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Background
Genome-wide association studies (GWAS) have identi-
fied associations between common genetic variants and 
more than 3,300 phenotypes [1], revealing the highly 
polygenic architecture of many common traits. Poly-
genic scores (PGS) are a weighted sum of a collection of 
genome-wide risk alleles for a specific phenotype. Gener-
ally, the summary statistics of a genome-wide association 
study (GWAS) inform the selection and weighting of the 
common variants in a polygenic model used to calculate 
a PGS for an individual. Each GWAS variant confers only 
small risks individually, but their combined effects, when 
summarized as a PGS, may be substantial. As personal-
ized medicine becomes a larger part of medical care, PGS 
may be clinically useful to help early detection, individual 
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Abstract
Background As precision medicine advances, polygenic scores (PGS) have become increasingly important for 
clinical risk assessment. Many methods have been developed to create polygenic models with increased accuracy 
for risk prediction. Our select and shrink with summary statistics (S4) PGS method has previously been shown to 
accurately predict the polygenic risk of epithelial ovarian cancer. Here, we applied S4 PGS to 12 phenotypes for UK 
Biobank participants, and compared it with the LDpred2 and a combined S4 + LDpred2 method.

Results The S4 + LDpred2 method provided overall improved PGS accuracy across a variety of phenotypes for UK 
Biobank participants. Additionally, the S4 + LDpred2 method had the best estimated PGS accuracy in Finnish and 
Japanese populations. We also addressed the challenge of limited genotype level data by developing the PGS models 
using only GWAS summary statistics.

Conclusions Taken together, the S4 + LDpred2 method represents an improvement in overall PGS accuracy across 
multiple phenotypes and populations.
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stratification, and prevention in the general population 
for a variety of diseases [2–4].

The development of novel methods for PGS estima-
tion allows for different approaches to inform selection 
of variants and weighting of alleles. In creating a PGS 
method, it is important that a model is both accurate and 
computationally feasible. Variants are generally selected 
by the confidence of association and weighted by their 
effect on risk as determined from GWAS summary sta-
tistics [5, 6]. Additionally, risk variants in high linkage 
disequilibrium (LD) with each other are often pruned or 
down-weighted to limit overrepresentation of highly cor-
related variants from the same association signal [6]. For 
clinical usage, selection of fewer variants in the model 
will improve feasibility. For both the GWAS summary 
statistics and LD reference panel, an ancestry matched 
cohort is ideal to improve accuracy. Simultaneously, the 
model’s transferability to other ancestry groups is equally 
crucial.

Previously, we presented our “select and shrink with 
summary statistics” (S4) PGS method which accurately 
and efficiently predicted the polygenic risk of epithelial 
ovarian cancer [7]. In this paper, we further demonstrated 
the accuracy of the S4 PGS method in risk predictions of 
multiple phenotypes, and compared the S4 PGS method 
to LDpred2 and a combined S4 PGS and LDpred2 model, 
referred as ‘S4 + LDpred2’ henceforth. LDpred [8, 9] is 
a commonly utilized Bayesian-based PGS method that 
uses both a point-normal mixture distribution prior and 
LD information from a reference panel to estimate poste-
rior mean causal effect sizes to improve accuracy in the 
PGS [8]. LDpred2 improves the computational efficiency 
of LDpred, as well as its accuracy when causal variants 
are in long-range LD regions or are only a small propor-
tion of the total variation [9]. The S4 PGS method uses a 
continuous shrinkage prior on effect sizes and also allows 
for improved penalization of rare SNPs by correcting for 
standard error of the estimate [7]. Recent meta-analyses 
found no single method consistently outperformed all 
others, and showed that a combined PGS framework 
could increase prediction accuracy [10, 11]. In combining 
S4 PGS with LDpred2, our objective was to investigate 
whether this combined model enhances prediction accu-
racy, and more importantly, to improve the model’s gen-
eralizability across diverse phenotypes and populations.

Here, we first assessed the feasibility of S4 PGS in 
diverse phenotypes for which both GWAS summary sta-
tistics and genotype level data were available in the UK 
Biobank [12]. We then combined S4 PGS and LDpred2, 
and compared it with the standalone methods. Across 
multiple phenotypes with varying genetic architectures, 
we found that the combined S4 + LDpred2 method pro-
vides overall improved PGS accuracy. We also assessed 
the performance of PGS models trained in the UK 

Biobank and validated in Finnish and Japanese popula-
tions [13, 14]. Finally, we developed and validated PGS 
models using only summary statistics, demonstrating 
the practical viability of S4 + LDpred2. We found that the 
S4 + LDpred2 method has strong potential for develop-
ment of accurate PGS across a variety of phenotypes and 
populations.

