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Abstract
Background DNA metabarcoding applies high-throughput sequencing approaches to generate numerous 
DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, 
however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are 
limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION 
(Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms 
for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of 
specialised software for processing such reads.

Results We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I 
(COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina 
MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw 
read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated 
metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational 
taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the 
zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs 
between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could 
be recovered after just 12–15 h of sequencing.

Conclusion Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like 
accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also 
show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same 
ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires 
confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various 
metabarcoding applications.
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Background
DNA metabarcoding refers to the high-throughput 
sequencing of total (and sometimes degraded) DNA 
from bulk or environmental samples (e.g., air, water, 
soil, faeces, etc.) with the goal of multispecies identifica-
tion [1]. It was built upon the DNA barcoding paradigm 
that has been established for about two decades involv-
ing the sequencing of short segments of DNA (termed 
“barcodes”) and matching them to sequence databases 
to obtain species identities [2]. DNA metabarcoding 
emerged in the 2010s, and was primarily made possible 
due to rapid advancements in nucleic acid sequencing 
technologies—with “next-generation sequencing” (NGS) 
platforms—which have the ability to generate billions of 
sequence reads in a single experiment [3]. This develop-
ment has been groundbreaking due to the sheer ability 
of NGS platforms to generate sequence reads (i.e., DNA 
barcodes) in parallel, so multispecies detections and 
identification from various sample types are now pos-
sible. This has led to a meteoric rise in the number of 
studies that have since performed NGS-based barcoding 
or metabarcoding for various applications. For instance, 
60% of DNA sequencing studies in marine science pub-
lished yearly between 2013 and mid-2022 generated their 
sequence reads with Illumina [4]. The release of the Min-
ION in 2014 by Oxford Nanopore Technologies (ONT) 
became another significant milestone in nucleic acid 
sequencing for several reasons: [1] its lower entry and 
per-base sequencing cost (2,000 USD for the entry starter 
pack) [2], its ability to perform long-read sequencing 
(now up to ~ 4 Mb long) [3], its compact size and porta-
bility, and [4] its ability to generate data in real-time [5, 
6]. All these were perhaps a direct response to common 
criticisms of Illumina sequencing, which is comparatively 
more expensive, and limited by its short read-lengths (up 
to ~ 500 bp). Since then, nanopore sequencing has been 
applied in numerous whole-genome sequencing studies 
[7–10] and metagenomic studies [11, 12].

However, nanopore metabarcoding applications 
remain relatively uncommon, and this is evident in the 
handful (but increasing) number of published papers, 
especially in biodiversity-related fields. Such studies 
focused on microbes [13–18], and few have paid atten-
tion to non-microbial taxa until more recently. Impor-
tantly, Krehenwinkel et al. [19] and Baloğlu et al. [20] 
laid the groundwork with ONT’s MinION sequencer by 
successfully metabarcoding mock communities com-
prising nine arthropod and 50 aquatic invertebrate 
species respectively. Other studies have since applied 
nanopore metabarcoding for biodiversity and commu-
nity characterisation [13, 21–25], species-specific detec-
tions [26, 27], and even gut content analysis [28, 29] 
with actual samples. The growing consensus from the 

abovementioned studies is that nanopore sequencing 
shows promise in metabarcoding.

We posit that the general lack of nanopore-based 
metabarcoding studies can be attributed to two main fac-
tors. The first is the perception that nanopore reads are 
highly erroneous. This is unsurprising given that early 
studies have reported error rates of ~ 20% [30] to as high 
as 38% [31]. In contrast, the current error rate of Illumina 
sequencing is only 0.24% [32]. There is thus concern that 
the high error rates would hinder accurate species identi-
fication in DNA metabarcoding. The second factor could 
be the lack of programs to process nanopore reads for 
metabarcoding (but see below), compared to the pleth-
ora of pipelines catered to short-read sequencing, like 
APSCALE [33], DADA2 [34], eDNAflow [35], or OBI-
Tools [36]. DADA2 currently supports PacBio circular 
consensus sequencing but not nanopore reads [37], and 
even ONT’s own EPI2ME platform is intended for micro-
bial sequencing only. Nanopore-specific workflows like 
ONTrack [38], NGSpeciesID [39] and miniBarcoder [40, 
41] were designed mainly for DNA barcoding, although 
Davidov et al. [13] have successfully applied ONTrack to 
process their metabarcoding reads. Prior metabarcoding 
studies have worked around the lack of specialised soft-
ware by either: (i) conducting BLAST searches of raw 
nanopore reads with stricter e-value settings as low as 
1e− 40 to minimise erroneous matches due to chance [21, 
26], (ii) using custom reference databases for mapping 
and processing reads [23], or (iii) using existing programs 
designed for short reads, like VSEARCH [42] or CD-HIT 
[43] with more relaxed settings for clustering error-prone 
nanopore reads [28, 44].

We expect that nanopore metabarcoding studies will 
become more common, given the release of new nano-
pore metabarcoding workflows like ASHURE [20], 
decona [45] and MSI [27], its real-time sequencing capa-
bilities, as well as improvement in flow cell chemistries 
and base calling models over time. The latter is evidenced 
in the decreasing raw read error rate to ~ 6% using R9.4 
flow cell chemistry [46], and even lower at ~ 4% for R10.3 
flow cells [47]. Two research groups have since indepen-
dently confirmed that it is possible to generate highly-
accurate, Illumina-like, DNA barcodes without further 
need for error correction with R10.3 sequencing chem-
istry [48, 49]. As of writing, raw read accuracy is now 
~ 99% with the latest R10.4.1 sequencing chemistry and 
base calling models (see https://rrwick.github.io/ for 
more up-to-date information).

In light of these improvements in sequencing accuracy, 
we propose that the time is ripe for broader-scale nano-
pore metabarcoding, and on more complex biological 
communities. In this study, we performed mitochondrial 
cytochrome c oxidase subunit I (COI) metabarcoding on 
species-rich, bulk zooplankton samples collected from 

https://rrwick.github.io/
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the tropical waters of Singapore. We then benchmarked 
the relative abundance and community composition 
of molecular operational taxonomic units (MOTUs) 
obtained from nanopore sequencing against Illumina 
sequencing—the current gold standard for metabarcod-
ing sequencing—to investigate if the sequencing platform 
affects community characterisation of zooplankton com-
munities. We show that processing nanopore reads with 
available programs like amplicon_sorter [48] produces 
highly-accurate consensus metabarcodes that are Illu-
mina-like in accuracy. To the best of our knowledge, this 
is the first study to demonstrate that nanopore consen-
sus metabarcodes are almost always indel-free, even with 
R10.3 chemistry. This is also an advancement over exist-
ing workflows that incorporate clustering and subsequent 
polishing steps as these sequences would still retain indel 
errors, thereby reducing confidence in their quality. We 
further demonstrate that such high-quality metabarcodes 
can be obtained without the need for complicated wet-
laboratory procedures like rolling circle amplification as 
with the ASHURE workflow, or even error correction 
programs, like in the MSI and decona pipelines. More-
over, we were able to recover ~ 85% of zooplankton rich-
ness with 12–15  h of sequencing run time. Our study 
demonstrates the viability of nanopore metabarcoding for 
analysing complex, biodiverse communities, and we hope 
this inspires greater confidence in nanopore sequencing 
for a greater variety of metabarcoding applications.

