an 8.3X and 8.5X 
reduction in observed errors, respectively, compared to 
SBS alone (Fig.  2), but the difference in SBB and SBS-
SMOR observed error rates is not significant (p = 0.08) 
(Supplemental Table 3).

In addition to the observed error rate analysis, we 
assessed the number of false-positive SNPs (compared 
to the plasmid reference) that were detected in each gene 
fragment and method across six thresholds. No method 
detected false positive SNPs at a frequency greater than 
2.1%. False positives were substantially higher in uncor-
rected SBS reads when compared to SBS-SMOR and SBB 
(Supplemental Table 4). These results are consistent with 
past observations suggesting minor population detec-
tion without any error corrections is limited to between 
1 and 10% for uncorrected SBS sequencing [13, 28]. 
SBS-SMOR had the lowest false positive SNP detections 
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in the > 0.1-1% range for both gyrA (2.6 SBS-SMOR vs. 
10.8 in SBB) and katG (4.8 vs. 9.6, SBS-SMOR vs. SBB); 
however, this pattern did not continue below this cut-
off range with SBB outperforming SBS-SMOR at lower 
thresholds. These false positives may be due to sequenc-
ing errors, but PCR errors and DNA replication errors 
during plasmid replication may also be factors at these 

lower thresholds and will need to be investigated in fur-
ther studies.

Conclusions
Detecting rare genetic variants (i.e., < 1% minor subpopu-
lation) in next-generation sequencing data is a critical 
need for applications ranging from identifying antibiotic 

Fig. 1  Alignment of SBS, SBS-SMOR, and SBB reads for katG (A) and gyrA (B) Cartoon at the top of each IGV plot shows the relative position of the se-
quencing reads where SBS had both read 1 and read 2 each at 300 bps, while SBB has only read 1 from the 3’ end with variable lengths up to 150 bps 
long. Images in IGV are representatives of the the 10% proportion mixture and each read is colored grey, in squished mode, and are grouped by katG 
PCR position 224 (gene mutation: g944c) or gryA PCR position 197 (gene mutation: a241g). Mutations compared to the plasmid reference include single 
nucleotide variants, A(Green), G (Orange), C (Blue), T (Red), and N (Dark Grey)
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micro-heteroresistance in bacteria to detecting low-vari-
ant genetic mutations in oncology. Our results with con-
trived mixtures for an Mtb model system to characterize 
ultra-low genetic variants demonstrated SBB sequenc-
ing chemistry detected target SNPs down to 0.01% at 
100,000x depth and 0.1% at 20,000x depth, without any 
error correction methods. Traditional SBS sequencing is 
unable to achieve this accuracy without the use of sophis-
ticated error correction tools (e.g., SMOR, UMI, duplex, 
and others). Both SBB and SBS-SMOR analysis resulted 
in more than 8-fold decrease of overall error rate com-
pared to SBS in this experiment. A broader study integra-
tion of error correction methods with SBB sequencing is 
outside the scope of this study, but should be investigated 
in future publications as it has the potential to signifi-
cantly decrease the sequencing error rate even further. 
SBB sequencing looks very promising for both targeted 
and unbiased whole genome sequencing, as its innate 
accuracy can be used on non-amplicon reads to detect 
minor subpopulations with confidence to less than 1% of 
the total population.
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