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Abstract
Resveratrol has been reported to promote immunity and decrease oxidative stress, but which demonstrates 
biphasic effects relied on the use concentration. In this study, the effects of diet supplement with a relative high 
concentration of resveratrol (0.32 mg/kg) on metabolism, antioxidation and apoptosis of liver were investigated in 
Siberian sturgeon. The results showed that resveratrol significantly increased the lipid synthesis and the apoptosis, 
but did not either activate the antioxidant NRF2/KEAP1 pathway or enhance the antioxidant enzyme activity. 
Transcriptome analysis revealed significant changes in regulatory pathways related to glycolipid, including PPAR 
signaling pathway, Insulin signaling pathway, Fatty acid biosynthesis, and Glycolysis/Gluconeogenesis. In addition, 
resveratrol significantly increased the lipid synthesis genes (accα and fas), fatty acid transport gene (fatp 6) and 
gluconeogenesis gene (gck), but decreased the survival-promoting genes (gadd45β and igf 1). These findings 
highlight a significant effect of resveratrol on glycolipid metabolism in Siberian sturgeon. Moreover, this study also 
demonstrated that 0.32 mg/kg resveratrol has physiological toxicity to the liver of Siberian sturgeon, indicating 
that this dose is too high for Siberian sturgeon. Thus, our study provides a valuable insight for future research and 
application of resveratrol in fish.
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Introduction
China has become the foremost producer and exporter 
of sturgeon caviar globally [1]. Among sturgeon species, 
the Siberian sturgeon (Acipenser baerii) is particularly 
valuable in aquaculture for its ability to thrive in vari-
ous temperature ranges and its fast growth rate [2–4]. 
Environmental stressors like temperature fluctuations, 
ammonia nitrogen, and toxicants can disrupt the fish’s 
metabolic balance, increase reactive oxygen species and 
inflammation levels, and ultimately impact yield, quality, 
and even survival [5–10]. To address these challenges, 
numerous studies have proposed using dietary additives 
such as plant and animal extracts, beneficial probiotics, 
microalgae, and other substances [11–17].

Resveratrol (3,4,5-trihydroxy-trans-stilbene) is a 
dietary polyphenol commonly found in peanuts, mul-
berry fruits, tiger nuts, grapes, and red wine [18]. 
Research has indicated that resveratrol has potential 
benefits in improving fish immunity, preventing stress-
related issues, and reducing economic losses due to dis-
eases or stresses [14, 19–23]. As a result, it has been used 
as an additive in aquafeed to enhance the quality and 
economic value of aquatic products. Studies have shown 
that resveratrol can improve gut health in Siberian stur-
geon by enhancing the structure of intestinal villi and the 
abundance and composition of microbial communities 
[14]. Furthermore, resveratrol has been found to mitigate 
the negative effects of a high-fat diet on hepatic antioxi-
dant levels, inflammation, and lipid metabolism in carp 
(Cyprinus carpio) [22].

The effects of resveratrol are concentration-dependent, 
with varying outcomes based on exposure time and cell 
type [24]. Some studies have suggested that resveratrol 
demonstrates biphasic effects, with beneficial effects at 
low concentrations and toxic effects at high concentra-
tions [25–32]. The toxic effects may include a decrease in 
antioxidant enzyme activity, an increase in reactive oxy-
gen species production, lipid peroxidation, and potential 
cancer development in mammals [30, 33–37]. The opti-
mal concentration of resveratrol for aquatic products 
remains unclear [38]. Therefore, adding an appropriate 
low concentration of resveratrol into the diet of fish can 
potentially yield beneficial effects and support the growth 
and health of fish breeding.

