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Abstract
Background Studying the composition rules and evolution mechanisms of genome sequences are core issues in the 
post-genomic era, and k-mer spectrum analysis of genome sequences is an effective means to solve this problem.

Result We divided total 8-mers of genome sequences into 16 kinds of XY-type due to XY dinucleotides number in 
8-mers. Previous works explored that the independent unimodal distributions observed only in three CG-type 8-mer 
spectra, while non-CG type 8-mer spectra have not the universal phenomenon from prokaryotes to eukaryotes. 
On this basis, we analyzed the distribution variation of non-CG type 8-mer spectra across 889 animal genome 
sequences. Following the evolutionary order of animals from primitive to more complex, we found that the spectrum 
distributions gradually transition from unimodal to tri-modal. The relative distance from the average frequency of 
each non-CG type 8-mers to the center frequency is different within a species and among different species. For the 
8-mers contain CG dinucleotides, we further divided these into 16 subsets, where each 8-mer contains both CG 
and XY dinucleotides, called XY1_CG1 subsets. We found that the separability values of XY1_CG1 spectra are closely 
related to the evolution and specificity of animals. Considering the constraint of Chargaff’s second parity rule, we 
finally obtained 10 separability values as the feature set to characterize the evolution state of genome sequences. 
In order to verify the rationality of the feature set, we used 14 common classification algorithms to perform binary 
classification tests. The results showed that the accuracy (Acc) ranged between 98.70% and 83.88% among birds, 
other vertebrates and mammals.

Conclusion We proposed a credible feature set to characterizes the evolution state of genomes and obtained 
satisfied results by the feature set on large scale classification of animals.
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Introduction
Mining the biological information contained in nucleo-
tide sequences is an eternal theme of molecular biology. 
The composition of nucleotide sequences is non-ran-
dom, and this non-randomness can be expressed by the 
non-random distribution of the occurrence frequency 
of k-mers. K-mer is a nucleotide fragment with length k 
in a nucleotide sequence, and the preference of certain 
k-mers is an important means to explore the composi-
tion structure and evolution information of nucleotide 
sequences.

Since the 1980s, k-mer feature analysis has gradu-
ally become an effective means for exploring functional 
fragments and evolution relationships of nucleotide 
sequences [1]. In the field of nucleotide sequence analy-
sis, the frequency distribution of k-mers not only reveals 
the basic composition of sequences but also deeply 
reflects the uniqueness of their structure and function. 
Researchers constructed Markov transition matrices [2] 
and artificial neural networks (ANN) [3] using k-mer 
frequencies (k = 2, 3, 4) to predict and identify gene 
promoter regions. The support vector machine (SVM) 
algorithm was used to predict enhancer regions of gene 
sequences based on k-mer features (k = 6, 7) [4]. Through 
clustering analysis of rare k-mers, researchers predicted 
CpG island sequences and promoter regions [5]. Based 
on k-mer frequency, the incremental diversity and qua-
dratic discriminant analysis (IDQD) was employed to 
predict the potential formation and nucleosome posi-
tioning [6]. Combining the abundance and location infor-
mation of k-mers, various machine learning models were 
used to predict the interactions between RNA and pro-
teins, as well as the subcellular localization of lncRNA 
and MicroRNA [7–13]. By analyzing the k-mer features 
(k = 2, 3, 4) in helix and loop regions, simulated selec-
tive 2′-hydroxyl acylation analyzed by primer extension 
(SHAPE) to predict RNA secondary structure [14].

From sequence alignment to genome assembly, k-mers 
play an important role. The sequence comparison algo-
rithms created by k-mer frequency information can 
quickly identify sequence contamination and illegal 
sequences [15]. Additionally, combining k-mer frequency 
information with various correction techniques can 
effectively improve the correction quality of sequencing 
data and genome assembly indicators [16]. Direct analy-
sis of the abundance of different k-mers in sequences 
could help identify the repetitive structure of genome 
sequences and estimate the genome size [17]. In RNA-
seq data analysis, k-mers with varying abundances could 
help detect the variation of data sets [18].

In the fields of biodiversity research and microbiol-
ogy, k-mer analysis is increasingly important for non-
sequence alignment methods. It has been found that 
different microbial genomes can be distinguished by 

using the relative abundance of 2-mers [19]. The genome 
barcode constructed from k-mer frequency distribution 
not only helps solve the problem of metagenome binning 
but also plays an important role in species identifica-
tion and horizontal transfer gene identification [20–22]. 
Additionally, the multifunctional database KGCAK based 
on k-mers as a kind of genome element provided a new 
non-sequence alignment method for constructing phylo-
genetic relationships [23]. The concept of k-mer distance 
between the same chromosome of two species opened up 
a new way to analyze the evolution relationships of pro-
karyotes and eukaryotes [24].

In the interdisciplinary field of medicine and bioin-
formatics, the application of k-mers has been extended 
to the diagnosis, treatment of diseases and oncology 
research. Using k-mers in mixed logistic regression 
model, researchers could simulate the DNA methylation 
sensitivity of different cell types [25], which is essential 
for understanding the epigenetic state of cells. The k-mer 
counting method has been used to infer the evolution and 
lineage of tumor cells in single-cell sequencing data [26]. 
The non-invasive prenatal testing (NIPT) method based 
on k-mers opened up a new way for early diagnosis and 
treatment of genetic diseases [27]. K-mer decomposition 
reading technology could detect single-base mutations, 
insertion, deletion mutations and fusion and other types 
of genetic variations [28, 29], which is significant for pre-
cision medicine and early disease diagnosis. Additionally, 
the supervised machine learning models based on k-mers 
have been applied to predict the antibiotic resistance of 
bacteria [30], which is strategically important for com-
bating resistant bacteria. In virology research, the com-
parative analysis of k-mer frequency distribution has 
been used to deeply understand the pathogenicity, origin, 
transmission and evolution of coronavirus, which pro-
vides a scientific basis for the global prevention and con-
trol of coronavirus epidemic [31–33].

Since the implementation of the Human Genome Proj-
ect, an increasing number of whole genome sequences 
have been obtained. Exploring species evolution and 
diversity at the genome level has become an essential 
issue. It is known that the occurrence frequency of k-mers 
in genome sequence effectively characterizes the compo-
sition and evolution information of genome sequence. 
Therefore, k-mer spectrum analysis has become an 
important tool in many biological fields, such as genome 
information interpretation, species classification and 
identification, and evolutionary history research. Anno-
tating k-mers in a single species to find statistically signif-
icant ones [34]. This provides valuable insights into gene 
regulation and expression. Comparing genomes through 
whole genome k-mer signature analysis could reveal sig-
nificant differences in genomic signatures and find mono-
phyletic group for specific species [35]. These findings are 
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crucial for understanding the evolutionary history and 
classification of species at the whole genome data level. 
Using the concept of k-mer spectra and its related math-
ematical properties [36], unknown species can be iden-
tified through metagenomic fragments reconstruction, 
and the differences between metagenomic samples can 
be calculated through k-mer spectra, thereby the com-
position differences and evolution information of the 
intestinal microbiomes can be analyzed easily in different 
populations [37]. Additionally, researchers found that the 
k-mer spectra of genome sequences are unimodal and 
non-normal distribution in prokaryotes, and their distri-
bution regularity is closely related to the G + C content of 
genomes [38]. In yeast and zebrafish, the k-mer spectra of 
genome sequences are unimodal, while the k-mer spec-
tra of the human genome sequence is multimodal [39]. 
Furthermore, researchers found that the k-mer spectra 
of tetrapod animals are all multimodal, and the causes of 
non-normal distribution were studied [40]. These results 
shown that the k-mer spectra of genome sequences are 
closely related to the evolution levels of species.