Methods
Sample collection and processing
The study samples comprised a series of zooplankton col-
lections made during August–September 2020 in Singa-
pore. Collections were permitted by the National Parks 
Board, Singapore (Permit Number NP/RP18-051). The 
targeted sites were off Pulau Hantu and Sisters’ Islands in 
the Singapore Strait (See Supplementary File S1 for GPS 
coordinates). All plankton collections were performed 
at night (1800–2200 h), and sampling was conducted in 
two ways. First, triplicate oblique plankton tows were 
performed from a boat with bongo nets (2 m in length, 
500 μm mesh size, 50 cm ring diameter) from a depth of 
15 m to the surface at 1 m/s. The plankton net was always 
rinsed with fresh water before each tow, and its con-
tents were collected as the field negative control. After 
each tow, the contents from one cod-end were poured 
through 2 mm and 500 μm sieves to filter excess seawater 
before bulk preservation in molecular-grade ethanol [50]. 
Specimens larger than 1  cm were picked out individu-
ally. The collections were thus separated into three size 
fractions—1 cm, 2 mm and 500 μm. Second, a quatrefoil 
light trap (30 cm diameter by 25 cm height; 5 mm entry 
slit width) fitted with two GT-AAAs (Glo-Toob) was left 
at the jetty of each island 1.5 m below the water surface 

for two hours (See Supplementary File S1 for GPS coor-
dinates). Light trap samples were processed in the same 
way as bongo net samples. All bulk samples were brought 
back to the laboratory and stored at -20 °C prior to DNA 
extraction.

DNA extraction and PCR amplification
Bulk samples were first ground with pre-sterilized mor-
tar and pestles. Genomic extraction was performed with 
DNeasy Blood and Tissue Kit (Qiagen) following the 
manufacturer’s protocol, except that genomic DNA was 
eluted in nuclease-free water. To prevent cross-contam-
ination, a fresh set of autoclaved mortar and pestle was 
used for each tow/light trap. All units were thoroughly 
washed and autoclaved before the next set of DNA 
extractions.

We amplified the 313-bp fragment of mitochondrial 
COI for direct comparison of PCR products across short- 
and long-read platforms. PCR amplification was per-
formed using the mlCOIintF: 5’-GGW ACW GGW TGA 
ACW GTW TAY CCY CC-3’ [51] and LoboR1: 5’-TAA 
ACY TCW GGR TGW CCR AAR AAY CA-3’ [52] 
primer combination. This primer combination was also 
chosen for its high amplification success in marine organ-
isms [53–56], and is approximately four times cheaper 
than the conventional mlCOIintF and jgHCO2198 
[57] metabarcoding primer pair [28, 58]. Furthermore, 
Yeo et al. [59] have also demonstrated that 313-bp COI 
sequences performed just as well as 658-bp barcodes for 
species-level identification. The primers were tagged at 
the 5’ end with custom 13-bp sequences (i.e., “tags”) from 
Srivathsan et al. [41] to allow for downstream demulti-
plexing of sequence reads to samples. The longer-than-
usual tag lengths were necessary to accommodate the 
error profile of Kit 9 and R10.3 sequencing chemistry 
[41] (though it was recently reported that shorter 9-bp 
tags work well for R10.4.1 sequencing kits and flow cells 
[60]). Each PCR was assigned its own unique forward 
and reverse tag combination where possible, and if there 
were overlapping tag combinations, we separated them 
into different library pools (i.e., Plate A and B).

PCR was carried out in 25 µl triplicate reactions using 
2  µl genomic DNA (100× dilution of original extract), 
12.5  µl of GoTaq Green Master Mix (Promega), 2  µl of 
10 µM 13-bp tagged forward and reverse primers, 1 µl of 
bovine serum albumin (1 mg/ml; New England Biolabs) 
and 7.5  µl of nuclease-free water. A step-up thermo-
cycling profile was used: 1 min denaturation at 94  °C; 5 
cycles of 30  s at 94  °C; 2  min at 45  °C; 1  min at 72  °C; 
30 cycles of 30 s at 94 °C; 2 min at 55 °C; 1 min at 72 °C 
and a final extension of 3 min at 72 °C. All PCR products 
were screened on 2% agarose gels stained with GelRed 
(Biotium Inc.) to ensure appropriate amplification. PCR 
amplicons were subsequently combined by plate into two 
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pools and purified with SureClean Plus (Bioline). Plate 
A and B had 48 and 72 amplicons (including negatives 
and controls) respectively. In total, 34 samples, four field 
controls, and two PCR negatives were carried forward 
for Illumina and nanopore library preparation (40 ✕ 3 
PCRs = 120 amplicons).

Illumina metabarcoding and bioinformatics
We prepared two Illumina libraries using NEBNext Ultra 
II DNA Library Prep Kit (New England Biolabs) following 
the manufacturer’s protocol, up till the adapter ligation 
step (i.e., PCR-free libraries). Libraries were multiplexed 
using TruSeq CD Dual Indexes (Illumina). Cleanups 
were performed using 1.0× AMPure XP beads (Beck-
man Coulter). The two libraries were pooled together and 
outsourced for sequencing on a single Illumina MiSeq 
(2✕250-bp) lane at the Genome Institute of Singapore.

Illumina reads were processed according to a modified 
metabarcoding pipeline from Sze et al. [61] and Ip et al. 
[62]. First, Illumina paired-end reads were merged using 
PEAR v0.9.6 [63]. Thereafter, OBITools v1.2.13 [36] was 
used for downstream processing of assembled reads. 
Specifically, the ngsfilter module was used to demulti-
plex reads to respective PCR replicates under default set-
tings, where up to 2-bp mismatch was allowed for primer 
sequences, but no mismatch allowed for tag sequences. 
Sequence reads were then dereplicated and sorted to 
samples with obiuniq and obisubset respectively. We 
retained sequences with ≥ 5 counts and between 303- and 
323-bp in length using obigrep. Subsequently, the fil-
tered reads were further collapsed with obiclean, where 
sequences with 1-bp difference from each other were 
considered sequencing errors and further collapsed, and 
only reads with ‘head’ status were retained. We then con-
catenated all sequences across all samples, and ran cd-
hit-est v.4.8.1 [43] to collapse 100% identical sequences. 
Any sequence that clustered with PCR negatives or con-
trol samples at 100% were eliminated.

