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Abstract
Background Reproductive performance plays an important role in animal welfare, health and profitability in 
animal husbandry and breeding. It is well established that there is a negative correlation between performance and 
reproduction in dairy cattle. This relationship is being increasingly considered in breeding programs. By elucidating 
the genetic architecture of underlying reproduction traits, it will be possible to make a more detailed contribution to 
this. Our study followed two approaches to elucidate this area; in a first part, variance components were estimated for 
14 different calving and fertility traits, and then genome-wide association studies were performed for 13 reproduction 
traits on imputed sequence-level genotypes with subsequent enrichment analyses.

Results Variance components analyses showed a low to moderate heritability (h2) for the traits analysed, ranging 
from 0.014 for endometritis up to 0.271 for stillbirth, indicating variable degrees of variation within the reproduction 
traits. For genome-wide association studies, we were able to detect genome-wide significant association signals 
for nine out of 13 analysed traits after Bonferroni correction on chromosome 6, 18 and the X chromosome. In total, 
we detected over 2700 associated SNPs encircling more than 90 different genes using the imputed whole-genome 
sequence data. Functional associations were reviewed so far known and potential candidate regions in the proximity 
of reproduction events were hypothesised.

Conclusion Our results confirm previous findings of other authors in a comprehensive cohort including 13 different 
traits at the same time. Additionally, we identified new candidate genes involved in dairy cattle reproduction and 
made initial suggestions regarding their potential impact, with special regard to the X chromosome as a putative 
information source for further research. This work can make a contribution to reveal the genetic architecture of 
reproduction traits in context of trait specific interactions.
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Background
Breeding programs in dairy cattle have in the past 
decades focused on performance, even accelerated by 
genomic selection. This has resulted in a significant 
increase in milk production, but has had a negative 
impact on reproduction traits due to antagonistic genetic 
relationships [1–3]. Boundary conditions for breeding 
for higher reproductive performance are the low herita-
bility of reproduction traits, in contrast to the moderate 
heritability of production traits [4–6]. Genomic selection, 
however, has been shown to be a useful tool in breeding 
for low heritability traits, as demonstrated in the Ger-
man Holstein population [7]. In this context, an increas-
ing consideration and reallocation of the weighted traits 
included in the total merit index is being applied in prac-
tice [7, 8]. Furthermore, decreased fertility has an impact 
on both, animal welfare and the economics of dairy pro-
duction [2]. Impaired fertility remains one of the major 
factors for culling animals, accounting for up to 20% of 
all culling reasons in dairy cattle [9, 10]. The additional 
costs of poor fertility are also clearly shown in the estima-
tion of the total merit index (RZ€) for German Holsteins, 
where, for example, stillbirth is calculated with a cost of 
€137.50 per case [11]. This highlights the close relation-
ship between animal welfare and economically successful 
dairy farming, particularly in German Holstein breeding, 
with regards to reproductive performance. Improving 
reproductive efficiency can increase animal welfare by 
reducing the proportion of involuntary culling in herds, 
lowering individual animal diseases, and simultaneously 
reducing variable costs for dairy farmers while enhancing 
their merit.

To gain insights into the regulatory pathways affecting 
fertility and identify associated genomic regions, genomic 
studies and the use of molecular genetic markers have 
been established as effective methods [12, 13]. Several 
studies have investigated genetic associations for repro-
duction traits in Holstein dairy cattle using genome-wide 
association studies (GWAS) on autosomes [14–16]. Cap-
turing the causal region or quantitative trait loci (QTL) 
of interest depends on both the density of markers used 
and the structure of linkage disequilibrium (LD) [17]. 
Therefore, the accuracy is limited due to the distribution 
of marker arrays used and the LD structure behind them 
[18]. Beneficial, the usage of whole-genome sequence 
(WGS) data is decoupled from LD structure dependency 
since the causative mutation itself is likely included [17]. 
Moreover, using WGS data in GWAS allows fine map-
ping for complex traits [19] and offers high potential for 
revealing the underlying genetic architecture, includ-
ing quantitative trait nucleotides (QTN) [17, 20, 21]. In 
addition to sequencing animals, genotype imputation 
has the potential to predict genotypes that have not been 
directly genotyped in a study, based on a reference panel 

of haplotypes [22]. Imputation combines the advantages 
of high marker density in WGS data with the ability to 
predict large-scale cohort data in a cost-effective manner, 
to be used for GWAS or fine-mapping [23].

The aim of this study is to improve the genetic char-
acterisation of reproduction traits in German Holstein 
cattle and to identify putative influential genomic regions 
using chip and imputed WGS data. For pedigree-based 
analyses based on first lactation phenotypic records, we 
initially included a group of 34,497 primiparous German 
Holstein cows. In addition, we utilised imputed WGS 
data for GWAS of 13 reproduction traits using a mixed 
linear model association (MLMA) [24]. Our approach 
identified more than 2700 distinct genome-wide signifi-
cantly associated SNPs and promising genomic regions 
on autosomes and the X chromosome. Finally, we con-
ducted enrichment analyses to contextualise our findings.