Our research group conducted further studies on the 
k-mer spectra of genome sequences. To reveal the uni-
modal and multimodal phenomenon of 8-mer spectra, 
we divided total 8-mers into three subsets of XY2, XY1 
and XY0 due to XY dinucleotide number in 8-mers, 
and discussed the spectrum distribution features of 
these 8-mer subsets. Based on nearly a thousand spe-
cies genomes from prokaryotes to eukaryotes, we found 
that only the 8-mer spectra of CG2, CG1 and CG0 sub-
sets form independent unimodal distributions in genome 
sequences, this phenomenon has species universality. 
We called the phenomenon as CG independent selection 
rule. We found that the CG independent selection inten-
sity is closely related to the species evolution. Addition-
ally, we found that TA independent selection intensity is 
also related to the species evolution, and that CG and TA 
independent selection intensities exist the mutual inhibi-
tion relation. Thus, we proposed an evolution mechanism 
of genome sequences as following: CG and TA indepen-
dent selection intensities as well as their mutual inhibi-
tion relation characterize the evolution state of genome 
sequences [41].

The 8-mers containing CG dinucleotides are not only 
related to species evolution but also are functional motifs 
in nucleosome and CpG island sequences [42, 43]. Based 
on the evolution mechanism of genome sequences, we 
constructed an objective feature set based on the 8-mer 
relative frequency, and for the first time constructed 
the evolution relationships of animals at the genomic 
level, and achieved satisfactory results [44]. In previous 
research [41], we obtained two features to characterize 
the evolution state of genome sequences, but the two 
features only show the basic properties about genome 

evolution. In this study, we will analyze the spectrum dis-
tribution patterns of all XY-type 8-mers in detail within 
animal genome sequences, and explore the relationship 
between spectrum distributions of XY-type 8-mers and 
the evolution as well as the composition differences of 
species genomes. We will try to give a feature set based 
on the 8-mer spectra to characterize the evolution state 
of genome sequences, provide theoretical supports for 
constructing the evolution relationship at large-scale 
and cross-species level, and provide new perspectives 
and clues for understanding the evolution mechanism of 
genome sequences.

Results
Distribution features of 8-mer spectra in genome 
sequences
The k-mer frequency set is a window for external display 
of genome sequence information, and the k-mer spectra 
show the composition and evolution features of genome 
sequences. In our study, we chose k = 8 for the following 
reasons. First, there is an empirical formula in statistics 
for k-mer selection. The chosen k value must ensure that 
the rare k-mer frequency must be guaranteed to meet the 
statistical significance in a given DNA sequence. Chor 
proposed a formula k = 0.7log4L to estimate the minimum 
k value, L is the length of the given DNA sequence [40]. 
In eukaryote genomes, the yeast genome is short and 
the calculated k value is 8.9. Without loss of generality, 
8-mer was selected in eukaryotic genomes. Second, the 
base composition of the genome sequence is long range 
correlated. If the k value is too small, a lot of information 
will be lost. An appropriate k value makes k-mers con-
tain more information of the DNA sequences. Third, in 
our previous research, we tried k values from 3 to 11 and 
found that the spectrum distributions of k-mers tends to 
be stable when k > 6. In addition, researchers have con-
ducted research based on 8-mers and obtained signifi-
cant research results [34, 35]. Taking the above reasons 
into consideration, we finally chose k = 8.

Previous work mainly explored the spectrum distribu-
tion features of the CG-type 8-mers and their relation-
ship to species evolution. Here, we further analyzed the 
spectrum distribution features of all 16 XY-type 8-mers 
in animal genome sequences. Only the spectrum dis-
tributions of all 16 XY-type 8-mers in human genome 
sequence were shown in Fig. 1.

It can be seen that the total 8-mer spectrum of human 
genome sequence shows a tri-modal distribution. The 
three peaks of the 8-mer spectrum are referred to as peak 
2, peak 1 and peak 0 from low to high frequency. We 
found that only the 8-mer spectra of the three CG-type 
subsets CG2, CG1 and CG0 each form an independent 
unimodal distribution, and these three independent uni-
modal distributions coincided respectively with peak 2, 
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peak 1 and peak 0 of the total 8-mer spectrum. The 
8-mer spectra of the other XY2, XY1 and XY0 subsets 
are still tri-modal distributions. This is one of the most 
important composition features of genome sequences. 
Previous work only studied the spectrum distribution 
features of the 3 CG-type 8-mers and the relationships 
between the separability values of CG-type 8-mer spec-
tra and the evolution of species genomes [41, 44]. The 
spectrum distribution features of the other 15 XY-type 
8-mers were not discussed. In this paper, we discussed 
the spectrum distribution features of all 16 XY-type 
8-mers. Based on 889 animal genome sequences, the ani-
mals were divided into invertebrates, fishes, amphibians, 
reptiles, birds, other mammals, rodents and primates. 
We found that the spectrum distributions of each XY-
type 8-mers of genome sequences gradually evolved from 
unimodal to tri-modal distribution according to the spe-
cies evolution levels from primitive to more complex. We 
inferred that the spectrum evolving of the other 15 XY-
type 8-mers is caused by the separation of the 3 CG-type 
8-mers and the spectrum features of these subsets reflect 

the information about the composition and evolution of 
genome sequences in more details.

Position preference for spectrum distributions of XY-type 
8-mers
By observing the positions of spectrum distributions 
of XY-type 8-mers in all analyzed animal genomes, we 
found that the spectrum positions for each XY-type 
8-mers are different. To verify these differences, we cal-
culated the average frequency of each XY-type 8-mers 
of 889 animal and 59 green algae genome sequences. We 
added green algae for the following reasons. We want to 
more clearly show the changing process of CG and TA 
independent selection modes that relate to the evolu-
tionary process of organisms from simple eukaryotes to 
complex eukaryotes. Because green algae have higher TA 
independent selection intensity and lower CG indepen-
dent selection intensity, on the contrary, mammals have 
higher CG independent selection intensity and lower 
TA independent selection intensity. Considering that 
the number of XY2 8-mers is much smaller than that of 
XY1 8-mers (Method), we only discussed the average 

Fig. 1 Spectrum distributions of XY-type 8-mers in human genome sequence. The black curves represent the spectrum of total 8-mers, the red curves 
represent the spectrum of XY2 8-mers, the blue curves represent the spectrum of XY1 8-mers, and the green curves represent the spectrum of XY0 
8-mers. The vertical line is the average frequency of total 8-mers, called center frequency
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frequency of XY1 and XY0 8-mers. The average fre-
quency of XY1 and XY0 8-mers of four representative 
species Raphidocelis subcapitata (Green Algae), Aethina 
tumida (Invertebrate), Mauremys reevesii (Reptile) and 
Homo sapiens (Primate) were shown in Fig. 2.

