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Abstract 

Background Aging is a complex, heterogeneous process that has multiple causes. Knowledge on genomic, epig-
enomic and transcriptomic changes during the aging process shed light on understanding the aging mechanism. 
A recent breakthrough in biotechnology, single cell RNAseq, is revolutionizing aging study by providing gene expres-
sion profile of the entire transcriptome of individual cells. Many interesting information could be inferred from this 
new type of data with the help of novel computational methods.

Results In this manuscript a novel statistical method, penalized Latent Dirichlet Allocation (pLDA), is applied 
to an aging mouse blood scRNA-seq data set. A pipeline is built for cell type and aging prediction. The sequence 
of models in the pipeline take scRNA-seq expression counts as input, preprocess the data using pLDA and predict 
the cell type and aging status.

Conclusions pLDA learns a dimension reduced representation of the expression profile. This representation allows 
identification of cell types and has predictability of the age of cells.
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Introduction
Single cell RNA sequencing (scRNA-seq) is a recently 
developed technology that allows the quantification 
of RNA transcripts at individual cell level. Traditional 
RNA-seq measures gene expression in “bulk” samples by 
sequencing RNA molecules pooled from a large number 
(thousands to millions) of cells. Bulk RNA-seq therefore 

measures only the average expression in a population of 
cells, and does not provide detailed information in indi-
vidual cells. In contrast, scRNA provides higher resolu-
tion in gene expression measurements by revealing the 
variability between cells. Single-cell technology directly 
measures the transcriptome and helps to identify gene 
regulatory networks and reveal unique cell types [1]. In 
an aging animal, cell of various types and their underly-
ing expression profile may change throughout its lifetime. 
These changes reveal how aging progresses differently in 
different cells and cell types.

Like most breakthroughs in recent biotechnology, the 
new opportunities come with challenges in data analysis 
and modeling. The raw data from scRNA-seq are similar 
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to that in bulk RNAseq. Both are sequencing reads from 
short fragments of RNA molecules, except that cell-spe-
cific barcodes are added to the RNA fragments in scRNA-
seq. After these RNA samples are pooled and sequenced, 
the barcodes reads the same cell to be sorted. The reads 
are then mapped to a reference transcriptome, and the 
data are in the form of a count table. Bulk RNAseq usu-
ally have only a handful of biological samples, whereas in 
scRNA-seq, it is common to have hundreds to thousands 
of samples in methods like SMARTer [2] to tens of thou-
sands of samples in Drop-Seq [3], each representing a sin-
gle cell. A consequence of sequencing many cells at the 
same time is that the sequencing depth is lower in indi-
vidual cells. Another characteristic of scRNA-seq data is 
the sparsity, or excess of zero counts. Part of this is bio-
logical, since the true average expression in a population 
of cells is only zero when a gene is not expressed in any of 
these cells, making it much less likely to happen in bulk 
samples. In a single cell, it is not as surprising that a gene’s 
transcript is indeed not present. On the other hand, the 
reduced sequencing depth also lowered the probability to 
detect genes with very low concentrations. Sparsity and 
relative lower sequencing depth are especially observed in 
Drop-Seq data as the method sacrifices sequencing depth 
for high throughput. Novel statistical methods need to be 
developed to cope with these problems.

Many new statistical models and methods have been 
developed, either to address the challenges associated 
with scRNA-seq in answering familiar questions, such 
as identifying differential expression [4–8], or new ques-
tions, such as constructing pseudotime [9]. In this man-
uscript we present an approach to identify cell type and 
age of cells using a penalized Latent Dirichlet Allocation 
model. We demonstrate that the transcriptome of cells 

change as the animal ages but the cells age differently in 
different cell types.

Method
Penalized Latent Dirichlet Allocation
We consider cells as documents in the latent dirichlet allo-
cation (LDA) [10] context, with genes equivalent to words 
as summarized in Table  1. The collection of all genes in 
a species corresponds to the whole vocabulary in a lan-
guage. Genes are indexed by g ∈ 1, . . . ,G where G is the 
total number of genes in the transcriptome. The data from 
one cell is a vector of gene counts y = [y1, . . . , yG]

T , where 
each yg is the observed transcripts count in the sequencing 
experiment for gene g.