Nanopore metabarcoding and bioinformatics
The same cleaned amplicon pools were used to prepare 
two nanopore libraries with the Ligation Sequencing Kit 
(SQK-LSK109) following the manufacturer’s protocol, 
but end-repair and adapter ligation times were increased 
to 60 and 15  min respectively [58]. Cleanups were like-
wise done using 0.9× AMPure XP beads (Beckman 
Coulter) and the supplied Short Fragment Buffer (SFB). 
Finally, the two libraries were each sequenced on fresh 
R10.3 MinION flow cells on MinKNOW v20.10.3 for 
Ubuntu 16. The R10.3 flow cell chemistry was selected 
given its improved accuracy and homopolymer resolu-
tion [49, 64]. RUN A lasted 20 h and 30 min, while RUN 
B lasted 41 h.

Raw fast5 reads were exported to the National Uni-
versity of Singapore’s High Performance Computing 
Volta cluster for GPU basecalling on NVIDIA Tesla 
V100 SXM2 32GB with Guppy v5.0.14 + 8f53ee9, using 
the super accurate (SUP) model at default settings. We 
then performed a length filter with NanoFilt v2.8.0 [65] 
to retain only sequence reads ≥ 250-bp in length. Sub-
sequently, the sequences were distributed to respective 
PCR replicates with the demultiplexing module of ONT-
barcoder v0.1.9 [49]. We set 313-bp as the read length 
threshold, and kept the other settings as default. Only 
sequences deviating up to 2-bp from the tag sequence 
were accepted in the demultiplexing process, which was 
possible as tags were designed to differ by ≥ 3-bp from 
each other [41]. Moreover, ONTbarcoder recognises and 
splits self-ligated reads during demultiplexing, thereby 
retaining more reads for downstream analysis. Thereaf-
ter, we concatenated the reads by sample.

For metabarcoding analysis, we used the amplicon_
sorter v2022-03-28 [48] to sort and group the nanopore 
reads based on length and sequence similarity in order 
to generate consensus metabarcodes. We selected it for 
three reasons. First, amplicon_sorter performs reference-
free clustering which is extremely useful in our case since 
we did not have a priori knowledge of the community 
composition of our zooplankton samples. Second, ampli-
con_sorter considers all possible clusters when gener-
ating consensus sequences, meaning it can be utilised 
to analyse DNA metabarcoding data. Third, amplicon_
sorter corrects for indel errors when calling the major-
ity consensus, thereby generating Illumina-like quality 
metabarcodes that will almost always be indel-free. This 
was unachievable with our prior tests of the same dataset 
using VSEARCH and CD-HIT, and subsequent polish-
ing with RACON [66] and medaka (https://github.com/
nanoporetech/medaka), and most nanopore metabar-
codes still contained indel-errors after polishing (data not 
shown).

We adopted a conservative approach where sequences 
were added into a species group by amplicon_sorter only 
if they were ≥ 97% similar (--similar_species), and con-
sensus sequences were combined together only if they 
were ≥ 98% similar (--similar_consensus). We also set 
the minimum and maximum length limits to 293- and 
333-bp respectively, and performed 3× random sam-
pling (--maxreads) to increase likelihood of sampling 
rare reads. We then mapped the sequences of each 
cluster back to the respective consensus sequence with 
minimap2 v2.24 [67] and polished the consensus with 
medaka v1.7.2, using the r103_sup_g507 model. Finally, 
we removed sequences that were present in our PCR 
negatives and controls from the samples using the same 
method described for Illumina metabarcoding.

https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
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MOTU delimitation and community analysis
We concatenated both Illumina and nanopore datasets 
together and aligned the sequences with MAFFT v.7.487 
[68], before grouping them into MOTUs with objective 
clustering (https://github.com/asrivathsan/obj_cluster) 
at the 3% threshold. This was consistent with distance 
thresholds applied in past studies on marine invertebrates 
for Singapore [50, 53, 62]. We then ran blastn (e-value: 
1e− 6 and 80% identity) with BLAST + v2.12.0 [69] against 
the NCBI nt database (downloaded 13 June 2022), and 
obtained taxonomic identities for blast hits that had 
85% identity match and minimum 250-bp overlap with 
readsidentifier v1.1.2 [70]. With the taxa identified, we 
grouped our Illumina MOTUs for a translation check on 
Geneious Prime v2022.2.2. (http://www.geneious.com/), 
using codes 2 (Chordata), 4 (Cnidaria), 5 (all other inver-
tebrates), 9 (Echinodermata and Rhabditophora) and 13 
(Ascidiacea). Illumina sequences that failed the transla-
tion check were considered possible nuclear mitochon-
drial DNA (NUMT) and discarded. For MOTUs that 
matched at ≥ 90%, we also screened the taxonomic identi-
ties against World Register of Marine Species (WoRMS; 
downloaded 8 May 2022) to confirm the MOTUs were 
marine, and also against past studies [50, 53, 62, 64, 71, 
72], as well as SeaLifeBase (https://www.sealifebase.ca/), 
to confirm each MOTU’s geographic ranges were within 
the Indo-Pacific.

With the final consolidated MOTU dataset, we assessed 
if and how MOTU communities compared between 
sequencing types quantitatively using diversity met-
rics, PERMANOVA, and qualitatively by examining the 
agreement in MOTU composition in terms of proportion 
and abundance. All statistical analyses were performed 
in R v4.3.1 [73], in RStudio (build 2023.03.0) unless 
otherwise stated, and all relevant plots were generated 
with the ggplot2 v3.4.2 package [74]. We computed the 
MOTU richness, Shannon-Wiener, and Simpson indices 
for each sequencing dataset using the diversity function 
in vegan v2.6-4 [75] and ran a paired, nonparametric 
Wilcoxon signed-rank test to test whether differences in 
the indices were due to different sequencing platforms. 
We also plotted the rarefaction curves of MOTU rich-
ness for each dataset with iNEXT v3.0.0 [76] to examine 
the relationship between MOTU richness and sampling 
depth. Community similarities between sequencing types 
were assessed using: (i) the Jaccard similarity coefficient 
by converting the MOTU community matrix to binary 
absence/presence data; and (ii) also with Bray-Curtis 
distances, where we normalised our MOTUs by relative 
abundance of sequencing reads [77]. We visualised the 
distances using nMDS plots (metaMDS in vegan) and 
heatmaps constructed with pheatmap v1.0.12 package 
[78]. We also performed PERMANOVA with adonis2 in 
vegan to test for community differences between Illumina 

and nanopore sequencing. Here, sequencing type (Illu-
mina or nanopore) was included as a variable, in addition 
to site (Pulau Hantu or Sisters’ Islands), date (5 August 
2020, 19 August 2020, 20 August 2020, 2 September 
2020, 3 September 2020 or 16 September 2020), as well 
as fraction (1 cm, 2–500 μm). We first verified that each 
variable had a non-significant betadisper result before 
inclusion into PERMANOVA. We also analysed the data-
sets separately to confirm the same ecological conclu-
sions would be obtained regardless of sequencing type. 
For this, we used the same Bray-Curtis distance datasets, 
and visualised the community dissimilarities with nMDS. 
For PERMANOVA, we only incorporated the bongo net 
samples as that sampling method had the most samples. 
We used the same three variables (site, date, fraction) and 
groupings as above for PERMANOVA with adonis2.