In the analyzed animals and green algae, we found that 
the average frequency of 16 XY-type 8-mers varied within 
and among different genome sequences. The average fre-
quency of XY0 8-mers is always opposite to that of XY1 
8-mers, due to non-random sampling. In green algae and 
invertebrates, the 16 average values of XY1 8-mers are 
more dispersed relative to the central frequency. Accord-
ing to the evolutionary order of green algae, inverte-
brates, other vertebrates and mammals, except for CG1 
subset, the average values of the other XY1 8-mers grad-
ually approach the central frequency. The average values 
of CG1 8-mers showed obvious regularity in different 
species. According to the evolutionary order, the average 
values of CG1 8-mers change from the high frequency 
end and far from the central frequency (green algae) to 
the low frequency end and far from the central frequency 
(mammals). This phenomenon revealed that CG1 8-mers 
are sensitive to species evolution. Conversely, the aver-
age values of TA1 8-mers change from the low frequency 
end and far from the central frequency to the high fre-
quency end and far from the central frequency, and from 
invertebrates onwards, the average values again gradually 

approach the central frequency. The results showed that 
during the evolution process of eukaryotes from unicellu-
lar (green algae) to multicellular (invertebrate), the usage 
frequency of CG1 and TA1 8-mers maintains an oppo-
site evolutionary trend. This relation reflects that there 
is obvious mutual inhibition relationship in green algae 
and invertebrates. From other vertebrates to mammals, 
the average frequency of TA1 8-mers is close to the cen-
tral frequency, but the average frequency of CG1 8-mers 
keep increasing. It indicated that the mutual inhibition 
relationship gradually disappears. We guess that the evo-
lution mechanism of higher animals has improved. In 
addition to CG1 and TA1 8-mers, the other XY1 8-mers 
also showed a certain degree of co-evolution regularity 
in genome sequences. In green algae and invertebrates, 
CC1, GG1 and GC1 8-mers have similar change trends 
to CG1 8-mers, but this trend is weakened in vertebrates 
and mammals. AA1, TT1 and AT1 8-mers have similar 
change trends to TA1 8-mers. The average frequencies of 
the other XY1 8-mers have no obvious relationship with 
the evolution of species. In four pairs of reverse com-
plementary XY1 8-mers (AC1/GT1, AG1/CT1, CA1/
TG1, GA1/TC1) and two pairs of forward and reverse 
complementary XY1 8-mers (AA1/TT1, CC1/GG1), we 
found that the average frequencies of each pair of XY1 
8-mers are the same. For example, the average frequency 
of AC1 8-mers is the same as that of GT1 8-mers. This 

Fig. 2 The position relationship between the average frequency of 16 XY-type 8-mers and the center frequency. X-axis represents the frequency values. 
Red represents the average frequency of the XY1 8-mers and blue represents the average frequency of the XY0 8-mers. The black vertical line represents 
the central frequency of total 8-mers
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conclusion verified the correctness of Chargaff’s sec-
ond parity rule at the length of 8 nucleotides. Chargaff’s 
second parity rule [45–47] states that the frequency of 
nucleotides and oligonucleotides with reverse comple-
mentary pairing structure is statistically the same in a 
sufficiently long single-stranded nucleotide sequence, 
while the frequency of nucleotides and oligonucleotides 
with forward complementary pairing structure is differ-
ent, which is called the phenomenon of strand symmetry.

In summary, during the evolutionary process of ani-
mals from primitive to more complex, different XYi 
8-mers have varying effects on the evolution of genome 
sequences. TA1 8-mers are constrained by CG1 8-mers, 
and a mutual inhibition relationship is formed between 
them. The other XY1 8-mers showed varying degrees of 
co-evolution relationship under the constraint of CG1 
8-mers.

Spectrum distribution features of XY i 8-mer subsets
By analyzing the spectrum distributions of XYi 8-mers of 
889 animal genome sequences, we found that the average 
frequency of each XYi 8-mers varies within a species and 
among different species. This indicated that there are dif-
ferences for each XYi 8-mers in response to the evolution 
and composition of genome sequences, which reflects 
both the commonality and the specificity of species 
evolution. In addition to the CGi 8-mers, we found that 
the spectrum distributions of the other XYi 8-mers are 
similar to that of the total 8-mers that gradually evolve 
from unimodal to tri-modal distribution according to the 
evolutionary order of animals (see Fig.  3 first row). We 
thought that the multimodal distributions of the other 
XYi 8-mers must include more information about com-
position and evolution of genome sequences. To deeply 
analyze the spectrum composition features of these XYi 
8-mers, we further classified them. According to whether 
each XYi subset contains MN (M, N = A, C, G, T) dinu-
cleotides, they were divided into XYi_MNj subsets (i, 
j = 0, 1), and the spectrum distribution of each 8-mer 
subset was given. Here, XY1 and XY2 were merged into 
one subset, called XY1 subset. We selected four species 
as representatives from animals with different evolution 
levels, they are Aphidius gifuensis (Invertebrate), Cypri-
nus carpio (Fish), Naja naja (Reptile) and Homo sapiens 
(Primate). The spectrum distributions of total 8-mers 
and some XY1_CGj 8-mers of genome sequences in 
these four species are shown in Fig. 3. Their spectra rep-
resented the distribution patterns from unimodal to tri-
modal. The spectrum distributions of all XY1_CGj 8-mer 
subsets are shown in Supplementary Figures S1, S2, S3 
and S4.

We analyzed the spectrum distributions of XYi_MNj 
8-mers in all animal genome sequences. When the spec-
trum distributions of total 8-mers of genome sequences 

transition from unimodal to multimodal, we found that, 
in addition to the spectrum distributions of XYi_CGj 
8-mers, the spectrum distributions of the other XYi_MNj 
8-mers also transition from unimodal to multimodal. 
This indicated that this classification method could not 
divide the spectrum distributions of XYi 8-mers into 
two independent distributions. Only the spectrum dis-
tributions of XYi_CGj 8-mers could divided the spec-
trum distributions of XYi 8-mers into two independent 
distributions, and these two distributions showed obvi-
ous separation phenomenon (Fig.  3). It indicated that 
8-mers containing CG dinucleotides occupy a core posi-
tion in composition and evolution of genome sequences. 
We thought that XYi_CG1 and XYi _CG0 8-mer subsets 
belong to two composition units with different biological 
features, which can reflect the deeper composition and 
evolution features of genome sequences.