To investigate the effect of high concentration resvera-
trol on Siberian sturgeon, a daily diet containing a rela-
tive high concentration of resveratrol (0.32  mg/kg), was 
administered based on a previous study [14]. This study 
aimed to elucidate the potential effects of high concen-
tration of resveratrol on histological changes, apoptosis, 
lipid metabolism, and antioxidant enzyme activity in liver 
of Siberian sturgeon. Furthermore, the study delved into 
the underlying molecular mechanisms through RNA-seq, 
Real-time PCR, and Western blot analysis. The findings 

would offer valuable insights that guide the utilization of 
resveratrol in the cultivation of Siberian sturgeon (Fig. 1).

Results
Resveratrol increases lipid deposition and apoptosis in 
liver
H&E staining revealed that resveratrol notably enhanced 
vacuolar degeneration of hepatocytes, meaning that res-
veratrol administration facilitated the triglyceride depo-
sition in liver (Fig.  2A). This observation was further 
supported by Oil red O staining, providing direct visual 
evidence (Fig. 2B, D). Additionally, Immunofluorescence 
TUNEL assay demonstrated that resveratrol also trig-
gered apoptosis of hepatocytes (Fig. 2C, E).

Resveratrol does not impact antioxidative level in liver
To investigate the effect of resveratrol on antioxidative 
level, antioxidative enzyme activity assay and immuno-
histochemical analysis of KEAP1 and NRF2 were con-
ducted. The results revealed that no significant difference 
was found in the activity of relevant antioxidant enzymes, 
Catalase, Glutathione peroxidase (GSH-PX), Superoxide 
Dismutase (SOD), Total antioxidant capacity (T-AOC) or 
oxidative stress product Malonaldehyde (MDA) (Fig. 3D). 
The protein levels of KEAP1 and NRF2 was not signifi-
cantly changed in liver tissue after resveratrol administra-
tion (Fig. 3A-C).

RNA-seq reveals resveratrol promotes hepatic lipid 
synthesis
In RNA-seq, clean reads were obtained by filtering reads 
containing adapters, reads with an N ratio greater than 
10%, and reads containing a large number of low-qual-
ity reads. Differential expression analysis revealed 1,314 
DEGs in liver, with 609 up-regulated and 705 down-reg-
ulated DEGs (Fig. 4A). GO Enrichment analysis showed 
that all the DEGs were enriched into 36 items, contain-
ing 16 biological processes, 12 cellular components, and 
8 molecular functions. Highly expressed functions in the 
liver included “biological regulation”, “cellular process”, 
“metabolic process”, “cell part”, “membrane part”, “organ-
elle part”, and “catalytic activity” (Fig. 4B).

The top 30 pathways enriched by KEGG database were 
presented. Among these pathways, metabolism-related 
pathways, including “PPAR signaling pathway”, “Starch 
and sucrose metabolism”, “Insulin signaling pathway”, 
“Fatty acid biosynthesis”, “Glucagon signaling pathway” 
and “Glycolysis/Gluconeogenesis”, were highlighted, 
meaning that resveratrol might change the metabolism 
balance of liver. Additionally, the pathways associated 
with apoptosis were also found, including “p53 signaling 
pathway” and “Apoptosis” (Fig. 4C).

The expression of DEGs enriched in the glycolipid 
metabolism- and apoptosis-related pathways was 
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presented in heatmap (Fig. 4D). Based on their function, 
we classified into 4 categories, containing glycometabo-
lism, lipid metabolism, apoptosis and anti-apoptosis. In 
the glycometabolism pathway, the expression levels of 
glycolysis genes (hexok 4 and gck) and gluconeogenesis 
gene (pck 1) were significantly increased and decreased, 
respectively. In the lipid metabolism pathway, the expres-
sion levels of lipid synthesis genes (accα and fas), fatty 
acid transport gene (fatp 6) and unsaturated fatty acid 

synthesis genes (fads 2 and scdb 2) were significantly 
increased after resveratrol administration. Especially for 
accα, fas, fatp 6 and gck, which showed very high expres-
sion foldchange (2-3-foldchange) than the control group, 
revealing that lipid synthesis and carbohydrate decompo-
sition were significantly increased. In the apoptotic and 
anti-apoptotic pathways, the apoptotic gene (caspase 9) 
and the anti-apoptotic genes (gadd45β, gadd45γ, igf 1, igf 