Methods
Phenotypes and study populations
We performed PGS modeling and association testing 
for two quantitative traits: body mass index (BMI), and 
height; and ten binary diseases: asthma, breast cancer, 
coronary artery disease, endometrial cancer, inflam-
matory bowel disease (IBD), major depressive disorder, 
prostate cancer, schizophrenia, type 1 diabetes, and type 
2 diabetes. These phenotypes were chosen to represent a 
variety of traits, and to include those influenced by epide-
miological as well as genetic risk factors.

Published GWAS summary statistics were collected 
and used as input to form a polygenic model for each trait 
(Fig.  1, Supplementary Table 1) [15–26]. We collected 
genotype and phenotype data and GWAS summary sta-
tistics of all Europeans from the UK Biobank [12], and 
only GWAS summary statistics from FinnGen [14] and 
BioBank Japan [13]. The numbers of case and control 
samples used in each phenotype are detailed in Supple-
mentary Table 1. European descent was determined 
in the UK Biobank through the designated Data-Field 
22,006, and these individuals were selected for inclusion.

The select and shrink with summary statistics (S4) PGS 
method
The S4 PGS method had been previously described in 
Dareng et al. 2022 [7]. We briefly review the main ideas 
of S4 PGS here. The S4 PGS method is a two-stage 
approach, where the first stage is variant selection, and 
the second stage is shrinkage. In the selection stage, the 
S4 PGS first ranks and selects SNPs from the GWAS 
summary statistics to include in the model. SNPs pass the 
defined thresholds, p-value/r2, are considered, where the 
p-value indicates the significance of association in GWAS 
and r2 is the squared correlation between SNPs. Each top 
GWAS SNP is iteratively added if the correlation with all 
the other SNPs included is less than 0.85. If the SNP has 
a correlation below 0.02 with all other SNPs, then a new 
group is started, helping to reduce computational costs. 
New SNPs are put into the groups with which they are 
best correlated. When the p-value divided by the cor-
relation to other SNPs in the model is above a specified 
threshold (0.02, 0.15, and 0.6 were tested in this analy-
sis) no more SNPs will be chosen. At each threshold, the 
number of SNPs varies depending on phenotype and 
density of summary statistics coverage. The threshold 
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of p/r2 < 0.6 was not tested on certain phenotypes when 
computationally infeasible. For BMI, rather than p/
r2 < 0.6, all SNPs were included as the number of SNPs 
was still computationally feasible.

In the shrinkage stage, the weight, w , for each of the 
selected SNPs is calculated using a continuous shrinkage 
prior on effect sizes. We adapted the PRS-CS algorithm 
[27] and penalized rarer SNPs by correcting for the stan-
dard deviation, which resulted in the selection of fewer 
SNPs. We considered the global-local scale mixtures of 
normal:

 
wj ∼ N

(
0,
σ 2

N
ϕ ψ j

)

, where the variance of wj  scales with the sample size, N
, and residual variance, σ 2. ϕ  is a global scaling param-
eter shared across all effect sizes, and ψ j  is a local 
SNP-specific scaling parameter. We further assumed an 

independent gamma-gamma prior on the local scaling 
parameter, ψ j :

 ψ j ∼ G (α , δ j) , δ j ∼ G (β , 1)

, where G (α , β ) denotes the gamma distribution with 
shape parameter α and scale parameter β. Hence, there 
are three tuning parameters in the shrinkage stage: ϕ  is 
the global shrinkage parameter, α controls the shrinkage 
of effect estimates around 0, and β controls the shrink-
age of larger effect estimates. The performance of the 
model was minimally impacted by the value of α. Over-
all, setting α to 0.1 yielded slightly better results when 
the threshold for selecting variants was at least 0.6, com-
pared to larger values. For smaller threshold values, the 
differences between α values were negligible, as α mainly 
influences values near 0. Consequently, α was fixed at 0.1 
throughout to simplify the parameter testing process. For 
the other parameters, β  was set to a range of values from 
0.7 to 100 with increments of 0.1 up to 2.0, increments 

Fig. 1 S4 PGS model development, tuning, testing, and comparison. We first developed the S4 polygenic models (left), then tuned parameters from 
Biobank data (middle) and evaluated the best of those models in independent Biobanks data (right). We finally compared S4 PGS with other methods 
using the average performance across 10-fold cross-validation only by UK Biobank (bottom)
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of 0.2 to 4.0, and eight more increments up to the maxi-
mum of 100. The values for ϕ  were taken as 1, 1.2, 1.5, 
2, 2.5, 3, 4, 5, 6, 8 multiplied by factors of 10 from 1e-10 
to 1e10. The issue of determining the range of parameter 
values remains. We selected a metric such that the prior 
probability of a variant having an absolute effect on the 
outcome of at least 0.01 was within a specified range. 
This ensured that the beta values were matched with cor-
responding ϕ  values that were reasonable, neither exces-
sively strict nor overly lenient. This process was used 
to determine the range for the threshold of p/r2 = 0.02. 
Typically, around 700 combinations were tested. For 
larger thresholds, the values that yielded the best results 
for the 0.02 threshold, with ϕ  set to lower values (since 
larger thresholds typically require lower ϕ  values for an 
equivalent β ), were selected. Approximately 150 param-
eters were chosen for this latter step. The time required 
was typically about one hour on a single core for the 0.02 
threshold and one day on a single core for the largest 
threshold.