Spectrum separability of XY1_CG1 8-mer subsets
Due to the constraint of non-random sampling, there is 
a correlation between the spectrum features of XY1 and 
XY0 8-mers. Here, we only discussed the classification 
and related properties of XY1 8-mer subsets. The spec-
trum separability value δXY1_CG1 of each XY1_CG1 8-mer 
subset in different species were calculated according to 
Eq. (2), which reflects the relative deviation degree of the 
average frequency of XY1_CG1 8-mer subsets from the 
central frequency of total 8-mers. The spectrum separa-
bility distributions of 16 kinds of XY1_CG1 8-mers in 8 
groups of animal genome sequences were shown in Fig. 4.

According to the overall spectrum distribution trend 
of XY1_CG1 8-mers, as the evolution levels of species 
increased, the average values of the spectrum separability 
of each XY1_CG1 8-mers gradually increased (Fig.  4A). 
This indicated that the spectrum separability of XY1_
CG1 8-mers correlates positively with the evolution of 
genome sequences, which characterizes the commonal-
ity of species evolution. Analyzing the spectrum separa-
bility distributions of 16 kinds of XY1_CG1 8-mers, we 
found that the distribution features of XY1_CG1 8-mer 
subsets are almost the same as those of X’Y’1_CG1 8-mer 
subsets, where X’Y’ and XY dinucleotides are reverse 
complementary or forward and reverse complemen-
tary in 8 groups of animals, such as the average value 
and variance of the separability distributions (Fig.  4B). 
And the distribution features of X’Y’1_CG1 8-mer sub-
sets with forward complementary to XY1_CG1 8-mer 
subsets are obviously different. This indicates that the 
spectrum separability features of the 8-mer subsets also 
follow the theory of Chargaff’s second parity rule. Specif-
ically, the separability values of four pairs of 8-mer sub-
sets with reverse complementary δAC1_CG1 and δGT1_CG1, 
δAG1_CG1 and δCT1_CG1, δCA1_CG1 and δTG1_CG1, δGA1_CG1 
and δTC1_CG1, and the separability values of two pairs of 
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8-mer subsets with forward and reverse complementary 
δAA1_CG1 and δTT1_CG1, δCC1_CG1 and δGG1_CG1 are basi-
cally the same. And the separability values of two pairs of 
8-mer subsets with forward complementary δAT1_CG1 and 
δTA1_CG1, δCG1_CG1 and δGC1_CG1 are different.

We found that the spectrum separability of CG1_CG1 
8-mers in vertebrates is significantly higher than that 
of the other XY1_CG1 8-mers, followed by TA1_CG1 
8-mers. This indicates that these two 8-mer subsets are 
more sensitive motif sets for characterizing the evolu-
tion of vertebrate genomes. In invertebrates, the sepa-
rability values of these two 8-mer subsets fall within the 
separability range of the other XY1_CG1 8-mer subsets. 
Compared with vertebrates, this distribution feature 

highlights the fundamental difference between verte-
brates and invertebrates. For the other 14 kinds of XY1_
CG1 8-mer subsets, the separability values vary within 
each species group and among different species groups. 
For example, the separability value of GC1_CG1 8-mer 
subset is relatively high in invertebrates, while it is rela-
tively low in birds and other mammals. In the XY1 8-mer 
subset containing CG dinucleotides, the above conclu-
sions indicated that CG1 and TA1 8-mer subsets mainly 
reflect the commonality of the evolution of genome 
sequences, while the other 14 kinds of XY1 8-mer sub-
sets mainly reflect the specificity of the composition of 
genome sequences.

Fig. 3 Spectrum distributions of total 8-mers and part of XY1_CGj 8-mers for the four representative species genome sequences. The first row represents 
the spectrum distributions of total 8-mers. In the next four rows, the black curve represents the spectrum distributions of XY1 8-mers, the red curve rep-
resents the spectrum distributions of XY1_GC1 8-mers, and the blue curve represents the spectrum distributions of XY1_GC0 8-mers
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We thought that the separability values of the 16 kinds 
of XY1 subsets containing CG dinucleotides can be 
used as a feature set to characterize the evolution state 
of genome sequences and the feature set can be used to 
explore the evolution relationships of species. Consid-
ering the constraint of Chargaff’s second parity rule, we 
selected four 8-mer subsets from four reverse comple-
mentary subset pairs, two 8-mer subsets from two for-
ward and reverse complementary subset pairs and four 
8-mer subsets from four forward complementary sub-
sets. We used the separability of these 10 subsets as the 
feature value. Finally, we obtained 10 separability values 
as the feature set to characterize the evolution state of 
a genome sequence. This feature set includes δAT1_CG1, 
δAA1_CG1, δGA1_CG1, δTA1_CG1, δAC1_CG1, δCA1_CG1, δAG1_CG1, 
δCC1_CG1, δGC1_CG1 and δCG1_CG1. Based on whole genome 
sequences, constructing the evolution relationships 
in animals, especially in higher animals, has not yet 
achieved satisfactory results [44]. Additionally, con-
structing the evolution relationship across large-scale 

and cross-species is still a current challenge. Based on the 
k-mer spectra distribution rule of genome sequences, we 
obtained a feature set to characterize the evolution state 
of genome sequences. We believed that this feature set 
can efficiently distinguish the species differences in large-
scale and cross-species.

Difference analysis of species genome sequences
The main difficulty in constructing evolution relation-
ships at large-scale and cross-species is the feature set 
selection with high quality. To test the rationality and 
quality of the feature set we gave, we analyzed the dif-
ferences between various animal genome sequences. 
By examining the spectrum separability distributions of 
XY1_CG1 8-mer subsets in 8 groups of animal genome 
sequences, we found that the separability distribution 
range in birds is broader and covers the distribution 
ranges of fishes, amphibians and reptiles, and nearly cov-
ers mammals (Fig. 4B). This indicated that the composi-
tion and evolution of bird genomes are more diverse. If 

Fig. 4 Spectrum separability distributions of XY1_CG1 8-mer subsets of genome sequences in 8 animal groups. A. Average values of the spectrum sepa-
rability of 16 kinds of XY1_CG1 8-mers. B. Spectrum separability range of 16 kinds of XY1_CG1 8-mer subsets in each animal group. The individual colored 
boxes within a group corresponds to the x-axis parameters of Fig. 4A from left to right. The y-axis represents the spectrum separability values
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we can effectively distinguish birds from other vertebrate 
and mammal genomes, it indicates that the quality of our 
feature set is excellent. For this purpose, we divided 8 
groups of animals into four large-scale categories, namely 
invertebrates, other vertebrates (fish, amphibians and 
reptiles), birds and mammals (other mammals, rodents 
and primates). We used machine learning algorithms to 
test the classification quality of birds versus other verte-
brates and birds versus mammals. To avoid the random-
ness of the test results, we used 14 machine learning 
algorithms for binary classification analysis in our classi-
fication test. The results are shown in Fig. 5, with the 14 
machine learning algorithms detailed in the Method, and 
the results of each algorithm presented in the Supple-
mentary Table S2.

