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Abstract 

MicroRNAs (miRNAs) have been demonstrated to be closely related to human diseases. Studying the potential 
associations between miRNAs and diseases contributes to our understanding of disease pathogenic mechanisms. 
As traditional biological experiments are costly and time-consuming, computational models can be considered 
as effective complementary tools. In this study, we propose a novel model of robust orthogonal non-negative matrix 
tri-factorization (NMTF) with self-paced learning and dual hypergraph regularization, named SPLHRNMTF, to predict 
miRNA-disease associations. More specifically, SPLHRNMTF first uses a non-linear fusion method to obtain miRNA 
and disease comprehensive similarity. Subsequently, the improved miRNA-disease association matrix is reformulated 
based on weighted k-nearest neighbor profiles to correct false-negative associations. In addition, we utilize L2,1 norm 
to replace Frobenius norm to calculate residual error, alleviating the impact of noise and outliers on prediction per-
formance. Then, we integrate self-paced learning into NMTF to alleviate the model from falling into bad local opti-
mal solutions by gradually including samples from easy to complex. Finally, hypergraph regularization is introduced 
to capture high-order complex relations from hypergraphs related to miRNAs and diseases. In 5-fold cross-validation 
five times experiments, SPLHRNMTF obtains higher average AUC values than other baseline models. Moreover, 
the case studies on breast neoplasms and lung neoplasms further demonstrate the accuracy of SPLHRNMTF. Mean-
while, the potential associations discovered are of biological significance.

Keywords MiRNA-disease associations, Non-negative matrix tri-factorization, Self-paced learning, Hypergraph 
regularization, L2,1 norm

Introduction
MicroRNAs (miRNAs) are a class of non-coding RNA 
molecules (about 22 nucleotides in length) encoded by 
endogenous genes [1]. MiRNAs are involved in post-
transcriptional gene expression regulation and have been 
demonstrated to play an important role in many human 
life processes, including cell proliferation [2], cell growth 
[3], tumor invasion [4], immune response [5], and so 
on. In addition, more and more studies have shown that 
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miRNA dysregulation often leads to the occurrence of 
various human diseases. For example, miR-145 inhibits 
the cell proliferation of human lung adenocarcinoma by 
targeting EGFR and NUDT1 [6]. The levels of miR-105 
in blood and tumors are related to ZO-1 expression and 
metastatic progression in breast cancer [7]. The expres-
sion of miR-34a is excessive in specific brain regions of 
Alzheimer’s disease patients as well as in the 3xTg-AD 
mouse model [8]. Therefore, identifying disease-related 
miRNAs contributes to revealing the pathogenesis of 
diseases and discovering potential biomarkers at the 
miRNA level. Since the identification of miRNA-disease 
associations using traditional wet experiments is time-
consuming and expensive, more and more computational 
methods have been proposed as efficient complementary 
tools to infer potential associations between miRNAs and 
diseases.

Over the past few decades, many computational meth-
ods have been proposed based on the assumption that 
miRNAs with similar functions are associated with phe-
notypically similar diseases. Chen et al. [9] proposed the 
RWRMDA method, which predicts potential miRNA-
disease associations by performing random walk with 
restart on the miRNA-miRNA functional similarity 
network. However, this method is not suitable for miR-
NAs with no association, which limits its performance 
improvement. Xuan et  al. [10] designed a new predic-
tion method called HDMP, which combines the distribu-
tion of disease-related miRNAs in k neighborhoods with 
miRNA function similarity to predict potential associa-
tions between miRNAs and diseases. However, HDMP 
only considers local network similarity, resulting in sub-
optimal prediction performance. Xuan et al. [11] further 
developed a new prediction method to infer miRNA-
disease associations based on random walk on miRNA 
functional similarity network. Chen et  al. [12] designed 
the within and between score for miRNA-disease asso-
ciation prediction (WBSMDA) method to identify dis-
ease-related miRNAs by integrating various biological 
similarity networks. You et  al. [13] developed a path-
based PBMDA method and used a depth-first search 
algorithm to predict miRNA-disease associations. Chen 
et  al. [14] presented a bipartite heterogeneous network 
link prediction method based on co-neighbor to infer the 
associations between miRNAs and diseases. Li et al. [15] 
developed the NPRWR method to predict miRNA-dis-
ease associations by using dual random walk with restart 
and network projection technology. Chen et al. [16] pre-
sented a deep belief network model called DBNMDA 
based on Restricted Boltzmann Machines for miRNA-
disease association prediction. Ha et  al. [17] proposed 
a novel computational model of metric learning named 
MLMD for inferring miRNA-disease associations. Based 

on deep neural networks, Ha et al. [18] further designed a 
new node2vec-based neural collaborative filtering frame-
work named NCMD to predict the associations between 
miRNAs and diseases. Based on graph convolutional net-
works, Li et  al. [19] proposed a neural inductive matrix 
completion method, called NIMCGCN, to infer miRNA-
disease associations. Tang et al. [20] also employed graph 
convolutional networks and multichannel attention 
mechanism to extract and enhance latent representations 
of miRNAs and diseases. They predicted potential associ-
ations based on the reconstructed miRNA-disease asso-
ciation matrix. Recently, Peng et al. [21] used hypergraph 
convolutional networks and a variational auto-encoder 
to develop a MHCLMDA model with contrastive learn-
ing for predicting the associations between miRNAs and 
diseases.

In recent years, many studies have shown that matrix 
factorization methods with feature extraction and recon-
struction capabilities are also considered as promising 
computational methods. For example, Xiao et  al. [22] 
proposed a non-negative matrix factorization method 
with graph Laplacian regularization constraint, named 
GRNMF, to predict potential miRNA-disease associa-
tions. Chen et  al. [23] designed an IMCMDA method 
of inductive matrix completion, which constrains inte-
grated miRNA similarity and disease similarity into 
matrix factorization to predict the associations between 
miRNAs and diseases. Chen et al. [24] proposed a novel 
matrix decomposition and heterogeneous graph infer-
ence (MDHGI) method for identifying miRNA-disease 
associations. MDHGI integrates the association probabil-
ity derived from matrix decomposition through sparse 
learning method and biological similarity information 
into a heterogeneous network. Dissez et  al. [25] devel-
oped a drug repositioning method based on non-negative 
matrix tri-factorization (NMTF) with graph Laplacian 
regularization, which utilizes NMTF to simultaneously 
decompose multiple binary association matrices between 
indications and drugs, drugs and proteins, proteins and 
pathways, and drugs and diseases. Jamali et al. [26] pre-
sented an NMTF-DTI method of non-negative matrix 
tri-factorization with multiple kernel fusion for drug-
target interaction prediction. This method makes use 
of graph Laplacian regularization to preserve the local 
geometric structure of the biological similarity network 
in low-dimensional space. Zheng et  al. [27] proposed 
the NMFMC method based on non-negative matrix fac-
torization, which decomposes the association matrix 
into a known part and an unknown part for miRNA-
disease association prediction. Ha et  al. [28] designed a 
new method based on probabilistic matrix factorization 
(PMF), called IMIPMF, to identify miRNA-disease asso-
ciations. Subsequently, Ha [29] also developed a new 
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computational framework (MDMF) using matrix fac-
torization with disease similarity constraints to identify 
potential miRNA-disease associations. Through further 
considering miRNA and disease similarities and inte-
grating them into matrix factorization, Ha [30] designed 
a simple and effective computational framework, called 
SMAP, to predict miRNA-disease associations. Recently, 
Ha [31] also proposed a novel matrix decomposition 
method named EMFLDA, which applies lncRNA expres-
sion profiles to identify the associations between lncR-
NAs and diseases.

