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Abstract
Background Goat milk is gaining popularity as a superior alternative to bovine milk due to its closer resemblance 
to human milk. Understanding the molecular processes underlying lactation is crucial for improving milk quality and 
production in goats. However, the genetic mechanisms governing lactation in goats, particularly in indigenous breeds 
like the Jakhrana, remain largely unexplored.

Results In this study, we performed a comprehensive transcriptomic analysis of Jakhrana goat mammary glands 
during early and late lactation stages. We isolated milk somatic cells and conducted RNA sequencing, followed by 
transcript quantification and mapping against the ARS1.2 Capra hircus reference assembly. Our analysis identified 
differentially expressed genes (DEGs) and commonly expressed genes (CEGs) across the lactation phases. Early 
lactation showed enrichment of genes encoding antimicrobial peptides and lubrication proteins, while late lactation 
exhibited heightened expression of genes encoding major milk proteins. Additionally, DEG analysis revealed 
upregulation of pivotal genes, such as the ABC transporter gene MRP4, implicated in modulating milk composition 
and quality.

Conclusion Our findings provide insights into the genetic mechanisms underlying lactation dynamics in the 
Jakhrana goat. Understanding these mechanisms could help in improving milk production and quality in goats, 
benefiting both the dairy industry and consumers.
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Introduction
Goats are vital milk producers in many tropical regions, 
playing a significant role in the nutritional source of vari-
ous developing countries [1]. The increasing global rec-
ognition of goat milk’s medicinal properties has been 
underscored by its significant health benefits for human 
consumption [2]. This acceptance is reflected in the 
rapid expansion of the goat milk market across numer-
ous nations [3]. Studies have highlighted a plethora 
of advantages offered by goat milk for human health, 
including immune system modulation [4], enhanced 
mineral bioavailability [5, 6], anti-inflammatory [7] and 
antioxidant properties [8], as well as allergy alleviation [9] 
and antimicrobial [10] and anticancer effects [11]. Goat 
milk is esteemed for its nutritional richness, providing 
a range of macro- and micro-nutrients crucial for new-
born growth and human health [12, 13]. Notably, the 
fat and protein fractions in goat milk serve as essential 
sources of energy and nutrients [14]. The Jakhrana goat 
(Capra hircus), a native breed from Rajasthan, India, is 
renowned for its adaptability and high milk production 
[15]. Improving milk quality, particularly for infants or 
those with compromised immune systems, is a key objec-
tive in goat farming [16], necessitating a comprehensive 
understanding of milk components and their regulatory 
mechanisms.

Transcriptomic analysis has emerged as a powerful 
tool for unraveling the molecular mechanisms underly-
ing complex biological processes, including lactation in 
dairy animals. In goat farming, transcriptomic studies 
provide valuable insights into the genetic regulation of 
milk synthesis and secretion, crucial for enhancing milk 
yield and quality. Lactation is a dynamic process charac-
terized by distinct phases, each associated with specific 
gene expression patterns and physiological changes in 
the mammary gland. Among the various factors influ-
encing the milk composition of the goat, lactation stage 
is one of the crucial factors since from the onset of gesta-
tion to the involution the mammary gland goes through 
number of cycles of cell proliferation and degeneration. 
The phases occurring in between the gestation and invo-
lution are the effective lactation stages i.e., early, mid, and 
late. The extremes of the lactation cycles including the 
early and late is when the number of mammary alveoli 
starts proliferating and decline in number respectively. 
The early lactation phase is marked by an increased 
need for protection against pathogens, supported by 
the upregulation of genes encoding antimicrobial pep-
tides and proteins [17]. As lactation progresses into the 
late phase, there is a shift towards milk production and 
secretion, reflected in the upregulation of genes encoding 
major milk proteins. While several studies have identified 
differentially expressed genes in various livestock species 
[18–26], research on the milk transcriptomic of Indian 

goats remains limited. To address this gap, we conducted 
a longitudinal study to explore the lactation dynamics of 
the Jakhrana goat using milk somatic cells, a non-invasive 
sample type. In this study, we conducted transcriptomic 
analysis of the mammary gland in Jakhrana goats at early 
and late lactation stages. Our aim was to identify differ-
entially expressed genes and commonly expressed genes 
between these two phases, shedding light on the molecu-
lar mechanisms driving lactation in goat.