The LDA model is a generative model that assumes a 
generative process for each cell (document) in a cell pop-
ulation (corpus). Cells could operate K (assumed known 
and fixed) biological processes, each corresponding to a 
topic. Each topic has a topic-specific gene expression fre-
quency, described in a K × G matrix β , where each row βk 
describes the conditional gene expression frequency under 
topic k and g βkg = 1 . A detailed model specification 
could be found in [10].

Given the gene count matrix YG×N , we can use LDA 
to identify latent biological topics and infer the topic fre-
quency for each cell, θi . Since K is usually much smaller 
than G, the topic by cell matrix � can be seen as a dimen-
sion reduced summary of the transcriptional activity in the 
N cells. The topic-level summary for each cell captures a 
higher-level, more abstract functional activity of cells, com-
pared to individual gene-level counts.

The matrix � can be used in clustering and classifica-
tion of cells, as well as comparison of functional differences 
between cell populations. We are interested in identifying 
the latent biological topics, as well as the topic-specific gene 
frequencies, which can help us understand the function of 
these topics. An illustration of the � and β is as follow:

In natural language processing, “stop words”, those that 
used in a similar and high frequency across various top-
ics, are usually removed before model fitting since they 
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offer little value in separating the topics. In scRNAseq 
data, there are also genes that have a similar βkg across 
topics and data from these genes bring more noise than 
inferential value in identifying the topics. We devel-
oped a method that includes a penalty term on the het-
erogeneity of βkg for any g over the K topics. A gene with 
βkg = β0g ,∀k has the same frequency in all topics, thus 
would not be useful in inferring the topics, and can be fil-
tered out. We have penalized log likelihood as

where � is the tuning parameter, l(α,β) is the likelihood 
from the original LDA model. Detailed model setup 
and optimization could be found in [11]. The algorithm 
is speed optimized and implemented as an R package 
(https:// github. com/ wuxia otian kevin/ pLDA).

Cell type classification and age prediction
We split the cells from all animals, both young and old, into 
equal sized training and testing sets. The 50/50 random 
split is done in each cell type such that after the split, there 
is a balanced representation of all cell types in the training 
set, including the rare cell types. A cell type is considered 

l∗(α,β) = l(α,β)+ �

K∑

k=1

V∑

g=1

(

βkg −
1

K

K∑

l=1

βlg

)2

rare if it has less than 30 young cells or 30 old cells in the 
training data. For this data set, DC, MK, Macrophage, 
Basophil are considered as rare cell types. We consider the 
major cell types and merge the subtypes for B- and T-cells.

We identify the latent topics by fitting the pLDA model 
on the scRNA-seq data from the training cells. We have 
previously shown that classification accuracy is not sensi-
tive to the choice of K [11]. Here we choose a K = 17 , the 
same as the number of cell types. This yields the estimates 
of �train and βtrain . The expression profiles at the topic level 
are now simplices of length K. We use the square root of 
�train as the input for support vector machine (SVM), for 
the square-root transformation increases the weight of less 
abundant topics but does it in a subtler manner compared 
to the logit transformation. Using the dimension-reduced 
and transformed �train , we fit one SVM to classify cell type. 
For each cell type, we separately train an SVM to predict 
the cell age. The procedure is summarized in Fig. 1.

Gene ontology analysis
We perform gene ontology (GO) analysis for each topic 
using the “conditional hypergeometric test” in the GOs-
tats package [12] in R with the “org.Mm.eg” annotation 
package. In the β matrix, each gene is represented by a 
length K vector. We only use genes with heterogeneous 

Table 1 Comparison between natural language and scRNAseq

English Example RNA Sequencing Example

Words regression, brain, cell Genes TP53, TNF, NFKB1, BRAC1

Topics statistics, neural science Topics protein synthesis, cell division

Documents research articles, news articles Samples RNA sequencing sample

Fig. 1 Prediction task setup

https://github.com/wuxiaotiankevin/pLDA
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frequencies across topics in the gene ontology (GO) anal-
ysis. Genes with cosine distance smaller than 0.6 to �1 are 
removed. All the genes left are used as the gene universe. 
For each gene, a corresponding topic is identified by the 
largest value in the length K vector from the β matrix.