We also examined MOTU community compositions 
to determine how consistent they were between nano-
pore and Illumina platforms. We first looked at MOTU 
composition based on phyla, and compared the relative 
proportions of each phylum at the sequencing dataset 
level, and further at the sample level. In addition, we were 
also interested to know if a MOTU that was abundant in 
nanopore sequencing would be similarly so with Illumina 
sequencing. For each sample, we sorted and ranked the 
MOTUs by sequencing reads, and then assessed similar-
ity in rank order of MOTUs between sequencing plat-
forms with Kendall rank correlation coefficient (Kendall’s 
τ) [79]. We performed the correlation analysis only for 
31 out of 34 samples as the remaining three samples had 
only one pairwise comparison.

Sequencing accuracy and quality of nanopore reads
A known drawback of nanopore sequencing is its rela-
tively high error rates. A close examination of the error 
rates of the raw reads and consensus sequences here 
was thus necessary to allay existing concerns regard-
ing its use. We mapped the nanopore sequences against 
the cleaned Illumina sequences at the sample-level (e.g., 
ZPT005 nanopore reads to ZPT005 Illumina reads) with 
mapPacBio.sh v38.96 in BBTools (script was also recom-
mended for nanopore data; https://sourceforge.net/proj-
ects/bbmap/). We maximised mapping sensitivity with 
the --vslow flag, and mapped two datasets: (i) the demul-
tiplexed reads from ONTbarcoder to estimate raw read 
error rates and (ii) consensus sequences generated from 
amplicon_sorter to assess consensus sequence quality. 
We only considered mappings where the nanopore que-
ries had ≥ 90% identity match to the Illumina reference 
sequences, and computed the total error rates, which 
took into account substitutions, insertions, deletions and 
ambiguous bases.

Additionally, for each MOTU shared between Illu-
mina and nanopore datasets, we further compared the 

https://github.com/asrivathsan/obj_cluster
http://www.geneious.com/
https://www.sealifebase.ca/
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
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constituent Illumina and nanopore member sequences 
of that MOTU with dnadiff v1.3 [80]. As our Illumina 
sequences were already confirmed to be translatable, and 
are thus free of frameshift errors and unlikely NUMTs, 
this comparison allowed us to assess the frequency of 
indel errors in our nanopore consensus sequences.

Time sampling of nanopore reads
Given the real-time sequencing properties of the Min-
ION, we also preliminarily examined the relationship 
between sequencing run time and its effect on the nano-
pore metabarcoding. It was previously observed that 
80–90% of DNA barcodes were obtained within the first 
few hours of sequencing [40, 49] for DNA barcoding 
studies. Here, we tested if the observed trends would be 
similar in a nanopore metabarcoding context. We sub-
sampled the nanopore reads generated from each run 
for every hour for the first three hours of sequencing, 
followed by every three hours thereafter, until 18  h for 
RUN A and 39  h for RUN B. For each time period, we 
repeated the entire workflow from Guppy basecalling to 
amplicon_sorter (see section ‘Nanopore metabarcoding 
and bioinformatics’). For each time point, we noted down 
(i) the number of raw reads generated, (ii) the number of 
reads demultiplexed by ONTbarcoder, and (iii) the num-
ber of metazoan MOTUs obtained for each time series 
dataset.

Results
Zooplankton collections
A total of 49 bulk zooplankton samples—24 and 25 from 
Pulau Hantu and Sisters’ Islands respectively—were col-
lected and included in this study (Supplementary File 
S1). Of the 49 samples, 37 were bongo net samples, seven 
were light trap samples, and five were field control sam-
ples. After sieving and sorting, the 500 μm size fraction 
was the most common (29 samples), followed by 2  mm 
(18 samples), with the 1  cm fraction class having the 
least (2 samples). PCR amplification was successful for 
34 samples (28 bongo net and 6 light trap samples), and 
nanopore and Illumina libraries were prepared for a total 
of 40 samples for this comparative study (including four 
field controls and two PCR negatives).

Metabarcoding and MOTU delimitation
For Illumina sequencing, we generated 10,038,735 
paired-end reads on a single Illumina MiSeq lane, 
7,630,728 reads were successfully assembled with PEAR, 
4,218,977 reads were successfully demultiplexed (55.3% 
demultiplexing success), and 4,162,498 reads remained 
after the length filter. Most Illumina reads dropped out 
at the PEAR assembly stage due to Q-score filtering, and 
during the demultiplexing step due to strict settings (no 
mismatches allowed in tags). We obtained 10,788 clean 

haplotypes after removing sequences present in controls 
and PCR negatives.

For nanopore sequencing, we generated 20,045,167 
raw reads from across two MinION sequencing runs 
(RUN A and B). We retained 14,123,752 reads after 
Guppy basecalling and NanoFilt, and 6,918,618 reads 
after demultiplexing with ONTbarcoder (48.6% demulti-
plexing success). The low demultiplexing success rate is 
common for 13-bp tagged primers and sequencing with 
R10.3 chemistry [41, 64, 81], but will not be a cause for 
concern as ~60% demultiplexing success rates are obtain-
able with R10.4.1 chemistry [82]. Consensus calling with 
amplicon_sorter generated a total of 4,206 sequences 
from 3,525,077 reads (51% of demultiplexed reads). At 
the sample level, 57.6% of demultiplexed reads were uti-
lised by the program to generate consensus sequences 
on average, with a minimum of 47.1–73.3% maximum. 
The median length was 313-bp (62% of total sequences 
generated); minimum and maximum sequence lengths 
were 300- and 339-bp respectively. We also observed 
that amplicon_sorter very rarely generated consensus 
sequences from different “gene groups” (two samples had 
one consensus sequence each while only one sample had 
five such consensus sequences). These were found to be 
of non-mitochondrial origin when we conducted nucle-
otide BLAST searches on NCBI web servers, and were 
thus excluded from the dataset. After filtering sequences 
present in the negatives and controls, we retained 3,973 
consensus sequences (3,295,247 reads). As polishing with 
medaka had a minimal impact in reducing error rates 
(~ 0.02% decrease), we carried out the analysis using the 
unpolished dataset instead (see [48]).