Methods
Milk sample procurement and milk somatic cell isolation
The Jakhrana goat breed, belonging to different lacta-
tion phases, were the subjects of the study. Three of each 
early lactation Jakhrana (A, B, and D) and three of the 
late lactation Jakhrana (H, I, and JEIKT) comprised the 
two groups. Early lactation referred to the first weeks 
of lactation, and late lactation referred to more than 10 
weeks of lactation. The institute manages a nucleus flock 
of purebred Jakhrana animals, which are raised under 
semi-intensive conditions that include 6–7  h of graz-
ing, stall feeding with dry fodder or straw, and seasonally 
available green fodder. Additionally, pregnant and lactat-
ing animals received concentrated feed at a rate of 500 g 
per day for pregnant animals and 400 g per liter of milk 
produced for milking animals, with water available adli-
bitum. The milk samples of Jakhrana goat were procured 
from ICAR-Central Institute for Research on Goats 
(Makhdoom, India). Before collecting the milk samples 
for somatic cell isolation, the foremilk were allowed to let 
down, and the mammary gland was surface disinfected 
using povidone iodine. The 50 mL of milk was collected 
from all the subject animals. Following the collection of 
milk samples into sterile plastic flasks, the samples were 
promptly shipped to the milk quality laboratory in an 
icebox (4  °C) for milk somatic cell isolation as per the 
protocol described in [16]. An initial spin at 1700×g was 
performed for 25 min to collect the fat, which was later 
removed. 45 mL of 1×PBS containing 0.5  M EDTA was 
added to the content and again centrifuged at 1700×g 
for 15 min. The supernatant was discarded, and the pel-
let was dispensed in 20 mL of 1×PBS containing 0.5  M 
EDTA. A final centrifugation at 2000×g aided in the sepa-
ration of purified milk somatic cell pellets.

RNA isolation and library preparation for RNA-Seq
The RNA isolation was performed using the standard 
chloroform/isopropanol method. 200 µL chloroform was 
added to a well-homogenised milk somatic cell pellet, 
obtained from 50 mL of milk, in 1 mL of TRI Reagent™ 
solution. After vigorous mixing, the admixture was cen-
trifuged at 10,000×g for 10 min to separate the aqueous 
phase. The aqueous phase containing the RNA fractions 
was treated with 500 µL of isopropanol, this will aid in 
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precipitating the RNA fraction when kept at room tem-
perature for 15–20  min. To assist visualization of min-
iscule pellets, 30  µg of GlycoBlue™ coprecipitant was 
added along with the isopropanol. The precipitated frac-
tion was centrifuged at 10,000 × g for 10  min, and the 
supernatant was discarded. The pellet was once washed 
with 70% EtOH, and the pellet was dispensed in 30 µL 
of nuclease-free water. The RNA was outsourced for 
massively parallel sequencing of the transcriptome. The 
library preparation was performed using QIAseq Fast-
Select -rRNA HMR Kit (96), Cat. No. / ID: 334,387, fol-
lowing the manufacturer’s protocol. The samples having 
good RIN values (> 8.0), as quantified by the Invitrogen 
Qubit 4 Fluorometer, were selected for further process-
ing. RNA samples that qualified through quality inspec-
tion were used for library construction. The library was 
quality-checked using the Agilent TapeStation system.