Material & methods
Animals and phenotypes
Phenotypic and SNP chip data were provided from the 
“KuhVision” project, a cow reference population includ-
ing 252,285 German Holstein cows representing the 
genomic pattern of German Holstein Friesian [7]. The 
national computing centre VIT (Vereinigte Informations-
systeme Tierhaltung w.V., Verden, Germany) provided all 
data for animals included  [7]. This large dataset was fil-
tered according to the steps described below in order to 
ensure a sufficient number of observations in each effect 
class. The intention is thereby a potentially strong envi-
ronmental impact, that needs to be accounted for in the 
analyses. At this, having a sufficient number of observa-
tions in each class would make sure that the environ-
mental and genetic effects can precisely be estimated and 
differentiated from each other. After filtering, a subset of 
34,497 primiparous Holstein cows born between 2013 
and 2018 with observations for reproductive perfor-
mance and 13 disease traits, including the three repro-
duction diseases of interest in this study, was available. In 
general, the disease traits were recorded on farms, mainly 
by the farmers themselves, claw trimmers, and veterinar-
ians. They were binary coded, which implies that 0 means 
“no disease during the lactation” and 1 “at least one event 
of disease during the lactation”. At this, multiple disease 
events over the course of the lactation were not consid-
ered. In order to generate the final dataset of 34,497 cows, 
we applied the following filter steps. First, all cows with 
less than 270 and more than 305 days in milk (DIM) were 
excluded, resulting in a mean of 302.43 DIM in the final 
dataset. Then, all cows whose age at first calving (AFC), 
recorded in months, was below 21 and above 36 months 
were excluded. Thus, the mean AFC in the final dataset 
was 24.83 months and each class of AFC consisted of 
at least 20 individuals. Next, our intention was to avoid 
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biased results because of farms with an incomplete 
recording of disease cases. Hence, farms with less than 10 
cows having an event of diseases during their lactations 
were excluded, resulting in a total of 103 farms having 
on average 345 cows per farm. In the last step, the multi-
code herd-year-season (hys) was generated by combining 
the cow’s farm, year and season of calving, whereby the 
partitioning of seasons followed the calendric partition-
ing. Here, the filtering implied that each class of hys had 
to consist of at least 20 individuals. Finally, the pedigree 
consisted 90,407 animals covering two complete genera-
tions in the final dataset. The workflow and filtering crite-
ria were first described in Schneider et al. [25].

Phenotypic trait data
A total of 13 fertility and calving traits were consid-
ered for which breeding values are routinely estimated 
(Table 1). The deregressed proofs (DRPs) were based on 
the official breeding value estimation in 2021. Basic prin-
ciple for the calculations are based on the deregression 
method firstly presented by Jairath et al. [26]. The adap-
tion of this method on estimated breeding values in Ger-
man Holstein cattle is described by Liu and Masuda [27]. 
For the pedigree-based analyses, we included 34,497 ani-
mals for each trait. In contrast, the number of available 
DRPs per trait ranged from 24,559 (calving ease direct, 
CEd) up to 34,494 (stillbirth maternal, SBm) available for 
genome-wide association analysis (Table 1).

Genotyping data, quality control
About 96% of the animals were imputed to 50  K level 
from various versions of the EuroGenomics low-density 
(LD) chips (Eurogenomics, Amsterdam, NL), while the 
rest was genotyped with various versions and quality of 
the Illumina 50  K chips (Illumina Inc., San Diego, CA) 
and EuroGenomics medium-density (MD) chips (Euroge-
nomics, Amsterdam, NL). This imputation procedure is 

described in Segelke et al. [29]. After lifting to reference 
genome assembly ARS.UCD1.2, 45,613 SNPs of 252,285 
cows were imputed to sequence level in two steps. Firstly, 
animals were imputed to a high-density reference panel 
(∼ 777 K), and from that to the whole genome sequence 
level using the Run9 reference panel of the 1000 Bull 
Genomes consortium [19]. Imputation was performed 
using Beagle 5.2 [30]. Afterwards, data were quality fil-
tered using the dosage R squared parameter (DR2 > 0.75) 
[31] and a minor allele frequency cutoff of 1%. A detailed 
description of the workflow and filtering criteria can be 
found in Križanac et al. [32]. The final dataset consisted 
of 17.2 million SNPs. Given the entirely female and large 
sample size, for subsequent analyses we included the 
X-chromosomal information to facilitate a more com-
prehensive examination. This aspect was highlighted in 
recent studies as the X chromosome may be a potential 
and important source of information (e.g [33, 34]).

Pedigree based analyses
For the estimation of variance components, Bayesian 
uni- and bivariate animal models using Markov chain 
Monte Carlo sampling techniques with a Gibbs sam-
pler as implemented in the R-package MCMCglmm [35] 
were used. The chain length was 25,000 iterations and 
the burn-in 5,000 iterations. Traits with a binary coding 
(namely MET, ZYS, GME, NGV, NR56, NR90, NRh, 
SBm, and CEm recoded as binary) were analysed with 
a generalized linear mixed model. The underlying latent 
variable 𝑙𝑖 with i as the liability for the i-th animal is con-
nected to the binary observation yi  with a probit link 
function in the model. Choosing a probit over a logit link 
function is the more accurate choice for an animal model 
[36].

 yi ∼ B
(
probit−1 (li)

)

Table 1 Overview about phenotypic traits used for GWAS
Abbreviation Trait Definition No.
CEd/CEm Calving ease direct (d)/maternal (m) difficulty of calving, recorded in four classes for all cows under milk 

recording in all parities
24,559/34,494

CFc Calving to first insemination time from calving to first insemination in days 34,210
DOc Days open timespan from calving to successful insemination, indirect calculated 34,210
FSc/FSh First to successful insemination cows 

(c)/heifers (h)
time from first to successful insemination in days 34,103/30,728

MET Endometritis/Metritis cases within first hundred days in lactation 27,283
NGV Retained placenta observations until day seven after calving are taken into account 28,182
NRc/NRh Non-return rate 56 cows (c)/heifers (h) re-insemination registered within 56 days after the first insemination 34,186/30,729
SBd/SBm Stillbirth direct (d)/maternal (m) “All-or-None” trait. After calving the calf was born dead or died within 