From the combined sequencing dataset, we obtained 
1,031 molecular operational taxonomic units (MOTUs) 
at the 3% threshold, with only 688 identified (at 85% iden-
tity match with ≥ 250-bp overlap) via readsidentifier. We 
discarded 61 MOTUs (four unclassified environmental 
samples, 35 Rhodophyta, 10 Fungi, eight Bacillarophyta, 
two Phaeophyceae, one Dinophyceae, and one Oomy-
cota). We further eliminated one Illumina MOTU for fail-
ing the translation check, and 10 MOTUs that matched 
non-marine Insecta. None of the remaining MOTUs’ 
geographic ranges fell outside the Indo-Pacific. Our final 
dataset comprised 616 Metazoa MOTUs, of which 316 
had ≥ 97% match to a sequence on NCBI nt database, and 
274 out of 316 obtained a species-level identity (Supple-
mentary File S1).

Comparing nanopore and Illumina metabarcoding
The proportion of demultiplexed reads assigned to each 
sample was largely consistent across both Illumina and 
nanopore sequencing for most samples (Fig.  1a). Illu-
mina recovered a higher number of MOTUs (589 vs. 
471) than nanopore, but species accumulation curves 
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suggested that ~ 120 samples were needed to fully cap-
ture zooplankton diversity for both sequencing types 
(Fig. 1b). 444 MOTUs were shared (72% overlap) across 
both sequencing platforms, with more MOTUs unique 
to Illumina than to nanopore (Fig.  1b, insert). At the 
sample-level, Illumina metabarcoding also consistently 
recovered more MOTUs than nanopore, with the excep-
tion of ZPT017 and ZPT023 (Fig.  1c). MOTU richness 
(p-value = 4.056 × 10− 5) and Shannon-Wiener diversity 
(p-value = 0.03) were found to be significantly different 
across paired samples, while Simpson diversity was not 
(p-value = 0.63, Fig. 1d). Even so, we observed clustering 
by sample on the nonmetric multidimensional scaling 
(nMDS) plots, especially with the Bray-Curtis distance 
metric (Fig. S1). This suggested that although MOTU 
richness differed across paired samples, the relative abun-
dance of MOTUs within each sample were quite similar 

across both sequencing platforms. Permutational mul-
tivariate analysis of variance (PERMANOVA) revealed 
significant differences in communities for both Jaccard 
and Bray-Curtis datasets (Jaccard: df = 27, F = 1.2329, 
R2 = 0.4542, p = 0.0014; Bray-Curtis: df = 27, F = 1.6542, 
R2 = 0.52754, p = 0.0001), but the differences were driven 
by the other three variables and not sequencing type 
(Table  1). When each sequencing dataset was analysed 
separately, we noted the same ecological conclusions 
from the nMDS plots and PERMANOVA as well—that 
the bongo net zooplankton communities were structured 
by date, fraction and site regardless of the sequencing 
platform (Fig. 2; Table 2).

Since MOTU richness differed between each sample’s 
Illumina and nanopore datasets, we checked if this dif-
ference altered the respective community compositions. 
Both Illumina and nanopore recovered all 10 metazoan 

Fig. 1 Sequencing statistics of zooplankton metabarcoding with Illumina MiSeq and Nanopore MinION. (a) Bar plot of sequence reads demultiplexed per 
sample per sequencing dataset. (b) Species accumulation curves of molecular operational taxonomic unit (MOTU) richness for each sequencing platform 
against the number of samples, extrapolated to visualise number of samples needed to capture maximum richness; number of MOTUs obtained (and 
shared) expressed in Venn (insert). (c) Bar plots showing the number of MOTUs obtained per sample per sequencing type. (d) Box plots comparing MOTU 
richness, Simpson index, and Shannon-Weiner index between sequencing platforms; asterisks indicate significant differences for paired Wilcoxon signed-
rank tests, and dots represent individual sample points (jittered)
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phyla, with nanopore recovering an additional single-
ton Platyhelminthes MOTU. Proportions of phyla were 
found to be consistent across both sequencing datasets, 
and were largely dominated by Arthropoda (~ 53%), fol-
lowed by Chordata (~ 20%) and then Cnidaria (~ 12%) 
(Fig.  3a and Table S1). The differences in MOTU rich-
ness were largely from these three dominant groups, with 
Illumina recovering 1.2 to 1.3× more MOTUs from each 
of these three phyla compared to nanopore (Table S1). 
The largest disparity was in Mollusca, for which Illumina 
recovered twice the number of MOTUs than nanopore. 
For the remaining six phyla (Echinodermata, Annelida, 
Porifera, Chaetognatha, Ctenophora, Bryozoa), Illumina 
and nanopore recovered approximately the same num-
ber of MOTUs. At the sample-level, the similar phylum 
proportions were also consistently observed, albeit with 
differences in species numbers (Fig.  3b). Only ZPT024 
was markedly different in terms of community composi-
tion, and this was consistent with the stark dissimilarity 

observed with nMDS plots (Fig. S1). When MOTUs were 
ranked by sequencing read counts between sequenc-
ing platforms, we found that Kendall’s τ was signifi-
cantly positive for 30 samples (min: 0.484; max: 0.986; 
p-value < < 0.05; Table S2), which suggested a positive 
correlation in MOTU rank abundance between both 
sequencing platforms. Kendall’s τ was also positive for 
ZPT024 (0.478), but the p-value was insignificant. This 
meant that if a MOTU was found to be abundant in one 
sample for one sequencing dataset, it would be highly 
likely to be abundant in the alternative platform as well. 
This assessment corroborated with the high pairwise 
Bray-Curtis similarity observed between samples across 
both sequencing platforms (Fig. S2), since the metric 
took into account read count data. This further demon-
strated that nanopore metabarcoding could reliably and 
consistently recover abundant MOTUs; this was simi-
larly corroborated by [28], even though our bioinformatic 
pipelines differed.

Nanopore metabarcode quality
We found that ~ 98% of the raw nanopore reads were 
erroneous when mapped to their respective Illumina 
samples, with a mean error rate of 4.20% (Fig. S3 and 
Table S3). This was consistent with the 4% error rate 
reported by Gunter et al. [47] for R10.3 flow cell chem-
istry. After consensus calling with amplicon_sorter 
however, and without further polishing with medaka, 
the percentage of consensus sequences per sample that 
remained erroneous dropped to 0–50.0% (average 24.0%), 
and error rates correspondingly decreased to 0–1.18% 
(average 0.40%) (Fig. S3 and Table S3).

