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Abstract 

Background  Traditional recombinant inbred lines (RILs) are generated from repeated self-fertilization or brother-
sister mating from the F1 hybrid of two inbred parents. Compared with the F2 population, RILs cumulate more 
crossovers between loci and thus increase the number of recombinants, resulting in an increased resolution 
of genetic mapping. Since they are inbred to the isogenic stage, another consequence of the heterozygosity reduc-
tion is the increased genetic variance and thus the increased power of QTL detection. Self-fertilization is the primary 
form of developing RILs in plants. Brother-sister mating is another way to develop RILs but in small laboratory animals. 
To ensure that the RILs have at least 98% of homozygosity, we need about seven generations of self-fertilization 
or 20 generations of brother-sister mating. Prior to homozygosity, these lines are called pre-recombinant inbred lines 
(PRERIL). Phenotypic values of traits in PRERILs are often collected but not used in QTL mapping. To perform QTL map-
ping in PRERILs, we need the recombination fraction between two markers at generation t for t < 7 (selfing) or t < 20 
(brother-sister mating) so that the genotypes of QTL flanked by the markers can be inferred.

Results  In this study, we developed formulas to calculate the recombination fractions of PRERILs at generation t 
in self-fertilization, brother-sister mating, and random mating. In contrast to existing works in this topic, we used 
computer code to construct the transition matrix to form the Markov chain of genotype array between consecutive 
generations, the so-called recurrent equations.

Conclusions  We provide R functions to calculate the recombination fraction using the newly developed recurrent 
equations of ordered genotype array. With the recurrent equations and the R code, users can perform QTL mapping 
in PRERILs. Substantial time and effort can be saved compared with QTL mapping in RILs.

Keywords  Computer generated transition matrix, Markov chains, Recombinant inbred lines, Recurrent equations

Background
Herbert Spencer Jennings (1868–1947), an American 
Professor, was the first geneticist to study the behav-
iors of recombinant inbred lines (RILs) [9]. At that time, 
recombinant inbred lines had not been conceptualized. 
Jennings [8, 9] called the two copies of a single Mende-
lian locus a pair of Mendelian characters while called 
alleles from two loci two pairs of Mendelian characters, 
where Mendelian factors are referred to as genetic units 
passed from parents to offspring. Jennings described the 
process of generating RILs as repeated self-fertilization, 
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starting from the F1 hybrid. Although his work was gen-
eral so that the RILs can start with any genotypes, his 
purpose was to investigate the proportions of genotypes 
of two linked loci at generation t + 1 given the propor-
tions of the genotypes at generation t. This works was an 
extension of his previous work for a single locus [8]. The 
problems investigated by Jennings are very challenging 
[17]. In addition to self-fertilization, Jennings [8, 9] inves-
tigated many other mating schemes, including random 
mating, brother-sister mating, parent–offspring mating, 
and even selection and assortative mating. At the same 
time, it was hard to follow. The article was almost all in 
theory with little context. We may want to know more 
about the interest at the time of such schemes as parent-
by-offspring mating in which each individual is used for 
two, and exactly two, successive generations [17].

Jennings’ [8, 9] work was fundamental but very dis-
organized in its written form, unfortunately. It is not 
until Robbins [16] who redescribed Jennings’ work in a 
clear and well organized manner, that Jennings’ [9] work 
became well-known. Two mating systems (random mat-
ing and self-fertilization) introduced by Jennings and 
reintroduced by Robbins will be discussed in this study. 
However, we mainly cited the work by Robbins [14–16]. 
Both Jennings and Robbins defined the parameter of 
interest as linkage ratio denoted by r. But their r and the r 
in modern genetics are entirely different. The r defined as 
linkage ratio is a relative number of the parental types of 
gametes compared with the recombinant types of gam-
etes [9]. The r defined as the recombination fraction in 
modern genetics is a proportion of the recombinant gam-
etes over all possible gametes in a population of interest. 
To avoid any potential confusion, we denote the recombi-
nation fraction in modern genetics by θ  to avoid using r 
as the recombination fraction.

Robbins’ random mating recurrent equations are 
clearer. His equations lead to the proportions of the four 
types of gametes expressed as functions of r and the 
number of generations of random mating. He concluded 
that (1) in random mating, the effect of incomplete link-
age between two factors is only temporary and (2) contin-
ued random mating results in a population in which the 
distribution of “B” factors among the “A” and “a” factors 
is the same as the distribution of the “b” factors among 
the “A” and “a” factors. The second conclusion is simply 
the statistical independence between the two factors or 
linkage equilibrium after many generations of random 
mating. In fact, the two conclusions imply the same con-
sequence in modern quantitative genetics: genetic corre-
lation caused by incomplete linkage is temporary [12].

Robbins [16] reinvestigated all problems raised 
by Jennings [9] and extended the work into a higher 
level. Especially for the random mating system where 

he, after extensive derivation, developed a functional 
relationship of the gametic frequencies to the ini-
tial gametic frequencies using the sum of geometric 
series. As demonstrated in Supplementary Note S3, 
the functional relationship of the recombination frac-
tion of Robbins is identical to the functional relation-
ship developed by Darvasi and Soller [4] who used an 
extremely simple method. Darvasi and Soller [4] called 
the lines generated from such a repeated random mat-
ing scheme the advanced intercross lines (AIL). They 
first derived the recurrent equation for the recombi-
nation fraction starting with the F1 hybrid of a cross 
between two inbred lines. From the recurrent equation, 
they expressed the recombination fraction at genera-
tion t as a function of the recombination fraction in the 
original population,

where t ≥ 2 with t = 2 being the F2 population.
Robbins’ [16] other contribution to the subject was to 

reinvestigate the recurrent genotypic frequencies in the 
self-fertilization system. He pooled the 4 × 4 = 16 total 
genotypes with phase information into 10 distinguished 
unphased genotypes. The recurrent equations were much 
cleaner than those given by Jennings [9], although Rob-
bins inherited Jennings’s notation system, e.g., using the 
same r to represent the linkage ratio and the same p, q, 
s, t notation to denote the four gametic frequencies in 
the random mating system. Robbins did not provide the 
asymptotic recombination fraction after infinite number 
of generations with self-fertilization.

Haldane and Waddington [6] developed the recom-
bination fractions at the equilibrium stage after infinite 
number of self-fertilization and brother-sister mating. 
Haldane and Waddington [6] combined some of the 
10 unphased genotypes proposed by Robins [16] into 
a common class and yielded 5 composite genotypes. 
They delt with only 5 recurrent equations, significantly 
reduced the computational complexity. The major con-
tribution of the Haldane and Waddington’s study [6] 
was the brother-sister matting system for linkage analy-
sis, which was not touched by previous authors for two 
pairs of linked characters. Haldane and Waddington [6] 
developed the 10× 10 = 100  recurrent equations for 
the genotypes of the sibling pairs. The absorption of the 
original 16× 16 = 256 fully phased recurrent equations 
into the  10× 10 = 100 unphased recurrent equations 
represents a substantial reduction in computation. The 
recurrent equations convert the frequencies of the 100 
genotype combinations from the previous generation to 
the genotype frequencies of the current generation using 
a 10× 10 transition matrix in the Markov chain system.