Although the above matrix decomposition-based 
methods have achieved excellent performance in poten-
tial association prediction, most methods still have 
some limitations. First, it is challenging to reasonably 
integrate multi-view similarity of miRNAs (or diseases) 
into a comprehensive similarity network. Most meth-
ods employ a linear strategy based on one similarity to 
integrate the similarity of different views. More specifi-
cally, multiple similarities are integrated by using one 
similarity to fill the missing parts of another similarity or 
by averaging different types of similarity. However, sim-
ple linear fusion can not effectively learn more complex 
integrated information, thus limiting the improvement of 
prediction performance. Second, limited by the current 
level of science and technology, miRNA-disease associa-
tion data usually have “association, but we don’t know 
yet” (i.e., false-negative samples) associations in a large 
number of negative samples, which significantly affects 
the model prediction performance. Third, most matrix 
decomposition-based methods utilize Frobenius norm to 
calculate residual error, which may cause the prediction 
performance to be affected by noise and outliers. Fourth, 
because methods based on matrix decomposition usually 
have non-convexity, these methods can easily obtain a 
bad local optimal solution. Finally, the pairwise relations 
within homogeneous graphs are usually considered by 
most methods while ignoring high-order complex rela-
tions present in heterogeneous graphs.

To alleviate the limitations mentioned above, we pro-
pose a novel computational model of Self-Paced Learning 
and Hypergraph regularization into Robust orthogonal 
Non-negative Matrix Tri-Factorization (SPLHRNMTF) 
to identify the associations between miRNAs and dis-
eases, which preserves double orthogonality conditions 
and dual hypergraph regularization. Compared with 
simple linear fusion, we first propose a non-linear fusion 
method to integrate different types of miRNA or disease 
similarity network into a comprehensive similarity net-
work for miRNAs or diseases. Then, the weighted k-near-
est neighbor profiles are used to obtain an improved 
miRNA-disease association matrix, thereby effectively 
correcting false-negative samples. Next, we separately 

introduce L2,1 norm and hypergraph regularization into 
NMTF to effectively alleviate the influence of noise and 
outliers on prediction performance, and capture the 
high-order complex relations from hypergraphs related 
to miRNAs and diseases. Finally, in order to cope with 
the fact that NMTF with non-convexity easily obtains a 
bad local solution, we integrate self-paced learning into 
NMTF to effectively alleviate the problem of falling into 
such solution by gradually including samples from easy 
to complex. To solve the optimization problem of SPL-
HRNMTF, we propose an alternating optimization algo-
rithm, whose convergence is theoretically guaranteed. 
The 5-fold cross-validation is performed five times to 
evaluate the proposed SPLHRNMTF model. Specifi-
cally, SPLHRNMTF can obtain better prediction perfor-
mance than other matrix factorization-based models, 
even superior to some graph and hypergraph convolu-
tional network-based models. Furthermore, the results 
of ablation experiment indicate that each module in the 
SPLHRNMTF and preprocessing step are effective. In 
addition, we conduct case studies on breast neoplasms 
and lung neoplasms, 48 and 46 of top 50 are confirmed 
by experimental reports. Moreover, unconfirmed poten-
tial associations have biological significance. In summary, 
SPLHRNMTF model demonstrates efficacy and accuracy 
in predicting associations between miRNAs and diseases.

Materials
Human miRNA‑disease association datasets
The Human MiRNA Disease Database (HMDD) is a data-
base containing experimentally verified human miRNA-
disease associations [32, 33]. In this work, HMDD v2.0 
and HMDD v3.2 were used as benchmark databases to 
construct association matrices, where these two data-
bases can be downloaded from http:// www. cuilab. cn/ 
hmdd. To more extensively investigate the generalization 
performance of the model, we also obtained a dataset 
named MDAv3.2_data1 based on the study of Ning et al. 
[34]. In addition, we further preprocessed HMDD v2.0 
and HMDD v3.2 databases to obtain MDAv2.0_data and 
MDAv3.2_data2 datasets, respectively. To be more spe-
cific, we removed these miRNAs that had no sequence 
in the miRBase database [35] and were not found in the 
MISIM 2.0 database [36]. Meanwhile, we deleted these 
diseases that were not found and whose category was 
not “C” in Medical Subject Headings (MeSH) tree struc-
ture. Finally, the first dataset MDAv2.0_data contains 
5896 experimentally verified human miRNA-disease 
associations between 548 miRNAs and 320 diseases. The 
second dataset MDAv3.2_data1 involves 853 miRNAs, 
591 diseases and 12446 experimentally verified associa-
tions. The third dataset MDAv3.2_data2 includes 9676 
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experimentally confirmed associations between 812 miR-
NAs and 469 diseases.

Problem formulation
Given a set of miRNAs M = {m1,m2, · · · ,mm} and a set 
of diseases D = {d1, d2, · · · , dn} , we can construct the 
miRNA-disease associations into a matrix X ∈ {0, 1}m×n , 
where m and n represent the size of the set of miRNAs 
and diseases, respectively. Obviously, an entry xij of the 
matrix X is set to 1 if a miRNA is associated with a dis-
ease. Otherwise, the unknown or unobserved entries are 
set to 0. In this work, we transformed the identification 
of miRNA-disease associations into a matrix completion 
task. However, the matrix X is extremely sparse with a 
large number of unknown and unobserved entries, which 
is a challenge to efficiently perform matrix completion. 
Therefore, miRNA similarity information and disease 
similarity information were considered as auxiliary infor-
mation to alleviate the challenge.

Disease semantic similarity
The disease semantic similarity was calculated by using 
directed acyclic graph (DAG) with disease hierarchi-
cal relationships obtained from the MeSH database 
(https:// www. nlm. nih. gov/ mesh/). The DAG of a disease 
di can be defined as DAG(di) = (di,T (di),E(di)) , where 
T (di) denotes the set of di and its ancestor nodes, E(di) 
represents the set of edges with regard to the direct 
links between parent nodes and child nodes. Then, the 
first semantic contribution of diseases dk to di can be 
defined as follows:

where � is a semantic contribution decay factor, and we 
set it to 0.5 according to previous work [37]. Then, the 
semantic value of disease di can be calculated as below:

On the basis of the assumption that if the intersection 
of a disease pair in the DAG is larger, their semantic simi-
larity value will be greater. Then, the first disease seman-
tic similarity SD1(di, dj) between diseases di and dj can be 
defined as follows:

However, SD1 fails to consider the significance of 
semantic contributions of different diseases. It overlooks 
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the fact that diseases appearing in fewer DAG may be 
more specific, and thus should have higher semantic con-
tribution values. According to previous work [23], the 
second semantic contribution of disease dk to di can be 
presented as below:

Similarly, we can define the second semantic value 
SV 2(di) of disease di and the second disease seman-
tic similarity SD2(di, dj) between diseases di and dj as 
follows:

Based on previous study [38], we integrated these 
two kinds of disease semantic similarity SD1(di, dj) and 
SD2(di, dj) to obtain a more reasonable disease seman-
tic similarity. Finally, the final disease semantic similarity 
SD1(di, dj) between diseases di and dj can be presented as 
below:

MiRNA functional similarity
On the basis of the assumption that functionally simi-
lar miRNAs tend to be associated with phenotypi-
cally similar diseases and vice versa, we can calculate 
miRNA functional similarity scores [37]. In this study, we 
obtained miRNA functional similarity from the MISIM 
2.0 database (http:// www. lirmed. com/ misim/). Then, 
we constructed a matrix SM1 by using these data, where 
SM1(mi,mj) denotes the functional similarity score 
between miRNA mi and mj.

MiRNA sequence similarity
According to previous work [39], we obtained the 
miRNA sequences containing “AUCG” from the miR-
Base database (https:// www. mirba se. org/). Based on the 
sequence information, we utilized pairwise sequence 
alignment function “pairwiseAlignment” in R package 
Biostrings to calculate miRNA sequence similarity score. 
To be more specific, the gap opening penalty is set to 5, 
the gap extension penalty is set to 2, the match score is 
set to 1 and the mismatch score is set to -1 in this func-
tion. Finally, the miRNA sequence similarity matrix SM2 
can be obtained by min-max normalization as follows:

(4)SC2(di , dk ) = − log

(

the number of DAGs including dk

the number of disease

)

(5)SV 2(di) =
∑

dk∈T (di)

SC2(di, dk)
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where Scoremin and Scoremax denote the minimum 
and maximum similarity score of all miRNA pairs, 
respectively. Score(mi,mj) indicates that sequence 
similarity score can be calculated by using function 
“pairwiseAlignment”.