Fig. 1 Breeding and sample analysis processes of control (C) and resveratrol (R) groups. A total of 40 Siberian sturgeon underwent a 14-day acclimation 
period, followed by feeding 20 fish with a commercial diet and another 20 fish with a resveratrol-added diet for 45 days. After feeding, 8 fish were ran-
domly selected from each group, of which 5 fish were used for enzymatic, RNA-seq, qPCR and western blot analysis, and 3 fish for histological examination

 



Page 4 of 12Yang et al. BMC Genomics          (2024) 25:821 

2 and igf binding protein 1/3) were significantly increased 
and decreased, respectively.

Expression validation of DEGs associated to glycolipid 
metabolism and apoptosis in liver
To validate the expression of DEGs associated to glyco-
lipid metabolism and apoptosis in liver, we performed 
qRT-PCR to detect the expression of 8 DEGs. As shown 
in Figs.  5 and 6, the expression of genes that promote 
lipid synthesis and fatty acid transport, accα, fas and 
fatp 6, was significantly elevated in resveratrol group. 
the expression of key genes related to glycolysis (gck) 
and gluconeogenesis (pck 1) was significantly increased 

and decreased, respectively (Fig.  5). Additionally, the 
expression of survival-promoting genes gadd45β and igf 
1was notably decreased, but the expression of apopto-
sis-inducing gene caspase 9 was not obviously changed 
(Fig.  6). Together, the expression of these genes was 
consistent with the RNA-Seq results, indicating that the 
transcriptome data is reliable (Figs. 5 and 6).

Protein expression of CASPASE 9, IGF 1 and PCK 1
The Western blot experiment revealed a notable decrease 
in the protein level of PCK 1 in the resveratrol group, a 
known rate-limiting enzyme of gluconeogenesis. Fur-
thermore, a marked reduction in the protein level of IGF 

Fig. 2 Histological observation and TUNEL assay of liver in Siberian sturgeon. A-B: H&E and Oil red O staining of liver tissue section. C: Immunofluores-
cence TUNEL assay in liver (Spgreen: spectrum green; TUNEL can be detected by spectrum green). D: Relative Oil red O staining level assay of C and R 
groups. E: Relative Spgreen mean value of C and R groups. Data are presented as mean ± SD (n = 3), the significance analysis were performed by T-test, 
***p < 0.001
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1, a protein associated with cell survival, was observed. 
However, there was no significant change in the protein 
level of CASPASE 9 between the control and resveratrol 
groups. These results are consistent with the previous 
findings in their expression levels conducted from qPCR 
and RNA-seq analysis (Fig. 7).

Discussion
Fatty liver disease has become a common issue in aqua-
culture [39–42]. Hepatic glycolipid metabolism plays a 
crucial role in maintaining the organism’s metabolism 
balance [43, 44]. Resveratrol, when present in moderate 
concentrations, has a positive impact on the organism. It 
helps alleviate lipid accumulation in liver cells caused by 
poor diet, enhances glycogen storage, and promotes adi-
pocyte lipolysis [45–47]. Additionally, resveratrol reduces 
hepatocyte vacuolization, and thus mitigates liver dam-
age in Nile tilapia caused by a high-fat diet [48]. However, 
there are instances where high concentrations of resve-
ratrol can lead to abnormalities in various aspects of the 
organism.