(1)θt =
1

2
1− (1− 2θ)(1− θ)t−2
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Other than the recurrent equation of the recombina-
tion fraction developed by Darvasi and Soller [4], none 
of the previous works reported the recombination frac-
tion before the consecutive mating systems reach equilib-
rium. The recurrent equations for genotype frequencies 
under self-fertilization and brother-sister mating were all 
derived manually, which are prone to error when a com-
puter program code is written. Broman [2] extended the 
asymptotic recombination fraction of RILs of brother-
sister mating from an 8-way crosses and showed that the 
final recombination fraction is

No recurrent equations are provided to determine the 
recombination fraction before the lines reach the equilib-
rium value. The purposes of this study are to present (1) 
a derivation of the recombination fraction at generation 
( t < ∞ ) before the system reaches the equilibrium, (2) a 
computer code generated transition matrix for recurrent 
equations of genotype frequencies. Relevant background 
knowledge and recombination fraction at generation 
( t < ∞ ) from works of previous authors are given in the 
Supplementary Note S1, Note S2 and Note S3.

Methods
Basic definition
Consider two linked loci (A and B) with a recombination 
fraction of θ    for 0 < θ < 0.5 . Define the diploid geno-
types of the two inbred parents that initiate the F1 hybrid 
by AB/AB  and ab/ab, respectively. The genotype of the 
F1  hybrid is AB/ab. In each genotype, the maternal and 
paternal gametes are separated by a slash. The four pos-
sible gametes from this F1  hybrid are AB, Ab, aB and 
ab  with probabilities 1

2 (1− θ) , 1
2θ,  1

2θ and 1
2 (1− θ) , 

respectively. The gametes of the F1 hybrid make the geno-
types of the F2 population. Therefore, the recombination 
fraction of the F2 generation is

(2)ρSW =
7θ

1+ 6θ

(3)
θ2 =

Pr (Ab)+ Pr (aB)

Pr (AB)+ Pr (aB)+ Pr (Ab)+ Pr (ab)
=

1

2
θ +

1

2
θ

1

2
(1− θ)+

1

2
θ +

1

2
θ +

1

2
(1− θ)

= θ

The mating system will start with t=1, i.e., the F1 
generation, from which the recurrent equations of 
genotypes will be developed. The 4×4=16 possible gen-
otypes in the F2 population are shown in Table 1 below.

In the current literature, the recombination fraction 
is often denoted by r. However, Jennings [9] and Rob-
bins (1917) defined r as a linkage ratio parameter with 
an entirely different interpretation. They set each of 
the recombinant gametes to 1, and each of the paren-
tal gametes to r relative to the recombinant gamete. The 
relative contributions of the four gametes are r from AB 
or ab , and 1 from Ab or aB . To avoid notational con-
fusion, we denote the recombination fraction by θ . The 
relationship between θ and r is

Starting from Table  1, the recurrent equations of 
genotype and gamete frequencies are developed for 
self-fertilization, brother-sister mating, and random 
mating. These recurrent equations allow us to calculate 
the recombination fractions of PRERILs at generation 
t. We start with self-fertilization, then brother-sister 
mating, and finally random mating. We assume that the 
recombination fractions are the same for the male and 
female gametes. Haldane and Waddington [6] denoted 
the recombination fraction for the female gamete by β 
and for the male gamete by δ . They intended to cover 
insects, which often have different recombination frac-
tions between sexes. We do not differentiate the male 
and female gametes and thus the results of this study 
only apply to diploid plants and diploid animals where 
β = δ = θ is the recombination fraction.

The 16 fully phased genotypes in Table  1 are re-
arranged into a column vector with the order shown 
in Table 2. Verbally, the four genotypes of the first row 
in Table 1 become the first four genotypes in the 16× 1 
vector of Table 2. Gametic probabilities that each of the 

(4)θ =
1

1+ r
or r =

1− θ

θ

Table 1  The 16 possible genotypes of the F2  population from the F1 hybrid with genotype AB/ab 

Female\Male AB1

2
(1− θ) Ab1

2
θ aB1

2
θ ab1

2
(1− θ)

AB1
2
(1− θ)) AB/AB 1

4
(1− θ)2 AB/Ab 1

4
θ(1− θ) AB/aB 1

4
θ(1− θ) AB/ab 1

4
(1− θ)2

Ab1
2
θ Ab/AB 1

4
θ(1− θ) Ab/Ab 1

4
θ2 Ab/aB 1

4
θ2 Ab/ab 1

4
θ(1− θ)

aB1
2
θ aB/AB 1

4
θ(1− θ) aB/Ab 1

4
θ2 aB/aB 1

4
θ2 aB/ab 1

4
θ(1− θ)

ab1
2
(1− θ) ab/AB 1

4
(1− θ)2 ab/Ab 1

4
θ(1− θ) ab/aB 1

4
θ(1− θ) ab/ab 1

4
(1− θ)2
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16 fully phased genotypes can produce are presented in 
Table 2 also. For example, entry 2 of Table 2 shows the 
genotype of AB/Ab and the probabilities of producing 
the four possible gametes from this genotype are 0.5 for 
AB, 0.5 for Ab, 0 for aB and 0 for ab. Another exam-
ple is entry 7, which is genotype Ab/aB. This genotype 
can produce all four gametes with the following prob-
abilities: 12θ for AB, 12 (1− θ) for Ab, 12 (1− θ) for aB and 
1
2θ for ab. The 16× 4 gametic probability table (the H 
matrix) is the key to form the recurrent equations for 
genotypes across generations in all mating systems dis-
cussed in this study. This H matrix can be generated 
automatically via a computer program.

Recurrent equations of genotype frequencies 
for self‑fertilization
Starting from the F2 population with recombination frac-
tion θ , after more than eight generations of continuous 
self-fertilization, the recombination fraction will reach its 
equilibrium value [6],

The recombination fraction at generation t < 8 can be 
obtained via recurrent equations of genotypes. We will 
derive the recurrent equations using matrix algebra. Matrix 
H is all what we need to build the 16× 16 transition matrix 
P, from which the recurrent equations for computing the 
frequencies of the 16 genotypes are formed. We denote 
the genotype frequencies at generation t by a 16× 1 vector 

Gt . The genotypic frequencies at generation t + 1 are com-
puted from the frequencies at generation t,

for t � 1 , where P is the transition matrix. The sequences 
of G across generations forms a Markov chain with tran-
sition matrix P. The above recurrent equations can be 
further manipulated into

The genotype frequencies are functions of the genotype 
frequencies of the initial population (the F1 individual) with 
genotype AB/ab and ab/AB , which are the 4th and the 
13th genotypes (see Table  2). Therefore, the initial geno-
type frequency vector has all elements being zero except 
G1[4] = G1[13]= 1/2.