PGS models development, tuning, testing, and comparison
We compared the PGS prediction performance between 
S4 PGS, LDpred2, PRS-CS and S4 + LDpred2 [9, 27] 
(Fig. 1). To maintain a fair comparison, polygenic scores 
were created as a linear function of PGSj = Σ p

iwivij
, where vij  represented the dosage of the jth individual 
for the ith SNP out of p SNPs, and wi  represented the 
weight, i.e. the log of the odds ratio, of the ith SNP. Geno-
types were denoted as v , taking on the minor allele dos-
ages of 0, 1 and 2. The S4 PGS method considered SNPs 
from the entire set of summary statistics, while LDpred2 
and PRS-CS focuses only on the Hapmap3 SNPs as rec-
ommended by the authors. The three methods used 
different approaches to select and derive the optimal 
weights wi .

We first prepared LD matrices (a set of between SNP 
pairwise correlations or r2) from the OncoArray geno-
typing panel for breast, prostate and endometrial cancer 
and from an Illumina 610 genotyping panel for the other 
phenotypes [28–30]. The OncoArray panel was chosen as 
the reference for the cancer phenotypes as the bulk of the 
samples used in the cancer summary statistics were gen-
otyped on the OncoArray while the Illumina 610 panel 
was likely to match the non-cancer phenotypes more 
closely. The phased haplotypes of the 1000 Genomes 
Project dataset [31] were used in the pseudo-validation 
process for summary statistics, with FinnGen using the 
European samples and the Japan Biobank using the Asian 
samples.

LDpred2 is a popular method for creating a PGS 
that estimates effect sizes with point-normal prior and 
a Gibbs sampler. The parameters selected to test the 
LDpred2 version 1.11.6 model followed the suggestions 

in the LDpred2 paper [9]. For some of the phenotypes, 
the best h2 coefficient was outside the range suggested 
within the paper, so extra h2 values were generated to 
select the best fitting model. The aim was to make sure 
the best fitting model was not an extreme value of h2 
(either biggest or smallest). LDpred2 assumes that a spike 
and slab prior fits the data well.

The PRS-CS model is also a Bayesian method that 
applies a continuous shrinkage prior on effect sizes. This 
model does not use the same SNP selection method 
as S4 PGS, which is able to better penalize rarer SNPs. 
For PRS-CS, the tuning parameter representing global 
shrinkage, ϕ, was tested at 1e-6, 3e-6, 1e-5, 3e-5 etc. so 
that the best fitting value lied in the interior of this set of 
values. This ensured that the best fitting value was close 
to the global optimum.

We combined the S4 and LDpred2 models by selecting 
the best models for both S4 and LDpred2 on the tuning 
set. Then, we fitted a regression model with the outcome 
as the response and the predictions from the two models 
as the covariates. We used either the individual weights 
from the cross-validation or the summary statistics from 
the FinnGen data (see the subsection below) to esti-
mate the regression coefficients. This gave us a weighted 
average of the two models that minimized the predic-
tion error on the training set. We applied this combined 
model on the test set and compared its performance with 
the other models.

When doing model comparisons, we split UK Biobank 
data into 90% tuning and 10% testing sets for 10-fold 
cross-validation [12]. In each cross-validation iteration, 
we used the 90% tuning data to fine-tune the param-
eters and select the best performed PGS model. Subse-
quently, we evaluated this model on the remaining 10% 
testing data set. Performance was assessed by averaging 
the area under the receiver operator curve (AUC) values 
across the ten iterations for categorical variables or aver-
aging correlations for continuous variables. For a com-
prehensive performance evaluation, besides AUC, we 
also reported log odds ratio (log OR) normalized by one 
standard deviation of PGS, which gave a similar measure 
of effectiveness as the AUC but took into account the 
covariates. The 95% confidence interval (CI) of log OR 
per SD was also provided, with a wider confidence inter-
val indicating greater uncertainty in the estimate, while a 
narrower interval indicates more precise estimation.