Furthermore, for the 444 MOTUs shared between 
Illumina and nanopore, nanopore sequences from 406 
MOTUs (91.4%) did not have indel errors when com-
pared to the same MOTU’s Illumina sequences (Table 
S4). For the remaining 38 MOTUs: 22 of them had 
nanopore sequences with 1 indel-error, five with 2 indel 
errors. The rest had three or more indel errors, but this 
only affected 11 MOTUs. Since our Illumina sequences 
were already confirmed to be translatable, it in turn con-
firmed that 91.4% of the nanopore consensus sequences 
were free of any frameshift errors, and thus translatable 
as well.

Nanopore sequencing with time
We subsampled the fast5 reads of each run for every hour 
for the first three hours, and every three hours thereaf-
ter to investigate the relationship of (i) number of raw 
reads, (ii) number of demultiplexed reads, and (iii) num-
ber of metazoan MOTUs obtained over time. Although 
the number of samples differed between runs, both 
runs showed a similar trend in that all three variables 
increased at a decreasing rate over time (Fig.  4). Raw 

Table 1 Permutational multivariate analysis of variance 
(PERMANOVA) results comparing community differences 
between nanopore and Illumina metabarcoding datasets, with 
Jaccard coefficient and bray-Curtis dissimilarity. Variables with 
significant p-values are highlighted in bold
Jaccard

df Sum of 
squares

R2 F-value p-
value

SeqType 1 0.2065 0.00827 0.6062 0.987
Site 1 0.9791 0.03922 2.8744 0.001
Date 4 3.0335 0.12151 2.2264 0.001
Fraction 2 2.4961 0.09999 3.6639 0.001
SeqType: Site 1 0.0783 0.00314 0.2298 1.000
SeqType: Date 4 0.4419 0.01770 0.3244 1.000
SeqType: Fraction 2 0.2286 0.00916 0.3355 1.000
Site: Fraction 2 1.3542 0.05424 1.9877 0.001
Date: Fraction 4 2.0055 0.08034 1.4719 0.001
SeqType: Site: Fraction 2 0.2235 0.00895 0.3281 1.000
SeqType: Date: Fraction 4 0.2916 0.01168 0.2140 1.000
Residual 40 13.6253 0.54580
Total 67 24.9641 1.00000
Bray-Curtis
SeqType 1 0.0607 0.00263 0.2231 0.999
Site 1 1.2093 0.05248 4.4435 0.001
Date 4 4.0874 0.1774 3.7547 0.001
Fraction 2 3.7336 0.16204 6.8594 0.001
SeqType: Site 1 -0.0012 -0.00005 -0.0046 1.000
SeqType: Date 4 0.0419 0.00182 0.0385 1.000
SeqType: Fraction 2 0.0197 0.00085 0.0361 1.000
Site: Fraction 2 1.6076 0.06977 2.9535 0.001
Date: Fraction 4 1.3671 0.05933 1.2559 0.104
SeqType: Site: Fraction 2 0.0016 0.00007 0.0030 1.000
SeqType: Date: Fraction 4 0.0274 0.00119 0.0252 1.000
Residual 40 10.886 0.47246
Total 67 23.0409 1.00000
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reads and demultiplexed reads both increased propor-
tionately with respect to each other, with both variables 
only starting to plateau near the end of the respective 
runs. Conversely, metazoan MOTUs largely stabilised 
by the midway mark of each run, with RUN A and B 

obtaining 85% of the final MOTU count by the 12- and 
15-hour mark respectively (Table S5). Beyond that, how-
ever, further increase in reads did not translate to sub-
stantial increase in metazoan MOTUs.

Fig. 2 Two-dimensional nonmetric multidimensional scaling (nMDS) plots based on normalised Bray-Curtis distances for Illumina (a, c, e, g), and nano-
pore (b, d, f, h); coloured by sampling method (a and b), sampling site (c and d), date (e and f), and size fraction (g and h). ZPT024 was removed from the 
nanopore dataset to better visualise the spread of points; it was similarly distinct from the remaining samples for both sequencing types
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Discussion
Using a set of zooplankton samples as our case study, we 
performed nanopore-based metabarcoding using ONT’s 
MinION sequencer, and processed the reads with ampli-
con_sorter to show that nanopore metabarcodes are 
comparable to Illumina-based metabarcoding, and ready 
to be incorporated into more projects. Our study is also 
the first to emphasise that nanopore metabarcodes are 
nearly indel-free—an aspect that remains unexamined 
in past studies. We do note that nanopore metabarcod-
ing is not perfect, and so the strengths and weaknesses of 
nanopore metabarcoding with amplicon_sorter are dis-
cussed below.

Nanopore metabarcodes are highly accurate and virtually 
indel-free
It is now possible to achieve highly accurate nanopore 
consensus metabarcodes with amplicon_sorter. In our 
case, nanopore consensus metabarcodes were observed 
to be ~ 99.6% accurate when benchmarked against their 
respective Illumina samples. We note this to be slightly 
better than the median 99.3% sequencing accuracy 

Table 2 Permutational multivariate analysis of variance 
(PERMANOVA) results comparing Bongo net communities for 
nanopore and Illumina datasets, using Bray-Curtis dissimilarity. 
Variables with significant p-values are highlighted in bold
Nanopore

df Sum of squares R2 F-value p-value
Site 1 0.5841 0.08491 3.8896 0.001
Date 4 1.8744 0.27248 3.1203 0.001
Fraction 1 1.2382 0.18000 8.2451 0.001
Site: Fraction 1 0.2479 0.03604 1.6510 0.090
Date: Fraction 4 0.6818 0.09911 1.1350 0.286
Residual 15 2.2526 0.32746
Total 26 6.8791 1.00000
Illumina

df Sum of squares R2 F-value p-value
Site 1 0.5412 0.07609 3.3736 0.001
Date 4 2.0928 0.29420 3.2611 0.001
Fraction 1 1.1031 0.15508 6.8759 0.001
Site: Fraction 1 0.2723 0.03828 1.6973 0.082
Date: Fraction 1 0.6974 0.09803 1.0867 0.354
Residual 15 2.4065 0.33831
Total 26 7.1133 1.00000

Fig. 3 Bar plots showing the relative proportions of molecular operational taxonomic units (MOTUs, grouped by phylum) by sequencing type (a), and 
by sample (b)
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observed by Baloğlu et al. [20], which could be due to 
our use of the R10.3 sequencing chemistry and SUP base 
calling model. Furthermore, amplicon_sorter generated 
consensus metabarcodes that did not require further 
polishing, mirroring an observation made by Srivathsan 
et al. [49], and more recently by Wick (https://rrwick.
github.io/2023/12/18/ont-only-accuracy-update.html) 
with the most updated sequencing chemistry and base 
calling models. This is in contrast to prior nanopore 
metabarcoding pipelines that always included a polish-
ing step, e.g., Egeter et al. [27] polished their sequences 
with RACON, while decona [45] incorporated medaka 
for polishing. We observed only a negligible 0.02% 
improvement in error rates for our nanopore metabar-
codes after polishing, which corroborates Wick’s find-
ings that polishing is no longer needed (https://rrwick.
github.io/2023/12/18/ont-only-accuracy-update.html). 
This is advantageous as it saves on time and computa-
tional resources, because each consensus sequence has 
to be polished individually when running medaka. For 
our dataset al.one, nearly 4,000 instances of medaka were 
performed, and this is unlikely to scale well computation-
ally for more diverse, or larger-scale metabarcoding proj-
ects, where the number of consensus sequences obtained 
are expected to increase.