We now build the 16× 16 transition matrix P one col-
umn at a time via matrix algebra and through computer 
programming. Let Pk be the kth column of matrix P 
for k = 1, · · · , 16 . Let hk be the kth row of matrix H for 
k = 1, · · · , 16 (Table 2). The kth column of matrix P is

where vec(X) is a vectorization operator for matrix X. For 
example, if

then

which is a column vector. Let us use the following three 
genotypes as examples to demonstrate the three columns 
of matrix P. For the first genotype (entry 1 of Table 2), we 
generate the following matrix,

Similarly, we can generate the third genotype (entry 3 of 
Table 2) as

and the seventh genotype (entry 7 of Table 2) as

(5)Gt+1 = PGt

(6)Gt+1 = PGt = P2Gt−1 = P3Gt−2 = · · · = PtG1

(7)P·k = vec(hTk hk)

hT1 h1 =







1
0
0
0







�

1 0 0 0
�

=







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







hT3 h3 =









1
2
0
1
2
0









�

1
2 0 1

2 0
�

=









1
4 0 1

4 0
0 0 0 0
1
4 0 1

4 0
0 0 0 0









Table 2  Gametic probability table (the H matrix) from each of 
the 16 fully phased genotypes

Entry Genotype AB Ab aB ab

1 AB/AB 1 0 0 0

2 AB/Ab 1/2 1/2 0 0

3 AB/aB 1/2 0 1/2 0

4 AB/ab 1

2
(1− θ) 1

2
θ 1

2
θ 1

2
(1− θ)

5 Ab/AB 1/2 1/2 0 0

6 Ab/Ab 0 1 0 0

7 Ab/aB 1

2
θ 1

2
(1− θ) 1

2
(1− θ) 1

2
θ

8 Ab/ab 0 1/2 0 1/2

9 aB/AB 1/2 0 1/2 0

10 aB/Ab 1

2
θ 1

2
(1− θ) 1

2
(1− θ) 1

2
θ

11 aB/aB 0 0 1 0

12 aB/ab 0 0 1/2 1/2

13 ab/AB 1

2
(1− θ) 1

2
θ 1

2
θ 1

2
(1− θ)

14 ab/Ab 0 1/2 0 1/2

15 ab/aB 0 0 1/2 1/2

16 ab/ab 0 0 0 1
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All the hTk hk matrices for k = 1, · · · , 16 will be gener-
ated this way. From the hTk hk matrix, we build the kth 
column of the 16× 16 transition matrix P . For the three 
genotypes demonstrated above, we obtain the following 
three column vectors,

The 16 column vectors form the transition matrix P,

which is given in Supplementary Table S1. Once we find 
the genotypic frequencies using Eq.  (5), we can find the 
recombination fraction at generation t by

where W  is a 16× 1 vector of weights that are given by 
the last column of Table 3. As the number of generations 
increases, the recombination fraction reaches its limit,

For example, when θ = 0.1 in the F2 population, the 
final recombination fraction in the limit is

hT7 h7 =









1
2θ

1
2 (1− θ)
1
2 (1− θ)

1
2θ









�

1
2θ

1
2 (1− θ) 1

2 (1− θ) 1
2θ

�

=









1
4 θ

2 1
4 θ(1− θ) 1

4 θ(1− θ) 1
4 θ

2

1
4 θ(1− θ) 1

4 (1− θ)2 1
4 (1− θ)2 1

4 θ(1− θ)
1
4 θ(1− θ) 1

4 (1− θ)2 1
4 (1− θ)2 1

4 θ(1− θ)
1
4 θ

2 1
4 θ(1− θ) 1

4 θ(1− θ) 1
4 θ

2









P·1 = vec(hT1 h1) =



















































1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



















































, P·3 = vec(hT3 h3) =























































1
4
0
1
4
0
0
0
0
0
1
4
0
1
4
0
0
0
0
0























































, P·7 = vec(hT7 h7) =





























































1
4 θ

2

1
4 θ(1− θ)
1
4 θ(1− θ)

1
4 θ

2

1
4 θ(1− θ)
1
4 (1− θ)2

1
4 (1− θ)2

1
4 θ(1− θ)
1
4 θ(1− θ)
1
4 (1− θ)2

1
4 (1− θ)2

1
4 θ(1− θ)

1
4 θ

2

1
4 θ(1− θ)
1
4 θ(1− θ)

1
4 θ

2





























































P =
[

P1 P2 P3 · · · P16
]

(8)θt+1 = WTGt+1 = WTPtG1

(9)lim
t→∞

θt+1 = lim
t→∞

WTPtG1 = ρself =
2θ

1+ 2θ

(10)ρself =
2θ

1+ 2θ
=

2× 0.1

1+ 2× 0.1
=

1

6
= 0.166667

Robbins [16] pooled the 16 fully phased genotypes into 
10 genotypes and developed a 10× 10 transition matrix. 
His approach was presented in Supplementary Note S1 
for completeness of the study. Haldane and Waddington 
[6] further pooled the genotypes into five classes and 

developed a 5× 5 transition matrix. Their result is pre-
sented in Supplementary Note S2.

Recurrent equations for brother‑sister mating
Recombinant inbred lines generated from brother sister 
mating is much more complicated than from self-fertili-
zation. Haldane and Waddington [6] provided the recur-
rent equations of genotypes and derived the asymptotic 
solution for the recombination fraction when t = ∞ , 
which is

Each sibling can take one of the 16 possible fully 
phased genotypes. Therefore, a sib pair can have a total 
of 16× 16 = 256 genotype combinations. If we ignore 
the phase information, there are 10 possible geno-
types per individual [16], a sib pair can take one of the 
10× 10 = 100 possible genotypes. Haldane and Wad-
dington [6] pooled the 100 genotypes into 22 composite 

(11)ρsib =
4θ

1+ 6θ
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genotypes and developed recurrent equations for the 22 
composite genotypes at generation t + 1 from the fre-
quencies at generation t.