PGS performance evaluation in alternative populations
To test applicability to non-European populations, the 
best PGS models trained in UK Biobank were evalu-
ated in Finnish (FinnGen [14]) and Japanese (BioBank 
Japan [13]) cohorts (Fig. 1). As no individual level geno-
types were available for these cohorts, previous research 
had developed methods for tuning PGS using summary 
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statistics [32, 33]. Here, we developed a similar evalu-
ation approach, acknowledging that the performance 
results are inferred and depend on the accuracy of this 
summary statistic-based approach. We estimated the 
PGS effects from the summary statistics and variants cor-
relation matrix instead, as follows:

Denote vij  to be the value of SNP i for individual j. 
We can assume that each variant has a mean of 0 with-
out loss of generality. This also means that the constant 
terms in the regression equation are independent of the 
other terms (as the dot product between the constant 
term and any v  is 0). Assume that the polygenic model 
is PGSj =

∑
iwivij . Also, for each variant i , we have 

the beta coefficient bi = (V ′ V )−1V y , where y  is the phe-
notype outcome and V  is the SNP data matrix, as well 
as the approximate standard error of beta coefficient 
si =

√
(V ′ V )−1. If we set xij = vij/si , then 

∑
x2i = 1 

and X ′X = R , where R  is the correlation matrix. We 
therefore derive,

 
PGSj =

∑ wixij
sij

We then define the matrix W = wi/si , so that 
PGS = WX . Thus, the estimated beta coefficient of 
PGS is PGSb= (W ′X ′XW )−1WXy  and the estimated 
standard error of PGS is PGSse= (W ′X ′XW )−1. Since 
the Xy = bi/si  for each SNP i is from the summary sta-
tistics data, we define Z = bi/si . Therefore,

 PGSb= (W ′RW )
−1
W ′Z

 PGSse= (W ′RW )
−1

For calculating the estimated coefficient per standard 
deviation, instead of using the coefficient of the unad-
justed PGS, we need to estimate the standard deviation 
of the PGS in the tested dataset. This is done by calcu-
lating di =

√
2fi (1− fi) s

2
i  for each variant i where fi  

is the frequency and si is the standard error of the beta 
estimate. Since the MaCH imputation (r2) [34] is equal to 
the variance divided by 2fi (1− fi), the variance of each 
variant will generally be less than 2fi (1− fi). Therefore, 
the estimate for the population is determined by select-
ing one of the lower values of d (0.2% percentile). Then:

Estimated standard deviation of PGS in population = 
d/PGSse

PGSperSDb = d(PGSb/PGSse)

 PGSperSDse = d

This can be extended to regression for several PGSs by 
defining the matrix W = wij/bi  where wij  is the weight 

for the ith variant on the jth PGS, and is used when com-
bining the S4 and LDpred2 models.

PGS models tuned by summary statistics
We fitted the polygenic models using the summary statis-
tics from FinnGen as a training set. The summary statis-
tics included the effect size (odds ratio) and the standard 
error for each genetic variant. We used the odds ratio per 
standard error as the outcome variable in the parameter 
estimation step to optimize the different parameters for 
S4 and LDpred2. We also fitted the S4 + LDPred2 model 
using the summary statistics and the optimized S4 and 
LDpred2 models. This was equivalent to maximizing the 
chi-squared statistic for each variant, which reflected the 
strength of the association. We applied the PGS model 
with the best parameters to the different test sets, which 
consisted of all valid samples for Biobank and the sum-
mary statistics for the Biobank Japan.

Results
S4 polygenic predictions of multiple phenotypes in UK 
Biobank
We applied the S4 PGS method to predict ten complex 
diseases (asthma, breast cancer, coronary artery disease, 
endometrial cancer, inflammatory bowel disease, major 
depressive disorder, prostate cancer, schizophrenia, type 
1 diabetes, and type 2 diabetes), and two quantitative 
traits (body mass index and height) in the UK Biobank 
[12]. Previously published GWAS summary statistics and 
individual level genotype data for each disease and trait 
were used to evaluate the performance of each S4 PGS 
model. The optimal parameters and performance of best-
fitting models for each phenotype are shown in Table 1. 
Prediction performance metrics included area under 
the receiver operating characteristic curve (AUC), log 
odds ratio (log OR) normalized by one standard devia-
tion of PGS, and 95% confidence interval (CI). Among 
the 12 phenotypes, the AUC values of S4 PGS predic-
tions ranged from 0.56 to 0.79, with better predictions in 
type 1 diabetes (AUC = 0.79), inflammatory bowel disease 
(AUC = 0.73), and schizophrenia (AUC = 0.72). PGS asso-
ciations were accessed by normalized log OR, ranging 
from 0.22 for major depressive disorder to 1.14 for type 
1 diabetes. The number of SNPs selected varied among 
phenotypes, ranging from 19,584 for type 2 diabetes to 
1,239,271 for schizophrenia.