48 h is considered as stillborn
25,998/34,494

ZYS Ovary cycle disturbances Case of unphysiological cycle within day 51 until 305 after calving 26,884
Abbreviation and name of the individual traits, definition according to VIT [11] as well as number of animals per trait (No.). Compared with the literature, for some 
traits synonyms are used [16, 28]. For example, “paternal” and “indirect” are synonymously utilised for “direct” and “maternal”, for reason of clarity, we used the terms 
as named by VIT, also later compared with other studies, in case of matching trait definitions
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 l = µ + Xβ + Za + Whys + e

The model was defined with li  as the vector of liabilities 
for each individual and 𝜇 as the mean liability, 𝛽 being 
the vector of fixed effects for age at first calving (EKA), 
𝑎 the random effects for the additive genetic effect, h𝑦𝑠 
a multicode effect set up of heard, year and season of the 
individual cow and 𝑒 the residuum with a fixed residual 
variance of 1. 𝑎 and h𝑦𝑠 are said to be normally distrib-
uted with a ∼ N(0, Aσ 2

a) and hys ∼ N(0, Iσ 2
hys), with 

A as the pedigree-based relationship matrix and I indi-
cating the identity matrix. The prior for both effects was 
set to follow a χ 2  distribution with one degree of free-
dom. Heritabilities for traits with binary coding were cal-
culated with the following formula.

 
h2 =

σ 2
a

σ 2
a + σ 2

hys + σ 2
e + 1

For binary traits, residual variance was fixed to 1. The 
remaining traits, namely CFc, DOc, FSc, FSh, and CEm 
as linear, follow a normal distribution and were therefore 
analysed using the same model, but without the probit 
link. Prior assumptions are weak with an uninformative 
prior following σ 2

a ∼ inv − gamma (0.01,0.01) and 
σ 2

hys ∼ inv − gamma (0.01,0.01) . yi  is the vector of 
observations. Next to EKA also days in milk (DIM) was 
chosen as fixed effect.

 y = µ + Xβ + Za + Whys + e

Trait heritability for these models was calculated in the 
following manner

 
h2 =

σ 2
a

σ 2
a + σ 2

hys + σ 2
e

Calving ease maternal was analysed in two ways for vari-
ance components. In a first run CEm was used as a lin-
ear trait and all four factor levels were maintained. In a 
second approach the levels were merged to achieve a 
recoded binary trait, where “easy” and “normal” as well 
as “heavy” and “with vet / caesarean” were taken together, 
respectively.

Genome-wide association analysis (GWAS)
For genome-wide association analysis, a mixed lin-
ear model approach (MLMA) as implemented in the 
software tool for genome-wide complex trait analysis 
(GCTA) version 1.93.2 beta was applied [24, 37] using the 
following model:

 y = a + bx + g + e

where y is the vector of DRPs, a is the mean term, b is 
the additive affect (fixed effect) of the candidate SNP to 
be tested for association, x is the SNP genotype indica-
tor variable coded as 0, 1 or 2, g is the polygenic effect 
captured by the genetic relationship matrix (GRM) and 
e is the residual. The GRM was calculated between pairs 
of individuals from the set of SNPs used on chip level 
before imputation including 44,144 SNP-markers on the 
autosomes, using the approach of Yang et al. [38]. The 
majority of GWAS in dairy cattle only relies on auto-
somes [14, 39]. However, we included the X chromo-
some as a potential source of information for fertility and 
reproduction traits due to the previously disclosed rela-
tionship between phenotypic expression and sex chro-
mosomes in the context of reproductive performance 
[33, 40]. In addition, it has been identified that X-linked 
genes have an significant influence on various complex 
traits in dairy cattle, including reproduction of Holstein 
dairy cattle [34]. Threshold for significance of the GWAS 
statistic was Bonferroni corrected on genome-wide level 
to account for multiple testing of SNPs included in the 
MLMA approach with a level of 0.05 ([(0.05/17,222,496), 
p = 2.903 * 10− 9]). The R package ggplot2 [41] was used in 
R version 4.2.0 [42] to generate the Manhattan plots for 
graphical representation.

Variant effect prediction
Ensembl Variant Effect Predictor (VEP) [43] was used 
to downstream analyse genome-wide significantly asso-
ciated SNPs. All genes taken into account were known 
genes confirmed by an approved symbol of the gene 
nomenclature [44]. A gene was considered significantly 
associated with a trait if at least one SNP in proximity 
reached the Bonferroni threshold ([(0.05/17,222,496), 
p = 2.903 * 10− 9]). For proximity, a window of 10,000 
base pairs (bp) downstream and upstream of the vari-
ant, according to genome assembly ARS-UCD 1.2, was 
considered.

Downstream analyses
Enrichment analyses were conducted using the R pack-
ages org.Bt.eg.db [45], clusterProfiler [46] and DOSE [47] 
using default settings. SNPs with MLMA results below 
p < 1 * 10− 4 were included. To assess the over-represen-
tation of genes belonging to particular pathways, we used 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[48] database for enrichment. The tool g:Profiler [49] was 
used with default settings to determine the molecular 
function of gene products and cellular components spe-
cific for the findings on the X chromosome only. The R 
package VennDiagram [50] was used to generate Venn 
diagrams showing shared candidate genes.
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Results
Heritabilities
Observations for events and their incidences are shown 
in Table 2.