We now take advantage of the computer program to 
generate the 256× 256 transition probability matrix and 
calculate the frequencies of the 256 pairs of genotypes of 
the sib-pairs. To build the recurrent equations, we first 
need to arrange the 16 possible genotypes of the first 
sib in the same way as shown in Table  2. We now nest 
the second sib’s 16 genotypes within each of the first sib. 
After defining the order of the sib-pair genotypes in Gt 
(a 256× 1 vector), we are ready to define the transition 

probability table P (a 256× 256 matrix). Recall that the 
last four columns of Table 2 form a 16× 4H matrix. This 
matrix is also the basic element to develop the transition 
probability matrix. First, we need to define the sib pair in 
the position of vector Gt . If the first sib is entry i and the 
second sib is entry j, for i, j = 1, · · · , 16 , the correspond-
ing sib pair position in vector Gt is defined as

(12)k = (i − 1)× 16+ j

for k = 1, · · · , 256 and i, j = 1, · · · , 16 . For example, 
when i = 4 , j = 10 , the subscript of Pk is

The kth column of matrix P is

We now demonstrate the formation of a few columns 
of the transition matrix. First, let us demonstrate the sec-
ond sib-pair, AB/AB vs. AB/Ab. The gamete probabilities 
of the sib pair are h1 and h2 , respectively. Let us define

Therefore, the vectorization of hTj hi is

The column of the transition matrix corresponding to 
i = 1 and j = 2 is

Therefore, the 2nd column of matrix P is

Let us now illustrate another sib pair, AB/ab vs. Ab/
aB, where the first sib corresponds to entry number i = 4 
and the second sib corresponds to entry number j = 10 . 
The sib-pair corresponds to column number

of the transition matrix. We first define

We then form the 58th column vector of matrix P,

We start from the first column of matrix P to the last 
column of P to complete all 256 columns of the P matrix, 
i.e.,

k = (i − 1)× 16+ j = (4 − 1)× 16+ 10 = 48+ 10 = 58

(13)P·k = vec(hTj hi)⊗ vec(hTj hi)

hT2 h1 =









1
2
1
2
0
0









�

1 0 0 0
�

=









1
2 0 0 0
1
2 0 0 0
0 0 0 0
0 0 0 0









vec(hT2 h1) =
[

1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T

k = (i − 1)× 16+ j = (1− 1)× 16+ 2 = 2

(14)P·2 = vec(hT2 h1)⊗ vec(hT2 h1)

k = (i − 1)× 16+ j = (4 − 1)× 16+ 10 = 58

hT10h4 =









1
2θ

1
2 (1− θ)
1
2 (1− θ)

1
2θ









�

1
2 (1− θ) 1

2θ
1
2θ

1
2 (1− θ)

�

=









1
4 θ(1− θ) 1

4 θ
2 1

4 θ
2 1

4 θ(1− θ)
1
4 (1− θ)2 1

4 θ(1− θ) 1
4 θ(1− θ) 1

4 (1− θ)2

1
4 (1− θ)2 1

4 θ(1− θ) 1
4 θ(1− θ) 1

4 (1− θ)2

1
4 θ(1− θ) 1

4 θ
2 1

4 θ
2 1

4 θ(1− θ)









P·58 = vec(hT10h4)⊗ vec(hT10h4)

P =

[

P
·1 P

·2 · · · P·256

]

Table 3  Recombinant gamete probabilities from all 16 fully 
phased genotypes and the sum of the two columns used as 
weights

Entry Genotype Pr(Ab) Pr(aB) W = Pr(Ab) + Pr(aB)

1 AB/AB 0 0 0

2 AB/Ab 1/2 0 1/2

3 AB/aB 0 1/2 1/2

4 AB/ab 1

2
θ 1

2
θ θ

5 Ab/AB 1/2 0 1/2

6 Ab/Ab 1 0 1

7 Ab/aB 1

2
(1− θ) 1

2
(1− θ) 1− θ

8 Ab/ab 1/2 0 1/2

9 aB/AB 0 1/2 1/2

10 aB/Ab 1

2
(1− θ) 1

2
(1− θ) 1− θ

11 aB/aB 0 1 1

12 aB/ab 0 1/2 1/2

13 ab/AB 1

2
θ 1

2
θ θ

14 ab/Ab 1/2 0 1/2

15 ab/aB 0 1/2 1/2

16 ab/ab 0 0 0
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The frequencies of the 256 sib pair genotypes at genera-
tion t are then used to calculate the frequencies of the sib 
pair combination for generation t + 1 , as shown below,

How do we determine the initial sib-pair frequen-
cies? Assume that the initial population is the F1 hybrid, 
which represents entries of i = 4 ( AB/ab ) and j = 13 
( ab/AB ) as shown in Table 2. Therefore, the correspond-
ing sib pairs among all 16× 16 = 256 sib-pairs with both 
sibs being F1 hybrids are identified as the following four 
entries,

Therefore, the initial sib-pairs frequencies are

and

Recall that the last column of Table  3 forms a 16× 1 
weight vector denoted by W  . We now build two vectors 
from vector W. The first one is

and the second one is

where J16×1 is a 16× 1 unity vector (all 16 elements are 
ones) and X ⊗ Y  is the Kronecker product between 
matrices X and Y. The final weight vector is the average 
of the two, i.e.,

which forms a new 256× 1 vector of weights to calculate 
the recombination fraction at generation t + 1.

As the number of generations of sib-mating increases, 
the recombination fraction reaches its limit,

For example, if θ = 0.1 , the final recombination frac-
tion in the limit is

(15)Gt+1 = PGt = PtG1

k1 = (i − 1)× 16+ i = (4 − 1)× 16+ 4 = 52

k2 = (i − 1)× 16+ j = (4 − 1)× 16+ 13 = 61

k3 = (j − 1)× 16+ i = (13− 1)× 16+ 4 = 196

k4 = (j − 1)× 16+ j = (13− 1)× 16+ 13 = 205

G1[52] = G1[61] = G1[196] = G1[205] = 1/4

G1[k] = 0, ∀k �∋ k1, k2, k3, k4

V1 = W ⊗ J16×1

V2 = J16×1 ⊗W

(16)V =
1

2
(V1 + V2)

(17)θt+1 = VTGt+1 = VTPtG1

(18)lim
t→∞

θt+1 = lim
t→∞

VTPtG1 = ρsib =
4θ

1+ 6θ

Recurrent equations of gametic frequencies in random 
mating
Random mating occurs starting from the F1 hybrid to 
generate the F2 and subsequent generations. Such a 
population is called the advanced intercross lines (AIL) 
by Darvasi and Soller [4]. The advantage of AILs is that 
linkage between tightly linked loci can be broken thereby 
increasing recombination. This results in a so-called 
expanded genetic map where estimated distances appear 
larger than those of the initial intercross. Such a particu-
lar design is useful to order genes or markers in strong 
linkage at the same locus. For instance, AILs were used 
for fine mapping in plant genetics [1] and animal genetics 
[11]. When t → ∞ , the recombination fraction reaches 
the limit, that is 1/2. Therefore, QTL mapping can be 
done when t is not too large. There are several different 
ways to derive the recurrent equations for the recombi-
nation fraction. Robbins’ [16] derivation is general so that 
the initial genotype can be any of the 16 possible geno-
types while the derivation of Darvasi and Soller [4] is sim-
ple but only applies to the initial genotype of AB/ab. The 
recombination fraction at t can be expressed as a func-
tion of the recombination fraction at the F2 generation.