S4 PGS performance on various SNP selection thresholds
S4 PGS is a parsimonious model which uses the most sig-
nificant SNPs, resulting in the selection of fewer SNPs. 
We investigated the influence of SNP selection thresh-
olds on S4 PGS predictions. The threshold was deter-
mined by the measure of SNP p-value divided by squared 
correlation of linkage disequilibrium. We examined 
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thresholds of 0.02, 0.15, and 0.6, which on average used 
54,000, 253,000, 731,000 SNPs. For body mass index, 
rather than the 0.6 threshold, the S4 PGS model was 
tested with all SNPs, as the number of SNPs was still suf-
ficiently small for the model to run. In general, the inclu-
sion of more SNPs led to better prediction accuracy and 
association (Fig.  2, Supplementary Table 2). However, 
this came at the penalty of larger SNP datasets and the 
need for increasing computational time. For example, 
the correlations for body mass index were 0.27, 0.3, 0.31 
for the three thresholds respectively, and the normal-
ized log ORs were 1.29, 1.42, and 1.47. The only excep-
tion was type 1 diabetes, which showed no improvement 
when increasing the threshold from 0.02 to 0.15. There 
was little difference in prediction performances when 
the threshold was increased from 0.15 to 0.6, while the 
computation time largely increased and models for breast 
cancer, endometrial cancer, prostate cancer, and type 1 
diabetes became computationally infeasible. Even though 
the various number of SNPs selected also depended on 
the density of summary statistics coverage and shrink-
age parameters of effect estimates, we confirmed through 
these threshold analyses that the use of threshold 0.15 in 
this study was ideal in balancing between model perfor-
mance and computational time.

Combining S4 and LDpred2 improves polygenic score 
predictions
We next sought to compare the S4 PGS method with 
LDpred2 [9] and the combined S4 + LDpred2 model. 
LDpred2 was selected due to its reliability in accurately 
predicting polygenic scores on multiple phenotypes. 
Overall, the S4 + LDpred2 model performed the best in 

ten out of 11 phenotypes (Fig.  3, Supplementary Table 
3). The S4 + LDpred2 method had better prediction accu-
racy and association for type 1 diabetes (AUC = 0.793, log 
OR = 1.14) and Inflammatory bowel disease (AUC = 0.727, 
log OR = 0.867). S4 PGS and S4 + LDpred2 exhibited 
noticeable advancement in cancers, including endo-
metrial cancer (AUC = 0.607, log OR = 0.396) and 
prostate cancer (AUC = 0.711, log OR = 0.822), outper-
forming LDpred2 (endometrial cancer AUC = 0.597, log 
OR = 0.351; prostate cancer AUC = 0.695, log OR = 0.755). 
Consistent with results from previous S4 PGS predic-
tions on epithelial ovarian cancer [7], the S4 PGS meth-
ods used noticeably less SNPs than LDpred2 on all 
phenotypes except schizophrenia. The greatest differ-
ence was in type 1 diabetes, where LDpred2 (n = 515,920) 
had 26-fold increased number of SNPs than S4 PGS 
(n = 19,584). The comparisons between models were 
based on the average performance of 10-fold cross-vali-
dations for all methods. We note that AUC values from 
cross-validations were similar to the AUC values derived 
from full training datasets, indicating overfitting prob-
lems were less likely to occur during our model train-
ing. We also used bootstrapping to estimate the standard 
error of the difference between the S4 + LDpred2 models 
and the LDpred2 models and derived a nominal p-value. 
The p-values for the difference were significant for all 
phenotypes (Supplementary Table 4). In brief, our results 
confirmed that S4 PGS and S4 + LDpred2 methods out-
performed LDpred2 in predicting polygenic risk scores 
on multiple phenotypes.

PRS-CS, like S4 PGS, is a widely-used PGS method 
that employs a shrinkage approach. We conducted the 
10-fold cross-validation analysis for PRS-CS using the 

Table 1 Performance of S4 PGS model on multiple phenotypes in UK Biobank
Phenotype Number of SNPs Tuning parameter for best 