Based on these binary traits and the recoding of CEm, 
the results for genetic parameter estimations are shown 
in Table 3. The heritability (h2) for binary traits is based 
on liability scale with a range of 0.014 (MET) to 0.211 
(SBm). For MET the lower 95% quantile of both herita-
bility estimates were close to zero.

GWAS results
We obtained over 2700 genome-wide SNPs significantly 
associated with 9 out of the 13 traits on various chromo-
somes as shown in Table  4. The significantly associated 
SNPs were located on Bos taurus (BTA) chromosome 6 
(BTA6), BTA18 and the X chromosome (BTAX). Four 
different traits were associated with regions on BTA6, 
whereas the highest number of significantly associated 
SNPs embracing the broadest regions was found on 
BTAX.

Table 2 Overview about analysed traits, number of observations 
per trait and affiliated incidences
Trait Abbreviation Observations Inci-

dence 
(in 
%)

Endometritis MET 3422 9.92
Ovary cycle disturbances ZYS 5228 15.64
Disease of the uterus GME 5394 15.15
Retained placenta NGV 1472 4.27
Non-return rate 56 days 
cow

NR56 17,860 51.77

Non-return rate 56 days 
heifer

NRh 10,965 31.79

Non-return rate 90 days 
cow

NR90 19,962 57.87

Stillbirth SBm 2360 6.84
Calving ease “easy” CEm 27,233 78.94
Calving ease “normal” CEm 6014 17.43
Calving ease “heavy” CEm 1218 3.53
Calving ease “with vet / 
caesarean”

CEm 32 0.09

Table 3 Genetic parameters from variance components estimation
Abbreviation σ 2

a HDP σ 2
a σ 2

hys σ 2
e h2 HDP h2

MET 0.055 < 0.001–0.125 1.891 1 0.014 < 0.001–0.031
ZYS 0.134 0.078–0.207 3.784 1 0.023 0.013–0.034
GME 0.116 0.037–0.192 1.860 1 0.029 0.011–0.048
NGV 0.393 0.231–0.581 0.969 1 0.116 0.075–0.164
NR56 0.062 0.024–0.101 0.281 1 0.026 0.010–0.042
NRh 0.067 0.024–0.010 0.1904 1 0.029 0.013–0.046
NR90 0.087 0.042–0.132 0.380 1 0.035 0.018–0.053
CEm1 0.195 0.073–0.353 0.614 1 0.069 0.029–0.119
SBm 0.796 0.555–1.057 0.123 1 0.211 0.211–0.335
CFc 25.080 16.810–31.720 102.200 489.300 0.041 0.027–0.051
FSc 150.800 109.100–191.500 184.100 3244.000 0.042 0.031–0.054
FSh 84.190 58.740–108.600 56.430 1397.000 0.054 0.038–0.070
CEm2 0.012 0.007–0.017 0.034 0.216 0.045 0.027–0.064
DOc 225.400 179.600–270.100 240.800 3430.000 0.057 0.046–0.069

Additive genetic (σ 2
a ), multicode herd-year-season (σ 2

hys ). residual variance (σ 2
e ) and heritability (h2). In case of σ 2

a  and h2  in addition the highest posterior 
density (HDP) interval is given (HDP σ 2

a  and HDP h2) . For calving to first insemination (CFc) and first to successful insemination (FSc/FSh) a timespan 
in days is given instead of binary coding. CEm1 calving ease maternal, analysed as binary trait, recoded like described in pedigree based analyses section. CEm2 is 
calving ease maternal, analysed as linear trait with all factor levels, also described in the in pedigree based analyses section. Abbreviations of traits are explained in 
detail in Tables 1 and 2

Table 4 Traits with genome-wide significantly associated SNPs and their linked chromosomes
CEd CEm CFc DOc FSh NGV NRh SBd SBm

BTA6 X X X X
BTA18 X X
BTAX X X X
λ 1.042 1.042 1.022 1.064 1.043 1.017 1.058 1.055 1.087
SNPs1 8 328 281 666 1 838 4 20 1233
Genes2 1 26 3 3 1 45 2 1 35
The genomic inflation factor (λ) for each tested trait and affiliated mixed-linear model, as well the number of genome-wide significant SNPs per trait (1). Moreover, 
genes located in a 10,000 bp (bp) window down- and upstream the associated SNPs (2)
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Chromosome 6
In total, 952 significant SNPs and six associated genes 
were identified for first to successful insemination 
heifer (FSh), non-return rate heifer (NRh), calving to 
first insemination cow (CFc) and days open cow (DOc) 
on BTA6. The results for these traits are shown in Fig. 1 
and the dedicated number of SNPs per trait listed in 
Table  4. For FSh a significant SNP in 211  bp distance 
to PTPN13 reached genome-wide significance level. 
Four tested SNPs appeared significant for NRh between 
102,025,927  bp and 102,081,667  bp and directly asso-
ciated with AFF1 and KLHL8 (two hits for each gene). 
Within a window from 86,745,798 bp and 87,358,291 bp, 
a total of 947 SNPs showed up significant for CFc and 
DOc. Almost a fourth, approximately 220 SNPs, were 

detected for both traits and were assigned to SLC4A4, 
GC and NPFFR2.

Chromosome 18
Analyses of CEd and SBd led to significant peaks on 
BTA18 for both traits, shown in Fig.  2. For CEd eight 
SNPs reached Bonferroni threshold. The SNPs found 
were between 57,055,186 bp and 57,062,793 bp and dis-
played an association with CTU1. Regarding SBd, the 
same CTU1 associated SNPs could be found. In addi-
tion, significant associated SNPs were identified in a 
distal region on BTA18 between 59,506,758  bp and 
60,085,291 bp.