for t � 2 . One can verify that when t = 2 , θ2 = θ , which 
is indeed the recombination fraction of the F2 population. 
Denote the four gametic frequencies by a row vector,

where p = Pr(AB) , q = Pr(Ab) , s = Pr(aB) , and 
t = Pr(ab) . Let

be a 1× 4 frequency vector of the four gametes at genera-
tion t. The recurrent equations of the gametic frequen-
cies are

where H is the 16× 4 matrix given in Table 2. For the F2 
population, the four gametic frequencies are

In contrast to the previous mating systems, the gametic 
frequencies at generation t + 1 for random mating are 

(19)ρsib =
4θ

1+ 6θ
=

4 × 0.1

1+ 6× 0.1
=

1

4
= 0.25

(20)θt =
1

2

[

1− (1− 2θ)(1− θ)t−2
]

(21)G =
[

p q s t
]

(22)Gt =
[

pt qt st tt
]

(23)Gt+1 = (Gt ⊗ Gt)H

(24)G1 =
[

1
2 (1− θ) 1

2θ
1
2θ

1
2 (1− θ)

]
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not linear functions of the gametic frequencies at genera-
tion t. The recombination fraction for generation t is

If the initial gametic frequency vector is the one given 
in Eq. (24), the limit of θt is 0.5 as t → ∞ . Using the result 
of Robbins [16], we can prove Eq. (20), which is presented 
in Supplementary Note S3.

Results
Self fertilization
We first demonstrate the recombination fraction tra-
jectory across generations when self-fertilization starts 
from the F1 hybrid, i.e., the initial genotype frequencies 
for AB/ab and ab/AB are 1/2 and 1/2, and 0 for all other 
genotypes. The initial recombination fraction was set at 
the following levels: 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. We 

(25)θt = Gt [2] + Gt [3] = qt + st

evaluate the trajectory of recombination fractions for 10 
generations, as shown in Fig.  1. After 10 generations of 
self-fertilization, they all reach their asymptotic values, 
which are presented in Table  4. For example, when the 
initial recombination fraction is θ = 0.20 , the asymptotic 
recombination fraction is

Brother‑sister mating
Among all 16× 16 = 256 sib-pairs with both sibs being 
F1 hybrids are identified as the following four entries,

Therefore, the initial frequencies are

and

Again, we demonstrate the recombination fraction 
profiles across generations for brother-sister mating 
starting from the F1 population. The four sib pairs cor-
responding to the double heterozygote are (AB/ab-AB/
ab), (AB/ab-ab/AB), (ab/AB-AB/ab) and (ab/AB-ab/
AB). The initial recombination fraction was set at the 

(26)ρSelf =
2θ

1+ 2θ
=

2× 0.20

1+ 2× 0.20
= 0.285714

k1 = (i − 1)× 16+ i = (4 − 1)× 16+ 4 = 52

k2 = (i − 1)× 16+ j = (4 − 1)× 16+ 13 = 61

k3 = (j − 1)× 16+ i = (13− 1)× 16+ 4 = 196

k4 = (j − 1)× 16+ j = (13− 1)× 16+ 13 = 205

G0[52] = G0[61] = G0[196] = G0[205] = 1/4

G0[k] = 0,∀k /∈ k1, k2, k3, k4

Fig. 1  Recombination fraction profiles after 10 generations of self-fertilization

Table 4  Asymptotic recombination fractions from different 
initial recombination fractions after repeated self-fertilization for 
10 generations

Initial recombination fraction ( θ) Asymptotic 
recombination 
fraction ( ρ)

0.05 0.090909

0.10 0.166667

0.15 0.230769

0.20 0.285714

0.25 0.333333

0.30 0.375000
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following levels: 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. We 
evaluated the recombination fractions change for 20 
generations. Figure  2 shows the recombination frac-
tion trajectories. After 20 generations of brother-sister 
mating, they all reach their equilibrium values, which 
are presented in Table  5. For example, when the ini-
tial recombination fraction is θ = 0.20 , the asymptotic 
recombination fraction is

(27)ρSib =
4θ

1+ 6θ
=

4 × 0.20

1+ 6× 0.20
= 0.3636364

Random mating
Starting from the F1 hybrid, the population went to 50 
generations of random mating. The recombination frac-
tion profiles are demonstrated in Fig. 3 from various ini-
tial values of the recombination fraction.

After 50 generations of random mating, all populations 
have reached their equilibrium value ( ρRandom = 0.5 ) 
except that the population starting with θ = 0.05 has not 
reached the equilibrium, but with a recombination frac-
tion of 0.4653748 at t = 50 , which is calculated via

Three R functions were provided to calculate the 
recombination fractions for PRERILs developed via self-
fertilization, brother-sister mating and random mating 
(Supplementary Code S1).

Comparison of the three mating systems
Starting with the same recombination fraction of 0.10, 
all three mating systems (self-fertilization, brother-sister 
mating, and random mating) underwent 20 consecu-
tive generations of reproduction. The trajectories of the 
recombination fraction are compared among the three 
mating systems (Fig. 4).

At generation 2 and 3, all three mating systems have 
the same recombination fraction. Self-fertilization starts 
splitting from the other two systems after generation 3 
while brother-sister mating deviates from random mating 
after generation 4. Four generations of self-fertilization 

(28)θ50 =
1

2

[

1− (1− 2θ)(1− θ)50−2
]

=
1

2

[

1− (1− 2× 0.05)(1− 0.05)48
]

= 0.4616

Fig. 2  Recombination fraction profiles after 20 generations of brother-sister mating

Table 5  Asymptotic recombination fractions from different 
initial recombination fractions after repeated brother-sister 
mating for 20 generation

Initial recombination fraction ( θ) Asymptotic 
recombination 
fraction ( ρ)

0.05 0.1538462

0.10 0.2500000

0.15 0.3157895

0.20 0.3636364

0.25 0.4000000

0.30 0.4285714
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are technically sufficient to make the recombination 
fraction reach the asymptotic value. Ten generations of 
brother-sister mating are sufficient to make the recombi-
nation fraction reach its equilibrium value.