For each topic, the enrichment analysis is carried out 
focusing on the topic specific genes. A p-value of 0.001 
is used as the cutoff for calling interesting enriched gene 
ontology terms.

Results and discussions
Mouse aging peripheral blood data
The scRNA-seq data used here are from 14,588 aging 
peripheral blood cells from 2 young (4 month) and 2 
old (24 month) female C57BL/6 mice. The data genera-
tion and filtering details are described in [13]. There are 
10,361 genes in the data set. 14,588 cells that passed 
quality filtering are clustered with Seurat (2.3.0) and 17 
clusters are identified. Cell types are assigned to the 17 
clusters based on general marker genes. These includes 
5 subtypes of T cells, 4 subtypes of B cells, 1 cluster of 
proliferating B or T cells, NK cells, monocytes, dendritic 
cells, megakaryocytes, macrophage, basophil and red 
blood cells (RBC). We consider major cell types and com-
bined the subtypes of the B and T cells Cells in the cell 
type identification analysis. The 14588 cells are randomly 

divided into training set and testing set, each holding half 
of all cells with the same cell type composition.

Gene expression at the topic level
We split the cells from all animals, both young and 
old, into equal sized training and testing sets. Using 
the scRNA-seq counts from training cells, we apply 
pLDA and estimate the latent topics and the topic-level 
expression profile for each cell.

Figure  2 shows the topic-level profiles for the cells in 
the training set. Each row represents a topic and each 
column represents a cell. The solid black vertical lines 
divide different major cell types and dashed black lines 
divide subtypes. Subtypes in B cells are Fcer2a B, Crip1 
B, Vpreb3 B, Zcwpw1 B. Though cell type information 
is not provided to the pLDA model, and we do not feed 
any biological gene network to the model, the latent top-
ics inferred from the data lead to a dimension reduced 
version of the transcriptomes that show distinct pat-
terns across cell types. Some topics are exclusively seen in 
one cell type. For example, Topic 4 is almost exclusively 
seen in RBC cells. Topic 17 is mostly observed in T cells, 
though its activity appears lower in cytotoxic T cells. 
Other topics are observed in multiple cell types, but with 
different frequencies. For example, Topic 8 is observed in 

Fig. 2 pLDA inferred topic by cell matrix of aging mouse peripheral blood data. Solid black vertical lines divide different cell types
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T cells as well as NK cells. Its frequency is higher in NK 
cells and Cytotoxic T cells than the other T subtypes.

The estimation process in pLDA does not use cell type 
information. However, a clear structure is observed for 
different cell types in the � matrix. This suggests that the 
topic frequencies obtained from unsupervised learning 
indeed capture functional information on cell types.

Cell type classification using topic profiles
We train a SVM using topic profiles from half of the cells 
as input to identify the major cell types. The expression 
profiles summarized as biological topic profiles, though in 
the form that is highly dimension-reduced, reserve most 
of the information about cell type specific characteristics. 
Therefore, the SVM built on the topic frequencies accu-
rately recover most cell’s cell type. Figure 3 shows the con-
fusion matrix on the testing cells. The overall accuracy is 
91%. These expression profiles are well maintained regard-
less of age, and the cells are well classified when the age of 
the animal is not used in our classifier. Though cells from 
both young and old mice are included, the accurate recall 
percentage ranges from 79% to 97%, with the exception 

of MK cells, which are almost exclusively identified in old 
mice and only recalled with 66% accuracy.

Although the cell type classification is trained using 
labeled cells from both young and old mice, it appears that 
young cells are easier to identify. Table 2 shows the recall 
accuracy of each cell type for cells from old and young 
mice separately (we do not include the MK cells here as 
there is only one MK cell detected in the old mice in the 
test set). In all cell types except NK cells, the accuracy is 
higher in younger cells, suggesting that cells from old mice 
may not maintain their identity as well as younger cells.