Overall, the classification results are excellent. Between 
birds and other vertebrates, the highest Acc value is 
98.70% in SVM algorithm and the lowest Acc value is 
87.06% in SGD algorithm. Between birds and mammals, 
the highest Acc value is 96.50% in QDA algorithm and 
the lowest Acc value is 83.88% in DT algorithm. These 
results indicated that, although we only provided 10 fea-
ture values to characterize the evolution state of genome 
sequences, the feature set could effectively distinguish 
differences among different species groups in large-scale 
animal classification, and had a high classification abil-
ity. According to the composition and evolution rules of 
genome sequences, we obtained the feature set that can 
characterize the evolution state of genome sequences. 
We thought that our feature set is objective, and the 
spectrum separability values of XY1 8-mers containing 

CG dinucleotides reflect the core information of whole 
genome sequences.

In order to evaluate the reasonability of the 10 fea-
tures in 14 machine learning algorithms and validate the 
importance for each feature of the feature set, we con-
ducted a sensitivity analysis. To ensure the independence 
and importance of the selected features, we utilized the 
F-score method to reorder their features and utilized the 
IFS strategy for redundant feature detection, the results 
are shown in Fig. 6A and B.

We order the features according to its importance in 
classification algorithms, if the feature order is 1-2-3-4-
5-6-7-8-9-10 between birds and other vertebrates, but 
the feature order is 10-3-1-8-6-9-7-4-5-2 between birds 
and mammals. Results show that when the number of 
selected features is increased to 5, the classification accu-
racy (Acc) tends to be stable for the two classifications. 
That means the former 5 features are important. But we 
found that the 5 important features are different. For 
example, the most important feature is feature 1 and the 
most unimportant feature is feature 10 between birds 
and other vertebrates, but the most important feature is 
feature 10 and the most unimportant feature is feature 2 
between birds and mammals. That means all of 10 fea-
tures, taken as a whole, are indispensable. It indicates 
that these features play different roles in distinguishing 
different species. Therefore, we believe that the 10 fea-
tures currently selected are all important features and 
there is no significant redundancy.

In the experiment of large-scale species classifica-
tion among mammals, other vertebrates and birds, we 

Fig. 5 Binary classification test results of 14 machine learning algorithms
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achieved satisfying classification results using the 10 fea-
tures. We considered that the 10 features also apply to 
order-level species classification. Here we did the clas-
sification on order-level between primates and rodents, 
the results are shown in Fig.  6C. Results showed that 
the Interquartile Range (IQR) for Acc value is between 
87.78%~92.22% and the IQR for MCC value is between 
0.73 ~ 0.83 (Fig.  6C, red boxes) in 14 machine learning 
algorithms, the highest Acc value is 97.78% in QDA algo-
rithm. That means the 10 features obtained by the spec-
tra of 8-mers containing CG dinucleotide can apply to 
order-level species classification.

Some researchers thought that 2-mers were suitable 
features. Here we did a classification comparison between 
primates and rodents by 2-mer and 8-mer information. 

Results showed that all of the four scores Sn, Sp, Acc 
and MCC are poor by 2-mer frequencies (Fig.  6C, blue 
boxes). The IQR for Acc value is between 84.17%~88.47% 
and the IQR for MCC value is between 0.67 ~ 0.75 in 14 
machine learning algorithms. It showed that the accuracy 
and the robustness of classification results obtained by 
8-mer information are better than that obtained by 2-mer 
information. It indicated that the base composition of 
genome sequences is long range correlation. Long DNA 
fragments can reflect more accurate information of the 
composition and evolution of genome sequences.

Fig. 6 Binary classification test results of 14 machine learning algorithms based on different feature numbers and different features. A. Binary classifica-
tion test results between birds and other vertebrates based on different feature numbers. B. Binary classification test results between birds and mammals 
based on different feature numbers. C. Binary classification test results between primates and rodents based on different features
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Conclusion and discussion
Based on 889 animal genomes, we analyzed the spectrum 
distribution rules of various 8-mer subsets of genome 
sequences, explored the relationship between the spec-
trum distribution features of 8-mer subsets and the com-
position and evolution of species genome sequences, and 
provided a feature set that characterizes the evolution 
state of genome sequences. Using the bootstrap sampling 
method, total 8-mers were divided into 16 kinds of XY2, 
XY1 and XY0 8-mer subsets, and the spectrum distri-
butions of XY-type 8-mers were given. Previous studies 
pointed out that only the spectra of CG2, CG1 and CG0 
8-mer subsets form independent unimodal distributions 
respectively, while the spectrum distributions of the other 
15 XY-type 8-mers did not have this feature. Accord-
ing to the evolutionary order of animals from primitive 
to more complex, we found that the spectrum distribu-
tions of the other 15 XY-type 8-mers gradually transition 
from unimodal to tri-modal. The differences between the 
average frequency of each XY-type 8-mers and the cen-
tral frequency vary within a species and among different 
species. The most obvious difference appears in CG1 and 
TA1 8-mer subsets, and this difference is closely related 
to the evolution levels of animals. In the other XY-type 
8-mer subsets, the differences still have a certain relation-
ship with species evolution. The results indicated that 
CG1 and TA1 8-mer subsets are sensitive motif sets in 
the evolution of genome sequences, and the other XY-
type 8-mer subsets show the co-evolution relationship 
under the constraint of CG1 and TA1 8-mer subsets. To 
explore the contribution of all 16 XY-type 8-mer subsets 
to the composition and evolution of genome sequences, 
each XY-type 8-mer subsets were divided into two 8-mer 
subsets according to whether they contained CG dinucle-
otides. We found that these two 8-mer subsets form two 
independent distributions, and the spectrum separability 
of 16 XY-type 8-mer subsets containing CG dinucleotides 
are different within and across species. This indicated that 
the multimodal phenomenon of spectrum distributions 
of XY-type 8-mer subsets is caused by the separation of 
CG-type 8-mer subsets. Analyzing the spectrum sepa-
rability of the 16 kinds of 8-mer subsets in 8 groups of 
animals, we found that the spectrum separability of CG1 
8-mers containing CG dinucleotides correlates obviously 
and positively with the evolution of species genomes, fol-
lowed by that of TA1 8-mers containing CG dinucleo-
tides, and the spectrum separability of the other 14 kinds 
of XY1 8-mers containing CG dinucleotides also have 
a certain positive correlation with the evolution of spe-
cies genomes. Further analysis showed that the spectrum 
separability of the other 14 kinds of XY1 8-mers con-
taining CG dinucleotides mainly reflected the specific-
ity of the composition of species genome sequences. The 
above results indicated that the spectrum separability of 

16 kinds of XY1 8-mers containing CG dinucleotides not 
only characterize the evolution information of genomes 
but also show the composition information of genome 
sequences. We thought that these 16 separability values 
can be used as a feature set to characterize the evolution 
state of genome sequences. Considering the constraint of 
Chargaff’s second parity rule, 6 separability values with 
similarity were filtered out, and finally, 10 separability 
values were obtained as the feature set to characterize 
the evolution state of genome sequences. To verify the 
accuracy of the feature set, vertebrates were divided into 
birds, other vertebrates and mammals, and 14 common 
classification algorithms were used for binary classifica-
tion analysis. The results showed that, between birds and 
other vertebrates, the highest classification accuracy Acc 
value is 98.70% (SVM), and the lowest value is 87.06% 
(SGD). Between birds and mammals, the highest clas-
sification accuracy Acc value is 96.50% (QDA), and the 
lowest value is 83.88% (DT). The results showed that a 
high-quality classification effect was obtained with only 
10 feature values, which indicated that the feature set we 
provided can objectively characterize the evolution state 
of genome sequences.