Validation of the recurrent equations via Monte Carlo 
simulations
The recurrent equations derived here must be correct 
because the asymptotic results ( t > 10 for self-fertiliza-
tion and t > 20 for brother-sister mating) match the final 
results provided by Haldane and Waddington [6] and 

Robbins [14]. To doubly ensure the correctness of the 
derivation, we decided to further validate the recurrent 
equations via Monte Carlo simulations. The assumptions 
required to derive the recurrent equations are (1) there 
is no interference in crossovers between two genomic 
segments [5]; (2) there is no segregation distortion of the 
markers under investigation. As a result, the best way to 
validate the recurrent equations is to simulate RILs based 
on these assumptions. It is hard to use actual data from 
RILs for validation because these two assumptions may 
not be satisfied in reality. Another justification for using 

Fig. 3  Recombination fraction profiles after 50 generations of random mating

Fig. 4  Comparison of recombination fraction profiles among three mating systems
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simulations to validate the derivation is that the deriva-
tion is based on expectations of the genotype groups and 
the expectations only apply to large samples, in fact, infi-
nitely large samples. In reality, the sample sizes of real 
populations are always finite. The theoretical derivation 
cannot be validated based on one or a few finite samples.

The recurrent equation of the recombination fraction 
for random matting was originally derived by Jennings 
[9] and later by Darvasi and Soller [4]. Our derivation is 
merely an alternative approach to obtain the same result. 
Therefore, no validation is needed for random mating. 
To validate the recurrent equations for self-fertilization, 
we started with a single F1 individual with genotype AB/
ab. We replaced this phased genotype by 11/00, where 
11 is the paternal haplotype and 00 is the maternal hap-
lotype in the F1 founder. The distance between the two 
loci set at

where the recombination fraction was set at θ = 0.1 . 
The simulation started at F2 from the F1 gametes. 
There were two random numbers involved in generat-
ing each gamete. The first random number was Bernoulli 
δ1 ∼ Bernoulli(0.5) , which determines the first allele 
of the gamete. If δ1 = 1 then the gamete took 1 from 
the paternal allele; otherwise, the gamete took 0 from 
the maternal allele. Let us assume that δ1 = 1 so that 
the paternal allele has passed to the gamete for the first 
locus. We then generated a Poisson random from mean 
µ = 0.1115718 , say x = 0, 1, · · · ,∞ , i.e., x ∼ Poisson(µ) . 
If x is an odd number, then recombination has occurred 

(29)µ = −
1

2
ln(1− 2θ) = −

1

2
ln(1− 2× 0.1) = 0.1115718 Morgan

and the second locus of the paternal allele has passed to 
the gamete, i.e., 0. If x is an even number, recombination 
would not happen and thus the second locus of the gam-
ete would remain 1 from the paternal allele. The same 
algorithm also applied to the maternal haplotype of the 
gamete. The two gametes merged together to make the 
genotype of the individual. This process continued until 
t = 10 generations. We generated 500 individuals from 
the single seed descent process to make up one RIL pop-
ulation. The recombination fraction at generation t was 
the proportion of the recombinant haplotypes, 10 or 01. 
Note that the two recombinant haplotypes are referred to 
the F2 generation. In later generations, 11 and 00 may be 
the recombinants. Eventually, we generated 20 popula-
tions, each consisting of 500 individuals. Figure 5 (panel 
A) shows the recombination fractions of each population 
against the generation index up to 10. Variation among 

the 20 replicates is very obvious. The average of the 20 
replicates is shown in the scatter plot, which partially 
overlaps with theoretical curve in blue. Figure 5 (panel B) 
shows the same plots but the sample size of each popula-
tion has been increased to 10,000. The average of the 20 
populations (scatter plots) completely overlaps with the 
blue theoretical value. Even though the sample size was 
as large as 10,000, there were still variation among the 
replicates.

We also simulated brother-sister mating for 20 gen-
erations with sample size of 500 mating pairs and 10,000 
mating pairs, respectively. Both schemes were replicated 

Fig. 5  Simulation results of self-fertilization for 10 generations. Panel A shows 20 replications of sample size 500. Panel B shows 20 replications 
of sample size 10,000. The blue curves are the theoretical values from the recurrent equations while the scatter plots show the averages of the 20 
replications
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20 times. The results are shown in Fig. 6, where Fig. 6A 
shows the plots for sample size of 500 mating pairs and 
Fig. 6B shows the results for sample size of 10,000 mating 
pairs. The variation among the 20 replicates was smaller 
than the variation in self-fertilization because the sample 
size was actually doubled in brother-sister mating. The 
simulation studies have successfully validated the theo-
retical derivation of the recurrent equations.

Incorporation of the modified recombination fraction 
in QTL mapping
Starting with θ = 0.05 , if the F1 hybrid undergoes 3 gen-
erations of self-fertilization, the recombination fraction 
will change from θ = 0.05 in F2 to θ4 = 0.08923 in F4. The 
heterozygosity will be reduced from 0.5 to

(30)H4 =

(

1

2

)4−1

=
1

8
= 0.125

QTL mapping using F4 as the source population 
requires a new approach to calculate the conditional 
probabilities of QTL genotypes given flanking marker 
genotypes. This is due to (1) The recombination fraction 
between two loci has been modified from θ in the initial 
population to θ4 in the F4 population; (2) The heterozy-
gosity has been modified from H2 = 0.50 to H4 = 0.125 . 
Below is an example showing the differences in QTL 
mapping between F2 and F4.

QTL mapping in F2 populations
For the F2 population, let the recombination frac-
tion between the two flanking markers (A and B) be 
θAB = 0.05 , the recombination fraction between A and 
Q be θAQ = 0.01 and thus the recombination fraction 
between Q and B is

where the order of the three loci is A-Q-B. Let us denote 
the genotypes of the three loci by

The conditional probabilities of the QTL genotype 
given the flanking marker genotypes is defined from the 
following Bayes theorem,

(31)

θQB = (θAB − θAQ)/(1− 2θAQ) = (0.05− 0.01)/(1− 2× 0.01) = 0.0408

A =







1
2
3

for
for
for

AA
Aa
aa

Pr(AA) = 0.25
Pr(Aa) = 0.50
Pr(aa) = 0.25

;B =







1
2
3

for
for
for

BB
Bb
bb

Pr(BB) = 0.25
Pr(Bb) = 0.50
Pr(bb) = 0.25

;Q =







1
2
3

for
for
for

QQ
Qq
qq

Pr(QQ) = 0.25
Pr(Qq) = 0.50
Pr(qq) = 0.25

(32)
Pr(Q = k|A = i,B = j) =

Pr(Q = k)Pr(A = i|Q = k)Pr(B = j|Q = k)
∑3

k ′=1 Pr(Q = k ′)Pr(A = i|Q = k ′)Pr(B = j|Q = k ′)