Fig. 2 Manhattan plots of QTL mapping results for significant traits on chromosome 18. Calving ease direct (CEd) and stillbirth direct (SBd). Negative 
decadic logarithm of p-value of each SNP is shown on the y-axes, on x-axes the 29 autosomes and X chromosome is shown. The red line represents the 
significance threshold on genome-wide level p = 2.903 * 10− 9

 

Fig. 1 Manhattan plots of QTL mapping results for significant traits on chromosome 6. Calving to first insemination (CFc), days open (DOc), first to suc-
cessful insemination (FSh) and non-return rate heifers (NRh). Negative decadic logarithm of p-value of each SNP is shown on the y-axes, on x-axes the 29 
autosomes and X chromosome is shown. The red line represents the significance threshold on genome-wide level p = 2.903 * 10− 9
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X Chromosome
For three traits (CEm, SBm, NGV) several genome-wide 
significant SNPs were detected on BTAX, including a 
various number of associated genes (Fig.  3 and Addi-
tional file 1). For SBm, a region between 30,670,566 and 
57,379,944  bp was found to be significantly affected by 
1233 SNPs. A set of 35 different genes was found to be 
associated with the SNPs. For CEm, a region between 
32,856,421  bp and 50,341,339  bp, including 328 SNPs 
with a total of 26 announced genes, were identified. 
An overlap of 22 genes between 32,856,421  bp and 
45,950,746  bp shared a number of common significant 
SNPs for CEm and SBm. Between 85,905,388  bp and 
102,397,780 bp, a total of 838 significant SNPs were iden-
tified for NGV, along with 45 different genes described 
within this region.

Gene enrichment
The functional enrichment analysis was performed for all 
trait related genes identified in GWAS. To evaluate the 
list of reasonable genes, we related the genes identified by 
the genome-wide significant associated SNPs in GWAS 
to those identified with the SNPs showing a p-value p < 1 
* 10− 4. No significant results were obtained for DOc, 
SBd, and SBm. For the other six traits, we identified 
over-represented genes in 26 different pathways using the 
KEGG database. The results were specific to each trait, 
with no overlap between them. Figure 4 shows a common 

dot plot used for visualising the functional enrichment 
results. For BTAX, an additional enrichment approach 
was conducted using the g:Profiler tool [49]. The results 
of this approach are presented directly in the discus-
sion and summarized in context. In this context, 33 dis-
tinct genes out of 83 genome-wide significant identified 
on BTAX (detailed summary in Additional file 1) could 
finally be evaluated in the context of the in-depth enrich-
ment analysis.

Discussion
This study analysed a sample of 34,497 primiparous Ger-
man Holstein cows to estimate genetic parameters for 
reproduction traits based on first lactation records using 
pedigree-based analyses. Additionally, DRPs were used 
to perform GWAS on imputed WGS data and down-
stream analyses. This enabled the estimation of variance 
components for these functional traits and identification 
of genome-wide significant SNPs, indicating potential 
candidate genes. Genetic parameters from variance com-
ponent estimation showed results in line with previous 
studies for cattle [4, 9, 11], for example h² = 0.041 for CFc 
[9], and therefore the suitability of our subset for the con-
ducted analyses. Due to the comprehensive number of 
animals included in this analysis, even for the low herita-
ble functional traits (e.g. MET), reliable results escorted 
by tight HPD intervals were obtained. Like outlined by 
Berry et al. [4] for reproductive performance, various 

Fig. 3 Manhattan plots of QTL mapping results for significant traits on chromosome X. Calving ease maternal (CEm), retained placenta (NGV), and still-
birth maternal (SBm). (A) Genome-wide results, negative decadic logarithm of p-value of each SNP is shown on the y-axes, on x-axes the 29 autosomes 
and X chromosome is shown. The red line represents the significance threshold on genome-wide level p = 2.903 * 10− 9. (B) The detailed presentation of 
BTAX per trait, including the significantly associated region, Megabase pairs (Mb) are shown on the x-axes. The SNPs that exceed the significance thresh-
old are highlighted in dark blue
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factors can affect the variance component estimation, 
also resulting in a population specific estimation. Nev-
ertheless, there are limitations arising from the available 
data here, as only reproductive performance of the first 
lactation was taken into account, regardless of for how 
long each animal stayed in the population, although this 
is highly linked to reproductive performance and vice 
versa. DRPs provide an alternative method for handling 
traits with raw phenotypes, which are binary coded, while 
also allowing for the consideration of multiple observa-
tions within and between lactations. This increased the 
variance within traits to more accurately identify asso-
ciated SNPs or regions [51]. The primary advantage of 
DRPs is their greater informativeness compared to raw 
observations of own performance, as they are estimated 
using the full reference population. An additional weight-
ing could have been added, such as effective daughter 
contributions [52], but due to the selection of the cohort 
and therefore pre-correction of similar information qual-
ity origin from the same reference population, additional 
weighting was not applied. Striking signals were found 
on two autosomes (BTA6, BTA18) and BTAX. Testing 
more than 17.2  million SNPs in this large cohort led to 
an increased capability to identify associations for the 
tested functional traits. Furthermore, the inclusion of 
BTAX allowed us to identify two major regions including 
several genes in context of reproductive performance and 
revealed a new potential information source.

