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Abstract 

Background  The widely adopted bulk RNA-seq measures the gene expression average of cells, masking cell type 
heterogeneity, which confounds downstream analyses. Therefore, identifying the cellular composition and cell 
type-specific gene expression profiles (GEPs) facilitates the study of the underlying mechanisms of various biological 
processes. Although single-cell RNA-seq focuses on cell type heterogeneity in gene expression, it requires special-
ized and expensive resources and currently is not practical for a large number of samples or a routine clinical setting. 
Recently, computational deconvolution methodologies have been developed, while many of them only estimate 
cell type composition or cell type-specific GEPs by requiring the other as input. The development of more accurate 
deconvolution methods to infer cell type abundance and cell type-specific GEPs is still essential.

Results  We propose a new deconvolution algorithm, DSSC, which infers cell type-specific gene expression and cell 
type proportions of heterogeneous samples simultaneously by leveraging gene-gene and sample-sample similari-
ties in bulk expression and single-cell RNA-seq data. Through comparisons with the other existing methods, we 
demonstrate that DSSC is effective in inferring both cell type proportions and cell type-specific GEPs across simulated 
pseudo-bulk data (including intra-dataset and inter-dataset simulations) and experimental bulk data (including mix-
ture data and real experimental data). DSSC shows robustness to the change of marker gene number and sample size 
and also has cost and time efficiencies.

Conclusions  DSSC provides a practical and promising alternative to the experimental techniques to characterize cel-
lular composition and heterogeneity in the gene expression of heterogeneous samples.

Keywords  Deconvolution, Cell type abundance, Cell type-specific gene expression profile, Similarity matrix, Single-
cell RNA-seq data

Background
Bulk RNA-seq has been widely adopted to profile tran-
scriptomes of samples, while for heterogeneous sam-
ples with multiple cell types, bulk RNA-seq data only 
represents the gene expression average across cell types 
contained in the bulk samples, masking the cell type het-
erogeneity [1, 2]. Downstream analyses based on bulk 
RNA-seq data, such as commonly applied differential 
gene expression analysis, are typically confounded by dif-
ferences in cell type proportions, leading to the mask of 
the gene expression contribution of lowly abundant cell 
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types by that of more abundant cell types [3, 4]. The varia-
tions in gene expression between heterogeneous samples 
might be because of the differences in cell type composi-
tion, biological conditions, or both [5]. Therefore, identi-
fying the cell type abundance of bulk samples facilitates 
the generation of profound insights into the underlying 
mechanisms of various biological processes [6].

Moreover, understanding the cell type composition 
difference of diseases is critical to the identification of 
cell types that could be targeted therapeutically [4]. For 
instance, tumors not only include malignant cells but are 
embedded in a complex microenvironment comprising a 
variable portion of immune cells [7]. Studying the com-
position and abundance of immune cells in cancer sam-
ples is invaluable for drug discovery, clinical treatment 
decisions, and cancer immunotherapy [8].

To profile the transcriptomes of individual cells for 
exploring cellular heterogeneity, single-cell RNA-seq 
(scRNA-seq) has emerged as a powerful technique, while 
it requires expensive and specialized resources and cur-
rently is not practical for a large number of samples or a 
routine clinical setting [9]. Besides, scRNA-seq contains 
a lot of technical noises, leading to the accuracy being 
lower than bulk RNA-seq. Traditional immunophenotyp-
ing techniques to measure cell type density, such as flow 
cytometry [10, 11] and immunohistochemistry [12], are 
generally dependent on the preselection of marker genes, 
limiting the number of cell types that can be simultane-
ously identified [9].

In this context, many computational deconvolution 
methodologies have been developed to infer cell type 
proportions and/or cell type-specific gene expression 
profiles (GEPs) from bulk transcriptomic data. Most of 
them either estimate cell type proportions with refer-
enced cell type-specific GEPs as input or estimate cell 
type-specific GEPs with cell type compositions as input 
[6]. Among these methods, most were developed to infer 
cell type abundance by using GEPs of purified cell types, 
such as FARDEEP [13], CIBERSORT [14], DCQ [15], and 
DeconRNASeq [16]. However, due to the required input, 
purified cell type-specific GEPs, may be unavailable or 
questionable and only accessible for a few tissues, such as 
blood [17–19], brain [20], and pancreas [21], the use of 
many purified GEPs-based deconvolution methods has 
been limited [22]. Therefore, taking advantage of scRNA-
seq data from corresponding tissue in bulk expression 
deconvolution is an alternative, such as MuSiC [23], 
SCDC [24], and DWLS [25].

Currently, there have been several deconvolution meth-
ods estimating cell type abundance and cell type-specific 
GEPs simultaneously, including CIBERSORTx [9], deconf 
[26], TOAST [22], Linseed [27], BLADE [28], BayesPrism 
[29], and RNA-Sieve [30]. Among them, RNA-Sieve 

requires scRNA-seq data, and CIBERSORTx, BLADE, 
and BayesPrism require cell type-specific GEPs. Others 
need less referenced information, even being reference-
free. For instance, deconf and TOAST need the number 
of cell types and Linseed is a reference-free method. It 
has been reported that reference-based deconvolution 
methods are usually more accurate and robust in esti-
mating the proportion of cell types than reference-free 
deconvolution methods [14, 31, 32]. Considering that 
there is room for improvement in deconvolution accu-
racy, the development of more accurate deconvolution 
methods to infer cell type abundance and cell type-spe-
cific GEPs is still appealing.

We hypothesize that similar samples have similar cell 
type compositions and similar genes have similar gene 
expression profiles, therefore maintaining the sample-
sample similarity and gene-gene similarity in bulk expres-
sion data would benefit cell type deconvolution. To this 
end, we propose a deconvolution algorithm DSSC, which 
estimates cell type-specific GEPs and cell type density 
simultaneously from bulk samples by maintaining gene-
gene and sample-sample similarities calculated from bulk 
expression and leveraging single-cell gene expression 
data. We compare DSSC with existing deconvolution 
methodologies including the ones using cell type-spe-
cific GEPs or scRNA-seq data as input to infer cell type 
compositions and the ones inferring both cell type abun-
dance and cell type-specific GEPs. By deconvolution on 
pseudo-bulk data generated by inter-dataset and intra-
dataset simulations, mixture bulk data, and real experi-
mental bulk data, the effectiveness and accuracy of DSSC 
are demonstrated.

Materials and methods
DSSC algorithm
Assuming every cell type has similar expression levels 
across heterogeneous samples, the expression of a gene 
in a heterogeneous sample can be modeled as a weighted 
sum of the expression levels in existing cell types [5]. Let 
X ∈ Rg× ndenote the expression value of g genes in n dif-
ferent heterogeneous samples, i.e., the bulk gene expres-
sion matrix; C ∈ Rg× k represents the average expression 
levels of g genes in k cell types, i.e., cell type-specific 
GEPs; P ∈ Rk× n represents the proportions of k cell 
types in n samples, then the deconvolution problem can 
be formulated as:

That is, based on the gene expression of heterogeneous 
samples, the proportion of each cell type in each sample 
and/or the cell type-specific GEPs are estimated [33, 34].