Gaussian interaction profile kernel similarity for miRNAs 
and diseases
On the basis of assumption that miRNAs with similar 
functions are more likely to be associated with similar 
diseases, we can calculate the Gaussian interaction pro-
file kernel similarity through the known miRNA-disease 
association network [40]. For a given miRNA mi , its 
interaction profile IP(mi) was extracted from the known 
miRNA-disease association matrix. Then, the Gauss-
ian interaction profile kernel similarity for miRNAs 
SM3(mi,mj) between miRNAs mi and mj can be pre-
sented as follows:

where γm controls the kernel bandwidth, which can be 
calculated by using the following equation:

where m represents the number of miRNAs and γ ′

m is set 
to 1 based on previous study [40]. Similarly, the Gauss-
ian interaction profile kernel similarity for diseases 
SD2(di, dj) between diseases di and dj can be obtained 
based on the following two equations:

where IP(di) is a binary vector extracted from the known 
miRNA-disease association matrix, n represents the 
number of diseases and γ ′

d is also set to 1.

Comprehensive similarity for miRNAs and diseases
Based on previous works [12, 41], integrating different 
similarity information can not only avoid being too one-
sided, but also obtain more accurate and reasonable inte-
grated similarity for miRNAs and diseases. However, the 
simple linear similarity combination method is challeng-
ing to apply for the fusion of multiple biological similarity 
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information. Inspired by previous study [42], we utilized 
a non-linear fusion method to integrate multiple similar-
ity networks into a single similarity network for miRNAs 
and diseases, respectively. Next, we took the integration 
of multiple miRNA similarity information as an example 
to introduce the construction of comprehensive miRNA 
similarity.

In the first step, we performed a better normalization 
to calculate normalized weight matrix SM ′

v for the v-th 
type of similarity network as follows:

In the second step, we employed k-nearest neighbor 
(KNN) to measure the local relationship of each simi-
larity network. The detailed calculation process was as 
below:

where Ni is a set of k nearest neighbors for the node mi 
of miRNA similarity networks. Kv denotes the local affin-
ity kernel of the v-th data type. In this paper, according 
to previous study [42], we set the neighbor parameter in 
KNN method approximately as |N|/10, where |N| is the 
total number of nodes in the similarity network.

In the third step, we iteratively updated the similar-
ity matrix for each type of data using the following 
procedure:

where v = {1, 2, · · · ,M} and M denotes the total number 
of data types. SM

′(t+1)
v  is the status matrix of the v-th data 

type after t iterations.
In this work, the iteration stops when Eq. (15) reaches a 
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 being less than 10−5 . After iterative update, 

the ultimate similarity matrix SM could be obtained as 
follows:

According to the above update rules, the obtained simi-
larity matrix is not a symmetric matrix, so we further 
calculated SM = SM+SMT

2  as the miRNA comprehensive 
similarity matrix. Similarly, we can get the disease com-
prehensive similarity matrix SD based on the same calcu-
lation rules of miRNA.
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Methods
In this paper, we proposed the SPLHRNMTF model 
that integrates self-paced learning and hypergraph regu-
larization into NMTF using L2,1 norm for predicting the 
associations between miRNAs and diseases. Figure  1 
illustrates the whole workflow of SPLHRNMTF.

Self‑paced learning
In recent years, self-paced learning (SPL) has emerged as 
a successful approach in mitigating the problem of falling 
into local optimal solutions, owing to its training strat-
egy of gradually selecting samples from simple to com-
plex [43, 44]. Given a training dataset D = {xi, yi}

N
i=1 , the 

objective function of SPL was as follows:

where L(·, ·) denotes the training error calculated by the 
loss function, θ is the model parameter of the loss func-
tion, w = [w1,w2, · · · ,wN ]

T represents a weight variable, 
and η is the learning pace parameter.

To better reflect the potential importance of samples 
and realize the advantages of SPL, a novel SPL regulari-
zation term was utilized [45]. The regularization term 
g(η,w) was defined as follows:

(17)min
θ ,w

N
∑

i=1

wiL
(

f (xi, θ), yi
)

+ g(η,w)

(18)g(η,w) = −

N
∑

i=1

ζ ln (wi + ζ/η)

Based on previous work [45], the optimal w∗ can be cal-
culated as follows:

where ζ is set to 0.5× η for simplicity in our experiments. 
With the increase of η , more and more samples will be 
selected until all samples are chosen.

Hypergraph learning
Recent studies on manifold learning theory and spec-
tral graph theory shows that when original data points 
were mapped from high-dimensional space to low-
dimensional space, k-nearest neighbor graphs can effec-
tively preserve the potential geometric structure of 
high-dimensional data in low-dimensional space [46]. 
However, the classic graph structure only considers the 
pairwise relationships of data points in the neighbor 
graph, while ignoring high-order relationships. To alle-
viate this problem, hypergraph, as a generalization of 
graph, has been proposed for data representation [47, 
48]. Figure  2 is an example that shows the difference 
between classic graph and hypergraph.

Given G = (V ,E,W ) is a weighted hypergraph, which 
contains a finite hyperedge set E = {ei|i = 1, 2, · · · ,m} 
and a finite vertex set V = {vj|j = 1, 2, · · · , n} . For the 
construction of hyperedge, we utilized the KNN method 
to learn hypergraphs for miRNAs and diseases, respec-
tively. For example, we concatenated miRNA-disease 
associations and miRNA comprehensive similarity as 

(19)w∗
i =







1, if li ≤ ζη/(ζ + η)

0, if li ≥ η

ζ/li − ζ/η, otherwise.

Fig. 1 The workflow of our proposed SPLHRNMTF model for predicting potential miRNA-disease associations. Note that GIP kernel similarity 
denotes Gaussian interaction profile kernel similarity
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features of node miRNAs. Based on the concatenated 
features, we calculated the nearest k neighbors of each 
miRNA based on Euclidean distance, thereby determin-
ing a subset (i.e., hyperedge) from the k neighbors. In 
addition, each hyperedge e is a subset of V. W is a diago-
nal matrix that indicates the weight of hyperedges. The 
incidence matrix H of G can be defined as below:

In this work, we initialized the weight value of each 
hyperedge in the hypergraph by constructing an affinity 
matrix. Specifically, the affinity matrix A of hypergraph 
was calculated as follows:

where σ is standard deviation distance among all vertices. 
Then, the initial weight of each hyperedge can be defined 
as follows:

The degree of each vertex v ∈ V  in incidence matrix H 
was computed as follows:

The degree of each hyperedge e ∈ E was defined as the 
number of vertices included in E. Specifically, dE(e) can 
be denoted as:

(20)H(v, e) =

{

1, if v ∈ e
0, if v /∈ e.

(21)Aij = exp

(

−
�vi − vj�

2

σ 2

)

(22)Wi =
∑

vj∈ei

Aij

(23)dV (v) =
∑

e∈E

w(e)H(v, e)

Let F denotes the low-dimensional embedding repre-
sentation of miRNAs (or diseases), we can obtain the fol-
lowing hypergraph structure loss function:

where DV  denotes a diagonal matrix where its elements 
related to the degree of vertices. DE can be defined as a 
diagonal matrix whose elements correspond to the degree 
of hyperedges. Lhyper = DV − S , and S = HWD−1

E HT.

Improved miRNA‑disease association
The values of interaction profiles without known associa-
tion are all zeros, but they could be potential true asso-
ciations (i.e., false-negative samples). This may result in 
an unsatisfactory prediction performance. To alleviate 
the above problems, we performed preprocessing step 
to calculate new interaction profiles by using weighted 
k-nearest neighbor (WKNN) profiles.

For each miRNA mp , we conducted a sorting of all 
other miRNAs in descending order, considering their 
similarity with mp . Subsequently, the similarity of mp 
with its K nearest known miRNAs was computed, ensur-
ing that each of miRNAs has at least one known asso-
ciation. Finally, its similarity information was combined 
with the corresponding K interaction profiles, resulting 
in a new interaction profile as follows:

(24)dE(e) =
∑

v∈V

H(v, e)

(25)

� =
1

2

∑

e∈E

∑

(vi ,vj)∈V

w(e)H(vi , e)H
(

vj , e
)

dE(e)
�F(vi)− F

(

vj
)

�2F

= Tr
(

FT
(

DV −HWD−1
E HT

)

F
)

= Tr
(

FTLhyperF
)

Fig. 2 The difference between classic graph and hypergraph. a A classic graph. b A hypergraph and its incidence matrix
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where Em =
∑

1≤i≤K SM(mi,mp) and θ ∈ [0, 1] are the 
normalization term and decay term, respectively.