Chromosome 6
A significantly associated SNP was found on BTA6 at 
101,529,627  bp located with PTPN13 (protein tyrosine 
phosphatase non-receptor type 13) for FSh in a 2118 bp 
distance. Kolbehdari et al. [53] detected this gene as 
chromosome-wide significant, affecting direct calving 
ease. The PTPN13 encoded protein belongs to the pro-
tein tyrosine phosphatase (PTP) family, which are sig-
nalling molecules involved in various cellular processes 
such as cell growth, differentiation, and mitotic cycle 
processes [54]. In contrast, no peak or genome-wide sig-
nificant associated SNP was detected for FSc. It could be 
hypothesized that PTPN13 influences heifers and cows 
to different extents. Heifers undergo their own growth 
and development, in addition to potential embryonic 
development after successful insemination [55]. This 
could lead to bias according to the heifer’s own demands 
for development and an overall increase in cell growth 
and differentiation, which could explain the difference 
between FSh compared to FSc in terms of association 
results. In humans, PTPN13 is discussed as a potential 
tumour suppressor that regulates cell growth in various 
tissues, resulting in better outcomes for those affected 
[56, 57]. This suggests that PTPN13 may have two poten-
tial points of interaction. Firstly, the development of 
heifers requires resources for growth and tissue differ-
entiation, unlike adult cows where requirements are no 
longer divided into growth and maintenance. During pla-
centation and gestation, there is a physiological process 
of tissue development and remodelling [49].

Fig. 4 Functional enrichment dot plot. Calving ease direct (CEd), calving ease maternal (CEm), calving to first insemination (CFc), first to successful in-
semination heifer (FSh), retained placenta (NGV) and non-return rate heifers (NRh). The result for over-represented genes in 26 different pathways (y-axis) 
and the corresponding traits (x-axis). The thickness of dots represents GeneRatio and the color represents the associated adjusted p-value
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The significantly associated SNPs for NRh were iden-
tified between 102,025,927 and 102,081,667  bp and 
were found to be locally close to AFF1 (ALF transcrip-
tion elongation factor 1) and for KLHL8 (Kelch like fam-
ily member 8) SNPs were within and close to the gene. 
AFF1 has already been suggested in the literature to be 
associated with conception rate in dairy cows [58] and 
as important transcription factor in the molecular regu-
lation of puberty in beef cattle [59]. Furthermore, AFF1 
was reported to influence daughter pregnancy rate, cow 
and heifer conception rate including a large dominance 
effect for heifer conception rate [39]. Specific gonadal 
studies identified AFF1 expression in the ovary, epididy-
mis, and testis of mice [60]. Our results with an associa-
tion between NRh and KLHL8 are in agreement with the 
literature. KLHL8 was previously proposed as a poten-
tial candidate gene for NRh and involved in oogenesis 
[61]. In a study by Koh et al. [62], KLHL8 was detected 
in plasma of low-fertility heifers functionally assigned 
to cellular and metabolic processes. Exosomes of high 
and low fertility heifers were isolated from plasma, pro-
cessed and afterwards analysed by mass spectrometry. 
The KLHL8 product, Kelch-like protein 8, was one of two 
unique proteins only present in plasma of low fertility 
heifers. Beside this, Koh et al. [62] further showed a kata-
lytic activity of both unique proteins.

A region with overlapping association signals was 
found on BTA6 for CFc and DOc, as DOc is dependent 
on CFc and FSc. Therefore, it is reasonable to assume 
that a shared genomic region affects both traits. The 
region containing SNPs that are significantly associ-
ated with both traits is situated between 86,745,798  bp 
and 87,358,291 bp. It has been previously described that 
SLC4A4 (solute carrier family 4 member 4) is associated 
with milk production and clinical mastitis [63, 64], as 
well as with somatic cell score [39]. SLC4A4 is involved 
in the regulation of bicarbonate secretion and absorp-
tion, encoding a sodium-bicarbonat-cotransporter [54]. 
For neonatal Holstein calves, the role of SLC4A4 inside 
metabolic pathways and intracellular pH control in rumi-
nal epithelium tissue was assessed using gene expression 
analysis [65]. It is possible that particular characteristics 
of the endometrium affect the implantation process.

GC (GC vitamin D binding protein) is involved in 
vitamin D metabolism together with transport and was 
already described in context of milk fever [66], masti-
tis resistance [63, 64], body condition score and calv-
ing interval [63] in dairy cattle. In humans, several 
associations between vitamin D-binding Protein and 
reproductive health were described [67]. It is known 
that pregnancy increases the demand of vitamin D 
throughout the time of pregnancy and lactation and in 
case of deficiency, the metabolic system is incapable 
to fulfil the requirement neither of the mother, nor the 

developing foetus [68]. Vitamin D is involved in differ-
ent processes according to reproduction and production 
traits, underlined through the several traits found in lit-
erature. This indicates a possible direct effect on repro-
ductive performance due to a limited amount of vitamin 
D for the developing foetus. On the other hand, there 
may be an indirect effect through an increased demand 
for milk yield during early lactation, which could lead 
to decreased reproductive performance, resulting in 
extended time for CFc and DOc.

NPFFR2 (neuropeptide FF receptor 2) is a G protein-
coupled receptor for neuropeptide FF, which is involved 
in modulating the opioid system and regulating cardio-
vascular and neuroendocrinological function [69]. Bonini 
et al. [70] described an upregulated mRNA expression 
of NPFFR2 in the human placenta. In addition, there is 
a known physiological interaction between endogenous 
opioids and gonadotropin secretion in various mamma-
lian species [71, 72]. It is therefore reasonable to assume 
that any deviation from the hormonal control cycle may 
result in a disruption that makes it more difficult to 
achieve pregnancy, thereby increasing the time between 
calving and successful insemination.