Different from most deconvolution methods that only 
infer C or P, we propose a new deconvolution method 

(1)X = CP
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DSSC, which leverages gene-gene similarity, sample-sam-
ple similarity, and scRNA-seq data information to infer C 
and P simultaneously from the bulk gene expression data. 
The optimization problem is:

where X ∈ Rg× n is the bulk gene expression matrix; 
C ∈ Rg× k is the cell type-specific GEP matrix; P ∈ Rk× n is 
the cell type proportion matrix; Ss ∈ Rn× n and Sg ∈ Rg× g 
are the sample-sample similarity matrix and gene-gene 
similarity matrix calculated based on the bulk gene expres-
sion matrix X; Y represents the single-cell gene expression 
data of the same tissue; ρ (Y ) represents the averaged gene 
expression of each cell type for reference which can be cal-
culated from Y or a given cell type-specific GEP matrix; 
� · �F represents the Frobenius norm; � 1,� 2 and � c are reg-
ularization parameters. The goal of the optimization prob-
lem is to make X ≈ CP , the inferred matrix P maintain 
the similarity between samples, and the inferred matrix C 
maintain the similarity between genes and approach the 
referenced cell type-specific GEPs.

For the calculation of the sample-sample similar-
ity matrix Ss , we first calculated the sample-sample dis-
tance matrix D based on the bulk gene expression matrix, 
whose entry dα β is calculated as 1 minus the Pearson’s 
correlation coefficient between samples α and β . Then we 
calculated the corresponding entry of Ss as:

Similarly, the gene-gene similarity matrix Sg is calculated.
To solve the original optimization problem of DSSC, 

we adopted a greedy way by solving first the same objec-
tive function but only with the non-negative constraints 
on matrices C and P and after obtaining the initial out-
puts C and P, the matrix P is processed to guarantee the 
sum of the proportions of all cell types in every sample is 
one. To solve the same objective function but only with 
the non-negative constraints, we derived the element-
wise multiplicative updates (Supplementary Materials). 
Beginning with random positive initializations, we per-
formed the following updating rules at each iteration 
until convergence:

(2)min
C ,P

�X − CP�2F + � 1�Ss − PTP�
2

F + � 2�Sg − CCT�
2

F
+ � c�C − ρ (Y )�2F

s. t. Cil > 0,Plj > 0,
l
Plj = 1, i = 1, 2, · · ·, g , l

= 1, 2, · · ·, k , j = 1, 2, · · ·, n

(3)
1

1+ dα β

The termination condition of the iterations is set to:

or the number of iterations reaches 3000. Ct and Pt are 
the matrices at the t-th iteration, Ct+1 and Pt+1 are the 
matrices at the (t + 1)-th iteration, θ is a given threshold 
(for which the default setting is 10−5 while in this paper 
we set it as 10−8 ). After the iterations terminate, the out-
put matrix P is processed to guarantee the sum of the 
proportions of all cell types in every sample is one. Then, 
we determine the cell type labels for columns of C and 
rows of P by calculating the similarity between the out-
put matrix C and the reference matrix ρ (Y ) . Afterward, 
matrices C and P with cell type annotation are the decon-
volution results of DSSC. For DSSC, we differentiated the 
cases using referenced GEPs (denoted as DSSC3, keeping 
all three regularization terms in the objective function) 
and not using referenced GEPs to infer initial matrices C 
and P (denoted as DSSC2, removing the regularization 
term of referenced input and only keeping the other two 
regularization terms on similarity matrices).

Determination of regularization parameters
To determine the regularization parameters � 1,� 2 
and � c , we used grid searching and five-fold cross-
validation by adapting the way of Elyanow et  al [35]. 
We divided the input bulk gene expression matrix X 
into five folds at random, each of which contains 20% 
of the entries of the input bulk matrix. Then, we ran 
DSSC for a range of regularization parameter com-
binations, masking out one-fold of entries. Next, for 
DSSC2, we calculated the root mean squared error 
(RMSE) between the masked one-fold data from X and 
that from CP ; for DSSC3, as it can leverage reference 
information, we calculated the Pearson’s correlation 
coefficient (PCC) between the inferred matrix C and 
the referenced GEP matrix but only for the involved 

(4)Cil =

(
XPT+� cρ (Y )+2� 2SgC

)
il

(CPPT+� cC+2� 2CCTC)il
Cil

(5)Plj =

(
CTX + 2� 1PSs

)
lj(

CTCP + 2� 1PPTP
)
lj

Plj

(6)
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genes with masked entries. The procedure was repeated 
for each fold, and then five RMSE or PCC values were 
obtained to calculate the average. Higher PCC and 
lower RMSE indicate better deconvolution perfor-
mance. We selected the regularization parameter com-
bination which resulted in the best average. By default, 
� 1 and � 2 can be 0, 0.001, 0.01, 0.1, 1 or 10, and � c 
can be 0, 1, 10, 100, 1000 or 10,000. The ranges can be 
changed in the practical usage.

Generation of simulated bulk data
We adopted a similar way as the research of Avila 
Cobos et  al [4] to use single-cell transcriptome data 
to generate pseudo-bulk data but differentiated intra-
dataset and inter-dataset simulations (Supplementary 
Materials). In the intra-dataset simulation, a single-cell 
gene expression matrix is divided into a training set 
and a testing set by stratified sampling with a ratio of 
1:1, while in the inter-dataset simulation, two single-
cell gene expression data are used as a training set and 
a testing set respectively. Based on the training set, 
the cell type-specific averaged gene expression GEPs 
for reference and cell type-specific marker genes were 
obtained. Based on the testing set, the pseudo-bulk 
data, and the ground-truths including real cell type 
ratio and cell type-specific GEPs were generated.

Specifically, using the training set and the testing 
set respectively, the average across all cells of each 
cell type was calculated for each gene to form a ref-
erenced cell type-specific GEP matrix and a real one. 
To identify cell type-specific marker genes based on 
the training set, we used scater package [36] for CPM 
normalization (if the training set was already normal-
ized, we skipped the normalization step) and regarded 
the genes with log2FC ≥ 1 and Benjamini-Hochberg 
adjusted p_value < 0.1 as marker genes. For the decon-
volution methods requiring referenced GEPs, we used 
the marker genes to extract the GEPs calculated from 
the training set; for the deconvolution methods that 
require scRNA-seq data as a reference, we used the 
marker genes to extract the trained scRNA-seq data, 
i.e., the training set, as a reference. When generating 
simulated bulk data based on the testing set, we gen-
erated bulk data of 1000 heterogeneous samples, where 
the expression of each bulk sample is the sum of the 
gene expression of 100 single cells randomly selected 
from the testing set. Note that the sampling is totally 
random, so the number of cells of a specific cell type 
could be large, small or even zero. The true cell type 
ratio was determined according to the actual sam-
pling. Then, we used the marker genes obtained from 
the training set to extract the simulated bulk data and 
then supplied to the deconvolution algorithms, and also 

used the marker genes to extract the real GEPs calcu-
lated from the testing set for the evaluation of deconvo-
lution results.