performance
AUC log OR per SD of PGS 95% CI

⍺ β Φ
Quantitative traits
Body mass index 585,796 0.1 4.5 1.20E-04 0.30a 1.468a 1.455–1.482
Height 461,803 0.1 3.8 3.00E-05 0.37a 3.494a 3.478–3.511
Binary diseases
Asthma 425,752 0.1 1.9 2.50E-05 0.60 0.362 0.353–0.372
Breast cancer 357,287 0.1 1.3 4.00E-06 0.66 0.577 0.547–0.607
Coronary artery disease 689,356 0.1 1.3 1.20E-05 0.65 0.585 0.564–0.605
Endometrial cancer 271,090 0.1 4.5 1.50E-04 0.61 0.406 0.345–0.467
Inflammatory bowel disease 358,464 0.1 1.4 2.50E-05 0.73 0.856 0.822–0.890
Major depressive disorder 843,583 0.1 100 3.00E-03 0.56 0.224 0.208–0.240
Prostate cancer 409,227 0.1 1.2 6.00E-06 0.71 0.816 0.786–0.846
Schizophrenia 1,239,271 0.1 100 5.00E-03 0.72 0.858 0.762–0.955
Type 1 diabetes 19,584 0.1 8 1.20E-03 0.79 1.140 1.049–1.231
Type 2 diabetes 874,431 0.1 2.4 5.00E-05 0.66 0.609 0.574–0.645
AUC: area under the receiver operating characteristic (ROC) curve, log OR: log odds ratio, SD: standard deviation, PGS: polygenic score, CI: confidence interval
a Phenotypes body mass index and height are continuous variables. The prediction accuracy was evaluated by correlation instead of AUC. The association was 
evaluated by beta coefficient instead of log odds ratio. These applied to all body mass index and height evaluation in this study
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same set of phenotypes. S4 PGS outperformed PRS-CS 
in all phenotypes tested (Supplementary Table 5). The 
S4 PGS method showed the greatest advancement in 
prediction accuracy and association for prostate can-
cer (AUC = 0.710, log OR = 0.816) and schizophrenia 
(AUC = 0.723, log OR = 0.844) compared to PRS-CS 
(prostate cancer AUC = 0.684, log OR = 0.704; schizophre-
nia AUC = 0.703, log OR = 0.778). Unlike S4 PGS which 
used fewer SNPs while varying across phenotypes, PRS-
CS models steadily used 1.1  million SNPs per model. 

When comparing S4, LDpred2, and PRS-CS, PRS-CS 
exhibited the lowest performance, leading us to exclude it 
from the combined model.

External validations of PGS models in Finnish and Japanese 
populations
To assess the applicability of the three PGS methods to 
other populations we leveraged the existing GWAS sum-
mary statistics from FinnGen [14] and BioBank Japan 
[13]. The best fit model on the whole UK Biobank data 

Fig. 2 Performance of S4 PGS model across different SNPs selection thresholds. Threshold was determined by p-value divided by r2. For each phenotype, 
chi-square statistics calculated from Likelihood Ratio Test (top), correlations or AUC (middle), and beta coefficient or log Odds Ratio per 1 standard devia-
tion of PGS (bottom) are reported
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for each phenotype and each model was tested on the 
FinnGen and BioBank Japan populations. Uniformly 
observed across the three methods: S4 PGS, LDpred2, 
and S4 + LDpred2, the PGS associations from Finnish 
and Japanese ancestries were both comparable to the 
PGS associations obtained from the European cohort in 
most of the phenotypes (Table  2). Larger log ORs were 
reported in the FinnGen cohort than UK Biobank for 
breast cancer, major depressive disorder, and prostate 
cancer, while inflammatory bowel disease and schizo-
phrenia showed better PGS associations in the UK Bio-
bank. There was no phenotype in which a larger log OR 
was calculated in BioBank Japan than UK Biobank.

When comparing the three methods, S4 + LDpred2 per-
formed better in phenotypes with stronger main effects 
(such as breast cancer and prostate cancer) and LDpred2 
performs better in phenotypes where a very large num-
ber of variants contribute (such as major depressive dis-
order). When accessing the cross-biobank performance, 
the log ORs of type 1 diabetes in the Japanese popula-
tion were lower than expected for all three methods (S4 
PGS:0.068, LDpred2: 0.039, S4 + LDpred2:0.065). By 
examining the summary statistics, we discovered that 
top SNPs for type 1 diabetes in the European population 
were not significant in the Japanese population (Supple-
mentary Table 6), explaining the discordance. In addition, 

Fig. 3 Performance of best-fitting PGS models with 10-fold cross-validation on multiple phenotypes. For each phenotype, number of SNPs used in the 
respective models (top), correlations or AUC (middle), and beta coefficient or log Odds Ratio per 1 standard deviation of PGS (bottom) are reported
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height and body mass index reported much lower beta 
coefficients for the Japanese population than the Euro-
pean populations, while the standard errors of the esti-
mates are much less when comparing to the European 
samples. This observation might be a result of variance 
in the traits, LD structure, or allele frequency in different 
populations.