Data Quality check and RNA-seq analysis
The data was quality-checked for Q30%, GC content, 
over-representation, and adaptor content across reads, 
base composition, and K-mer content using FastQC 
v0.12.0 [27]. The raw fastQ file was further trimmed for 
quality and adaptor using Trimmomatic v0.32 [28]. The 
clean reads were aligned against the Capra hircus index 
using the STAR v2.7.11a aligner, and an index was gen-
erated for the STAR using ‘genomeGenerate’ mode 
with the FASTA and GTF files of ARS1.2 (NCBI RefSeq 
assembly: GCF_001704415.2) assembly [29]. The default 
parameters were used for STAR ‘genomeGenerate’ and 
alignment. The BAM files obtained from alignment were 
sorted by chromosomes and coordinates, followed by a 
BAM file quality check. The sorted BAM files were fur-
ther used for assembling the transcripts using String-
Tie v2.2.0, followed by merging in order to generate a 
non-redundant set of transcripts observed in any of 
the RNA-Seq samples assembled previously [30]. The 
merged transcript (in the -G option, reference GTF based 
assembly of transcripts) along with expression estimation 
mode (-e), accurate abundance estimations of the input 
transcripts were done. The estimates of abundance were 
converted to read counts using the prepDE.py3 script 
provided within the StringTie package. From the cover-
age values calculated by StringTie for each transcript, 
prepDE.py3 calculates hypothetical read counts for each 
transcript using the following straightforward formula: 
reads_per_transcript is equal to coverage*read_len / tran-
script_len. Meanwhile another set of analysis was done 
using without expression estimation mode, and merged 
to evaluate the transcript classes and RNA biotypes using 
GFFcompare [31].

The FPKM values obtained from the StringTie in ball-
gown mode (-B) and the matrix of the same was used to 
estimate the distribution of the total FPKM within sample 

across expressed genes (FPKM of a gene/total FPKM of 
sample*100), top 20 genes covering most of the FPKM 
distribution were term ‘commonly expressed genes’ or 
CEGs. Further, to evaluate the differentially expressed 
genes the pseudo-counts generated for the two groups 
(Jhakrana_early and Jhakrana_late) were used for differ-
ential gene expression analysis using edgeR. The compar-
ison was done for the Jhakrana_early and Jhakrana_late 
groups (treatment = Jhakrana_early/Early Lactation, con-
trol = Jhakrana_late/Late Lactation). The G1-G2 would 
represent the difference in the transcript profile changes 
occurring amongst early and late lactation stages in the 
Jakharana breed. The CPM (count per million) cutoff for 
the edgeR v.3.42.4 analysis was set at 1.9 since the edgeR 
guidelines suggest choosing the CPM cutoff so that it 
corresponds to about 10–15 reads per sample (CPM cut-
off = 10/L; L = minimum library size or 5.2  million) [32]. 
The dispersion was estimated (d = 0.40706, and the value 
was used for determining differential expression by using 
the exactTest function, which conducts tagwise tests 
using the exact negative binomial test using ‘deviance’ 
option for rejection region. The genes having logFC > 2.5 
and FDR < 0.5 (Benjamini Hochberg) were considered 
upregulated, and genes having logFC>-2.5 and FDR < 0.5 
were considered downregulated [33] (Fig. 1).

Functional annotation and pathway analysis
DAVID and Networkanalyst v.3.0 (https://www.networ-
kanalyst.ca/) were used to perform ORA-based func-
tional annotation and pathway analysis [34–36]. This 
analysis was performed to provide more information 
about the biological functions and pathways significantly 
enriched in up- or down-regulated genes by focusing on 
gene ontology (GO) terms (BP, biological process), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and inter-
actome pathways (using a standard false discovery rate 
(FDR) < 0.05). The up- and down-regulated genes from 
different groups were inputted together into Networ-
kAnalyst 3.0 (https://www.networkanalyst.ca) and the 
STRING interactome protein-protein interaction data-
base was used with a confidence score cut-off of 700.

Results
Quality assessment of data
Raw reads obtained from all six samples averaged to 
40  million reads whereas the average clean reads were 
28.11  million reads. The percentage GC pre and post 
trimming were 50.94 and 47.61 respectively. The % of 
million reads having quality score above 30 before trim-
ming were 85.44 and after trimming the % of million 
reads having quality score above PHRED 30 were 85.97. 
The average uniquely mapped percentage out of the total 
clean reads were 75.6%, and 62.7% for Jakhrana early lac-
tation and Jakhrana late lactation respectively (Table 1).

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca
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%Dups refers to the percentage of duplicated reads, 
%GC indicates the percentage GC content, M Seqs refers 
to the total number of reads per sample in millions, and 
Q30% refers to the percentage of reads having PHRED 
quality score above 30. The forward read strand and the 
reverse read strand has been represented as F and R 
respectively.