In the intra-dataset deconvolution experiments, we 
used human pancreatic cell dataset Segerstolpe [37], 
human brain cell datasets Camp [38], Darmanis [39], 
and Manno [40], and mouse hematopoietic stem cell 
dataset Nestorowa [41]. In the inter-dataset deconvolu-
tion, human pancreatic cell datasets Segerstolpe [37], 
Baron [42], and Muraro [43], and mouse retinal cell 
datasets Macosko [44] and Shekhar [45] were used.

Experimental bulk data
We used five mixture bulk data for testing, including 
BreatBlood [46] data mixing human breast and blood 
samples; CellLines [17] data mixing multiple human cell 
lines including Jurkat (T cell leukemia), THP-1 (acute 
monocytic leukemia), IM-9 (B lymphoblastic multiple 
myeloma) and Raji (Burkitt B cell lymphoma); Liver-
BrainLung [47] data mixing rat brain, liver, and lung tis-
sue samples; RatBrain [3] data mixing cell culture data 
of rat neuronal cells, astrocytes, oligodendrocytes, and 
microglia; and Retina [48] data mixing retinal tissue sam-
ples from two different mouse lines. For the mixture data 
deconvolution, expression data of 100% purified samples 
was used as the training set (which can be considered as 
expression data of single cells) to identify marker genes 
and obtain referenced single-cell data or GEPs. For the 
deconvolution methods with GEPs as input, the refer-
enced GEP matrix was calculated as the averaged gene 
expression of every cell type; for the deconvolution meth-
ods with single-cell data as input, the referenced input 
was the expression data of purified samples. We obtained 
marker genes referring to the study of Mohammadi et al 
[49], i.e., genes with z-score normalized Shannon entropy 
greater than a given threshold. Expression data of mixed 
samples with a known proportion was used as the testing 
set and the known cell type ratio is the ground-truth. The 
above five sets of data were directly obtained from the 
study of Mohammadi et  al [49], among which four sets 
were normalized with robust multiarray average (RMA) 
[50] except for CellLines data.

Moreover, we used a real experiment bulk dataset, 
WholeBlood [9] data, for testing. The whole blood sam-
ples were collected from 12 healthy adult subjects and 
the expression data is TPM-normalized RNA-seq data. 
We used LM22 (a microarray-derived signature matrix 
for distinguishing 22 human hematopoietic cell subsets 
in bulk tissues), 3’ PBMCs and 5’ PBMCs (two publicly 
available PBMC datasets from healthy donors profiled 
by Chromium v2 (5’ and 3’ kits)) from CIBERSORT arti-
cle [14] as different referenced information. LM22 is in 
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the form of GEPs, while 3’ PBMCs and 5’ PBMCs data, 
which are CPM-normalized scRNA-seq data, were used 
to generate referenced GEPs and marker genes. Simi-
larly to the CIBERSORT article, we also focused on the 
inference of NK.cells, Monocytes, B.cells, T.cells.CD4 
and T.cells.CD8. Therefore, before deconvolution, we 
extracted the reference data of the cells involving the 
above five target cell types, and after deconvolution, we 
merged the sub-cell types belonging to the same cell 
type for comparison with the ground-truth (Supple-
mentary Materials). The real cell type ratio was derived 
from the measurement result of flow cytometry and 
automated complete blood counts, available from the 
CIBETSORTx website.

Methods for benchmarking
We compared DSSC with 24 existing deconvolution 
methods which were tested mostly using default set-
tings. Among the compared algorithms, 15 are decon-
volution methods inferring cellular composition only, 
including 11 methods using GEPs as reference and 4 
methods using scRNA-seq data as a reference. The GEPs-
referenced methods include ordinary least squares (OLS 
[51]), non-negative least squares (NNLS [52]), a weighted 
least squares (EPIC [53]), two robust regression methods 
(FARDEEP [13] and RLR [54]), a support vector regres-
sion method (CIBERSORT [14]), four penalty regression 
methods (ridge [55], lasso [55], elastic_net [55] and DCQ 
[15]), and a quadratic programming method (DeconR-
NASeq [16]). The scRNA-seq data-referenced deconvo-
lution methods include MuSiC [23], DWLS [25], Bisque 
[56], and SCDC [24]. We also evaluated 9 deconvolution 
methods inferring both cell type abundance and GEPs, 
including a support vector regression method CIBER-
SORTx [9] which accepts referenced GEPs, RNA-Sieve 
[30] which accepts scRNA-seq data, four methods con-
tained in the CellMix [57] R package (digital sorting 
algorithm DSA [58], two semi-supervised non-negative 
matrix factorization methods ssKL [59] and ssFrobenius 
[59], and built-in improved deconf [26]), and three meth-
ods contained in the DeCompress [60] method (CellDis-
tinguisher [61], Linseed [27], and TOAST + NMF [22]). 
For the GEPs- and scRNA-seq data-referenced methods, 
we provided corresponding referenced input. As to the 
other deconvolution methods, we also used unified ways 
for better comparisons. For DSA, ssKL, and ssFrobenius, 
we provided the names of marker genes corresponding 
to each cell type; for TOAST, Linseed, CellDistinguisher, 
deconf, and DSSC2, we provided the number of cell types 
to initialize the P and C matrices and associated the out-
put matrix C with the referenced matrix to annotate cell 
types.

Performance indicators
When evaluating deconvolution methods inferring only 
cell type proportion matrix P, we calculated the PCC and 
RMSE between the inferred matrix P and the true value 
Ptrue . When evaluating deconvolution methods inferring 
both P and cell type-specific GEP matrix C, the PCC and 
RMSE between the inferred matrix C and the real value 
Ctrue were also calculated. For this, we transformed the 
two matrices into one-dimensional vectors in the same 
way and then calculated the PCC and RMSE between the 
two vectors. Then, when assessing the inferred matrix P, 
for each sample, we calculated the PCC between the real 
cell type ratio and the inferred one; when assessing the 
inferred matrix C, for each cell type, we calculated the 
PCC between the real gene expression and the inferred 
one.

Results
Overview of DSSC algorithm and benchmarking pipeline
Figure 1A gives a schematic representation of DSSC algo-
rithm. DSSC uses bulk gene expression data X as input, 
and can also accept single-cell gene expression data Y to 
calculate the referenced gene expression profile (GEP) 
matrix ρ (Y ) or accept a given GEP matrix Cref  directly. 
DSSC calculates gene-gene similarity matrix Sg and 
sample-sample similarity matrix Ss based on X. Through 
matrix decomposition, the inferred cell type proportion 
matrix P maintains the sample-sample similarity, and 
the inferred cell type-specific GEP matrix C maintains 
the gene-gene similarity and approaches the averaged 
gene expression calculated from the referenced single-
cell RNA-seq data ρ (Y ) or the given Cref  . After the initial 
matrices C and P are obtained, the PCC between C and 
ρ (Y )/Cref  is calculated to determine the cell type label of 
each column in C, and then each row in P. Then each col-
umn of matrix P is processed to satisfy that the sum of 
the proportions of all cell types in each sample is 100%. 
At this time, matrices C and P are the results of DSSC. 
DSSC is a deconvolution method simultaneously esti-
mating cell type-specific GEPs and cell type composition 
of samples by leveraging the similarities among bulk sam-
ples and genes and the information of referenced GEPs or 
scRNA-seq data.