Similar with miRNA, the new interaction profiles for 
each disease dq can be calculated as below:

where Ed =
∑

1≤j≤K SD(dj , dq).
Finally, we obtained the new interaction profiles of 

miRNAs and diseases by using the average of Xm and 
Xd . The miRNA-disease adjacency matrix is updated as 
follows:

where Xmd = (Xm + Xd)/2.

SPLHRNMTF
Based on previous works [49, 50], two biological entities 
in the same cluster are more likely to have similar char-
acteristics, so the sparse similarity matrix constructed 
based on k-nearest neighbors has been effectively applied. 
The weighted matrix Wm can be calculated according to 
miRNA comprehensive similarity matrix SM as follows:

where Nk(mi) and Nk(mj) denote the sets of k-nearest 
neighbors of miRNA mi and miRNA mj , respectively. 
Then, the graph matrix SM∗ for miRNAs is presented as 
follows:

Similarly, we used the same method to calculate graph 
matrix SD∗ for disease. In this paper, we utilized final 
miRNA similarity network SM∗ , disease similarity network 
SD∗ and known miRNA-disease association network to 
construct a miRNA-disease heterogeneous network. Then, 
the KNN method was used to learn hypergraphs related to 
miRNAs and diseases based on the constructed heteroge-
neous network. Finally, according to learned hypergraphs, 
we calculated miRNA hypergraph Laplacian matrix L∗hm 
and disease hypergraph Laplacian matrix L∗hd , respectively.

Non-negative matrix tri-factorization (NMTF) has been 
widely applied for data representation in various fields [51, 

(26)

Xm(mp) =
1

Em

K
∑

i=1

θ i−1 × SM(mi,mp)× X(mi)

(27)Xd(dq) =
1

Ed

K
∑

j=1

θ j−1 × SD(dj , dq)× X(dj)

(28)X = max(X ,Xmd)

(29)Wm
ij =







1, i ∈ Nk(mj)&j ∈ Nk(mi)

0, i /∈ Nk(mj)&j /∈ Nk(mi)

0.5, otherwise

(30)∀ i, j SM∗
ij = SMijW

m
ij

52]. The purpose of NMTF is to obtain three low-dimen-
sional non-negative factor matrices for low-dimensional 
approximation of the original matrix. However, the bad 
local optimal solutions are often encountered when solv-
ing non-convex optimized NMTF. To effectively alleviate 
the model from falling into a bad local optimal solution, we 
combined self-paced learning with NMTF. Moreover, we 
introduced hypergraph regularization to better preserve 
the high-order relations of heterogeneous network in low-
dimensional space. In addition, L2,1 norm was utilized to 
replace Frobenius norm for calculating residual error, thus 
reducing the impact of noise and outliers on prediction 
performance. Finally, the objective function was defined as:

where α and β control the importance of hypergraph 
Laplacian regularization term. ⊙ represents the Had-
amard product. Meanwhile, we imposed orthogonal con-
straints on the factor matrices U and V to enhance the 
uniqueness and stability of the decomposition results. 
To prevent overfitting, L2 norm was utilized to constrain 
factor matrix S, and � is regularization coefficient.

For ease of calculation, Eq.  (31) can be reformulated by 
optimizing the following problem:

where

With simple algebra, Eq. (32) can be written as follows:

where D is a diagonal matrix and Dii = di.
In this work, the alternate iterative updating algorithm 

was proposed to solve the optimization problem of SPL-
HRNMTF. More specifically, the objective function alter-
nately optimizes one variable while fixing other variables.

(31)

min
U ,S,V ,w

�diag(w)(X − USVT )�2,1 + ��S�2F

+ αTr(UTL∗hmU)+ βTr(VTL∗hdV )+ g(η,w)

s.t. U ≥ 0, S ≥ 0,V ≥ 0,UTU = I ,VTV = I

(32)

min
U ,S,V ,w

n
∑

i=1

di�(X − USVT )i�
2
2 + ��S�2F

+ αTr(UTL∗hmU)+ βTr(VTL∗hdV )+ g(η,w)

s.t. U ≥ 0, S ≥ 0,V ≥ 0,UTU = I ,VTV = I

(33)di =
wi

2�(X − USVT )i�2

(34)

min
U ,S,V ,w

Tr((X −USVT )D(X −USVT )T )+ �Tr(SST )

+ αTr(UTL∗hmU)+ βTr(VTL∗hdV )+ g(η,w)

s.t. U ≥ 0, S ≥ 0,V ≥ 0,UTU = I ,VTV = I



Page 9 of 20Ouyang et al. BMC Genomics          (2024) 25:885  

Updating the weight variable w
When U, S and V were fixed, optimizing the subproblem 
involving w was as follows:

where li = �(X −USVT )i�2 , which represents the recon-
struction error of the i-th sample.

On the basis of previous work [45], a novel soft weight-
ing SPL regularization term was utilized as follows:

Clearly, the optimal w∗ can be easily calculated by

Updating the factor matrix U
According to the strategy of alternate updating, when 
the other variables were fixed, the terms in the objective 
function involving U can be reformulated as follows:

Let � and � be the Lagrange multiplier for constraints 
U ≥ 0 and UTU = I , respectively. Then, the Lagrange 
function is

The partial derivative with respect to the factor matrix 
U can be obtained as follows:

Setting ∂L1

∂U
= 0 , substituting � = U

T
XDVS

T − SV
T
DVS

T−

−αUT
L
∗
hm

U and using the Karush-Kuhn-Tucker (KKT) 
conditions �ijUij = 0 , we can obtain the following update 
rule:

(35)min
w

n
∑

i=1

wili + g(η,w)

(36)g(η,w) = −

n
∑

i=1

ζ ln(wi + ζ/η)

(37)w∗
i =







1, if li ≤ ζη/(ζ + η)

0, if li ≥ η

ζ/li − ζ/η, otherwise.

(38)

min
U

Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ αTr(UTL∗hmU)

s.t. U ≥ 0,UTU = I

(39)
L1 =Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ αTr(UTL∗hmU)

+ Tr(�UT )+ Tr(�(UTU − I)T )

(40)
∂L1

∂U
=− 2XDVST + 2USVTDVST

+ 2αL∗hmU + 2U� +�

Updating the factor matrix S
When w , U and V were fixed, the subproblem of opti-
mizing an objective function containing S was as below:

Let � be the Lagrange multiplier for constraint S ≥ 0 . 
Then, the Lagrange function is

The partial derivative of the factor matrix S can be 
calculated as below:

Setting ∂L2
∂S = 0 and using KKT conditions �ijSij = 0 , 

we obtained the following update rule:

Updating the factor matrix V
When w , U and S were fixed, optimizing the subprob-
lem involving V was as follows:

Let � and � be the Lagrange multiplier for con-
straints V ≥ 0 and VTV = I  , respectively. Then, the 
Lagrange function is

(41)Uij ←− Uij

√

(XDVST + αS∗hmU)ij

(UUTXDVST + αUUTS∗hmU)ij

(42)

min
S

Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ �Tr(SST )

s.t. S ≥ 0

(43)

L2 =Tr(XDXT )− 2Tr(USVTDXT )+ �Tr(SST )

+ Tr(USVTDVSTUT )+ Tr(�ST )

(44)

∂L2

∂S
= −2UTXDV + 2UTUSVTDV + 2�S +�

(45)Sij ←− Sij

√

(UTXDV )ij

(UTUSVTDV + �S)ij

(46)

min
V

Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ βTr(VTL∗hdV )

s.t. V ≥ 0,VTV = I

(47)
L3 =Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ βTr(VTL∗hdV )

+ Tr(�VT )+ Tr(�(VTV − I)T )
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The partial derivative with respect to the factor 
matrix V can be calculated as follows:

Similarly, setting ∂L3

∂V
= 0 , substituting � = V

T
DX

T
US−

V
T
DVS

T
U

T
US − βVT

L
∗
hd
V  and using KKT  

(48)
∂L3

∂V
=− 2DXTUS + 2DVSTUTUS

+ 2βL∗hdV + 2V�+�

conditions �ijVij = 0 , we obtained the following 
update rule:

The detailed optimization of the proposed SPLHRN-
MTF model was descried step by step in Algorithm 1.