The most errors in cell type identification appear in 
B cells, and the error is not entirely random. The B cells 
that are mis-identified are mostly falsely identified as MK 
cells. Interestingly, MK cells appear to resemble old B cells 
(Fig. 4).

Aging identification
We find that directly making dual predictions of cell type 
and age does not produce satisfactory result. This is likely 
due to that cells of different types age differently. We find 
that a hierarchical approach that first identifies a cell’s cell 

Fig. 3 Confusion matrix of cell type classification result on the test data set
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type, and then identifies its age, produces better accuracy. 
Figure  4 shows the confusion matrix when we consider 
age groups in each cell type. Each block consists of a 2× 2 
table that sum up to the corresponding cell in Fig. 3.

There is clearly age-dependent expression changes in 
most cell types. The the abundant cell types (T, NK, B, 
Monocytes), the accuracy of age prediction is high. This 
is reflected by the higher values on the diagonal, and 

within each 2× 2 block along the diagonal, in Fig. 4. Given 
the correct cell type, the accuracy of inferring a cell’s age 
ranges from 74% to 100%, with the higher accuracy in 
more abundant cell types. The accuracy is at least 79% for 
cell types that have at least 500 cells in the training data 
set. The MK cells are rarely detected in young mice, thus 
the age prediction is not as meaningful for these cells.

Table 2 Recall accuracy for cell types from different age

T NK B Mono DC Macro Baso RBC

Young .87 .77 .86 .83 .70 .73 .60 .80

Old .81 .82 .77 .73 .62 .73 .56 .56

Fig. 4 Confusion matrix of cell type and aging prediction using pLDA as dimension reduction on test data set
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Fig. 5 � matrix for naive CD4 T and naive CD8 T comparing young and old
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Aging represented as change of biological topic frequency
The change in the gene expression in aging is cap-
tured in the change of biological topic frequency. Fig-
ure 5 shows the topic frequencies between young and 
old cells in Naive CD4 T cells and Naive CD8 T cells. 
We can see that most of the cells maintain a high fre-
quency of Topic 17, the marker topic for T cells. This 
is consistent with the observation that most T cells, 
regardless of age, can be correctly identified as T cells. 
However, the topic frequency of Topic 17 is reduced in 
old cells, suggesting that in older animals the T cell’s 
most prominent biological function is reduced. We 
can also see that, compared to young T cells, Topic 16 
is more prevalent in old CD4 T cells, whereas Topic 8 
is more prevalent in CD8 T cells. In the topic specific 
gene frequencies section we provide an interpretation 
of these topics.

For the two most abundant cell types, B cells and 
T cells, we evaluated the prediction accuracy as we 
increase the amount of training data. The accuracy can 
be further increases as we use more cells in the training 

(Fig. 6). Using the topic frequency produces even better 
prediction for age compared to using the marker genes 
for these cell types, where the marker genes are the 
ones identified in [13]. pLDA and LDA provide similar 
results. Both show a substantial improvement over the 
marker genes.

The topic specific gene frequencies
In many natural language processing applications, the 
focus is put on the dimension reduced profile (the � 
matrix) and the downstream clustering or classification 
based on the reduced data. The topic-specific frequency 
that explains the differences among the topics is often 
discarded as a byproduct. However, in the scRNA-seq 
context, the topic-specific gene frequency matrix is a key 
output as it explains the differences between the biologi-
cal topics and provides biological interpretation.

Figure  7 shows the 17 latent topics identified from 
the pLDA model. This matrix defines the biological 
functions of each topic. For easier visualization, we 
rearrange the genes such that ones with high frequency 