Transcript analysis
Utilizing StringTie for assembly, we identified a total of 
166,154 transcripts from the merged GTFs of all six sam-
ples (Table  2). The qualitative analysis enabled the clas-
sification of transcripts based on their code and RNA 
biotypes. Among these transcripts, 49,285 were identi-
fied as complete transcripts. The majority of transcripts 
were categorized as mRNA (80%), with the remaining 

Table 1 The summary of raw fastQ and the clean or trimmed fastQ files along with mapping statistics
Group
Name

Sample Name Read Strand Raw fastQ files Clean fastQ files Alignment summary
% GC M Seqs Q30% % GC M Seqs Q30% Uniquely aligned (M reads)

Early lactation A F 48 58.1 87.14 48 50.4 86.94 38.4
R 49 58.1 86.02 48 50.4 88.41

B F 52 26 87.79 52 22.4 87.75 16.1
R 53 26 81.86 53 22.4 82.63

D F 47 33.8 88.21 47 30.2 87.9 23.4
R 47 33.8 87.45 48 30.2 89.72

Late lactation H F 49 28.2 90.71 49 25 90.769 18.9
R 50 28.2 83.11 50 25 84.13

I F 56 31.5 91.89 56 28.3 92.03 16.3
R 59 31.5 67.45 60 28.3 66.75

JEIKT F 53 39.1 88.07 54 32 87.61 18.3
R 54 39.1 85.58 55 32 87.11

Fig. 1 The methodological pipeline used to generate the differentially expressed genes (DEGs) and commonly expressed genes (CEGs) in the present 
study. The reference fasta and reference GTF was derived from NCBI RefSeq assembly GCF_001704415.2 (ARS1.2)
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belonging to ncRNA, tRNA, lncRNA, micsRNA, precur-
sorRNA, and rRNA categories (Fig. 2).

Stringtie assembling and FPKM distribution
After mapping the reads with StringTie, we successfully 
mapped 25,485 genes and 49,556 transcripts to the refer-
ence Capra hircus genome using the -e and -B options, 
respectively, for estimating expression and Ballgown 
compatibility. Among these, 14,068 genes had a single 
transcript, while 9,256 genes had more than one tran-
script (Fig.  3A). The average transcript length across 
all samples was approximately 3,165 (Fig.  3B). The total 
FPKM values were 459,531.45, 739,544.01, 356,543.83, 
548,791.64, 702,267.91, and 351,482.39 for the three 
Jakhrana early lactation and three Jakhrana late lactation, 
respectively (Fig.  3C; Supplementary Fig.  S1). The top 

20 genes contributing the highest percentage of FPKM 
across all libraries were CSN2 (n = 2), CSN3, CSN1S2 
(n = 2), PAEP, CSN1S1 (n = 4), GLYCAM1, LALBA, 
SRGN, LOC102169149, TMSB10, FTH1, SDS, TXNIP, 
LOC102184299, and S100A8 (Fig.  4A). Among these, 
FTH1, GLYCAM1, LOC102169149, LOC102184299, 
S100A8, TMSB10, LALBA, TXNIP, and SDS showed 
higher FPKM distribution in the early stages com-
pared to the late stages. CSN2, CSN1S2, and PAEP had 
higher FPKM distribution during the late lactation stage 
(Fig. 4B). Most of the commonly expressed genes (CEGs) 
were enriched as milk proteins except for GLYCAM1 and 
SRGN (Supplementary Fig. S2).

Table 2 The classification of transcripts based on their assembly to the reference GTF
Transcript classification codes Description No of transcript(s)
x Exonic overlap on the opposite strand (like ‘o’ or ‘e’ but on the opposite strand 2
u None of all (unknown, intergenic) 78,565
p Possible polymerase run-on (no actual overlap) 1192
o Other same strand overlap with ref exons 303
n Retained intron(s), not all introns matched/covered 1870
m Retained intron(s), all introns matched or retained 2418
k Containment of reference (reverse containment) 1203
j Multi-exon with at least one junction match 5888
i Fully contained within a reference intron 25,244
e Single exon transfrag partially covering an intron, possible pre-mRNA fragment 1
c Contained in reference (intron compatible) 183
= Complete, exact match of intron chain 49,285