(49)Vij ←− Vij

√

(DXTUS + βS∗hdV )ij

(DVVTXTUS + βVVTS∗hdV )ij

Algorithm 1 The optimization algorithm of SPLHRNMTF

Convergence analysis
In this section, we will study the convergence of the 
SPLHRNMTF model. To be more specific, we needed 
to prove that the objective function in Eq.  (31) is 
monotonically decreasing under the updating rules 
in Eqs.  (41),  (45) and   (49) and the SPL step in Eq.  (37). 

Based on previous works [43, 53, 54], researchers have 
demonstrated the effectiveness of SPL in various models. 
Finally, we only needed to prove that the objective func-
tion in Eq.  (31) is monotonically decreasing under the 
updating rules in Eqs.  (41),  (45) and  (49). The following 
detailed proof process was presented.



Page 11 of 20Ouyang et al. BMC Genomics          (2024) 25:885  

Definition 1 G(x, x
′
) is an auxiliary function for F(x) if 

the conditions

are satisfied.

lemma 1 If G(x, x
′
) is an auxiliary function of F(x), 

then F(x) is non-increasing under the following updating 
formula:

Proof 

Then,

The above mentioned is to introduce the definition of the 
auxiliary function. Next, in order to demonstrate the con-
vergence of the alternating optimization rules, we needed 
the following theorems.

Theorem 1 Updating U using Eq. (41) while fixing S and 
V in each iteration will monotonically decrease the value 
of the objective function in Eq. (31), hence it converges.

According to Eq. (31), the corresponding objective func-
tion when fixed w can be rewritten as below:

Our goal is to prove that the updating rule for U while 
fixing S and V will result in a monotonically decreasing 
value of J (U , S,V ) . To conduct the corresponding proof, 
we needed the following lemma.

lemma 2 Updating U using Eq.  (41) while fixing S and 
V, the following inequality holds:

where UTU = I.

G(x, x
′

) ≥ F(x),G(x, x) = F(x)

xt+1 = arg min
x

G(x, xt)

F(xt+1) ≤ G(xt+1, xt) ≤ G(xt , xt) = F(xt)

F(xmin) ≤ · · · ≤ F(xt+1) ≤ F(xt) ≤ · · · ≤ F(x0)

(50)

J (U , S,V ) =

n
∑

i=1

di�(X −USV
T )i�

2
2 + ��S�2F

+ αTr(UT
L
∗
hm

U)+ βTr(VT
L
∗
hd
V )

s.t. U ≥ 0, S ≥ 0,V ≥ 0,U
T
U = I ,V

T
V = I

(51)

n
∑

i=1

di�(X −U
t+1

SV
T )i�

2
2 + αTr(UT (t+1)

L
∗
hm

U
(t+1)) ≤

n
∑

i=1

di�(X −U
t
SV

T )i�
2
2 + αTr(UT (t)

L
∗
hm

U
(t))

Proof To prove the constrained problem in Lemma  2, 
we needed to prove the following Lagrangian function:

The auxiliary function can be first defined as follows:

According to previous work [55], the following ine-
quality holds:

where A, B and C are non-negative matrices, and A and 
B are symmetric. Furthermore, we knew the inequality, 
w ≥ 1+ log(w) for all w > 0 . Therefore, we had

and

It can be seen that Eq. (53) can serve as a valid auxil-
iary function. Consequently, we can determine the sta-
tionary point of J (U ,U

′
) . As defined in Eq. (53), taking 

the derivative of J (U ,U
′
) w.r.t U

(52)

J (U) = Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ αTr(UTL∗hmU)

+ Tr(�(UTU − I)T )

(53)

J (U ,U
′

) = Tr
(

XDXT −�

)

+

c
∑

j=1

n
∑

i=1

(

U
′
SVTDVST + U

′
�

)

ij
U2
ij

U
′

ij

− 2

c
∑

j=1

n
∑

i=1

(

XDVST
)

ij
U

′

ij

(

1+ log
Uij

U
′

ij

)

+ α

c
∑

j=1

n
∑

i=1

(

L∗hmU
′
)

ij
U2
ij

U
′

ij

(54)
n

∑

i=1

k
∑

j=1

(AC
′
B)ijC

2
ij

C
′

ij

≥ Tr(CTACB)

(55)

Tr(UTUSVTDVST )+ Tr(�UTU)

≤

c
∑

j=1

n
∑

i=1

(U
′
SVTDVST )ijU

2
ij

U
′

ij

+

c
∑

j=1

n
∑

i=1

(U
′
�)ijU

2
ij

U
′

ij

=

c
∑

j=1

n
∑

i=1

(U
′
SVTDVST + U

′
�)ijU

2
ij

U
′

ij

(56)
c

∑

j=1

n
∑

i=1

(L∗hmU
′
)ijU

2
ij

U
′

ij

≥ Tr(UTL∗hmU)
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Setting Eq.  (57) to zero and substituting 
� = U

′TXDVST − SVTDVST − αU
′TL∗hmU

′ , we can 
obtain the following stationary point:

To confirm that the stationary point is the minimum 
of J (U ,U

′
) , it is necessary to examine whether the 

Hessian matrix is a positive semidefinite matrix. To this 
end, we further took the second derivative w.r.t U

It is clear that the Hessian matrix is a positive sem-
idefinite matrix, thereby indicating J (U ,U

′
) is a convex 

function. This observation suggests that the stationary 
point in Eq.  (58) represents the unique global minima 
of J (U ,U

′
) . Based on Lemma  1, it becomes evident 

that Lemma  2 is established. Hence, Theorem  1 has 
been proven too. It is worth noting that if substituting 
U = Ut+1 and U ′

= Ut for Eq.  (58), we obtained the 
updating rule in Eq. (41).

Theorem 2 Updating S using Eq. (45) while fixing U and 
V in each iteration will monotonically decrease the value 
of the objective function in Eq. (31), hence it converges.

In the same way, our goal is to prove that the updat-
ing rule for S while keeping U and V fixed, results in a 
monotonically decreasing value of J (U , S,V ) . To con-
duct the corresponding proof, we needed the lemma as 
follows.

lemma 3 Updating S using Eq.  (45) while fixing U and 
V, the following inequality holds:

(57)

∂J (U ,U
′
)

∂Uij
=2

(U
′
SVTDVST + αL∗hmU

′
+U

′
�)ijUij

U
′

ij

− 2(XDVST )ij
U

′

ij

Uij

(58)

Uij ←− U
′

ij

√

(XDVST + αS∗hmU
′
)ij

(U
′
U

′TXDVST + αU
′
U

′TS∗hmU
′
)ij

(59)

∂2J (U ,U
′
)

∂Vij∂Vkl
=

(

2(XDVST )ij
U

′

ij

Uij

)

δikδjl

+

(

2
(U

′
SVTDVST + αL∗hmU

′
+ U

′
�)ijUij

U
′

ij

)

δikδjl

(60)

n
∑

i=1

di�(X −USt+1VT )i�
2
2 + ��St+1�2F ≤

n
∑

i=1

di�(X −UStV T )i�
2
2 + ��St�2F

Proof Similar with Eq. (52), we can get the Lagrangian 
function for J (S) as follows:

Also, an appropriate auxiliary function was defined 
as:

Similar to prove Lemma  2, Lemma  3 can be proved. 
The rest proof of Theorem  2 is similar to the proof of 
Theorem 1.

Theorem  3 Updating V using Eq.  (49) while fixing 
U and S in each iteration will monotonically decrease 
the value of the objective function in Eq.  (31), hence it 
converges.

Similarly, our goal is to prove that the updating rule for 
V while keeping U and S fixed, results in a monotonically 
decreasing value of J (U , S,V ) . To conduct the corre-
sponding proof, we needed the lemma as follows.

lemma 4 Updating V using Eq. (49) while fixing U and 
S, the following inequality holds:

where VTV = I.