Fig. 6  Simulation results of brother-sister mating for 20 generations. Panel A shows 20 replications for sample size of 500 mating pairs. 
Panel B shows 20 replications for sample size of 10,000 mating pairs. The blue curves are the theoretical values from the recurrent equations 
while the scatter plots show the averages of the 20 replications
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where Pr(Q = k) is the marginal probability of the QTL 
genotype, Pr(A = i|Q = k) and Pr(B = j|Q = k) are the 
conditional probabilities of the marker genotypes given 
the QTL genotype. The conditional probabilities are 
extracted from the following two transition matrices,

and

For example, the conditional probability that the QTL 
genotype is Qq given the genotype of locus A is AA and 
the genotype of locus B is Bb is

where

The denominator is the sum of the three terms,

TA/Q =







Pr(A = 1|Q = 1) Pr(A = 2|Q = 1) Pr(A = 3|Q = 1)

Pr(A = 1|Q = 2) Pr(A = 2|Q = 2) Pr(A = 3|Q = 2)

Pr(A = 1|Q = 3) Pr(A = 2|Q = 3) Pr(A = 3|Q = 3)







=







(1− θQA)
2

2(1− θQA)θQA θ2
QA

(1− θQA)θQA (1− θQA)
2 + θ2

QA
(1− θQA)θQA

θ2
QA

2(1− θQA)θQA (1− θQA)
2







TB/Q =







Pr(B = 1|Q = 1) Pr(B = 2|Q = 1) Pr(B = 3|Q = 1)

Pr(B = 1|Q = 2) Pr(B = 2|Q = 2) Pr(B = 3|Q = 2)

Pr(B = 1|Q = 3) Pr(B = 2|Q = 3) Pr(B = 3|Q = 3)







=







(1− θQB)
2

2(1− θQB)θQB θ2
QB

(1− θQB)θQB (1− θQB)
2 + θ2

QB
(1− θQB)θQB

θ2
QB

2(1− θQB)θQB (1− θQB)
2







(33)Pr(Q = 2|A = 1,B = 2) =
Pr(Q = 2)Pr(A = 1|Q = 2)Pr(B = 2|Q = 2)

∑3
k ′=1 Pr(Q = k ′)Pr(A = 1|Q = k ′)Pr(B = 2|Q = k ′)

(34)Pr(Q = 1)Pr(A = 1|Q = 1)Pr(B = 2|Q = 1) =
1

4
(1−θQA)

2×2θQB(1−θQB) = 0.0191856

(35)Pr(Q = 2)Pr(A = 1|Q = 2)Pr(B = 2|Q = 2) =
1

2
(1−θQA)θQA

[

(1− θQB)
2 + θ2QB

]

= 0.0045624

(36)
Pr(Q = 3)Pr(A = 1|Q = 3)Pr(B = 2|Q = 3) =

1

4
θ2QA×2θQB(1−θQB) = 1.9575E−6

∑3

k ′=1
Pr(Q = k ′)Pr(A = 1|Q = k ′)Pr(B = 2|Q = k ′) =

1

2
θAB(1− θAB) = 0.02375

Therefore, the three conditional probabilities of the 
QTL genotypes are

Here is another example, the conditional probabil-
ity that the QTL genotype is Qq given the genotype of 
locus A is AA and the genotype of locus B is BB is

(37)
Pr(Q = 1|A = 1,B = 2) =

(1− θQA)
2θQB(1− θQB)

θAB(1− θAB)
= 0.807816

(38)

Pr(Q = 2|A = 1,B = 2) =
(1− θQA)θQA

[

(1− θQB)
2 + θ2

QB

]

θAB(1− θAB)

= 0.1921015

(39)Pr(Q = 3|A = 1,B = 2) =
θ2
QA

θQB(1− θQB)

θAB(1− θAB)
= 0.0000824

(40)

Pr(Q = 2|A = 1,B = 1)

=
Pr(Q = 2)Pr(A = 1|Q = 2)Pr(B = 1|Q = 2)

∑

3

k ′=1
Pr(Q = k ′)Pr(A = 1|Q = k ′)Pr(B = 1|Q = k ′)
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where

The denominator is the sum of the three terms,

Therefore, the three conditional probabilities of the QTL 
genotypes given the genotypes of markers A and B are

 
 

and

QTL mapping in F4 populations
For the F4 population, the recombination fraction between 
the two flanking markers (A and B) has changed from 
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θAB = 0.05 to θ(4)AB = 0.08923 , the recombination frac-
tion between A and Q has changed from θAQ = 0.01 
to θ(4)AQ = 0.01905 and thus the recombination fraction 
between Q and B in F4 is

where the order of the three loci is A-Q-B. Let us denote 
the genotypes of the three loci by

Note that the superscript of θ is now the generation index 
because the subscript has been taken by the two loci. The 
conditional probabilities of the QTL genotype given the 
flanking marker genotypes is defined from the following 
Bayes theorem,
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For example, the conditional probability that the QTL 
genotype is Qq given the genotype of locus A is AA and the 
genotype of locus B is Bb is

where

The denominator is the sum of the three terms,

Therefore, the three conditional probabilities of the 
QTL genotypes given the genotypes of markers A and B 
are

The conditional probability that the QTL genotype is 
Qq given the genotype of locus A is AA and the genotype 
of locus B is BB is

where
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The denominator is the sum of the three terms,

Therefore, the three conditional probabilities of the 
QTL genotypes given the genotypes of markers A and B 
are

and

Table 6 summarizes the results of the conditional prob-
abilities of the QTL genotypes given the flanking marker 
genotypes. Because of the heterozygosity reduction due 
to repeated inbreeding, the conditional probabilities of 
homozygotes in F4 are always higher than the homozy-
gosity in F2.

Validation from pre‑recombinant inbred lines of rice
Xu et  al. [18] generated 191 F2 plants from an elite 
hybrid rice (Shanyou63) derived from the cross of 
Zhenshan97 and Minghui63. From the 191 F2 plants, 
they further developed 191 F3 and 191 F4 plants by 
single seed descent. Genotypes of a total of 1696 
marker bins were inferred from the DNA sequences 
for each plant of the three filiations. The data set was 
used to validate the Markov model. Technically, one 
pair of markers suffice to validate the model. We used 
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markers of the 12th chromosome for validation. This 
is the shortest chromosome with 63 markers, all of 
which follow Mendelian segregations in all three fili-
ations (F2, F3 and F4). The Mendelian ratio for F2 is 
1 : 2 : 1 , for F3 is 3 : 2 : 3 and for F4 is 7 : 2 : 7 , which 
were used as the theoretical proportions in the segrega-
tion distortion Chi-square tests. The 63 markers form 
63× 62/2 = 1953 marker pairs for recombination frac-
tion analyses. There were 19 co-segregating marker 
pairs in F2 and thus only 1953− 19 = 1934 pairs of 
markers were used in the validation tests. Since the true 
recombination fractions of the marker pairs in the F2 
generation were not known, we did not have the true 
recombination fractions to start with for calculating 
the theoretical recombination fractions for the F3 and 
F4 generations. We treated the observed recombina-
tion fractions for the F2 generation as the “true” values 
to calculate the theoretical recombination fractions 
of the F3 and F4 generations. To reduce the impact of 
the unknown initial recombination fractions of F2 on 
the theoretical values of the recombination fractions 
in F3 and F4, we took the average recombination frac-
tion of all marker pairs with recombination fractions 
in the neighborhood of 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 
0.35 and 0.40. The predicted recombination fractions 
of these marker pairs in the F3 and F4 generations were 
compared with the 95% confidence intervals (95% CIs) 
of the estimated recombination fractions. The esti-
mated recombination fractions and the 95% CIs were 
calculated using the method described below.