Compared with other vertebrates, the classification 
accuracy between birds and mammals is relatively lower, 
which is inconsistent with our known knowledge. We 
thought that the lower classification accuracy is caused 
by the change of evolution mechanism of rodents and 
primates in mammals. Previous studies [41, 44] have 
shown that there are two evolution modes in species 
genome sequences, CG and TA, and there is a mutual 
inhibition relationship between the two evolution modes. 
However, the TA independent selection mode gradually 
disappeared in rodent and primate genome sequences. 
Under the original evolution mechanism, these two 
groups of animals adopted a more advanced evolution 
mode. Therefore, using the separability values to con-
struct the feature set is insufficient to characterize the 
evolution state of rodent and primate genome sequences. 
Explore the advanced evolution mechanism of mammal 
genomes is an interesting topic for future research.

In subsequent research, we will further consider the 
following issues: (1) In this study, we only considered 
the effect of the spectrum separability of XY1 8-mers 
containing CG dinucleotides. The effects of the spec-
trum separability of XY1 8-mers not containing CG 
dinucleotides need to be considered further. (2) Consid-
ering only the separability feature of XY1 8-mer subsets 
is insufficient. Since using the average value of a spec-
trum alone does not fully characterize the spectrum 
distribution feature, the variance and non-normality 
features of a spectrum distribution should also be con-
sidered. In subsequent work, we will explore the rela-
tionship between the variance and non-normality of the 
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spectrum distribution and the evolution state of genome 
sequences. By combining the average value feature of the 
spectrum distribution, we will construct a more com-
prehensive feature set to characterize the evolution state 
of genome sequences. (3) This study only analyzed the 
genome sequences of a part species within a larger taxo-
nomic category, and did not cover all species. In the next 
step, we will analyze the genome sequences of plants, 
fungi and prokaryotes to explore whether the feature set 
we provided has species universality. Our ultimate goal is 
to reveal the composition and evolution rules of genome 
sequences, and provide novel ideas and methods for con-
structing evolution relationships at large-scale and cross-
species level.

Materials and methods
Dataset
The whole genome sequences and annotated information 
of all species involved in this study were obtained from 
NCBI (https://www.ncbi.nlm.nih.gov/). The selected spe-
cies number is 948. This includes 889 animals and 59 
green algae. The species genome taxonomy was shown 
in Table  1, see Supplementary Table S1 for detailed 
information.

K-mer spectrum of the genome sequence
The genome sequence can be viewed as a linear string 
of N bases in length consisting of A, C, G and T. K-mer 
refers to a substring consisting of k consecutive nucleo-
tides in the sequence. For a given genome sequence, k bp 
is used as the sliding window and 1 bp is used as the step 
to calculate the occurrence frequency of all k-mers. If the 
number of k-mers that occurs i times is Ni, the relative 
motif number (RMN) is defined as:

 
RMN =

Ni

4k
 (1)

The distribution of RMN value with k-mers frequency is 
called the k-mer spectrum of the genome sequence.

XY dinucleotide classification method
For k = 8, we classified the 8-mer set into different subsets 
according to the compositional features of 8-mers. The 
8-mers containing zero XY (X, Y = A, T, C, G) dinucleo-
tide were called the XY0 subset, those containing one 

XY dinucleotide were called the XY1 subset, and those 
containing two or more XY dinucleotides were called the 
XY2 subset. For example, for CG-type 8-mers, the 8-mer  
C G T A C G A T have 2 CG dinucleotides, it belongs to CG2 
8-mer subset. The 8-mer  C C T A C G A T have 1 CG dinu-
cleotides, it belongs to CG1 8-mer subset. The total num-
ber of 8-mers is 48=65,536. Theoretically, when X ≠ Y, the 
numbers of XY0 8-mer subsets is 40,545, of XY1 8-mer 
subsets is 21,468, and of XY2 8-mer subsets is 3523. 
When X = Y, the numbers of XY0 8-mer subsets is 44,631, 
of XY1 8-mer subsets is 14,931, and of XY2 8-mer sub-
sets is 5974. This is called the XY dinucleotide classifica-
tion method. Total 8-mers are divided into three subsets, 
XY2, XY1 and XY0, which can be classified in 16 ways.

Spectrum separability of 8-mer subset
For a given 8-mer spectrum, the average value of the 
spectrum distribution is used to characterize its distribu-
tion characteristic. In order to eliminate the influence of 
different genome sizes and show the relative position dif-
ference of 8-mer spectra in different 8-mer subsets, the 
separability value (δi) was defined:

 
δ i =

−
x
−
xi

 (2)

Where −
x  is the average frequency of total 8-mers, 

called the center frequency. −
xi  is the average frequency 

of 8-mers of subset i. δ i  represents the separability for 
the distribution position of 8-mer spectrum of subset 
i relative to the center frequency. If δ i > 1 , it indicates 
that 8-mer spectrum of subset i is located at the low fre-
quency end and is away from the center frequency. If 
δ i = 1, it indicates that the location of 8-mer spectrum 
of subset i is the same as that of the center frequency.

In this definition, the separability value is independent 
of genome size and the absolute position of the subset 
spectrum. Additionally, this parameter can compare not 
only the distribution difference of different 8-mer subsets 
within a genome sequence but also the distribution dif-
ference of 8-mer subsets among genome sequences.