Genotype level data were not available for FinnGen and 
BioBank Japan, so we evaluated the PGS models predic-
tive performance by estimating PGS effects (joint effects) 
from GWAS summary statistics (marginal effects) and 
variants correlation matrix (see Methods). To validate 
the rationality of this estimation approach, we com-
pared S4 PGS and LDpred2 model results evaluated by 
directly calculating PGS with results assessed by estimat-
ing through summary statistics (Supplementary Table 7). 
The results from both approaches were similar, except 
for type 1 diabetes. The chi-squared statistics, log ORs, 
and confidence intervals show little discrepancy between 
the two approaches in most of the phenotypes for both 
S4 PGS and LDpred2, reinforcing the validity of our 
reported results in cross-biobank analyses. We noted 
that some variants did not have summary statistics in the 
GWAS dataset, so the PGS was assessed using only the 
variants for which summary statistics were available. This 

may have impacted the performance of type 1 diabetes, 
where the S4 PGS log OR is 1.14 when directly calculat-
ing PGS and 1.27 when estimating from summary statis-
tics. In particular, when S4 PGS overestimated the effect, 
LDpred2 tended to overestimate the effect and vice-
versa. Considering the PGS effect was dominated by the 
most significant SNPs, this might explain the observed 
difference.

PGS models optimized and validated by summary statistics
We also aimed to assess the effectiveness of a model 
developed using summary statistics. To achieve this, we 
optimized the parameters that yielded the best results 
based on FinnGen summary statistics rather than the 
genotyped Biobank samples. We then tested the best 
fit model for each phenotype on independent test sets, 
the UK Biobank (Supplementary Table 8) and BioBank 
Japan populations (Supplementary Table 9). Our findings 
revealed that in the UK Biobank dataset, S4 + LDpred2 
performed the best for all phenotypes except for endo-
metrial cancer (log OR = 0.396) and type 1 diabetes (log 
OR = 1.084). S4 PGS alone performed better in endo-
metrial cancer (log OR = 0.403) and type 1 diabetes (log 
OR = 1.109). Additionally, our results for the BioBank 
Japan aligned with those from the UK Biobank findings, 

Table 2 External validation of PGS models in Finnish and Japanese populations. Log OR values with better performance are 
highlighted in bold
Phenotype S4 LDpred2 S4 + LDpred2

χ2 log OR 95% CI χ2 log OR 95% CI χ2 log OR 95% CI
FinnGen
Asthma 1603 0.300 0.285–0.315 1640 0.303 0.289-0.318 1687 0.308 0.293–0.322
Breast cancer 3403 0.611 0.590–0.631 3315 0.603 0.582-0.623 3516 0.621 0.600-0.641
Coronary artery disease 4407 0.530 0.514–0.546 4034 0.507 0.491-0.523 4500 0.536 0.520–0.551
Endometrial cancer 123 0.297 0.245–0.350 125 0.3 0.247-0.352 125 0.3 0.248–0.353
Inflammatory bowel disease 1856 0.540 0.515–0.564 1890 0.545 0.520-0.569 1959 0.554 0.530–0.579
Major depressive disorder 1068 0.229 0.215–0.243 1165 0.239 0.226-0.253 1193 0.242 0.228–0.256
Prostate cancer 4761 0.858 0.834–0.882 4005 0.787 0.763-0.811 4865 0.867 0.843–0.892
Schizophrenia 845 0.603 0.563–0.644 856 0.607 0.567-0.648 901 0.623 0.583–0.664
Type 1 diabetes 5755 1.029 1.003–1.056 6159 1.065 1.038-1.091 6133 1.062 1.036–1.089
Type 2 diabetes 5707 0.504 0.491–0.517 5732 0.505 0.492-0.518 6020 0.517 0.504–0.530
BioBank Japan
Quantitative traits
Body mass index 6951 0.186a 0.182–0.191 6829 0.185a 0.180–0.189 7210 0.19a 0.185–0.194
Height 23,007 0.213a 0.210–0.216 22,562 0.211a 0.208–0.214 23,915 0.217a 0.215–0.220
Binary diseases
Asthma 599 0.233 0.214–0.251 602 0.233 0.215–0.252 646 0.242 0.223–0.260
Breast cancer 975 0.418 0.392–0.445 953 0.414 0.388–0.440 1028 0.43 0.403–0.456
Endometrial cancer 28 0.154 0.097–0.211 29 0.157 0.100-0.214 29 0.157 0.100-0.214
Major depressive disorder 9 0.105 0.038–0.173 11 0.115 0.048–0.183 11 0.117 0.049–0.184
Prostate cancer 2322 0.701 0.672–0.729 2376 0.709 0.680–0.737 2516 0.729 0.701–0.758
Schizophrenia 14 0.373 0.179–0.568 22 0.468 0.273–0.663 19 0.434 0.239–0.628
Type 1 diabetes 6 0.068 0.011–0.124 2 0.039 -0.017-0.096 5 0.065 0.008–0.121
Type 2 diabetes 4507 0.433 0.421–0.446 4160 0.416 0.404–0.429 4741 0.444 0.432–0.457
a Phenotypes body mass index and height are continuous variables. The association was evaluated by beta coefficient instead of log odds ratio
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where S4 + LDpred2 combined models performed the 
best across multiple phenotypes. S4 PGS demonstrated 
better predictions in type 1 diabetes (log OR = 0.074), 
while LDpred2 exceled in more accurate predictions of 
Schizophrenia (log OR = 0.468). These outcomes sug-
gested that a model developed using summary statistics 
might provide an effective approach for predicting phe-
notypes across different populations.