To verify the effectiveness of DSSC, we tested it on simu-
lated bulk data (including intra-dataset and inter-dataset 
simulations) and experimental data (including mixture bulk 
data and real experimental RNA-seq data). Figure 1B gives 
the testing pipeline. In the intra-dataset deconvolution, a 
single-cell gene expression matrix is divided into training 
and testing sets. Based on the training set, cell type-specific 
averaged gene expression Cref  is calculated and marker 
genes are identified. For the deconvolution methods that do 
not accept the referenced input, only the marker genes or 
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Fig. 1  Schematic representations of (A) DSSC algorithm and (B) deconvolution testing pipeline. We differentiated the cases keeping all three 
terms in the objective function (denoted as DSSC3) and keeping the first two terms about the sample-sample and gene-gene similarity matrices 
(denoted as DSSC2). DSSC2 does not need the referenced GEPs to infer the initial matrices C and P, and only needs the reference to determine 
the cell type label, i.e., the grey paths in the figure are not employed in DSSC2

Table 1  Details of single-cell transcriptome data used for simulation tests

Dataset Accession Biological 
sample type

Number of 
genes

Number of 
cells

Number 
of 
markers

Number of cell types Simulation 
type

Reference

Nestorowa GSE81682 Mouse hemat-
opoietic stem

4077 1455 860 8 Intra-dataset [41]

Manno GSE76381 Human brain 11,507 2496 619 22 Intra-dataset [40]

Darmanis GSE67835 Human brain 13,488 389 1594 6 Intra-dataset [39]

Camp GSE75140 Human brain 11,241 551 262 5 Intra-dataset [38]

Segerstolpe E-MTAB-5061 Human pan-
creatic

13,876 898 2233 6 Intra- and inter-dataset [37]

Baron GSE84133 Human pan-
creatic

8415 7876 2235 10 Inter-dataset [42]

Muraro GSE85241 Human pan-
creatic

12,239 1930 1119 7 Inter-dataset [43]

Macosko GSE63473 Mouse retina 2986 34,638 429 8 Inter-dataset [44]

Shekhar GSE81904 Mouse retina 4707 233,811 532 4 Inter-dataset [45]
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the number of cell types is required. Based on the testing 
set, the simulated bulk data X, the real cell type ratio Ptrue 
and the real GEP data Ctrue are generated. In the inter-data-
set deconvolution, two single-cell transcriptome data are 
used as a training set and a testing set, respectively. By cal-
culating PCC and RMSE between the inferred C/P and the 
real Ctrue/Ptrue , the performances of deconvolution meth-
ods are evaluated. The single-cell transcriptome data used 
in the simulation tests are listed in Table 1. In the decon-
volution of mixture bulk data (Table 2), the training set is 
expression data of purified samples and is used to identify 
marker genes and obtain Cref  . The testing set is expression 
data of mixed samples with a known proportion Ptrue . As 
the real GEP data Ctrue is unknown, we used Cref  instead to 
evaluate the inferred C. In the deconvolution of real experi-
mental bulk RNA-seq data, the testing set is Whoold-
Blood [9] data and the training set is LM22, 3’ PBMCs or 5’ 
PBMCs data provided in CIBERSORT article [14]. As the 
real GEP data Ctrue is unknown, we mainly evaluated P. The 
real cell type ratio Ptrue was derived from flow cytometry 
and automated complete blood counts.

We compared DSSC with 24 existing deconvolution 
methods (Table  3), including 9 deconvolution methods 
inferring both P and C, and 11 deconvolution methods 
using GEPs as reference to infer P, and 4 deconvolution 
methods using scRNA-seq data as reference to infer P. 
For the deconvolution methods inferring both cell type 
proportion and GEPs, we evaluated matrices P and C. For 
other deconvolution methods, we only evaluated matrix 
P. For DSSC, we differentiated the cases keeping all three 
terms in the objective function (denoted as DSSC3) 
and keeping the two terms about the sample-sample 
and gene-gene similarity matrices (denoted as DSSC2). 
DSSC2 does not need the referenced GEPs to infer the 
initial matrices C and P, and only needs the reference to 
determine the cell type label (Fig. 1).

Deconvolution on simulated bulk data
Intra‑dataset deconvolution
We used five scRNA-seq data, human pancreatic cell 
dataset Segerstolpe [37], human brain cell datasets 

(Camp [38], Darmanis [39], and Manno [40]), and mouse 
hematopoietic stem cell dataset Nestorowa [41] to per-
form intra-dataset simulations. Supplementary Fig.  1A 
shows the PCC between the inferred cell type-specific 
GEPs by DSSC3 and the real GEPs. It can be seen that 
DSSC3 can accurately infer the gene expression of dif-
ferent cell types. Then we calculated PCC and RMSE 

Table 2  Details of used mixture bulk data

Dataset Accession Biological
sample type

Number of genes Number of 
samples

Number of 
marker genes

Number of 
cell types

Reference

BreastBlood GSE29830 Human breast and blood 54,675 9 3058 2 [46]

CellLines GSE11058 Human cell lines 54,675 12 2824 4 [17]

LiverBrain
Lung

GSE19830 Rat brain, liver, and lung 31,009 33 2093 3 [47]

RatBrain GSE19380 Rat cell lines 31,009 10 1836 4 [3]

Retina GSE33076 Mouse retinal tissue 22,347 24 769 2 [48]

Table 3  Deconvolution methods for comparison

Deconvolution
methods

Reference
information

Estimate 
cell type 
proportions

Estimate
GEPs

Reference

NNLS GEPs Yes No [52]

OLS GEPs Yes No [51]

FARDEEP GEPs Yes No [13]

CIBERSORT GEPs Yes No [14]

DeconRNASeq GEPs Yes No [16]

RLR GEPs Yes No [54]

DCQ GEPs Yes No [15]

elastic_net GEPs Yes No [55]

ridge GEPs Yes No [55]

lasso GEPs Yes No [55]

EPIC GEPs Yes No [53]

MuSiC scRNA-seq 
data

Yes No [23]

BisqueRNA scRNA-seq 
data

Yes No [56]

SCDC scRNA-seq 
data

Yes No [24]

DWLS scRNA-seq 
data

Yes No [25]

CIBERSORTx GEPs Yes Yes [9]

RNA-Sieve scRNA-seq 
data

Yes Yes [30]

DSA / Yes Yes [58]

ssKL / Yes Yes [59]

ssFrobenius / Yes Yes [59]

deconf / Yes Yes [26]

TOAST / Yes Yes [22]

Linseed / Yes Yes [27]

CellDistinguisher / Yes Yes [61]
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between the inferred cell type ratio by DSSC3 and the 
truth for each sample, and Supplementary Fig. 1B shows 
the means and standard deviations of PCC and RMSE 
across all samples, demonstrating the good performance 
of DSSC3 in inferring cell type proportions.