Fig. 6 Comparing young/old prediction accuracy for B cells and T cells using pLDA, LDA and marker gene expressions
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in the same topic are grouped together. Gene ontology 
(GO) analysis is performed for each topic to identify 
the enriched biological functions in each topic. The top 
GO terms significantly enriched by topic are summa-
rized in Table 3. For example, the first 5 rows of Table 3 
summarizes the top enriched GO terms for topic 4 
learned from pLDA. Topic 4, which is mostly seen 
in red blood cells (RBC) in Fig.  2, has enriched gene 

expression in erythrocyte (RBC) differentiation, devel-
opment and homeostasis. Topic 5 is mostly active in B 
cells. The corresponding GO terms are related to anti-
gen processing and B cell activation. Topic 8 is mostly 
observed in natural killer (NK) cells. The gene ontol-
ogy terms are all natural killer cell related. Topic 17, 
which is most abundant in T cells, has enriched T cell 
terms like T cell activation and T cell differentiation. 
Note that these topics are not supervised or guided by 
biological knowledge. Instead, these are automatically 
detected in the pLDA model.

Conclusions
We present a pipeline for cell type and age group pre-
diction for mouse blood cells based on a novel statisti-
cal method, penalized Latent Dirichlet Allocation [11]. 
The pLDA method produces two outputs: a dimension 
reduced expression profile that summarizes each cell’s 
expression activity as frequencies of a small number of 
biological topics, and a topic-specific gene frequency 
matrix that describes how each biological topic uses vari-
ous genes. We show that the topic-level profiles allows 
the identification of cell types and has predictability of 
the age of cells.

The accuracy in predicting the age of the cells vary 
across cell types. This may simply reflect a difference in 
the size of training set. For the rarer cell types, it is harder 
to learn how to classify young cells from old cells.

In our pipeline, we keep the topic-specific gene fre-
quency estimated from the training cells and directly 
use them in the training cells to decompose the gene 
counts and obtain the topic profiles of the testing cells. 
This procedure borrows the transfer learning idea and 
is one of the advantages of our algorithm. To iden-
tify the latent topics, it is necessary to have a diverse 
population of cells that elicit different biological pro-
grams to achieve their functions. Therefore, the latent 
topics cannot be discovered if we only have a homoge-
neous population of cells. However, once the topic-spe-
cific gene frequency (the β matrix) is known, we may 
decompose individual cell’s gene counts to obtain its 
topic-level profile.

In this manuscript we have only used several thou-
sand cells in the estimation of β , and these are only 
blood cells. It is possible that there are certain biologi-
cal functions that are not active in any blood cells but 
other cell types. These will not be identified in the β 
matrix we obtain. However, the topics could be learned 
from a large data set covering a diverse population of 
cell types. Once learned, there is no need to re-learn 
the topics each time when we encounter a new data set. 
The dimension reduced topic profiles, i.e., the topic-cell 

Table 3 Mouse blood aging data GO terms

Topic Term

4 erythrocyte development

4 erythrocyte differentiation

4 erythrocyte homeostasis

4 myeloid cell development

4 myeloid cell homeostasis

5 antigen processing and presenta-
tion of peptide antigen via MHC 
class II

5 antigen processing and presenta-
tion of peptide or polysaccharide 
antigen via MHC class II

5 antigen processing and presenta-
tion of exogenous peptide antigen 
via MHC class II

5 B cell activation

8 natural killer cell chemotaxis

8 regulation of natural killer cell 
chemotaxis

8 natural killer cell activation

8 natural killer cell mediated immunity

11 myeloid leukocyte mediated 
immunity

11 regulation of myeloid leukocyte 
mediated immunity

11 myeloid leukocyte activation

11 regulation of vesicle-mediated 
transport

11 myeloid cell activation involved 
in immune response

12 complement activation

12 protein activation cascade

12 long-chain fatty acid transport

12 humoral immune response

14 muscle cell differentiation

14 striated muscle cell differentiation

14 muscle cell development

17 T cell activation

17 T cell differentiation

17 lymphocyte differentiation

17 T cell receptor signaling pathway

17 lymphocyte activation
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matrix � for the new data is obtained using previously 
trained β . This solves the problem that the new data 
set might be small and may not be diverse enough to 
allow all topics to be well estimated. It also saves com-
putation time. As the scRNAseq community continues 
to accumulate and share data, we will be able to esti-
mate the β matrix with increasing accuracy and preci-
sion that enable other users to project their gene level 
expression profile to topic level profile that is more sta-
ble and easier to interpret.
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