Proof Similar with Eq. (52), we obtained the Lagrangian 
function for J (V ) and an appropriate auxiliary function 
as follows:

(61)
J (S) = Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ �Tr(SST )

(62)

J

(

S, S
′
)

= Tr
(

XDXT
)

+

c
∑

j=1

n
∑

i=1

(

UTUS
′
VTDV

)

ij
S2ij

S
′

ij

− 2

c
∑

j=1

n
∑

i=1

(

UTXDV
)

ij
S
′

ij

(

1+ log
Sij

S
′

ij

)

+ �

c
∑

j=1

n
∑

i=1

(

S
′
)

ij
S2ij

S
′

ij

(63)

n
∑

i=1

di�(X −USV
T (t+1))i�

2
2 + βTr(VT (t+1)

L
∗
hd
V

(t+1)) ≤

n
∑

i=1

di�(X −USV
T (t))i�

2
2 + βTr(VT (t)

L
∗
hd
V

(t))

(64)
J (V ) = Tr(XDXT )− 2Tr(USVTDXT )

+ Tr(USVTDVSTUT )+ βTr(VTL∗hdV )

+ Tr(�(VTV − I)T )
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Similar to prove Lemma 2, we can prove Lemma 4. The 
rest proof of Theorem  3 is also similar to the proof of 
Theorem 1.

In summary, the objective function in Eq.  (31) 
decreases monotonically in the alternative updating rules 
in Eqs. (41), (45) and (49).

Results
Experimental settings and evaluation metrics
To more comprehensively and systematically show the 
ability of SPLHRNMTF in predicting potential asso-
ciations between miRNAs and diseases, we conducted 
5-fold cross-validation five times experiments based on 
known miRNA-disease associations. In 5-fold cross-val-
idation, we randomly split all miRNA-disease pairs into 
five equal-sized subsets. Note that there is no overlap 
between five equal-sized subsets. In each fold, one sub-
set as a testing set in turn and the remaining four subsets 
are considered as a training set. To effectively evaluate 
the prediction ability of the model, the area under the 
receiver operating characteristic (AUC) curve, the area 
under the precision-recall (AUPR) curve, and F1 score 
were used to evaluate the performance of all models.

Baseline models
To comprehensively evaluate the prediction performance 
of SPLHRNMTF, we compared several previously pro-
posed computational models. In this paper, we applied 
the same dataset to train these models for a fairer com-
parative analysis. The specific information of introduced 
models was as follows.

NMTF [56]: As an extension of NMF, non-negative 
matrix tri-factorization (NMTF) can provide more 
degrees of freedom than NMF.
L2,1-NMTF [57]: Kong et al. proposed robust non-neg-

ative matrix factorization by using L2,1 norm instead of 
Frobenius norm. Based on the study of Kong et  al., we 
extended NMF to NMTF and named it L2,1-NMTF.

(65)

J

(

V ,V
′
)

= Tr
(

XDXT −�

)

+

c
∑

j=1

n
∑

i=1

(

DV
′
STUTUS + V

′
�

)

ij
U2
ij

U
′

ij

− 2

c
∑

j=1

n
∑

i=1

(

DXTUS
)

ij
V

′

ij

(

1+ log
Vij

V
′

ij

)

+ β

c
∑

j=1

n
∑

i=1

(

L∗hdV
′
)

ij
V 2
ij

V
′

ij

GRNMF [22]: This is a method based on graph regular-
ized non-negative matrix factorization for miRNA-dis-
ease association prediction.

IMCMDA [23]: Chen et  al. developed an inductive 
matrix completion method based on non-negative con-
straints to predict the associations between miRNAs and 
diseases, which combines integrated miRNA and disease 
similarity matrices into matrix factorization.

MDHGI [24]: The matrix decomposition-based 
MDHGI combines sparse learning method with hetero-
geneous graph inference method to infer the associations 
between miRNAs and diseases.

SPLGRNMF [45]: Huang et al. proposed the SPLNMF 
model by integrating self-paced learning (SPL) into NMF 
and using L2,1 norm to constrain the objective function. 
To conduct a more reasonable comparative analysis with 
the proposed model, we imposed double orthogonal 
constraints on the latent representations and introduced 
dual graph Laplacian regularization based on the SPL-
NMF model. The improved model is called SPLGRNMF.

NMTFDR [25]: Dissez et  al. presented a drug reposi-
tioning model based on the non-negative matrix tri-fac-
torization with graph Laplacian regularization by using 
multiple interaction matrices of drugs, proteins, path-
ways and diseases. For convenience, the drug reposition-
ing model is called NMTFDR.

NMTF-DTI [26]: NMTF-DTI is a model based on non-
negative matrix tri-factorization for drug-target interac-
tion prediction, which constructs a weighted interaction 
matrix to correct false-negative samples and utilizes 
graph Laplacian regularization to improve prediction 
performance.

SPLNMTF [58]: SPLNMTF combines self-paced learn-
ing with non-negative matrix tri-factorization to perform 
drug repositioning, which also considers graph Laplacian 
regularization to preserve local geometric structures in 
low-dimensional space.

NMFMC [27]: The method divides non-negative 
matrix factorization into a known part and an unknown 
part, and introduces graph regularization to preserve 
local geometric structures for miRNA-disease associa-
tion prediction.

NIMCGCN [19]: NIMCGCN makes use of a neural 
inductive matrix completion method based on graph 
convolutional networks to identify the associations 
between miRNAs and diseases.

MMGCN [20]: Tang et al. applied graph convolutional 
networks and multichannel attention mechanism to 
extract and enhance latent representations of miRNAs 
and diseases, predicting potential associations from the 
reconstructed miRNA-disease matrix.

MHCLMDA [21]: MHCLMDA first captured high-
order interactions between similarity network nodes 
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based on hypergraph convolutional networks and hyper-
graph contrastive learning. Then, a variational auto-
encoder was used to extract miRNA and disease features 
from known miRNA-disease associations. Finally, 
MHCLMDA integrated different miRNA and disease fea-
tures to predict miRNA-disease associations.

Parameters analysis
In this study, we analyzed the impact of several hyper-
parameters on the prediction performance of SPL-
HRNMTF by utilizing the MDAv2.0_data dataset. To 
be more specific, we applied grid search to determine 
hyperparameter combinations under 5-fold cross-
validation. Among them, compared with other hyper-
parameters, � has less influence on model prediction 
performance. First, we empirically fixed � = 0.0001 
and searched the optimal values of other hyperparam-
eters. Then, we searched the optimal value of α and β 
from {0.00002, 0.0002, 0.002, 0.02, 0.2, 1, 2} . As shown in 
Fig.  3a, when α = 0.00002 and β = 0.02 , SPLHRNMTF 
obtained better prediction performance. Similarly, vary-
ing matrix rank r within {3, 7, · · · , 23, 27} and set r = 23 
in Fig.  3b. Next, the optimal k1 value in KNN method 
used by constructing hypergraphs can be searched from 
{2, 6, · · · , 38, 42} and set k1 = 34 as shown in Supple-
mentary Figure S1(a). In addition, we searched the opti-
mal decay term θ from {0.1, 0.2, 0.3, · · · , 0.9, 1} and set 
θ = 0.9 in Supplementary Figure S1(b). The k2 in WKNN 
method was also searched from {2, 4, 6, · · · , 12, 14}and k2 
was set to 10 that the model achieved better prediction 

performance as shown in Supplementary Figure S1(c). 
Finally, we trained k3 in KNN method used by sparse 
similarity matrix from {1, 2, 3, · · · , 9, 10} and set the opti-
mal k3 to 2 as shown in Supplementary Figure S1(d). It is 
worth noting that hyperparameter selection was required 
for other experimental datasets as well. The detailed 
results of hyperparameter adjustments can be found in 
Supplementary Figures S2 and S3.

Comparison experiments
All comparison experiments adopt the same datasets and 
evaluation settings for a fairer comparative analysis. To 
better show the optimal performance of baseline mod-
els, we performed grid search on GRNMF, SPLGRNMF, 
NMTF-DTI and NMFMC models with hyperparam-
eters controlling the graph Laplacian regularization. The 
detailed hyperparameter tuning can be found in Supple-
mentary Parameters Analysis. For fairness, we uniformly 
set the same rank as SPLHRNMTF for all baseline mod-
els on different datasets. To conduct more reasonable 
evaluation experiments, we performed 5-fold cross-vali-
dation five times. In addition, we also randomly selected 
unobserved elements equal to the positive sample size as 
negative samples 10 times. The reported average results 
represent the outcome, providing a more reasonable 
evaluation. Finally, we provided detailed parameter infor-
mation of each model on three datasets in Supplemen-
tary Material.