Chromosome 18
On BTA18, SNPs significantly associated with CEd 
and SBd were located in a region between 57,005,186–
60,085,251  bp, which encompasses the CTU1 (cytosolic 
thiouridylase subunit 1) gene. CTU1 is involved in the 
sulphur relay system in humans [73] along with tRNA 
modifications of the uridine at position 34. This modifi-
cation occurs in an interplay with the estrogen receptor α 
[74]. Abo-Ismail et al. [14] were able to detect a region on 
BTA18 between 56.9 and 59.9 Mb, including CTU1, asso-
ciated with calving performance and rump traits. The 
potential interplay with the estrogen receptor appears 
to be a plausible physiological reason for the association 
between CEd and SBd and restrictions in light calving. 
The association of the rump trait may also be linked to 
the ability of light calving or even an increased likelihood 
of heavy births, as shown by Cue et al. [75].

X Chromosome
To gain a better understanding of the significant SNPs 
found for CEm, NGV and SBm on BTAX, we utilised 
the g:Profiler tool [49]. By using the g:GOSt option, we 
conducted an enrichment analysis for the identified 
genes. Since there is a lack of evidence-based biological 
processes that are known to be associated with the gene 
products, we outline the molecular functions of the gene 
products. In addition, we outline the cellular compo-
nents to describe the physical location of a gene product 
in the cell. Default settings were used. Additionally, we 
considered the dependency of multiple testing due to the 
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overlap of functional terms, as described in Reimand et 
al. [76]. Figure 5 presents the results for molecular func-
tion and cellular components as Venn diagrams.

A total of 33 distinct genes were identified, 11 of which 
were identified for molecular function, 30 for cellular 
component, and seven were shared between both catego-
ries (FMR1, MTM1, GABRA3, PABPC5, GLRA4, CLCN5, 
DDX3X). The cellular component category had the high-
est variation of genes, ranging from 11 different genes for 
‘supramolecular complex’ to 18 genes for ‘cell junction’. 
To refine our results, we focused on genes that were most 
frequently affected in function or components for each 
trait tested that was associated with BTAX. The identified 
gene was then considered as the most promising gene.

Starting with the cellular components (as shown in 
Fig.  5A), the gene FMR1 (Fragile X messenger ribonu-
cleoprotein 1) was found to interact with all five avail-
able components. FMR1 is located in the region between 
30,624,825 and 30,664,682  bp harbouring several SNPs 
significantly associated with the trait SBm. Addition-
ally, FMR1 is involved in two molecular functions: ‘RNA 
strand annealing’ and ‘poly-purine tract binding’. The 
FMR1 gene is well-described in humans in the context 
of disturbed fertility in women and the associated Frag-
ile X Syndrome (FXS) [77]. This effect is associated with 
a dynamic mutation that increases the number of CGG 
triplet repeats across generations. A variation in methyla-
tion and the number of CGG repeats occurs within the 
untranslated region of the first exon [78, 79]. This cir-
cumstance leads to an ovarian dysfunction and is physi-
ologically associated with an increased level of FSH, 
premature ovarian failure or an earlier menopause before 
the age of 40 years [80, 81]. Mihm et al. [82] identified 
a decline in FSH levels as a crucial factor in the selec-
tion process of the dominant follicle in cattle. These 

physiological interactions are consistent with the char-
acteristics of CEm, NGV and SBm. The changes in FSH 
levels and CGG triplet numbers may affect birth-related 
observations. The extent of this variation seems to be 
logically derived from the stages that are influenced, both 
in terms of time and intensity. These stages cover severe 
births, stillbirths and postnatal behaviour.

The gene GABRA3 (Gamma-aminobutyric acid type A 
receptor subunit alpha 3), which encodes for the gamma-
aminobutyric acid type A receptor subunit alpha 3, 
showed a cluster between four of the five components, 
except for ‘supramolecular complex’, including significant 
associated SNPs for CEm and SBm. This gene is located 
at 34.602 Mb up to 34.842 Mb on BTAX, bordered by a 
region including further genes matching gamma-amino-
butyric acid type A receptor subunits (GABRE, GABRQ). 
Both of these genes also showed a significant association 
of SNPs with CEm and SBm. GABRA3 encodes the alpha 
3 subunit in GABAA receptors, which is part of a recep-
tor complex that exhibits functional diversity depend-
ing on subunit composition [83]. The alpha 3 subunit 
is associated with both anxiogenesis and anxiolysis, as 
described by Atack et al. [84] and Dias et al. [85]. Addi-
tionally, Rudolph et al. [86] stated that the muscle relax-
ant activity of diazepam is mediated by this subunit in 
mice. In humans, GABRA3 is associated with fetal brain 
development and is considered a candidate gene for Rett 
syndrome, a neurodevelopmental disorder that primar-
ily affects females [87]. GABAA receptors are critical 
binding structures for allopregnanolone, which acts as 
a potent allosteric modulator for these receptors. Allo-
pregnanolone concentrations vary during pregnancy and 
play an important role in protecting pregnancy and birth 
outcomes in various mammalian species, including sheep 
and humans [88]. Sheep and cattle, both ruminants, have 

Fig. 5 Venn diagram of BTAX associated genes. Gene associations according to the g:profiler results. Overlapping shapes represent interception between 
different parts for the same gene. (A) Associated cellular components for identified genes. (B) Associated molecular functions for identified genes
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similar placentation ratios. Therefore, it is reasonable to 
compare the effect observed in the foetal brain of sheep 
and lambs with that of cows and calves in terms of hor-
monal circulation. In sheep, the level of allopregnanolone 
increases during late gestation, reaching a maximum near 
term, and then decreases after birth [88]. An imbalance 
in this regulation, due to a lack of GABRA3, could explain 
the problems around birth, compared to cattle and both 
traits CEm and SBm.