Figure  2A shows the overall indexes, PCC and RMSE 
between the flattened C/P estimated by all deconvolution 
methods and the flatten real matrix Ctrue/Ptrue . It can be 
noted that DSSC3 is competitive across different data, no 
matter in estimating cell type proportions or estimating 
GEPs, especially on Nestorowa dataset. For the decon-
volution methods based on GEPs, most methods such 
as FARDEEP, CIBERSORT, CIBERSORTx are stable and 
effective in inferring P. For the deconvolution methods 
based on single-cell data, RNA-Sieve and DWLS per-
forms well across datasets, while SCDC performs poorly 
on Nestorowa and Darmanis data which may be mainly 
because the proportion of several specific cell types in 
Nestorowa data could not be inferred and the perfor-
mance varies widely among different samples in Darma-
nis data. Some deconvolution methods inferring both C 
and P perform well, but some do not, such as DSA, ssKL, 
and ssFrobenius which is perhaps because the inferred 

cell types are similar to a variety of real labels. When 
comparing DSSC3 with DSSC2 which performs well in 
inferring C but not in P, we can note the advantage of 
using referenced GEPs.

To show the overall test results in intra-dataset decon-
volution, we pooled the PCC values of five datasets in 
Fig. 2B, each point representing the corresponding value 
in Fig. 2A. DSSC3 is stable and accurate, at the forefront 
of most methods, in the inference of GEP matrix C and 
cell type proportion P. DSSC2 is not prominent in the 
inference of P, but it performs well in inferring C relative 
to some other deconvolution methods. Except DSSC3, 
RNA-Sieve, DWLS and Linseed can also accurately infer 
P, but Linseed is not effective in inferring GEPs. The 
standard deviation of PCC of P for deconf is large, mainly 
due to its poor result on Manno data. We speculated that 
deconf may be affected by random seeds or the num-
ber of cell types, and it does not use the information of 
marker genes which may lead to poor performance.

Inter‑dataset deconvolution
We used three human pancreas cell datasets (Baron 
[42], Muraro [43], and Segerstolpe [37]), and two mouse 

Fig. 2  Intra-dataset deconvolution results. A PCC and RMSE between the inferred cell type proportion matrix (or GEP matrix) and the real one. 
The deconvolution methods are divided into three categories: deconvolution methods with GEPs as reference (denoted as blue), deconvolution 
methods with scRNA-seq data as reference (denoted as yellow), and other deconvolution methods (denoted as green). B PCC between the inferred 
cell type proportion matrix (or GEP matrix) and the real matrix, each point representing each responding result in Fig. 2A
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retinal cell datasets (Macosko [44] and Shekhar [45]) to 
perform eight sets of inter-dataset simulations. Among 
them, the downloaded Muraro data is non-counts data, 

while the rest are counts data, so we could not only pay 
attention to the impact of batch effect on deconvolution 
but also the impact of different normalization methods.

Fig. 3  Inter-dataset deconvolution results including the cases of matching and unmatching cell types between the training and testing sets 
before deconvolution. A PCC and RMSE between the inferred cell type proportion matrix (or GEP matrix) and the real one in the case of matching 
cell types. B PCC between the inferred cell type proportion matrix (or GEP) and the real matrix, each point representing each corresponding result 
in Fig. 3A. C PCC and RMSE between the inferred cell type proportion matrix (or GEP matrix) and the real one in the case of unmatching cell types. 
D PCC between the inferred cell type proportion matrix (or GEP) and the real matrix, each point representing each corresponding result in Fig. 3C. 
Baron_Muraro denotes Baron data as the testing set and Muraro as the training set, and others have similar meanings
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Considering that the cell types are not identical 
between the training and the testing sets, we examined 
the influence of whether the cell type information is 
matched before simulation. First, for the case of match-
ing cell types in advance, after quality control of single-
cell data, we matched the cell types of the training set 
and test set (i.e., taking the intersection of cell types), and 
then performed data simulation. Supplementary Fig. 2A 
represents the PCC between the cell type-specific GEPs 
inferred by DSSC3 and the real ones, which indicates 
the excellent performance of DSSC3 in estimating GEPs. 
Then we calculated PCC and RMSE between the inferred 
cell type ratio by DSSC3 and the truth for each sample, 
and Supplementary Fig. 2B shows the means and stand-
ard deviations across all samples, indicating the accu-
racy of DSSC3 in inferring cell type proportion across 
different samples. Figure  3A shows the PCC and RMSE 
between the flattened C/P and the flattened real matrix 
Ctrue/Ptrue . Figure 3B summarizes the performance values 
of all data tests in Fig. 3A. We found that many methods 
are in line with expectations. DSSC3, DWLS, TOAST, 
DSSC2 and Linseed are effective and stable in inferring 
P, and DSSC3, DSSC2 and TOAST perform well in infer-
ring C. Linseed also shows weakness in estimating GEPs, 
which may because it is still the method mainly inferring 
the proportion of cell types although it can output GEPs. 
For deconvolution experiments across batches, most of 
the reference-based deconvolution methods are effec-
tive, such as FARDEEP and CIBERSORT, but compared 
with the case of intra-dataset deconvolution, the perfor-
mances are overall degraded, especially Bisque which is 
not effective on all eight tests. In addition, the inter-data-
set deconvolution using two single-cell data with differ-
ent normalization methods also brings some deviations. 
For example, in the test of Muraro_Segerstolpe (Muraro 
being the testing set and Segerstolpe being the training 
set), the deconvolution results of the least squares regres-
sion methods (NNLS and OLS) are not good, indicating 
the influence of referenced GEPs on the regression-based 
methods. Most of the reference-based deconvolution 
methods are interfered by different normalization meth-
ods between the training set and testing set (which can 
be seen from the results of tests involving Muraro data), 
but DSSC3, DSSC2, and DWLS still perform well.

Next, we tested the case of unmatching cell types 
between the training and testing sets in advance. After 
deconvolution, the similarity between C/P and the real 
Ctrue/Ptrue is calculated only for the cell types of the 
testing set. Supplementary Fig.  3A shows the results of 
DSSC3 for the same eight groups of inter-data deconvo-
lution but the cell type information is not matched, and 
Supplementary Fig.  3B shows the PCC and RMSE of P 
for every sample. Compared with the results of matching 

cell types, DSSC3 can still infer cell type-specific GEPs 
and cell type ratio. The PCC of P at the sample level in 
Macosko_Shekhar test is relatively low, but the mean can 
still maintain 0.7. Conversely, the performance of DSSC3 
in Shekhar_Macosko test is more stable, perhaps because 
training on Macosko data can learn more general infor-
mation for prediction on the testing set. Figure  3C and 
D show the overall results. Compared with Fig.  3A and 
B, it can be found that the performances of all deconvo-
lution methods have a little decrease under the case of 
unmatched cell types no matter in the estimation of GEPs 
or cell type proportions, which is in line with the law of 
reality, but DSSC3 and DSSC2 have relatively excellent 
performances. Moreover, checking Fig.  3C, the results 
of all deconvolution methods are significantly reduced 
in Macosko_Shekhar test, but DSSC3 remains at the 
forefront.