Table  1 shows the comparative analysis of the predic-
tion performance of all models for 5-fold cross-validation 

Fig. 3 The influence of different hyperparameters on SPLHRNMTF based on the MDAv2.0_data dataset. a The impact of hyperparameters α and β 
on SPLHRNMTF. b The impact of hyperparameter r on SPLHRNMTF
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five times, from which we can see that SPLHRNMTF out-
performed other baseline models, even including graph 
and hypergraph convolutional network-based models, on 
MDAv3.2_data1 and MDAv3.2_data2 datasets in terms 
of AUC and AUPR. To be more specific, the average AUC 
value of SPLHRNMTF was 0.9304 on the MDAv3.2_
data1 dataset, whereas the average AUC values of 
NMTF, L2,1-NMTF, IMCMDA, GRNMF, MDHGI, SPL-
GRNMF, NMTFDR, NMTF-DTI, SPLNMTF, NMFMC, 
NIMCGCN, MMGCN and MHCLMDA were 0.9110, 
0.9128, 0.7783, 0.9041, 0.8877, 0.7691, 0.9073, 0.9279, 
0.8428, 0.9082, 0.8540, 0.9004, 0.9255, respectively. Simi-
larly, SPLHRNMTF obtained the average AUC value of 
0.9358, which was also better than other baseline mod-
els on the MDAv3.2_data2 dataset. It is worth noting that 
the standard deviation of the prediction performance of 
SPLHRNMTF was relatively small. These results indi-
cate that SPLHRNMTF not only has superior predic-
tion performance but also exhibits better robustness 

and stability. Although the F1 value of SPLHRNMTF is 
slightly lower than that of MMGCN and MHCLMDA on 
the MDAv3.2_data2 dataset, the AUC and AUPR values 
of SPLHRNMTF are better than those of MMGCN and 
MHCLMDA. This shows that even compared to models 
based on graph and hypergraph convolutional networks, 
SPLHRNMTF has a certain competitiveness. From Sup-
plementary Table  S1, we observed that the proposed 
SPLHRNMTF model also obtained good prediction per-
formance on the MDAv2.0_data dataset. More impor-
tantly, the prediction performance of L2,1-NMTF was 
superior to NMTF. Specifically, L2,1-NMTF obtained cer-
tain performance gains over NMTF by 5.98%, 0.20% and 
4.06% in terms of AUC on MDAv2.0_data, MDAv3.2_
data1 and MDAv3.2_data2 datasets, respectively. This 
result demonstrates that using L2,1 to calculate residual 
error can effectively alleviate the impact of noise and out-
liers, thereby improving prediction performance.

Table 1 The prediction performance of all models evaluated by 5-fold cross-validation five times on MDAv3.2_data1 and MDAv3.2_
data2 datasets

AUC AUPR F1

MDAv3.2_data1 NMTF 0.9110±0.0006 0.9177±0.0005 0.8553±0.0004

L2,1-NMTF 0.9128±0.0006 0.9193±0.0005 0.8580±0.0002

IMCMDA 0.7783±0.0003 0.7912±0.0002 0.7238±0.0006

GRNMF 0.9041±0.0009 0.9067±0.0010 0.8303±0.0011

MDHGI 0.8877±0.0008 0.9096±0.0006 0.8446±0.0011

SPLGRNMF 0.7691±0.0045 0.7294±0.0042 0.7732±0.0040

NMTFDR 0.9073±0.0014 0.9157±0.0011 0.8419±0.0021

NMTF-DTI 0.9279±0.0004 0.9340±0.0002 0.8602±0.0005

SPLNMTF 0.8428±0.0003 0.8325±0.0001 0.7935±0.0008

NMFMC 0.9082±0.0003 0.9018±0.0002 0.8382±0.0009

NIMCGCN 0.8540±0.0009 0.8578±0.0010 0.7825±0.0004

MMGCN 0.9004±0.0018 0.9213±0.0008 0.8575±0.0011

MHCLMDA 0.9255±0.0009 0.9347±0.0012 0.8591±0.0008

SPLHRNMTF 0.9304±0.0002 0.9349±0.0002 0.8614±0.0004
MDAv3.2_data2 NMTF 0.8096±0.0020 0.8153±0.0019 0.7600±0.0018

L2,1-NMTF 0.8425±0.0042 0.8504±0.0041 0.7709±0.0012

IMCMDA 0.8406±0.0003 0.8512±0.0001 0.7849±0.0005

GRNMF 0.9170±0.0004 0.9248±0.0005 0.8442±0.0012

MDHGI 0.9011±0.0008 0.9195±0.0006 0.8545±0.0017

SPLGRNMF 0.7682±0.0048 0.7524±0.0032 0.7544±0.0035

NMTFDR 0.9149±0.0014 0.9204±0.0011 0.8491±0.0017

NMTF-DTI 0.9316±0.0006 0.9356±0.0004 0.8620±0.0006

SPLNMTF 0.9311±0.0004 0.9353±0.0003 0.8629±0.0004

NMFMC 0.9069±0.0005 0.8957±0.0004 0.8405±0.0012

NIMCGCN 0.9057±0.0004 0.9075±0.0006 0.8378±0.0003

MMGCN 0.9179±0.0016 0.9367±0.0009 0.8706±0.0012
MHCLMDA 0.9313±0.0012 0.9379±0.0019 0.8678±0.0010

SPLHRNMTF 0.9358±0.0004 0.9387±0.0003 0.8642±0.0006
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Ablation studies
To better validate the effectiveness of non-linear fusion 
method, preprocessing step using WKNN, self-paced 
learning and hypergraph regularization, we further con-
structed SPLHRNMTF− , SPLHRNMTF∗ , HRNMTF and 
SPLGRNMTF as four variants of SPLHRNMTF for com-
parative analysis. (1) SPLHRNMTF− : we utilized linear 
fusion instead of non-linear fusion to explore whether 
learning non-linear relationships in similarity networks 
can improve prediction performance. (2) SPLHRN-
MTF∗ : we removed the preprocessing step using WKNN 
to explore whether using the WKNN method can effec-
tively correct false-negative samples and improve model 
prediction performance. (3) HRNMTF: in order to verify 
the effectiveness of self-paced learning, we retained other 
modules except self-paced learning. (4) SPLGRNMTF: 
we replaced hypergraph Laplacian regularization with 
graph Laplacian regularization to explore whether the 
use of hypergraph regularization can effectively capture 
high-order relations.

Table  2 shows the comparative analysis of abla-
tion experiments for different variant models on the 
MDAv3.2_data2 dataset. From Table  2, we can observe 
that SPLHRNMTF was significantly better than SPL-
HRNMTF∗ . This result demonstrates that the use of 
WKNN method can effectively correct false-negative 
samples, thereby improving model prediction perfor-
mance. Moreover, after using non-linear fusion method, 
the prediction performance of SPLHRNMTF outper-
formed SPLHRNMTF− , which suggests that the non-
linear fusion method can more reasonably integrate 
similarity information while improving prediction per-
formance by capturing non-linear relationships. Simi-
larly, after using self-paced learning, SPLHRNMTF can 
achieve better prediction performance than HRNMTF, 
which shows that integrating self-paced learning into 
NMTF can effectively alleviate the model from falling 
into a bad local optimal solution and improve predic-
tion performance. Finally, compared with SPLGRNMTF, 
the prediction performance of SPLHRNMTF has been 

improved to a certain extent, which indicates that the use 
of hypergraph regularization can capture the high-order 
relationships of biological similarity networks. Notably, 
the standard deviation of SPLHRNMTF’s prediction per-
formance in the 5-fold cross-validation five times is rela-
tively small, indicating that adding other modules helps 
to enhance the model’s robustness and stability.