In fish, previous study has reported that long-term 
feeding with high concentration of resveratrol was 

found to cause congestion, hepatocellular fibrosis, and 
abnormalities in hepatic epidermal cells in cultured tila-
pia [49]. In our study, the stained sections using oil red 
O revealed that 0.32  mg/kg resveratrol administration 
led to an increase in lipid level in liver of Siberian stur-
geon. To further investigate the underlying mechanisms, 
transcriptome analysis was conducted. Several signifi-
cantly enriched pathways were acquired, which associ-
ated to glycolipid metabolism. Within these pathways, 
the expression of key rate-limiting genes related to lipid 
synthesis (accα, fas), lipid transportation (fatp 6) and 
unsaturated fatty acid synthesis (fads 2 and scdb 2) was 
significantly upregulated. In juvenile golden pomfret, 
the decreased lipid synthesis was found in liver, because 
the expression of fas and acc α genes was significantly 
decreased [50]. Thus, our results reveal that high concen-
tration of resveratrol promoted hepatic lipid synthesis in 
the liver of Siberian sturgeon.

Additionally, the expression of key rate-limiting genes 
for glycolysis (gck and hexok) was significantly increased, 
while the expression of key rate-limiting genes for gluco-
neogenic synthesis (pck 1) was significantly decreased. In 
zebrafish, knockdown of pck 1 gene caused up-regulation 

Fig. 3 Evaluation of antioxidative level in liver. A-B: Protein levels of KEAP1 and NRF2 in the liver of Siberian sturgeon from C and R groups. C: KEAP1/NRF2 
signal statistics. D: Determination of antioxidant enzyme activity (Catalase, GSH-PX, T-AOC, SOD) and peroxidation markers (MDA). Data are presented as 
mean ± SD (n = 5), the significance analysis were performed by T-test
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of gck gene expression, resulted in increasing carbohy-
drate utilization of liver [51]. Thus, our findings suggest 
that high concentration of resveratrol promotes carbohy-
drate utilization in the liver of Siberian sturgeon.

Excessive lipid synthesis may lead to increase oxidative 
stress [52–54]. In an other hand, resveratrol was used as 
an antioxidant in aquatic animals [22, 55–57], in spite 
of some studies have shown that resveratrol may pro-
mote oxidative stress [24, 58, 59]. In this study, the effect 
of 0.32 mg/kg resveratrol on the anti-oxidative ability of 
liver was investigated in Siberian sturgeon. The results 
showed that the activity of antioxidative enzymes CAT, 

GSH, T-AOC and SOD, and the level of lipid peroxida-
tion marker MDA did not change in the liver after res-
veratrol administration. In addition, the expression level 
of the key proteins (NRF2 and KEAP1) of antioxidative 
pathway also showed no significantly change in the liver. 
These results reveal that 0.32 mg/kg resveratrol promotes 
the lipid synthesis without inducing lipid peroxidation 
ultimately, speculating that resveratrol may relieve lipid 
synthesis-induced oxidative stress.

Excessive lipid synthesis may also cause cell apoptosis 
in liver [60–62]. In this study, TUNEL assay uncovers 
that resveratrol promotes the cell apoptosis in liver. In 

Fig. 4 Transcriptome profiles of liver. A: Differential gene volcano map. B: GO annotation analysis. C: KEGG enrichment analysis. The top 30 pathways 
enriched by KEGG database were presented based on the enriched significance. D: Heatmap of DEGs related to metabolism- and apoptosis-related 
pathways
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transcriptome analysis, the significantly enriched path-
ways include apoptosis pathways, such as the p53 signal-
ing pathway and Apoptosis. Gadd45 is a stress protein 
that responds to the environment and is able to repair 
damaged cells [63]. Igf 1 is a growth promoting factor, 
which has been shown to inhibit apoptosis through dif-
ferent control sites of apoptosis [64]. The expression of 
cell survival-promoting genes (gadd45β and igf 1) was 
significantly reduced in resveratrol group. However, the 
expression of caspase 9 gene and protein were not sig-
nificantly changed after resveratrol administration. These 
results suggest that resveratrol promotes cell apopto-
sis by suppressing survival-promoting signaling but not 
increasing the apoptosis signaling.