In these heterogeneous simulation experiments, DSSC 
algorithm especially DSSC3 can accurately and stably 
estimate cell type proportion and GEPs. Although the 
performance in the case of unmatching cell types would 
be reduced relative to the case of matching cell types, it 
is more realistic and DSSC still performs well. Compared 
with intra-dataset deconvolution, the results of most 
deconvolution methods can still be believed in inter-
dataset simulation experiments, among which DSSC per-
forms more prominently, indicating its robustness to the 
influence of batch effect to a certain extent.

Deconvolution on mixture data
We used mixture data with known proportions as test-
ing data, including human BreatBlood [46] and CellLines 
[17] data, Rat LiverBrainLung [47] and RatBrain [3] data, 
and mouse Retina [48] data. The expression data of 100% 
purified samples was used as the training set. For decon-
volution methods that require GEPs as reference, we sup-
plied the GEPs obtained from the purified data. For the 
deconvolution methods that require scRNA-seq data as 
a reference, we supplied the data of purified samples by 
regarding the purified samples as cells. It is noted that 
as the real GEP matrix Ctrue is unknown, we used Cref  
instead to evaluate as the reference is from purified sam-
ples which makes the two GEP matrices similar.

The PCC between the cell type-specific GEPs inferred 
by DSSC3 and the reference is shown in Supplemen-
tary Fig.  4A. Supplementary Fig.  4B shows the mean 
and standard deviation of PCC and RMSE calculated 
for every sample for datasets with more than two cell 
types. It indicates the stability of DSSC3 in inferring the 
cell type proportions across different samples and also 
confirms that the homology between reference data and 
tested bulk data could improve the deconvolution perfor-
mance. Figure 4A shows the overall indexes, from which 
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can be seen that many methods perform well in the infer-
ence of P and C. DSSC3, CIBERSORT, and CIBERSORTx 
are more prominent when inferring cell type propor-
tions. RNA-Sieve performs well in inferring GEPs on all 
datasets and keeping the similarity between the inferred 
GEPs and the referenced GEPs is a main feature of RNA-
Sieve. Compared with other deconvolution methods 
inferring both C and P, DSSC3 is outstanding in inferring 
C on RatBrain data. Linseed is good on LiverBrainLung 
in inferring GEPs compared with its performance on 
other data. As to Linseed, it is good at inferring P in the 
simulation experiments but underperforms on the mix-
ture data. ssFrobenius has low performance in inferring 
the proportion of cell types on the LiverBrainLung data, 

but ssKL, also a semi-supervised non-negative matrix 
factorization method, works well. As seen in Fig. 4B, the 
task of deconvolution on mixture data would be more 
difficult than that of simulation experiments, but DSSC3 
is still at the forefront of all deconvolution methods. 
Overall, the stability and accuracy of the reference-based 
deconvolution methods are higher than those of the ref-
erence-free complete deconvolution methods, because 
the reference is from purified data which is homologous 
with the tested bulk data.

Deconvolution on real experimental data
We tested the bulk RNA-seq data of human peripheral 
blood collected from 12 healthy adult subjects (denoted 

Fig. 4  Deconvolution results on mixture data. A PCC and RMSE between the inferred cell type proportion matrix and the real one and those 
between the inferred GEP matrix and the referenced one. The real GEP matrix is unknown, we used the referenced matrix instead to evaluate 
as the reference is from purified samples which makes the two GEP matrices similar. B The boxplot of PCC values, each point representing each 
corresponding result in Fig. 4A

Fig. 5  Deconvolution results on real experimental WholeBlood data for three different references. The single cell data-based methods were 
only tested using the references with the form of single cell data, i.e., 3’ PBMCs and 5’ PBMCs. (A) PCC and RMSE between the inferred cell type 
proportion matrix and the real one. (B) PCC between the inferred cell type proportion and the real one for each sample, each point representing 
a sample. (C) The averages of PCC of each sample across all three references and two references (3’ PBMCs and 5’ PBMCs), with each point 
representing a sample. (D) PCC values of each sample calculated based on the averaged cell type proportion matrix across three references and two 
references

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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as WholeBlood [9]) and used LM22 and two PBMC data-
sets of healthy donors (3’ PBMCs and 5’ PBMCs) as differ-
ent references. Referring to the CIBERSORT article, we 
also focused on the inference of five cell types, NK.cells, 
Monocytes, B.cells, T.cells.CD4, and T.cells.CD8. There-
fore, before deconvolution, we extracted the reference 
data of the sub-cell types belonging to the above five tar-
get cell types, and after deconvolution, we merged the 
sub-cell types for comparison with the ground-truth. The 
real cell type ratio comes from the measurement result of 
flow cytometry and automated complete blood counts. 
As the real GEPs information is unknown, we used the 
referenced GEPs to just check the proximity between 
the referenced GEPs and the estimated one and mainly 
focused on the result of P. We compared DSSC with 
other deconvolution methods and because LM22 itself 
is in the form of GEPs, the deconvolution methods using 
single-cell data as input were only tested using references 
of 3’ PBMCs and 5’ PBMCs.

Supplementary Fig.  5A shows the PCC between the 
inferred cell type-specific gene expression by DSSC3 and 
the referenced gene expression for each different refer-
ence. It can be found that T.cells.CD4 and T.cells.CD8 
are similar when 5’ PBMCs data was used as a refer-
ence, which may affect the annotation of cell type labels 
to a certain extent. Figure  5A shows the overall perfor-
mance of each deconvolution method when using dif-
ferent reference data. It can be noted that DSSC3 has a 
certain degree of advantages in estimating cell type pro-
portions, while like all other methods, there is still room 
for improvement. When using LM22 as a reference, 
most deconvolution methods would be better in infer-
ring P relative to using other references. Some methods 
perform better in estimating P when using 3’ PBMCs as 
a reference than using 5’ PBMCs, such as NNLS, Decon-
RNASeq, ridge, and EPIC. As to the methods using 
scRNA-seq data as input, DWLS performs outstandingly. 
To further check each sample, Fig. 5B shows the PCC of P 
calculated for every sample based on the cell type propor-
tions estimated by all deconvolution methods. We found 
that for most methods, the PCC varies widely among the 
samples under a given reference data and was also influ-
enced by the choice of reference, such as NNLS. Among 
all methods, DSSC3 overall is more stable and performs 
well, especially for LM22 and 5’ PBMCs, and DWLS is 
outstanding when using 3’ PBMCs. We also checked 
the result at the cell type level. Supplementary Fig.  5B 
shows the PCC between the inferred cell type-specific 
gene expression and the referenced one calculated for 
every cell type based on the cell type-specific GEPs esti-
mated by the deconvolution methods inferring C and P. 
To summarize the results under different references, we 
calculated the average of PCC of each cell type across 

different references (Supplementary Fig.  5C). It can be 
seen that DSSC3 and RNA-Sieve can keep the similarity 
between the referenced GEPs and the inferred one. Same 
as the case in mixture data, RNA-Sieve also demonstrates 
this characteristic. However, we do not know the proxim-
ity of the reference data to the real ground-truth, so we 
mainly focused on the result of P.