Discussion
Genetic risk profiling with PGS can be used to stratify 
individuals according to their disease risks and could be 
used to improve screening and prevention strategies and 
reduce disease mortality [2, 3]. Previously, we had dem-
onstrated the improvement of the S4 PGS method over 
existing methods in predicting epithelial ovarian cancer 
risk. Here, we extended the S4 PGS method to 12 pheno-
types in UK Biobank, and performed a systematic com-
parison with LDpred2 and the combined S4 + LDpred2. 
The S4 + LDpred2 method accurately predicts the PGSs 
across multiple phenotypes. We assessed the effect of 
the number of SNPs included in the model on S4 PGS 
predictive performance by changing the SNP selec-
tion threshold. We identified a computationally efficient 
while accurate threshold, which could be used to guide 
parameter settings. Furthermore, we explored the appli-
cability of S4 + LDpred2 in modeling joint SNP effects for 
risk prediction in Finnish and Japanese populations and 
compared them with common approaches. We also dem-
onstrated the effectiveness of PGS models developed by 
using only GWAS summary statistics. Our results pro-
vided stronger associations with risks of each phenotype.

The UK Biobank and other population-scale biobanks 
represent a useful resource for testing PGS models. As 
we have done here, comparing a particular PGS forma-
tion method to others across a variety of phenotypes and 
a variety of ancestries serves as a powerful benchmark of 
PGS model performance. Recently, a UK Biobank Poly-
genic Risk Score (PRS) method has been released as a 
resource of polygenic scores across many diseases and 
traits, with benchmarking of multiple PGS algorithms 
or published PGSs [35] against this new method. Nota-
bly ovarian cancer was the only phenotype where the UK 
Biobank generated PRS did not improve on the previ-
ously reported PRS, which we previously generated using 
the S4 PGS method [7]. As population-scale biobanks 
continue to become available and grow, this benchmark-
ing and comparison of different methods is helpful for 
developing and improving PGSs.

The S4 PGS model is complementary to LDpred2, con-
tributing to the improved performance observed in the 
combined S4 + LDpred2 model. The two methods mainly 
differ in three aspects, which we address in detail below: 
the type of prior on SNP effect sizes, correlation matrix 

computation, and SNP selection. The S4 PGS method 
places a continuous shrinkage prior on SNP effect sizes, 
and LDpred2 uses the common spike-and-slab prior. 
The continuous shrinkage prior can model distributions 
with heavy tails better, whereas it can be more vulner-
able if there are inaccuracies in the reference correlation 
matrix. To reduce the time of computing the variant cor-
relation matrix, S4 PGS partitions SNPs into blocks that 
are roughly independent of each other, and performs 
SNP selection for each block. LDpred2 assumes a sparse 
matrix where for a given SNP, the correlations with other 
SNPs are set to zero if the genetic distance is greater than 
3 centimorgan. The S4 PGS approach reduces computa-
tional burden and still maintains accuracy when SNPs are 
reasonably independent of each other or have only minor 
effects. Lastly, the S4 PGS method considers all SNPs and 
selects them based on ranked position by P value, (i.e. the 
most significant first) that are not excessively correlated 
with already selected SNPs. This ensures a parsimoni-
ous model that requires fewer SNPs. On the other hand, 
LDpred2 focuses only on the Hapmap3 SNPs, which are 
better imputed and can be applied in all PGS models.

Further optimization of the S4 PGS models could be 
achieved by examining the model parameters in greater 
detail. There are several parameters used to generate the 
models, as well as the core continuous shrinkage prior 
parameters. In this study, we primarily assessed the effect 
of SNPs selection threshold. Parameters such as correla-
tion threshold for adding SNPs into the model, maximum 
individual correlation, and quality control criteria for 
summary statistics were set based on our prior experi-
ence [7]. A systematic tuning of these thresholds by phe-
notype may increase the robustness of S4 PGS models.

Conclusions
In conclusion, our results indicated that S4 + LDpred2 
provides improvements in risk prediction for mul-
tiple phenotypes over more common approaches. Our 
approach overcomed the computational limitations with-
out loss of accuracy. Besides, S4 + LDpred2 demonstrated 
applicability to populations from different biobanks. 
Future works can be focused on the incorporation of epi-
demiological risk factors or SNPs functional annotations, 
to further improve the predictive power.
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