Taken together, diet supplement with a relative high 
concentration of resveratrol (0.32  mg/kg) promotes 
lipid synthesis by increasing the expression of lipid syn-
thesis genes (acc αand fas), lipid transportation gene 
(fatp 6) and unsaturated fatty acid synthesis genes (fads 
2 and scdb 2), and enchances carbohydrate utilization 
by increasing the expression of glycolysis genes (gck and 
hexok) and decreasing the expression of gluconeogenic 
synthesis gene (pck 1) in liver of Siberian sturgeon. Yet, 
the promoted lipid synthesis did not induce lipid per-
oxidation in liver. In addition, resveratrol administration 
promotes cell apoptosis by suppressing the expression 
of survival-promoting genes (gadd45β and igf 1). Our 
study could provide a reference for the application of 

resveratrol on aquaculture by guiding the use concentra-
tion and showing the potential negative effects.

Materials and methods
Siberian sturgeon
Forty healthy juvenile sturgeons, with an average weight 
of 237.6 ± 4.2  g, were obtained from Sichuan Tianquan 
Sturgeon Farm (Yaan, China). The experiment was con-
ducted in a laboratory using round transparent glass 
tanks (1.5 m in diameter and 1 m in height) with continu-
ous aeration for 24 h, and half of the water was renewed 
every day. The tank maintained the specific conditions, 
including a temperature of 16 ± 1℃, dissolved oxygen 
level of 7.1 ± 0.5  mg/L, pH level of 7.8 ± 0.2, ammonia 
nitrogen concentration ≤ 0.01  mg/L, and nitrite concen-
tration ≤ 0.05 mg/L. Prior to the experiment, the juvenile 
sturgeons were acclimated for 14 days under the condi-
tions. The fish were fed three times per day at 8:00 am, 
14:00 pm, and 20:00 pm, respectively, with a commer-
cial feed provided by Haida Group Co., Ltd. The amount 
of feed given was 3% of the fish’s body weight per day. 
The animal handling procedure for this experiment was 
approved by the Animal Protection and Utilization Com-
mittee of Sichuan Agricultural University.

Experimental administration
After 14 days of domestication, a total of 40 fish were 
randomly assigned to two groups: Control (C) and res-
veratrol (R) groups. Each group was further divided into 

Fig. 5 Expression validation of DEGs associated to glycolipid metabolism in liver. Comparison of the expression of 5 selected DEGs by RNA-seq and 
qRT-PCR. The gene expression of RNA-seq was presented based on the TPM-values, while the qPCR results were calculated as foldchange compared to 
the control group after normalizing to the reference gene (β-actin), Data are presented as mean ± SD (n = 5), the significance analysis were performed by 
T-test, *** p < 0.001
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two fish tanks (10 fish per tank). The fish of R group was 
fed with diets containing a concentration of 0.32  mg/
kg resveratrol (purity ≥ 99%, McLean Biochemical Com-
pany), while C group fed with the commercial feed. After 
45 days of diet administration, 8 fish were randomly 
selected from each group (4 fish per tank) and anesthe-
tized with 70 mg/L MS-222 (Tricaine methanesulfonate; 
each fish belly up and unconscious), of which 5 fish were 
used for enzymatic analysis, RNA-seq, qPCR and west-
ern blot analysis, and 3 fish for histological examination 
(Fig. 1). Among the 5 fish, 5 fish were used for enzymatic 
analysis, but random 3 fish for RNA-seq, qPCR and west-
ern blot analysis.

HE staining
Liver samples were fixed in 10% neutral buffered forma-
lin for at least 24  h. The fixed liver samples were then 
dehydrated, transparentized using xylene, and embed-
ded in paraffin wax. The solidified wax blocks were sub-
sequently cut into 5-mm slices and mounted on slides 
for H&E staining. Following staining, the slides were 
observed under an optical microscope (Nikon, Tokyo, 
Japan).