Case studies
To further validate the predictive accuracy of SPLHRN-
MTF in identifying associations between miRNAs and 
specific diseases, we conducted case studies on two sig-
nificant tumor diseases, namely breast neoplasms and 
lung neoplasms, using the MDAv2.0_data dataset. For a 
specific disease, negative miRNA-disease associations 
and experimentally verified positive miRNA-disease 
associations on the MDAv2.0_data dataset were used 
as training samples, and unverified associations with 
the specific disease on the MDAv2.0_data dataset are 
considered as candidate samples. Through training the 
SPLHRNMTF model on training samples, we can rank 
candidate samples by their predicted association scores 
and select the top 50 candidate associations with the 
specific disease. Finally, we verified the top 50 prediction 
results by finding supporting evidence from the lasted 
HMDD v4.0 [59] and dbDEMC [60].

Table  3 shows the top 50 prediction results of miR-
NAs that are closely related to breast neoplasms. From 
Table  3, we can see that 48 of the top 50 breast neo-
plasms-related miRNAs were successfully confirmed by 
HMDD v4.0 and dbDEMC databases. Note that uncon-
firmed refers to miRNAs that have not been confirmed 
by relevant evidence. Similarly, Supplementary Table S2 
demonstrates that the top 50 predicted lung neoplasms-
related results and 46 predictions can be confirmed 
according to the above two databases. Meanwhile, we 
also observed that miRNAs showing higher similarity 
were predicted to be associated with the same specific 
disease. For example, hsa-mir-138-1 and hsa-mir-138-2 
can function by directly targeting the polycomb epige-
netic regulator EZH2, and they have been demonstrated 
to be novel regulators of invasion and epithelial-mesen-
chymal transition in breast cancer cells [61].

To further validate the biological significance of the 
potential miRNA-disease associations identified by 
the SPLHRNMTF model, we conducted enrichment 
analysis on gene sets comprising the target genes of the 
miRNAs. First, miRTarBase [62] was used to obtain the 
target genes of each miRNA. Then, we applied Metas-
cape [63] to investigate the biological process and 
pathway information related to these target gene sets. 
Figure  4 shows the enrichment analysis of the discov-
ered breast neoplasms-related hsa-mir-19b-2, from 

Table 2 The prediction performance of ablation experiment 
evaluated by 5-fold cross-validation five times on the MDAv3.2_
data2 dataset

AUC AUPR F1

HRNMTF 0.9298±0.0005 0.9332±0.0003 0.8609±0.0008

SPLGRNMTF 0.9318±0.0006 0.9359±0.0005 0.8623±0.0011

SPLHRNMTF- 0.9081±0.0039 0.9221±0.0028 0.8470±0.0054

SPLHRNMTF* 0.8890±0.0106 0.9069±0.0088 0.8296±0.0106

SPLHRNMTF 0.9358±0.0004 0.9387±0.0003 0.8642±0.0006
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which we can see that target gene sets associated with 
hsa-mir-19b-2 were significantly enriched in several 
terms closely related to breast cancer, including regu-
lation of hormone secretion, response to steroid hor-
mone, insulin signaling and MAPK6/MAPK4 signaling. 
To be more specific, breast cancer growth is depend-
ent upon estrogenic hormones and can be inhibited 
by antiestrogenic antagonists [64]. A lot of evidence 
also suggests that interactions between steroid hor-
mones and growth factors act as a regulator of endo-
crine response in breast cancer, while abnormalities in 
growth factor signaling are common contributors to 
the endocrine-resistant phenotype [65]. Furthermore, 

the dysregulation of the expression and function of 
insulin and its downstream signaling effectors often 
drives breast cancer initiation and progression in a 
subtype-dependent manner [66]. In addition, the high 
expression of MAPK4 defines a large subset or subtype 
of triple-negative breast cancer (TNBC) that responds 
to MAPK4 blockade, and targeting MAPK4 both inhib-
its TNBC growth and sensitizes tumors to PI3K block-
ade [67]. Finally, we observed that many biological 
processes and other terms were obtained based on the 
above enrichment analysis. Through utilizing Metas-
cape, we further captured the relationships between 
these terms. As shown in Supplementary Figure S8, 
we selected a subset of enriched terms and presented 
them as a network graph, where terms with similarity 
> 0.3 are connected by edges. According to the network 
graph, we discovered that several terms associated 
with breast cancer clustered together. In summary, the 
aforementioned biological analysis suggests a potential 
association between hsa-mir-19b-2 and the occurrence 
and progression of breast cancer.

Conclusion
Identification of disease-related miRNAs through com-
putational models can contribute to accelerating the 
understanding of the pathogenic mechanisms of human 
diseases and the discovery of potential therapeutic tar-
gets. In this study, we develop a SPLHRNMTF model of 
robust orthogonal non-negative matrix tri-factorization 
with self-paced learning and dual hypergraph regu-
larization for predicting miRNA-disease associations. 
To be more specific, we first utilize a non-linear fusion 
method to obtain comprehensive similarity for miRNAs 
and diseases. Then, weighted k-nearest neighbor profile 
method is used to replace zero values in the association 
matrix with likelihood scores for correct false-negative 
associations. Furthermore, SPLHRNMTF makes use of 
L2,1 norm instead of Frobenius norm to calculate residual 
error for effectively alleviating the impact of noise and 
outliers on model prediction performance. Meanwhile, 
we integrate self-paced learning into NMTF using L2,1 
norm to alleviate the model from falling into bad local 
optimal solutions. Finally, hypergraph regularization is 
introduced to preserve the high-order complex relations 
of biological similarity networks in the low-dimensional 
embedding space. The experimental results of 5-fold 
cross-validation five times and ablation studies show that 
SPLHRNMTF outperforms other baseline models and 
has good robustness. Each module in SPLHRNMTF and 
the preprocessing step are also demonstrated to be effec-
tive. Furthermore, the meaningful results of case studies 

Table 3 Top 50 breast neoplasms-related miRNAs predicted by 
SPLHRNMTF based on the MDAv2.0_data dataset. Note that the 
number in evidence means PubMed Unique Identifier (PMID)

Rank miRNA Evidence Rank Evidence

1 hsa-mir-142 33962174 26 hsa-mir-95 dbDEMC

2 hsa-mir-106a 34837907 27 hsa-mir-32 33638154

3 hsa-mir-130a 35797350 28 hsa-mir-144 35551606

4 hsa-mir-99a 33177704 29 hsa-mir-92b 32143670

5 hsa-
mir-138-2

dbDEMC 30 hsa-mir-
449b

32374522

6 hsa-mir-150 30628646 31 hsa-mir-
181d

31955007

7 hsa-mir-
19b-2

unconfirmed 32 hsa-mir-30e dbDEMC

8 hsa-
mir-138-1

dbDEMC 33 hsa-mir-134 34378285

9 hsa-mir-192 31485620 34 hsa-mir-483 33446575

10 hsa-mir-15b 32016977 35 hsa-mir-370 33629796

11 hsa-mir-196b 30416655 36 hsa-mir-424 35666424

12 hsa-mir-186 35351581 37 hsa-mir-494 32372307

13 hsa-mir-378a 34113564 38 hsa-mir-28 34593318

14 hsa-mir-449a 32952657 39 hsa-mir-184 34000513

15 hsa-mir-185 32366289 40 hsa-mir-491 33488122

16 hsa-mir-130b 34434057 41 hsa-mir-
376a-1

unconfirmed

17 hsa-mir-98 34837929 42 hsa-mir-
376a-2

dbDEMC

18 hsa-mir-574 33989902 43 hsa-mir-
216a

32230799

19 hsa-mir-99b 36381329 44 hsa-mir-361 34101749

20 hsa-mir-542 35318311 45 hsa-mir-454 34727290

21 hsa-mir-181c 31078780 46 hsa-mir-381 32518523

22 hsa-mir-212 33187481 47 hsa-mir-650 33086498

23 hsa-mir-330 dbDEMC 48 hsa-mir-
208a

30911286

24 hsa-mir-211 35296964 49 hsa-mir-33a 34950209

25 hsa-mir-372 30570852 50 hsa-mir-503 30594253
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on breast neoplasms and lung neoplasms indicate that 
48 and 46 of the top 50 predicted disease-related miR-
NAs are confirmed, further demonstrating that the SPL-
HRNMTF model can accurately infer miRNA-disease 
associations. In addition, unconfirmed miRNA-disease 
associations have biological significance through enrich-
ment analysis. To sum up, SPLHRNMTF can be used as 
an effective model to predict the associations between 
miRNAs and diseases.
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