To summarize the performance indicators under dif-
ferent references, we calculated the average of PCC of 
each sample across different references (Fig. 5C), show-
ing the relatively better performance of DSSC3 and 
DWLS. Moreover, in practical use, we may not know the 
proximity of the reference data to the real ground-truth, 
therefore we would like to integrate the deconvolution 
results using different reference data. We first calculated 
the average of the cell type proportion matrices obtained 
using different references and then calculated the per-
formance index of each sample (Fig. 5D). It can be found 
that the performances of many deconvolution methods 
improve to varying degrees, and DSSC3 is still advanta-
geous. Since for real experimental data deconvolution, 
different reference data will generate different marker 
genes, we did not integrate the cell type-specific GEPs 
obtained from different reference data. It can be seen 
from this that integrating multiple reference data would 
improve the deconvolution performance. Here, we used 
the simplest way to integrate the results from different 
references, while a weighted average of different refer-
ences may be better.

Impact of marker gene and sample size
To explore the robustness of deconvolution methods 
to the number of marker genes and the number of bulk 
samples, we took the Nestorowa data in the intra-data-
set deconvolution and the Baron_Muraro data in the 
inter-dataset deconvolution as examples and used the 
PCC between the flattened cell type proportion matrix 
and the flattened matrix of ground-truth as an indicator. 
Figure  6A and Supplementary Fig.  6A show the change 
of PCC with the increase of the number of marker genes 
(from using 25–50%, 75%, and 100% of all marker genes) 
when the number of simulated bulk samples is 10, 50, 
100, 500, 1000, and 2000, respectively. It can be found 
that relative to some deconvolution methods, DSSC3 is 
generally stable and does not require a high number of 
marker genes to achieve a good inference. Figure 6B and 
Supplementary Fig.  6B shows the change of PCC with 
the increase of sample size in the case of using 25%, 50%, 
75%, and 100% of all marker genes, respectively. Overall 
reference-based deconvolution methods are more stable, 
while the reference-free deconvolution methods fluctuate 
more greatly.
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Until now, all the simulated bulk samples we gener-
ated consist of 100 randomly selected single cells, which 
is a fixed number. To investigate the influence of vari-
able number of cells contained in every bulk sample, we 
used the Nestorowa data in the intra-dataset deconvo-
lution and the Baron_Muraro data in the inter-dataset 

deconvolution as examples to generate simulated bulk 
data, for which each bulk sample consists of a random 
number of cells, maybe 50, 100, 150, 200, 250, or 300. 
Then we checked the performance of all deconvolution 
algorithms (Supplementary Fig. 7) and found our method 
can still be better than many other methods.

Fig. 6  The influence of marker gene number and sample size on intra-dataset deconvolution results using Nestorowa data as an example. A Under 
the same number of samples, with the increase of the number of marker genes, the change of PCC of cell type proportion matrix. B Under the same 
number of marker genes, with the increase of sample size, the change of PCC of cell type proportion matrix



Page 15 of 19Wang et al. BMC Genomics          (2024) 25:875 	

To better compare the performance in inferring cell 
type-specific GEPs and cell type proportions, we used a 
unified way to make the dimensions of inputs and out-
puts are corresponding across different methods, mak-
ing the calculation of P and C performance measures be 
based on the same genes and the same cell types. Specifi-
cally, we used a unified way to provide cell type-specific 
averaged gene expression of marker genes for the meth-
ods whose inputs are cell type-specific GEPs, or provide 
gene expression of marker genes for the methods whose 
inputs are single-cell expression data. For the methods 
requiring cell type-specific GEPs, the referenced inputs 
are the same across these methods as the training sets 
are the same. We calculated the PCC and RMSE between 
the unified referenced input and the ground-truth for 
these methods and also for showing the actual similar-
ity between the reference and the truth (Supplemen-
tary Fig.  8A). For the methods which accept single-cell 
RNA-seq data, indeed they may filter genes or identify 
marker genes in their ways and then perform deconvo-
lution using the genes. Therefore, for these methods, 
we re-ran all related tests only providing the same origi-
nal single-cell gene expression. As the number of genes 
even the genes may be different across different meth-
ods after internal normalization, filtering or even marker 
gene identification, for each method we calculated the 
performance indexes for the genes actually outputted. 
Supplementary Fig.  8B shows the PCC and RMSE val-
ues for these methods. Compared with the results based 
on using the unified marker genes, the performances 
decrease in some datasets and are close to the ones based 
on the unified makers in the other datasets. This may 
because that our way of identifying marker genes may be 
stringent to provide important genes for deconvolution.

Impact of heterogeneity in cell type proportions
To check if our method can be applicable to the decon-
volution of cell types with heterogeneous proportions 
across different bulk samples compared with the existing 
methods, we used the Nestorowa dataset with 50 simu-
lated samples and all marker genes (shown in Fig. 6A) as 
a visualization example and plotted the true cell compo-
sition of each sample and the predicted one by the top 
methods on this dataset, DSSC3, FARDEEP, DWLS, and 
Linseed (Supplementary Fig. 9). The results demonstrate 
that the simulation process is random where for some 
samples the cell type proportion is relatively uniform 
while the proportion is heterogeneous for some other 
samples. For bulk samples containing few kinds of cell 
types, DSSC3 still exhibits certain advantages compared 
with the other methods. Moreover, from these 50 simu-
lated bulk samples, we selected the ones containing only 
one or two major cell types whose proportions are larger 

than 95% (Supplementary Fig.  10A). Then we also plot-
ted the predicted results by DSSC3, FARDEEP, DWLS, 
and Linseed and calculated the PCC and RMSE for each 
sample (Supplementary Fig. 10B). Although there is still 
room for improvement, DSSC3 shows a better overall 
performance.

Runtime and memory requirements
We used the Segerstolpe data in the intra-dataset 
experiment as an example to test the time and memory 
requirements of deconvolution algorithms in the case 
of different numbers of marker genes (25%, 50%, 75%, 
and 100% of all marker genes) and different numbers 
of simulated bulk samples (10, 50, 100, 500, 1000 and 
2000). Since CIBERSORTx conducts experiments on 
the website, we could not record its time and memory 
requirements. Supplementary Fig.  11 shows the effect 
of the number of marker genes on time and memory 
requirements under the same sample size. Supplemen-
tary Fig.  12 shows the effect of sample size on time 
and memory requirements under the same number 
of marker genes. DWLS, TOAST, CIBERSORT, and 
RNA-Sieve need more runtime relative to other meth-
ods, and as the number of marker genes or sample size 
increases, the runtime will increase. Overall, deconvo-
lution methods need more memory with the increase of 
sample sizes or marker genes. DSSC, like some decon-
volution methods, does not require a lot of runtime and 
memory.