Fig. 2 The RNA biotypes classification of the transcripts matching exact to the intron chain of reference GTF, represented as ‘=’ code in Table 2
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Differential gene expression analysis
The psuedogene count generated from StringTie were 
considered for the analysis of genes that are overall dif-
ferentially expressed (DEG) based on various FDR cutoffs 
(0.5 and 0.05). The commonly expressed genes essentially 
neither form the most differentially expressed genes nor 
they were statistically significant (Supplementary Table 
1),The multidimensional scaling plot (MDS) generated 
using edgeR couldn’t segregate two groups of Jakhrana 

goat by lactation stages, the transitional stage between 
the lactation phase may have diluted the clustering 
(Fig. 5A). To establish a consistent cutoff for analysis, the 
library sizes of the six samples were considered, result-
ing in a tags/genes reduction from 25,485 to approxi-
mately 12,773 using a counts per million (CPM) cutoff 
of 1.9 (Fig.  5B). The mean dispersion across all genes 
was calculated to be 0.40706, with a gene-wise biologi-
cal coefficient of variation of 0.638 (Fig. 5C). Differential 

Fig. 4 A. the barplot represent the percentage of total FPKM in the JK_early lactation and JK_late lactation group represented by proportion of genes in-
dicated in the X-axis. B. The split violin plot represent the log2transformed average FPKM values of CSN1S1, CSN1S2, CSN2, CSN3, FTH1, GLYCAM1, LALBA, 
LOC102160149, LOC120184209, PAEP, S100A8, SDS, SRGN, TMSB10, and TXNP during the early and late lactation in Jakhrana goat

 

Fig. 3 A. Histogram presenting the distribution of transcript count per gene. B. The density histogram presenting the distribution of transcript length in 
the dataset. C. The box and whisker plot presenting the distribution of FPKM values across all 6 samples. The FPKM has been represented as log2 trans-
formed values on the Y-axis
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expression analysis was conducted based on these param-
eters, using the dispersion value and exact test deviance 
goodness of fit statistics, with JK Late lactation consid-
ered as the control and JK early lactation as the treatment 
group. The analysis identified a total of 5 DEGs that were 
downregulated (logFC < -2.5; FDR < 0.05), 7 DEGs that 
were downregulated (logFC < -2.5; FDR < 0.1), 10 down-
regulated and 1 upregulated (logFC > + 2.5 & logFC < 
-2.5; FDR < 0.2), and 21 downregulated and 5 upregulated 

(logFC > + 2.5 & logFC < -2.5; FDR < 0.5) genes (Supple-
mentary Table S2).

Functional annotation of differentially expressed genes
The functional enrichment using DAVID for genes 21 
downregulated and 5 upregulated (logFC > + 2.5 & logFC< 
-2.5; FDR < 0.5) could enrich the terms in two promi-
nent annotation clusters (Fig.  6A). Cluster one with an 
enrichment Score: 1.747 and cluster two with an enrich-
ment Score: 0.941 comprised 4 terms (DOMAIN: ABC 

Fig. 6 A. Clusters identified using DAVID functional annotation. Two clusters were identified using the DAVID functional annotation clustering tool. B. Bar 
graph representing the DEGs enriched for the terms at various fold enrichments. The significantly enriched terms have been represented in green bars 
(Bonferroni FDR < 0.05)

 

Fig. 5 A. The multidimensional scaling plot representing the clustering of late lactation (JK_late) and early lactation (JK_early) samples. B. the MA plot 
showing the relationship between logCPM (count per million) and logFC (fold-change) across the tags/genes (black dots). The blue solid represent the 
logFC cut-off (+/- 2.5). The red dot represent the significantly expressed genes/tags at FDR 0.5
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transmembrane type-1, IPR011527: ABC transporter/ 
transmembrane domain, type 1, KW-0813 ~ Trans-
port, and GO: 0005524 ~ ATP binding) and 5 terms 
(TRANSMEM: Helical, KW-0812 ~ Transmembrane, 
GO: 0016021 ~ integral component of membrane, 
KW-1133 ~ Transmembrane helix, and KW-0472 ~ Mem-
brane). At Bonferroni p-value correction < 0.1, DOMAIN: 
ABC transmembrane type-1 and IPR011527: ABC trans-
porter, transmembrane domain, type 1 were significantly 
enriched (Sig indicated as green bar). The genes associ-
ated with these terms i.e., multidrug resistance-associated 
protein 4-like (LOC108637251), multidrug resistance-
associated protein 4-like (LOC108634594), and multi-
drug resistance-associated protein 4 (LOC102172427) 
were significantly downregulated (logFC< -2.5; FDR < 0.5) 
in JK_early group (Fig. 6B).