Instead of directly estimating the recombination 
fractions between two markers using the expectation–
maximization (EM) algorithm, we first estimated the 
correlation coefficient between the numerically coded 
genotypes (0, 1 and 2) of the two markers in the marker 
pair. Denote the estimated correlation coefficient 
between markers i and j by rij with a standard error of

where n = 191 is the sample size. The corresponding 
recombination fraction between the two markers is

with a standard error of θij is

The asymptotic 95% confidence interval is

Figure 7 compares the theoretical recombination frac-
tions (solid lines) calculated from the recurrent equations 
with the 95% confidence bands (light blue areas) of the 
estimated recombination fractions for F2, F3 and F4. The 
95% confidence bands cover the theoretical recombinant 
fractions in all situations except F4 (the upper right panel) 
where the theoretical value barely touches the upper 
bound. The conclusion is that the theoretical recombi-
nation fractions calculated from the Markov model are 
valid.

Discussion
The recurrent equations of genotype frequency array are 
Markov chains, which consist of two components: the 
probabilities of multiple states and the transition prob-
abilities. Historically, the smaller the number of states, 
the easier the calculation. This was the very reason why 
Robbins [16] pooled the 16 fully phased genotypes of two 
loci into 10 unphased genotypes. Haldane and Wadding-
ton [6] further reduced the number of genotypes from 10 
to 5. The reduction of the number of genotypes was very 
important in reducing the computational burdens in the 
pre-computer age. People can manually derive the transi-
tion probability matrix because of the lower dimension of 
the matrix. In the computer era, everything can be gener-
ated with computer code. The reduction of the number 
of genotypes is no longer important. We are dealing with 
a problem that the parameter (recombination fraction) 
is derived with recurrent equations, not estimated from 
observed data. Therefore, combining high dimensional 
fully phased genotypes into low dimensional unphased 
genotypes has lost its advantage. In fact, utilization of 
the fully phased genotypes with computer code can avoid 
human errors in manually writing the transition matrix.
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Table 6  Comparison of the conditional probabilities of QTL 
genotypes given flanking marker genotypes between F2 and F4 
generations of self-fertilization

Prior Posterior

F2 F4 F2 F4

Pr(Q = 1|A = 1,B = 2) 0.25 0.4375 0.807816 0.9653945

Pr(Q = 2|A = 1,B = 2) 0.5 0.125 0.1921015 0.0342414

Pr(Q = 3|A = 1,B = 2) 0.25 0.4375 0.0000824 0.0003641

Pr(Q = 1|A = 1,B = 1) 0.25 0.4375 0.9991409 0.9995612

Pr(Q = 2|A = 1,B = 1) 0.5 0.125 0.0008589 0.0004365

Pr(Q = 3|A = 1,B = 1) 0.25 0.4375 1.846E-7 2.3349E-6
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An essential component of genetic mapping with RILs 
is to reconstruct the parental origins (the haplotypes) of 
DNA on the RIL chromosomes. In addition, QTL map-
ping using RILs as the genetic resources is a common 
practice in plants and small laboratory animals. With 
self-fertilization, as few as 8 generations are required 
[13]. How do we justify QTL mapping with PRERILs vs. 
RILs? Whether saving just a few of years using PRERILs 
for QTL mapping compared to using RILs is worth the 
effort considering the complexity of the mapping proce-
dure. We argue that optimal utilization of the available 
genetic resources is always a factor to consider. If pheno-
types and genotypes of PRERILs are available, why do we 
want to waste that information? QTL mapping with PRE-
RILs may be important for laboratory animals because 
development of RILs requires about 20 generations of 
brother-sister mating. If we can perform QTL mapping 
with PRERILs half-way before RILs are fully developed, 
the time saved may be significant. The advanced inter-
cross lines (AILs) increase the proportion of recombi-
nation between any two loci and thus provide precision 
to mapping closely linked QTL. The genetic basis of 

genome-wide association studies (GWAS) comes from 
the increased recombination fractions between loci.

Another justification for the study of recombination 
fraction in PRERILs is purely for scientific reason. We 
knew the recombination fraction both in the beginning 
(F2) and in the end (RILs) but did not know the trajectory 
how it reaches the equilibrium. This study for the first 
time fills the gap left for over 100 years.

There are many forms of repeated inbreeding. Jennings 
[7–9] investigated at least a dozen forms of them, includ-
ing random mating, parent–offspring mating, assorta-
tive mating, self-fertilization, brother-sister mating, and 
selection with relation to one of the two loci. Robbins 
[14–16] reinvestigated majority of Jennings mating sys-
tems plus selection of dominants with respect to one of 
the two linked characters. Haldane and Waddington [6] 
investigate self-fertilization and parent–offspring mating 
with great details. Among all the mating systems, self-fer-
tilization, and brother-sister mattings are the main forms 
of inbreeding to generate recombinant inbred lines.

In modern genetics, more advanced breeding systems 
have been developed for plants and laboratory animals, 
such as the Multi-parent Advanced Generation Inter-
Cross (MAGIC) population in Arabidopsis thaliana [10] 
and the Collaboratory Crosses (CC) in mice [3]. The 
RILs of mice derived from an 8-way crosses of mice [2] 
were extension of the two -way cross of brother-sister 
mattings. Recurrent equations of genotype array and the 
recombination fraction between two loci in these com-
plex inbreeding systems are difficult to derive. The num-
ber of genotype array can be huge, and the transition 
matrix may be in the order of thousand or ten thousand. 
Manual derivation is certainly not an option. If there is 
an interest, computer programs may be developed in the 
future to deal with the complex mating systems.

Conclusions
We developed recurrent equations for calculating gen-
otype frequencies for pre-recombinant inbred lines 
(PRERILs). These equations allow us to compute the 
recombination fractions between two loci before the 
lines reach the equilibrium state. An R function is pro-
vided for users to calculate the recombination fractions 
in PRERILs.

Abbreviations
RIL	� Recombinant inbred line
PRERIL	� Pre-recombinant inbred line
QTL	� Quantitative trait locus
AIL	� Advanced intercross line

Fig. 7  Predicted recombination fractions from the Markov model 
(solid lines) and the 95% confidence bands (light blue areas) from F2, 
F3 and F4 of a rice population
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