Machine learning algorithms and classification 
performance evaluation
This study used 14 machine learning algorithms provided 
by a comprehensive and automated machine learning 
platform iLearnPlus [48], including multilayer percep-
tron (MLP), K-nearest neighbors (KNN), Adaptive boost-
ing (AdaBoost), Gradient boosting decision tree (GBDT), 
Light gradient boosting machine (LightBGM), Random 
forest (RF), Extreme gradient boosting (XGBoost), Logis-
tic regression (LR), Decision tree (DT), Stochastic gra-
dient descent (SGD), Quadratic discriminant analysis 

Table 1 Number of species genome sequences
Species Number Species Number
Invertebrates 235 Birds 232
Fishes 125 Other mammals 106
Amphibians 29 Rodents 29
Reptiles 74 Primates 59
Green algae 59

https://www.ncbi.nlm.nih.gov/
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(QDA), Bagging (Bagging), Linear discriminant analy-
sis (LDA) and Support vector machine (SVM). Use the 
10-fold cross-validation method to evaluate the per-
formance of the machine learning model. And we use 8 
commonly indicators to evaluate and compare the clas-
sification performance of models, including sensitivity 
(Sn), specificity (Sp), precision (Pre), accuracy (Acc), Mat-
thews correlation coefficient (MCC), F1 score (F1), the 
area under ROC curve (AUROC) and the area under the 
PRC curve (AUPRC) [49–52], which are defined as:

 
Sn =

TP

TP + FN
 (3)

 
Sp =

TN

TN + FP
 (4)

 
Pre =

TP

TP + FP
 (5)

 
Acc =

TP + TN

TP + TN + FP + FN
 (6)

 
MCC =

TP × TN + FP × FN√
(TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN) (7)

 
F1 = 2 × Pre × Sn

Pre + Sn
 (8)

Where TP, FP, TN and FN represent the numbers of true 
positives, false positives, true negatives and false nega-
tives, respectively. The AUROC and AUCPRC values, 
which range between 0 and 1. The closer these values 
are to 1, the better the classification performance of the 
model.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-024-10786-1.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Acknowledgements
We are very grateful for the computational resources provided by the 
Theoretical Biophysics Laboratory of Inner Mongolia University.

Author contributions
L.H. and L.X.L. conceived and designed the study and critically revised the 
manuscript. L.X.L. analyzed the data and drafted the manuscript. Y.Z.H. helped 
in the study design. W.L. helped with data collation and prepared figures 

S1–S4. All authors contributed to the article and approved the submitted 
version.

Funding
This work was supported by the National Natural Science Foundation of 
China (31860304). The funding agency played no role in research design, data 
collection, analysis and interpretation, and manuscript writing.

Data availability
All genome sequences and the corresponding annotation information were 
obtained from NCBI (https://www.ncbi.nlm.nih.gov/). See Supplementary 
Table S1 for detailed information.

Declarations

Ethics approval and consent to participate
Not applicable to this study.

Consent for publication
Not applicable to this study.

Competing interests
The authors declare no competing interests.

Conflict of interest
The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential 
conflict of interest.

Received: 17 January 2024 / Accepted: 9 September 2024

References
1. Brendel V, Beckmann JS, Trifonov EN. Linguistics of nucleotide sequences: 

morphology and comparison of vocabularies. J Biomol Struct Dyn. 
1986;4:11–21.

2. Audic S, Claverie JM. Detection of eukaryotic promoters using Markov transi-
tion matrices. Comp Chem. 1997;21:223–7.

3. Bhukya R, Kumari A, Amilpur S, Dasari CM. PPred-PCKSM: a multi-layer predic-
tor for identifying promoter and its variants using position based features. 
Comput Biol Chem. 2022;97:107623.

4. Lee D, Karchin R, Beer MA. Discriminative prediction of mammalian enhanc-
ers from DNA sequence. Genome Res. 2011;21:2167–80.

5. Mohamed Hashim EK, Abdullah R. Rare k-mer DNA: identification of 
sequence motifs and prediction of CpG island and promoter. J Theor Biol. 
2015;387:88–100.

6. Zhao X, Pei Z, Liu J, Qin S, Cai L. Prediction of nucleosome DNA forma-
tion potential and nucleosome positioning using increment of diver-
sity combined with quadratic discriminant analysis. Chromosome Res. 
2010;18:777–85.

7. Kirk JM, Kim SO, Inoue K, Smola MJ, Lee DM, Schertzer MD, Wooten JS, Baker 
AR, Sprague D, Collins DW, et al. Functional classification of long non-coding 
RNAs by k-mer content. Nat Genet. 2018;50:1474–82.

8. Gudenas BL, Wang L. Prediction of LncRNA subcellular localization with deep 
learning from sequence features. Sci Rep. 2018;8:16385.

9. Ahmad A, Lin H, Shatabda S. Locate-R: subcellular localization of long non-
coding RNAs using nucleotide compositions. Genomics. 2020;112:2583–9.

10. Su Z-D, Huang Y, Zhang Z-Y, Zhao Y-W, Wang D, Chen W, Chou K-C, Lin H. iLoc-
lncRNA: predict the subcellular location of lncRNAs by incorporating octamer 
composition into general PseKNC. Bioinformatics. 2018;34:4196–204.

11. Cheng S, Zhang L, Tan J, Gong W, Li C, Zhang X. DM-RPIs: Predicting ncRNA-
protein interactions using stacked ensembling strategy. Comput Biol Chem. 
2019;83:107088.

12. Asim MN, Malik MI, Zehe C, Trygg J, Dengel A, Ahmed S. MirLocPredictor: a 
ConvNet-Based Multi-label MicroRNA subcellular localization predictor by 
incorporating k-Mer positional information. Genes. 2020;11:1475.

13. Kirk JM, Sprague D, Calabrese JM. Classification of long noncoding RNAs by 
k-mer content. Methods Mol Biol. 2021;2254:41–60.

https://doi.org/10.1186/s12864-024-10786-1
https://doi.org/10.1186/s12864-024-10786-1
https://www.ncbi.nlm.nih.gov/


Page 14 of 14Li et al. BMC Genomics          (2024) 25:855 

14. Montaseri S, Zare-Mirakabad F, Ganjtabesh M. Evaluating the quality of 
SHAPE data simulated by k-mers for RNA structure prediction. J Bioinform 
Comput Biol. 2017;15:1750023.

15. Miller C, Gurd J, Brass A. A RAPID algorithm for sequence database compari-
sons: application to the identification of vector contamination in the EMBL 
databases. Bioinformatics. 1999;15:111–21.

16. Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer spectrum-based 
error corrector for Illumina sequence data. Bioinformatics. 2013;29:308–15.

17. Williams D, Trimble WL, Shilts M, Meyer F, Ochman H. Rapid quantification 
of sequence repeats to resolve the size, structure and contents of bacterial 
genomes. BMC Genom. 2013;14:537.

18. Audoux J, Philippe N, Chikhi R, Salson M, Gallopin M, Gabriel M, Le Coz J, 
Drouineau E, Commes T, Gautheret D. DE-kupl: exhaustive capture of biologi-
cal variation in RNA-seq data through k-mer decomposition. Genome Biol. 
2017;18:243.

19. Karlin S, Burge C. Dinucleotide relative abundance extremes: a genomic 
signature. Trends Genet. 1995;11:283–90.

20. Zhou F, Olman V, Xu Y. Barcodes for genomes and applications. BMC Bioin-
form. 2008;9:546.

21. Wei C, Wang G, Chen X, Huang H, Liu B, Xu Y, Li F. Identification and typing of 
human enterovirus: a genomic barcode approach. PLoS ONE. 2011;6:e26296.

22. Meher PK, Sahu TK, Rao AR. Identification of species based on DNA 
barcode using k-mer feature vector and Random forest classifier. Gene. 
2016;592:316–24.

23. Wang D, Xu J, Yu J. KGCAK: a K-mer based database for genome-wide phylog-
eny and complexity evaluation. Biol Direct. 2015;10:53.