Discussion
The mammary gland has a dynamic and highly adaptive 
molecular profile enabling varying composition of milk, 
strategic defense against pathogen, and degree of apopto-
sis during the stages of lactation [23, 37]. Indigenous goat 
breeds in arid and semi-arid zones of developing coun-
tries, such as India, have adapted to local agro-climatic 
conditions and are valued for their medicinal milk prop-
erties, yet the molecular profiles of these goats during 
different lactation stages remain poorly understood [38]. 
Among the various factors influencing the milk composi-
tion of the goat, lactation stage is one of the crucial fac-
tor since from the onset of gestation to the involution 
the mammary gland goes through number of cycles of 
cell proliferation and degeneration [39]. The extremes of 
the lactation cycles including the early and late is when 
the number of mammary alveoli starts proliferating and 
decline in number respectively. One such case has been 
studied in the present report, the Jakhrana goats in late 
and early lactation stages were profiled for transcrip-
tome derived from milk somatic cells. The study pres-
ents a detailed transcriptome profile of Jakhrana goat’s 
milk somatic cells during early and late lactation phase, 
emphasizing the FPKM based gene abundance and the 
log fold change in the early lactation group compared 
with late lactation.

The comparative analysis of commonly expressed 
genes based on FPKM in early and late lactation 
stages in Jakhrana goats revealed distinct trends. 
Among the top commonly expressed genes (CSN2, 
CSN3, CSN1S2, PAEP, CSN1S1, GLYCAM1, LALBA, 
SRGN, LOC102169149, TMSB10, FTH1, SDS, TXNIP, 
LOC102184299, and S100A8), six were prominent milk 
protein encoding genes (PAEP, LALBA, CSN3, CSN1S1, 
CSN1S2, and CSN2), consistent with previous findings in 
goat and cattle regarding the importance of these genes 
in milk production [16, 40]. Notably, the CSN2, CSN1S2, 

and other casein genes exhibited higher expression levels 
during late lactation and late gestation compared to the 
dry period [41]. However, some studies suggest that the 
mRNA abundance of these caseins is actually greater in 
the early lactation stage [42].

All these milk protein genes exhibited higher FPKM 
values in the late lactation stage compared to early lacta-
tion, except for LALBA, which showed relatively constant 
expression across both stages. This stability in expression 
aligns with findings in buffaloes, where LALBA expres-
sion remained consistent across all lactation stages [18]. 
On the other hand, FTH1, GLYCAM1, LOC102169149 
(S100-A12), LOC102184299 (Serpin B3), S100A8, SDS, 
TMSB10, and TXNIP demonstrated higher expression 
levels during early lactation. FTH1 (Ferritin heavy chain 
1), which encodes a major intracellular iron-storage pro-
tein, has been previously reported to have high FPKM 
during late lactation stages in bovines [16]. This finding 
contrasts with our study, although FTH1 is also a highly 
prioritized protein expressed during the colostrum stage 
[40, 43]. Similarly, GLYCAM1, a gene in the mucin family 
encoding a milk fat globule glycoprotein, showed higher 
expression during early lactation in caprine milk, consis-
tent with previous studies in bovine milk [16, 44]. GLY-
CAM1 serves as an antimicrobial and lubricant for the 
neonatal intestinal tract during early lactation, regulated 
primarily by prolactin [45, 46]. Two S100 family protein 
encoding genes (S100A8 and S100A12) were abundantly 
expressed in early lactation stage in caprine milk in the 
present study, this Ca2+-binding proteins act as antimi-
crobial peptides during an innate immune response [47]. 
This antimicrobial protein has also been reported ear-
lier in milk from the Indian goat breeds [48]. This con-
tradicts the results reported in Holstein Frisian, where 
the late lactation stages have been reported to express 
higher levels of S100A8 and S100A12 [49]. Likewise, 
LOC102184299 (Serpin B3-like) is another antimicro-
bial peptide was over-abundant in early lactation stages. 
The FPKM-based trend suggests that milk proteins were 
abundant in late lactation stages, whereas genes encod-
ing antimicrobial and lubrication-related proteins were 
abundant in early lactation stages, protecting neonate 
kids against common pathogens.