An added advantage was that almost all our unpolished 
nanopore metabarcodes were indel-free (91.4%) when 
compared to their Illumina counterparts, with nearly all 
of the 38 remaining nanopore sequences having only 1–2 
indel errors. Existing nanopore metabarcoding bench-
marking studies typically investigate sequencing accuracy 
[20], and unfortunately do not report gap errors, making 

it difficult for a direct comparison with our findings. Nev-
ertheless, our workflow presents an improvement over 
existing pipelines like decona or MSI, as initial tests with 
our same dataset suggested that polishing programs like 
RACON and medaka did not greatly improve error rates, 
and that most nanopore metabarcodes still contained 
indel-errors. Our validation that nanopore metabar-
codes are almost always indel-free means that nanopore 
metabarcodes can now be subjected to translation checks 
without error, which would boost the quality of nanopore 
metabarcodes. Lastly, we were able to achieve clustering 
and error-correction with just amplicon_sorter alone, 
and with a single command, which simplifies the analysis 
workflow.

Lower MOTU richness with nanopore metabarcoding than 
Illumina
While we have demonstrated that nanopore metabarcod-
ing generated metabarcodes with Illumina-like quality, 
we recognise that it yielded certain differences in other 
aspects when benchmarked against Illumina. The most 
notable difference was in MOTU richness, where we 
obtained 589 Illumina MOTUs, compared to 471 nano-
pore MOTUs, with 444 MOTUs shared across both 
platforms (72% congruence) (Fig.  1b, insert). This was 
corroborated by a significant difference from the paired 
Wilcoxon signed-rank test (Fig. 1d).

Based on our Kendall’s τ analysis, MOTUs present in 
Illumina, but missing in nanopore, were MOTUs that 
generally had very low read depth. This means that 
MOTUs missed by nanopore sequencing were rarer in 
the community. The simplest explanation would be that 

Fig. 4 Line graphs showing the change in number of raw reads (green), demultiplexed reads (orange) and metazoan MOTUs (purple) with sequencing 
run time, for RUN A (left) and RUN B (right)

 

https://rrwick.github.io/2023/12/18/ont-only-accuracy-update.html
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MOTU differences were a consequence of sequencing 
effort between platforms, or even stochasticity in the 
adapter ligation efficiency during respective Illumina and 
nanopore library preparation steps, but these are often-
times difficult to account for. We also investigated two 
potential reasons relating to amplicon_sorter to assess if 
the MOTU differences could also be program-related.

The first reason was resolution limits of amplicon_
sorter, presently at 95–96% [48]. This means that closely-
related species, with less than 4% variance in the COI 
sequence, will be grouped together by amplicon_sorter, 
resulting in a lower number of MOTUs obtained. This 
was challenging to determine as our zooplankton sam-
ples were not mock communities, and we did not have 
prior knowledge of closely-related species groups that we 
could use to evaluate the resolution limits. We screened 
ZPT024 and ZPT034—samples that had the lowest Jac-
card similarity coefficients between Illumina and nano-
pore. We first searched for a MOTU that was detected 
in both Illumina and nanopore for that sample, and then 
checked if there were any congenerics found in Illumina 
but not in nanopore (we assumed that congenerics had 
a higher likelihood of being closely-related compared to 
other taxonomic ranks). We then checked if the pairwise 
p-distance between these sequences differed by ≤ 4%, but 
since we did not encounter any such instance, we do not 
think that the resolution limit of amplicon_sorter was 
the main contributing factor for differences in MOTU 
richness for our study. We emphasise that future users 
pay special heed to this resolution limit when selecting 
metabarcoding loci. For instance, zooplankton metabar-
coding studies have used hypervariable regions in nuclear 
18 S rRNA [83–85], nuclear 28 S rRNA [86], and mito-
chondrial 16 S rRNA [87] in addition to COI [88–91]. The 
chosen loci must be divergent enough so that the species 
groups would not be over-collapsed by amplicon_sorter.

The last potential cause for difference in MOTU rich-
ness was based on the observation that since ampli-
con_sorter grouped only ~ 57% of the reads on average 
for consensus calling, we checked if the MOTUs unique 
to Illumina could be found in the unsorted nanopore 
reads. We mapped the ungrouped nanopore reads to the 
unique Illumina MOTUs with mapPacBio.sh (see Meth-
ods), and found that had amplicon_sorter incorporated 
these reads, 22 ZPT samples would have had a complete 
overlap with the MOTUs detected by Illumina sequenc-
ing. The remaining 10 samples would mostly still lack 
1–2 MOTU(s), with only ZPT008 and ZPT049 miss-
ing four or five MOTUs respectively. We further found 
that the unsorted nanopore reads had a comparatively 
higher total error rate of ~ 4.52%, above the distance or 
length thresholds for forming and grouping clusters. This 
implied that bioinformatic processing of reads by ampli-
con_sorter was the more likely reason for the MOTU 

difference. Further tests however, are needed to better 
optimise consensus calling settings with amplicon_sorter.

In any case, we note that the aforementioned limita-
tions of amplicon_sorter will not pose a major issue to 
future metabarcoding projects, given that ONT is con-
tinuously updating its flow cell chemistry and basecall-
ing algorithms. Its most recent pivot to R10.4.1 flow 
cell version and v14 kit chemistry (SQK-LSK114) offers 
Q20 + raw read accuracy (i.e., 1 in 100 error rate). Poten-
tial implications would most certainly be higher-quality 
raw reads that allow for more precise formation and 
merging of species groups by amplicon_sorter, which in 
turn will likely improve the resolution limits of the algo-
rithm. For instance, Ni et al. [92] and Sereika et al. [93] 
have reported ~ 99.1% modal raw read accuracy when 
using the latest R10.4 sequencing chemistry—a consider-
able improvement compared to the v9 + R10.3 sequencing 
chemistry we used. In addition, with ONT’s latest duplex 
basecalling capabilities, ~ 99% accurate, Q30 + raw reads 
for metabarcoding are fast becoming a reality [18]. It is 
thus quite foreseeable that the limiting factors of ampli-
con_sorter will resolve as nanopore read quality improves 
with time.