24. Kafri A, Chor B, Horn D. Inter-chromosomal k-mer distances. BMC Genom. 
2021;22:644.

25. Yang Y, Nephew K, Kim S. A novel k-mer mixture logistic regression for 
methylation susceptibility modeling of CpG dinucleotides in human gene 
promoters. BMC Bioinform. 2012;13:S15.

26. Subramanian A, Schwartz R. Reference-free inference of tumor phylogenies 
from single-cell sequencing data. BMC Genom. 2015;16:S7.

27. Sauk M, Žilina O, Kurg A, Ustav EL, Peters M, Paluoja P, Roost AM, Teder H, Palta 
P, Brison N, et al. NIPTmer: rapid k-mer-based software package for detection 
of fetal aneuploidies. Sci Rep. 2018;8:5616.

28. Audemard EO, Gendron P, Feghaly A, Lavallée VP, Hébert J, Sauvageau G, 
Lemieux S. Targeted variant detection using unaligned RNA-Seq reads. Life 
Sci Alliance. 2019;2:e201900336.

29. Lee H, Shuaibi A, Bell JM, Pavlichin DS, Ji HP. Unique k-mer sequences for 
validating cancer-related substitution, insertion and deletion mutations. NAR 
Cancer. 2020;2:zcaa034.

30. Jaillard M, Palmieri M, van Belkum A, Mahé P. Interpreting k-mer-based signa-
tures for antibiotic resistance prediction. Gigascience. 2020;9:giaa110.

31. Naghibzadeh M, Savari H, Savadi A, Saadati N, Mehrazin E. Developing an 
ultra-efficient microsatellite discoverer to find structural differences between 
SARS-CoV-1 and Covid-19. Inf Med Unlocked. 2020;19:100356.

32. Zhang Y, Wen J, Li X, Li G. Exploration of hosts and transmission traits 
for SARS-CoV-2 based on the k-mer natural vector. Infect Genet Evol. 
2021;93:104933.

33. Sung I, Lee S, Pak M, Shin Y, Kim S. AutoCoV: tracking the early spread of 
COVID-19 in terms of the spatial and temporal patterns from embedding 
space by K-mer based deep learning. BMC Bioinform. 2022;23:149.

34. Cserháti M, Turóczy Z, Dudits D, Györgyey J. The rice word landscape—a 
detailed catalog of the rice motif content in the noncoding regions. OMICS. 
2011;15:819–28.

35. Cserhati M. A tail of two pandas— whole genome k-mer signature analysis of 
the red panda (Ailurus fulgens) and the Giant panda (Ailuropoda melano-
leuca). BMC Genomics. 2021;22:228.

36. Bonnici V, Franco G, Manca V. Spectral concepts in genome informational 
analysis. Theor Comput Sci. 2021;894:23–30.

37. Dubinkina VB, Ischenko DS, Ulyantsev VI, Tyakht AV, Alexeev DG. Assessment 
of k-mer spectrum applicability for metagenomic dissimilarity analysis. BMC 
Bioinform. 2016;17:38.

38. Huimin X, Bailin H. Aug. Visualization of K-tuple distribution in procaryote 
complete genomes and their randomized counterparts. In: Proceedings IEEE 
Computer Society Bioinformatics Conference: 16–16 2002. 2002;2002:31–42.

39. Chen YH, Nyeo SL, Yeh CY. Model for the distributions of k-mers in DNA 
sequences. Physi Rev E. 2005;72:011908.

40. Chor B, Horn D, Goldman N, Levy Y, Massingham T. Genomic DNA k-mer 
spectra: models and modalities. Genome Biol. 2009;10:R108.

41. Yang ZH, Li H, Jia Y, Zheng Y, Meng H, Bao T, Li XL, Luo LF. Intrinsic laws of 
k-mer spectra of genome sequences and evolution mechanism of genomes. 
BMC Evol Biol. 2020;20:157.

42. Jia Y, Li H, Wang J, Meng H, Yang Z. Spectrum structures and biological func-
tions of 8-mers in the human genome. Genomics. 2019;111:483–91.

43. Zheng Y, Li H, Wang Y, Meng H, Zhang Q, Zhao X. Evolutionary mechanism 
and biological functions of 8-mers containing CG dinucleotide in yeast. 
Chromosome Res. 2017;25:173–89.

44. Li XL, Li H, Yang ZH, Wu Y, Zhang MC. Exploring objective feature sets in 
constructing the evolution relationship of animal genome sequences. BMC 
Genom. 2023;24:634.

45. Rudner R, Karkas JD, Chargaff E. Separation of B. subtilis DNA into 
complementary strands. 3. Direct analysis. Proc. Natl. Acad. Sci. U.S.A. 
1968;60:921–922.

46. Prabhu VV. Symmetry observations in long nucleotide sequences. Nucleic 
Acids Res. 1993;21:2797–800.

47. Yamagishi MEB. Mathematical Grammar of Biology. Springer Cham; 2017.
48. Chen Z, Zhao P, Li C, Li F, Xiang D, Chen YZ, Akutsu T, Daly Roger J, Webb 

Geoffrey I, Zhao Q, et al. iLearnPlus: a comprehensive and automated 
machine-learning platform for nucleic acid and protein sequence analysis, 
prediction and visualization. Nucleic Acids Res. 2021;49:e60.

49. Liu B, Fang L, Long R, Lan X, Chou KC. iEnhancer-2L: a two-layer predictor 
for identifying enhancers and their strength by pseudo k-tuple nucleotide 
composition. Bioinformatics. 2016;32:362–9.

50. Liu B, Yang F, Huang DS, Chou KC. iPromoter-2L: a two-layer predictor for 
identifying promoters and their types by multi-window-based PseKNC. 
Bioinformatics. 2018;34:33–40.

51. Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: an updated platform for analyzing 
DNA, RNA and protein sequences at sequence level and residue level based 
on machine learning approaches. Nucleic Acids Res. 2019;47:e127.

52. Chen Z, Zhao P, Li F, Marquez-Lago TT, Leier A, Revote J, Zhu Y, Powell DR, 
Akutsu T, Webb GI, et al. iLearn: an integrated platform and meta-learner for 
feature engineering, machine-learning analysis and modeling of DNA, RNA 
and protein sequence data. Brief Bioinf. 2020;21:1047–57.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Distribution rules of 8-mer spectra and characterization of evolution state in animal genome sequences
	Abstract
	Introduction
	Results
	Distribution features of 8-mer spectra in genome sequences
	Position preference for spectrum distributions of XY-type 8-mers
	Spectrum distribution features of XY i 8-mer subsets
	Spectrum separability of XY1_CG1 8-mer subsets
	Difference analysis of species genome sequences

	Conclusion and discussion
	Materials and methods
	Dataset
	K-mer spectrum of the genome sequence
	XY dinucleotide classification method
	Spectrum separability of 8-mer subset
	Machine learning algorithms and classification performance evaluation

	References