Convergence and parameter tuning of DSSC
DSSC is an algorithm based on non-negative matrix 
factorization. To examine its convergence, we recorded 
the change of the objective function with iterations 
for one example test of intra-dataset deconvolution 
(Segerstolpe data), inter-dataset deconvolution with 
matching cell types (Baron_Muraro), inter-dataset 
deconvolution with unmatching cell types, mixture 
data deconvolution (LiverBrainLung), and real experi-
mental data deconvolution (WholeBlood + LM22), 
respectively. Supplementary Fig. 13A shows that DSSC 
algorithm can usually converge quickly.

As to the parameters of DSSC, the parameters of the 
sample-sample similarity matrix ( � 1 ), gene-gene simi-
larity matrix ( � 2 ), and referenced data ( � c ) affect the 
inferred cell type proportion matrix and cell type-spe-
cific GEPs. They can balance the information obtained 
from bulk data and reference data to improve decon-
volution accuracy. Using the representative tests, we 
recorded the PCC between the flattened inferred cell 
type proportion matrix and the flattened matrix of 
ground-truth for each parameter combination of � 1,� 2 , 
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and� c . Supplementary Fig.  13B indicates that � 1 and 
� 2 are usually small values, and if the referenced infor-
mation is reliable, parameter � c could be set larger to 
generate a positive impact (seen as the cases of intra-
dataset and mixture data deconvolution), otherwise, 
one can increase the value of � 1 and � 2 . Supplementary 
Fig. 13C lists the hyperparameters used in DSSC3 and 
DSSC2 for each dataset. In practical usage, users can 
apply the cross-validation function we provide to select 
the optimal parameters of DSSC from the ranges set by 
users.

Discussion
Single-cell RNA-seq profiles the transcriptomic vari-
ations among individual cells to characterize cel-
lular heterogeneity, while it is now impractical for a 
clinical setting or a large number of samples. Moreover, 
the noises contained in the process of single-cell RNA-
seq make the accuracy of single-cell gene expression 
data lower than bulk gene expression. In recent years, 
there have been many computational methods devel-
oped to perform cell deconvolution from bulk RNA-seq 
data, while many of them only estimate the proportions 
of cell types. Unlike these methods, we proposed a new 
deconvolution method DSSC to estimate cell type-spe-
cific GEPs and cell type proportions at the same time, by 
matrix factorization and leveraging the information of 
sample-sample similarity, gene-gene similarity, and sin-
gle-cell gene expression.

To test the performance of DSSC, we conducted simu-
lation experiments and experimental data tests and com-
pared it with the existing deconvolution methods. In 
the simulation experiments, we differentiated the situa-
tions of the referenced data and the simulated bulk data 
coming from the same source and different sources, i.e., 
intra-dataset and inter-dataset deconvolution. Moreover, 
in the case of inter-dataset simulations, we explored if 
matching cell types between the training set and testing 
set before deconvolution or not would influence the per-
formance and also examined the impact of different nor-
malization methods between the training set and testing 
set. The results demonstrated that DSSC has strong sta-
bility and accuracy, and is still reliable even in the inter-
ferences of batch effect and unmatched cell types. We 
also conducted deconvolution on five groups of mixture 
bulk data. Compared with simulation experiments, the 
sample sizes and the numbers of cell types contained in 
mixture data are smaller, while these have not affected 
the effectiveness of DSSC. Considering the practical 
usage scenario, we tested on real experimental bulk data 
with a variety of different references and also integrated 
the results obtained from different references. There is 
room for improvement for all deconvolution methods, 

while the overall performance of DSSC is still at the fore-
front. When different references are available, it is rec-
ommended to average or weighted average the cell type 
proportion matrices obtained from different references 
to obtain the final inferred cell type proportions. Moreo-
ver, the performance of DSSC is robust to the change of 
marker gene and sample size and does not require a lot of 
runtime and memory.

Compared with the other deconvolution methods esti-
mating cell type abundance and cell type-specific GEPs 
simultaneously by leveraging single-cell RNA-seq data, 
such as CIBERSORTx, BLADE, and BayesPrism, we lev-
erage the information of sample-sample similarity and 
gene-gene similarity contained in bulk gene expression. 
We hypothesize that similar samples have similar cell 
type compositions and similar genes have similar gene 
expression profiles, therefore we would like to maintain 
the sample-sample similarity and gene-gene similar-
ity in the process of deconvolution. Based on non-neg-
ative matrix factorization, the gene-gene similarity and 
sample-sample similarity matrices calculated from the 
bulk gene expression were introduced to constrain the 
inferred cell type-specific GEPs and cell type proportion 
matrix, respectively. As to the information of single-cell 
RNA-seq data, it can be obtained from single-cell expres-
sion data or directly supplied a given cell type-specific 
gene signature, to further constrain cell type-specific 
GEPs. By implementing the objection function, the 
inferred cell type-specific GEPs maintain the gene-gene 
similarity and approach the referenced signature and the 
inferred cell type proportion matrix maintain the sample-
sample similarity, thus improving the accuracy of decon-
volution. The corresponding parameters can be tuned to 
balance the information calculated from bulk data and 
that from reference for achieving a good deconvolution 
performance. DSSC algorithm can also be tuned between 
reference-based DSSC3 and reference-free DSSC2. It has 
been demonstrated that DSSC can accurately infer cell 
type-specific gene expression and cell type abundance 
and provides a practical and promising alternative to the 
techniques that require expensive experimental equip-
ment and a lot of labor to separate single cells from het-
erogeneous samples.

For future improvements or applications of DSSC, 
several aspects can be considered. Currently, DSSC 
algorithm requires the number of cell types which is 
determined by the dimension of referenced GEPs, sin-
gular value decomposition can be applied to deter-
mine the possible number of cell types. Considering the 
room for improvement on estimating the proportion of 
not included cell types, other calculation methods can 
be designed to update sample-sample and gene-gene 
similarity matrices. Other methods can also be used to 
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implement DSSC algorithm, such as the gradient descent 
algorithm. Additionally, DSSC can be adapted to spatial 
transcriptomic data of bulk samples, by incorporating 
sample location information to update the calculation of 
sample-sample similarity for enhancing the deconvolu-
tion accuracy of the algorithm.

Conclusions
We proposed a new deconvolution algorithm DSSC to 
simultaneously estimate cell type-specific gene expres-
sion profiles and cell type abundance from bulk gene 
expression by leveraging gene-gene and sample-sam-
ple similarities and using single-cell RNA-seq data or 
cell type-specific gene signature as a reference. Using 
pseudo-bulk data generated by intra- and inter-dataset 
simulations, mixture bulk data, and real experimental 
data, we compared DSSC with various deconvolution 
methods to demonstrate its reliability, effectiveness, 
and robustness. DSSC facilitates the study of cell het-
erogeneity in gene expression based on bulk RNA-seq 
data and the deconvolution of cell types in heterogene-
ous tissues.

Availability and requirements

•	 Project name: DSSC.
•	 Project home page: https://​github.​com/​JGuan-​lab/​

DSSC.
•	 Operating system(s): Platform independent.
•	 Programming language: R.
•	 Other requirements: R 4.1.0 or higher.
•	 License: GNU GPL.
•	 Any restrictions to use by non-academics: None.
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