SYN1 (Synapsin I) was identified for NGV and shared 
the same four cellular components as GABRA3 described 
above. SYN1 is located more distally on BTAX between 
85.929  Mb and 85.992  Mb and is a member of a gene 
family that encodes for neuronal phosphoproteins [54]. 
Synapsins play an essential role in regulating vesicles, 
especially in accelerating synaptic vesicle traffic through 
repetitive stimulation [89]. In the context of neurological 
disorders, many diseases are associated with synapsins. 
Their expression patterns are described in the literature 
[90]. Synapsin 1, in particular, has been highlighted as an 
important mediator for glucocorticoids [91] and has been 
detected as a member of hormonal adjustment in GnRH 
and LH release [92] in the field of reproductive physiol-
ogy. In dairy cattle, GnRH treatment has been shown to 
have a positive effect on reducing the number of services 
per conception and shortening the days open in cases of 
NGV [93]. However, GnRH is generally proposed as a 
mediator to improve fertility in low or moderate fertility 
cows, especially heifers [94]. It may be difficult to sepa-
rate the general hormonal effect from the clinical per-
sistence of NGV. A decreased neutrophil function and 
recruitment has been linked to causing NGV in dairy 
cattle [95]. Neutrophils are involved in the immune 
response to treatments such as infections or injuries. It 
seems reasonable to expect an effect in the case of NGV 
when the decreased function in neutrophils is challenged 
by an infection reaction.

For molecular functions (refer to Fig. 5B), fewer genes 
are related compared to the results for cellular com-
ponents, and there is a lower proportion of shared ele-
ments. The previously discussed GABRE3 accounts for 
the majority of functions, including ‘ligand-gated anion 
channel activity’, ‘GABA-receptor activity’ and ‘poly-
purine tract binding’. Based on the intersection between 
molecular function and cellular component, the PABPC5 
(Poly(A) binding protein cytoplasmic 5) gene, appears to 
be the most likely candidate to affect reproductive per-
formance issues such as SBm and CEm in cattle.

PABPC5 was identified for SBm as well as CEm. It 
belongs to the cytosolic poly(A) binding protein fam-
ily and is involved in protein binding at the 3’ end of 
the poly(A) tail [96]. Its location on BTAX is between 
39.337 Mb and 39.339 Mb. An involvement in mitochon-
drial metabolism and apoptosis is described [97], and an 

association between premature ovarian failure in ovarian 
diseases as well as ovarian cancer is linked to PABPC5 in 
humans [98]. Furthermore, this is underlined function-
ally by PABPC5 expression in testis and ovarian tissue 
[98] and the known involvement of poly(A)-binding pro-
teins in germ cell development [99].

The enrichment of the identified genes on BTAX indi-
cates the contribution of this gonosome to reproductive 
performance. Two regions have shown significant associ-
ations with different calving and fertility traits. The rela-
tionship between hormones and tissues of the dam and 
offspring during gestation is a complex and physiologi-
cally well balanced interplay. Therefore, the number of 
accounting genes seems reasonable. Several studies have 
been conducted to investigate the multifactorial prob-
lems affecting reproductive performance in dairy cattle 
[28, 100, 101]. The genes presented in this section, as 
determined by enrichment analysis, have a direct influ-
ence on reproductive performance (e.g. FMR1) or are 
linked to pregnancy-dependent physiological processes 
(e.g. SYN1). However, the use of BTAX for GWAS is still 
increasing. Methods to improve the joint inclusion of 
autosomes and gonosomes are currently under devel-
opment [34, 102]. KEGG pathway enrichment analyses 
also revealed a high proportion of signalling pathways 
(7 out of 26), distributed across almost all traits. This is 
consistent with the previously presented genes, such 
as PTPN13 [54] or SLC4A4 [65], which were also iden-
tified in the context of signalling pathways. It is impor-
tant to note that the associated adjusted p-values should 
be viewed with caution, as they may make it more dif-
ficult to draw strong conclusions from the results of the 
KEGG enrichment analysis. Only three traits achieved 
an adjusted p-value below 0.05. The difficulty in quanti-
fication may be attributed to the low proportion of pre-
viously identified genome-wide significantly associated 
genes. However, the corresponding lambda values of the 
GWAS statistics suggest that the detected number of 
SNPs and their associated genes are unlikely to have been 
overestimated. It is known that the detection of associ-
ated markers in functional traits is challenging [9], which 
may limit potential downstream analyses. However, the 
results from g:Profiler suggested a promising approach 
for narrowing down and enriching downstream analyses 
as a follow-up to the obtained GWAS results.

Conclusion
We identified candidate genes for fertility in dairy cattle. 
More than 2700 genome-wide significantly associated 
SNPs were detected representing more than 90 differ-
ent genes. Major association signals on BTA6 and BTA18 
are in line with previous research, while our WGS based 
approach, in conjunction with downstream analyses, 
allowed for the identification of putative candidate genes 
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on BTAX. Some of the genes, such FMR1 and PABPC5 
have been directly related with reproductive disturbances 
in humans, mice, or sheep. Considering the interplay 
between reproduction and performance in dairy cattle, 
the relevance of BTAX appears to be evident. Thus, the 
analyses can help to better explain the genomic architec-
ture for reproduction traits.
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