Differential gene expression analysis between early and 
late lactation stages in Jakhrana goats revealed several 
key findings. In the early lactation phase, several genes 
were significantly downregulated, including MUC21, 
MPRSS4, NCCRP1, MUC2, and KRT78. Among these, 
MUC21 is involved in mucin production, suggesting a 
decrease in mucin levels during early lactation. This is 
intriguing, as mucins play a crucial role in mucosal pro-
tection and immune response in the mammary gland. 
The downregulation of these genes may indicate a shift 
in the mammary gland function towards milk production 
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and secretion. Furthermore, the study identified three 
major ABCC transporter genes, LOC102172427 (MRP4), 
LOC108634594 (MRP4-like), and LOC108637251 
(MRP4-like), that were downregulated in early lactation. 
These transporters are part of the ATP-binding cassette 
(ABC) transporter family, responsible for the efflux of 
metabolites, xenobiotics, and lipids into mammary epi-
thelial cells [50]. The downregulation of these transport-
ers suggests a modification in the composition of milk 
during early lactation, possibly to meet the changing 
nutritional needs of the neonates. It is noteworthy that 
human mammary epithelial cells possess MRP1, MRP2, 
and MRP5, with MRP4 reported in mammary gland tis-
sues [51–53]. This indicates a conserved mechanism of 
drug resistance and xenobiotic efflux in mammary epi-
thelial cells across species. Previous studies have reported 
the presence of an effective blood-milk barrier for bile 
acids, likely involving the MRP4 transporter, as indicated 
by [52]. The role of MRP4 and MRP4-like transporters 
in imparting drug resistance during lactation warrants 
further investigation, particularly in understanding the 
expression magnitude of MRP4 efflux transporter in 
mammary epithelial cells across indigenous and exotic 
goat breeds.

The downregulation of mucins during early lactation, 
as observed in this study, is intriguing, given their role in 
antimicrobial defense and lubrication. This finding con-
trasts with the overabundance of GLYCAM1, which also 
plays a role in antimicrobial and lubricating effects. This 
discrepancy may suggest a complex regulatory mecha-
nism involving multiple factors in milk composition dur-
ing lactation. Moreover, the upregulation of the LCAT 
gene during early lactation is interesting, as it encodes 
lecithin-cholesterol acyltransferase, which metabolizes 
cholesterol to cholesteryl ester. This finding suggests 
a potential role of LCAT in milk lipid metabolism and 
may have implications for milk yield regulation. In Sarda 
sheep, specific SNPs in the LCAT gene have been linked 
to milk yield [54]. On the other hand, LCAT activity has 
been observed to decrease shortly after parturition in 
cattle [55].

Conclusion
This study delved into the differential gene expres-
sion patterns between early and late lactation phases in 
Jakhrana goats. Our findings shed light on the abundance 
of genes encoding antimicrobial peptides and proteins 
during early lactation, which likely play an important 
role in protecting neonates from invasive pathogens. 
Key genes such as FTH1, GLYCAM1, LOC102169149 
(S100-A12), LOC102184299 (Serpin B3), S100A8, SDS, 
TMSB10, and TXNIP were identified as potential contrib-
utors to this protective mechanism. Conversely, late lac-
tation stages exhibited an upregulation of genes encoding 

major milk proteins, indicative of a shift towards milk 
production and secretion. Our analysis also revealed the 
upregulation of the ABC transporter gene MRP4 during 
late lactation, highlighting its importance in xenobiotic 
efflux. These findings provide valuable insights into the 
molecular mechanisms underlying lactation in Jakhrana 
goats.
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