Oil red O staining
Frozen liver was sectioned as 10  μm slices. Then, the 
slices were kept at room temperature for 30  min and 
washed with distilled water three times to remove the 
embedding agent. Subsequently, they were soaked in 60% 
isopropyl alcohol for 2  min. The sections were stained 

Fig. 6 Expression validation of DEGs associated to apoptosis in liver. Comparison of the expression of 3 selected DEGs by RNA-seq and qRT-PCR. The gene 
expression of RNA-seq was presented based on the TPM-values, while the qPCR results were calculated as foldchange compared to the control group 
after normalizing to the reference gene (β-actin). Data are presented as mean ± SD (n = 5), the significance analysis were performed by T-test, *** p < 0.001
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with oil red working liquid, washed again with distilled 
water three times, restained with hematoxylin, sealed 
with glycerin gelatin, and observed under an optical 
microscope.

Immunohistochemistry
The paraffin sections were dewaxed in water and then 
placed in a repair box filled with citric acid antigen repair 
buffer (pH 6.0) for antigen repair in a microwave oven. 
Subsequently, the slices were incubated in a 3% hydrogen 
peroxide solution at room temperature, away from light, 
for 25 min, and then washed in PBS (pH 7.4) three times 
to block endogenous peroxidase. Next, a 3% BSA solution 
(Thermo Fisher, USA) was evenly applied to cover the tis-
sue and left at room temperature for 30 min. The primary 
antibodies NRF2 Rabbit pAb (GB113808, Servicebio, 
China) and KEAP1 Rabbit pAb (GB113747, Servicebio, 
China) were added with PBS and incubated overnight in 
a wet box at 4 °C. Following washing, the tissue was cov-
ered with Goat Anti-Rabbit secondary antibody (G1213, 
Servicebio, China) and incubated at room temperature 
for 50  min. After DAB color rendering, the sections 
were re-stained the nucleus. Finally, the sections were 
observed under a Nikon Eclipse E200 (Japan) microscope 
and photographed for analysis. The mean optical density 
(IOD SUM/area) was evaluated using Image J.

TUNEL assay
Liver samples were stained using TUNEL method by 
TUNEL cell apoptosis assay kit (Xavier, China). The 
stained samples were observed under a fluorescence 
microscope (Eclipse Ci-L, Nikon, Japan). Following imag-
ing, Image-Pro Plus 6.0 software was utilized for analysis, 
where apoptotic cells exhibited green fluorescence and 
normal cells displayed blue fluorescence. The positive 

rate was calculated as the number of positive cells divided 
by the total number of cells.

Detection of antioxidative biomarkers
The 1  g of liver tissue was ground with 9 mL of 0.85% 
NaCl solution in a homogenizer on ice. The antioxidative 
biomarkers were detected by commercial kits purchased 
from Nanjing Jiancheng Bioengineering Institute (China), 
which contained Malonaldehyde (A003-1), Catalase 
(A007-1-1), Glutathione peroxidase (A005-1), Super-
oxide Dismutase (A001-3), Total antioxidant capacity 
(A015-2-1), and Total protein(A045-2). All measurement 
procedures were strictly conducted following the manu-
facturer’s instructions.

Western blot
The liver sample were lysated by RIPA buffer includ-
ing phosphatase and protease inhibitors. The lysate was 
collected by centrifuge and determined the protein con-
centration using a BCA kit (PC0020, Solarbio). Electro-
phoresis was performed at 80  V/30 min and 120  V/60 
min in a 12% SDS-PAGE gel. The proteins on the gel were 
transferred to a PVDF membrane, which was then seale 
in TBST containing 5% skim milk for 2  h. The PVDF 
membranes were incubated overnight with CASPASE9 
(A21682, ABclonal), PCK1 (A2036, ABclonal), IGF1 
(A11985, ABclonal), or GAPDH (GB15002, servicebio) 
antibody at 4 °C, following to incubate with a secondary 
antibody coupled with HRP at room temperature for 1 h. 
The protein bands were visualized using an ECL color 
development solution, and Image J software was used for 
quantitative analysis of the indicator gray value/the inter-
nal reference gray value.