Nanopore metabarcoding costs and turnaround times
Various studies have compared sequencing costs between 
nanopore and Illumina for metabarcoding, and it is gen-
erally agreed upon that nanopore metabarcoding with 
the MinION is generally cheaper than Illumina MiSeq 
(28,29). We reduced reagent costs further by adopting 
a single-PCR tagging strategy, where each of our PCR 
primers were tagged on 5’-end with 13-bp tags [49]. This 
enabled us to pool multiple PCR replicates into just two 
pools for nanopore library preparation without further 
need to barcode them. The only downside was that it 
required a separate software (e.g., ONTbarcoder) rather 
than Guppy for sample demultiplexing. However, the 
single PCR-tagging saved us processing time because 
the tagging occurred during thermocycling rather than 
as an additional step in the library preparation process 
(thermocycling runs for the same length of time regard-
less whether tagging is performed). The general utility of 
tagged-PCR primers also means that it can be used for 
other DNA sequencing projects [50, 64, 81], and even for 
Illumina sequencing (like in this study).

Another attractive property of nanopore sequencing is 
its ability to sequence in real-time. Users can terminate 
the run when their sequencing needs have been met, 
wash the flow cell and even recycle it for future use. We 
were thus interested to know if there was a “sweet-spot” 
for MOTU richness obtained in relation to sequenc-
ing run time for metabarcoding sequencing, based on 
the observation that up to 90% of DNA barcodes were 
obtained within the first few hours [49]. Our preliminary 
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examination from subsampling nanopore reads with time 
was that both runs reached ~ 85% of the final MOTU 
count in under 12 h and 15 h for RUNs A and B respec-
tively (Fig. 4 and Table S5), and sequencing beyond that 
did not lead to a substantial increase in the number of 
metazoan MOTUs recovered. We recognise that the 
relationship between run time and MOTUs recovered 
is not immediately clear for nanopore metabarcoding 
(vis-à-vis DNA barcoding). Metabarcoding is likely to be 
more sensitive to factors such as the number of samples 
pooled into one flow cell, flow cell health (different flow 
cells may start with different number of pores available 
for sequencing) and even pore occupancy (percentage 
of pores actively sequencing). More tests on the number 
of metabarcoding samples that can be comfortably mul-
tiplexed onto a MinION flow cell without compromis-
ing recovered MOTU diversity are needed. What was 
clear however, was that turnaround times were much 
faster; it took us three days to complete both nanopore 
runs (we ran RUN A and B consecutively), in contrast to 
outsourcing Illumina MiSeq sequencing, which would 
take 2–4 weeks at the very least. Researchers have even 
taken advantage of this quicker turnaround time in time-
sensitive situations such as disease surveillance [94]. Even 
for zooplankton biomonitoring, where sampling inter-
vals can be as often as every two weeks [95], a nanopore-
based metabarcoding approach would enable a quicker 
generation of results that make proposed routine bio-
monitoring strategies like Song et al. [96] more opera-
tionally feasible.

Nanopore metabarcoding for community characterisation
From an operational perspective, we have demon-
strated that nanopore-based metabarcoding is viable 
when benchmarked against Illumina sequencing. Our 
nanopore metabarcodes were virtually Illumina-like, 
even with (soon-to-be-obsolete) v9 library preparation 
kits and R10.3 MinION flow cells. This is only going to 
improve moving forward, and it is time to relinquish the 
perception that nanopore sequencing produces highly 
erroneous reads. Even though there were differences 
between sequencing platforms, we ultimately found that 
the same ecological conclusions were obtained regard-
less—that our zooplankton communities were structured 
by date, site and fraction, and using a different sequencer 
was not a significant factor in explaining zooplankton 
community dissimilarities. Even the relative abundance 
of MOTUs was fairly consistent across sequencing plat-
forms (88% congruence) and both sequencers success-
fully recovered 10 metazoan phyla. This also means that 
future users can employ nanopore sequencing for com-
munity metabarcoding with the confidence that their 
results will be consistent with Illumina, with the poten-
tial to leverage the cost-effectiveness, portability and 

real-time advantages that nanopore sequencing brings. 
For example, some studies have already incorporated in-
situ nanopore metabarcoding on board marine vessels 
[23, 26], and we believe more will follow suit in future, 
especially in the field of plankton monitoring. We did 
observe however, that amplicon_sorter was less likely to 
recover rarer MOTUs in the community compared to 
Illumina. Hence, users who wish to detect rarer species 
with degenerate primer sets will have to go with con-
ventional Illumina sequencing in order to increase the 
chances of detection. We do believe this drawback can 
be soon addressed given that the latest and most accu-
rate R10.4.1 sequencing chemistry is already available, 
and there are an increasing number of promising reports 
regarding its use [18, 60, 92, 93]. Further benchmarking 
studies will be needed to investigate how these improve-
ments impact metabarcoding.

Conclusions
DNA metabarcoding is a powerful technique that can be 
harnessed to generate numerous sequence reads in paral-
lel for multi-species identification and much more. Pres-
ently, DNA metabarcoding is conducted using second 
generation sequencing mainstays like Illumina, and less 
so on third-generation sequencers like ONT’s MinION 
sequencer. We surmised that this was likely due to the 
notoriously high error rates of nanopore reads, as well as 
the general lack of specialised programs that can process 
such erroneous reads. Existing nanopore metabarcod-
ing workflows either incorporate complicated and time-
consuming laboratory steps, or require custom reference 
databases, or additional polishing steps, which perhaps 
disincentives the use of nanopore sequencing for metaba-
rcoding. However, recent improvements in nanopore 
read accuracy in conjunction with new bioinformatic 
pipelines have led us to posit that nanopore sequencing 
can now produce highly-accurate metabarcoding results 
that are consistent with conventional Illumina sequenc-
ing, and without the need to polish the sequences unlike 
in the past. We demonstrated this by metabarcoding 34 
bulk zooplankton communities on two R10.3 MinION 
flow cells, and processed the reads with amplicon_sorter. 
Our results showed that: [1] nanopore metabarcodes are 
nearly Illumina-like in sequencing accuracy (99.6%) and 
are almost always indel-free (91.4%); [2] relative abun-
dance of MOTUs were congruent (88%) across both plat-
forms, and nanopore recovered the abundant MOTUs 
just as well as Illumina but struggled to capture the rarer 
taxa; and that [3] ecological conclusions were consistent 
across sequencing platforms when metabarcoding zoo-
plankton communities despite some differences in spe-
cies richness recovered. Reports of the newly released 
R10.4.1 sequencing chemistry already indicate vast 
improvements in the quality of nanopore sequences. We 
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are confident that our results will inspire greater assur-
ance in the utility of nanopore technology for more, and 
perhaps even larger-scale, metabarcoding-related proj-
ects in the near future.
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