Fig. 7 Western blot analysis of CASPASE 9, IGF 1 and PCK 1 protein expression in liver. Gray values were analyzed by Image J, and the results were calcu-
lated as foldchange of gray values compared to the control group after normalizing to the reference protein (GAPDH). Data are presented as mean ± SD 
(n = 3), the significance analysis were performed by T-test, *** p < 0.001
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RNA extraction, cDNA synthesis and qPCR
Total RNA was isolated from the liver using an animal 
tissue total RNA extraction kit (Fuji, Chengdu, China). 
Then, the cDNA was synthesized from 1 µg of RNA using 
the RT Easy™II kit (Fuji, Chengdu, China). The qPCR 
analysis was performed in Thermo Cycler (BioRad, Her-
cules, CA, USA) using SYBR Green Real-Time PCR kit 
(Takara, Kyoto, Japan). The design of primers was based 
on a local database constructed from RNAseq (Table 1).

The reaction procedure involved an initial cycle at 
95  °C for 2  min, followed by 40 cycles of the following 
steps: 10  s at 95  °C, and a melting temperature for 30  s 
based on the specific primer pair. After the 40 cycles, the 
reaction was held at 95 °C for 30 s and 72 °C for 5 s. The 
relative expression of the target gene was determined 
using β-actin as the internal reference gene. The rela-
tive changes in mRNA transcript expression in the qPCR 
results were calculated using the 2−ΔΔCT method.

RNAseq
Total RNA was extracted from the tissue using TRIzol® 
Reagent according the manufacturer’s instructions. The 
quality of the extracted RNA was determined using the 
5300 Bioanalyzer (Agilent) and quantified using the 
ND-2000 (NanoDrop Technologies). The libraries were 
size-selected for cDNA target fragments of 300 bp on a 
2% Low Range Ultra Agarose gel, followed by PCR ampli-
fication using Phusion DNA polymerase (NEB) for 15 
PCR cycles. After quantification using the Qubit 4.0, the 
paired-end RNA-seq sequencing library was sequenced 
with the NovaSeq 6000 sequencer.

To identify differentially expressed genes (DEGs) 
between two different samples, the expression level of 
each transcript were calculated by the transcripts per 
million reads (TPM) method. Gene abundances were 
quantified using RSEM [65]. Differential expression 
analysis was performed using DESeq2 [66]. Differen-
tial expressed genes (DEGs) with an absolute log2 fold 
change (|log2FC|) greater than or equal to 1 and a false 
discovery rate (FDR) less than 0.05 (DESeq2) or less than 
0.001 (DEGseq) were considered as DEGs. Furthermore, 
we conducted functional enrichment analysis, including 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG).

Statistic analysis
All data were expressed as mean ± standard deviation 
(SD). Statistical analysis was performed using SPSS 27.0 
software (IBM Corp., Armonk, NY, United States), with 
T-test, p-value of less than 0.05 was considered as statis-
tical significance.
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Table 1 Primers for qPCR validation
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 C C T G C A C A T C T G C G A T G G A T
 T A C A T G G T G C G C C C T T T C A T

133 58.9

fatp 6 F
R

 A C C T C A G G A A C C A C A G G T C T
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gck F
R

 A C A A G C T A C A C C C C A A T T T C C A
 T T G C A A G C C A C T G C T G A G A T
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hexok 4 F
R

 G A G A C C T C C A C C A A C A G T G G
 C G G T C C C C A G A A T C A C T T T C A
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R

 C T C A G T A C T G T G C A A G C T G G A
 C C C A T T G C T A G A C A A A A C C T C A A
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R

 C G G A G G C T G C T C C T G G A A T A
 T C C C A G A G G T A C G C C T T G A C
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R

 C T C C T G T G T G T T C T G T G C C T
 C C A T A G C C T G T T G G T T T G T T G A A
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caspase 9 F
R

 C A T G G C A C A G A G G T G A A C C A
 C T T T C C C A A G C T C C T C C C T G
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R

 G C G A A G C T G A T G A A T G T C G A T
 G G A C A C T C G C A G G A T G T T G A
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R
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